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We report the engineering of air-voids embedded in GaAs-based photonic crystal surface emitting lasers 

realised by metalorganic vapour-phase epitaxy regrowth. Two distinct void geometries are obtained by 

modifying the photonic crystal grating profile within the reactor prior to regrowth. The mechanism of void 

formation is inferred from scanning transmission electron microscopy analysis, with the evolution of the 

growth front illustrated though the use of an AlAs/GaAs superlattice structure. Competition between rapid 

lateral growth of the (100) surface and slow diffusion across higher index planes is exploited in order to 

increase void volume, leading to an order of magnitude reduction in threshold current and an increase in 

output power through an increase in the associated grating coupling strength.  

 

 

Photonic crystal surface emitting lasers (PCSELs) have emerged as a new class of semiconductor laser 

that offer single-mode emission with extremely narrow beam divergence and tunable beam shape1. These 

properties are realised by the inclusion of a photonic crystal (PC) grating layer adjacent to the active region 

of the device, in which a two dimensional variation in refractive index causes the scattering and interference 

of light and the emergence of a photonic band structure2. The scattering condition at the 𝛤-point of the band 

structure results in the formation of a two-dimensional resonant cavity that supports laser oscillation within 

the plane of the PC, with light scattered out of plane via second-order scattering3. Through this band edge 

resonance effect, light is emitted coherently from the entire surface of the device, promising the possibility 

of true area-scalable output power without the degradation of optical mode quality. 

Whilst originally realised through wafer-bonding4, metalorganic vapour-phase epitaxy (MOVPE)-based 

regrowth has emerged as a promising method for PCSEL fabrication owing to the elimination of the interfacial 

defects associated with bonding. MOVPE regrowth also offers the flexibility to realise both all-

semiconductor5,6 and air-void-based7,8 PC structures, with watt-class operation of devices having been 

demonstrated9. In this regard, control over the regrowth process is crucial in optimising device performance 

because properties such as coupling strengths10 and output power11,12,13 are dependent on the microscopic 

geometry of the PC grating unit cell. Although previous studies have investigated the engineering of air-void 

shape during regrowth7,14, the scanning electron microscopy (SEM)-based analysis employed revealed little 

about the evolution of epitaxy, and hence the mechanisms that drive void formation or complete 

semiconductor infill. 

In this work, we present two GaAs-based PCSELs containing voids encapsulated during MOVPE 

regrowth of a patterned GaAs layer with AlAs/GaAs. The use of an AlAs/GaAs superlattice (SL) provides 

snapshots of the evolving growth front during regrowth and allows the mechanism of void formation to be 

inferred by scanning transmission electron microscopy (STEM)-based analysis. The relationship between the 

crystallographic geometry of the patterned grating and the final void geometry is explored using two distinct 

grating profiles obtained by exploiting mass-transport and surface restructuring during pre-growth thermal 
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processing within the MOVPE reactor. In particular, the proportion of (100) and the orientation of adjacent 

facets are shown to be important in influencing the extent of the lateral growth which causes the voids to 

form. The presence of fast-growing high index planes results in small “pill”-shaped voids. Elimination of these 

planes from the grating profile produces much larger ellipsoidal voids which lead to significantly improved 

device performance.  

The base-epitaxial wafers for both devices presented in this study were grown by MBE on (100) GaAs. 

These substrates had a 2°-offcut towards (1-10), although this does not affect etching and diffusion kinetics 

discussed below. The structure consisted of a thick n-AlGaAs cladding layer, an active region composed of 

three InGaAs/GaAs quantum wells, and a top p-GaAs layer. A square-lattice of circular holes with a period of 

320 nm was defined in PMMA by electron-beam lithography and patterned into the p-GaAs layer by reactive 

ion etching (RIE). An SEM image of the as-etched PC is shown in Fig 1(a), highlighting the {111} sidewalls that 

arise from the use of the photoresist soft mask. In order to maximise the potential coupling strength of the 

grating10, each of the holes was etched with a nominal diameter of 256 nm, corresponding to an r/a value 

(the ratio of the radius to the period) of 0.4. The resulting depth was approximately 150 nm. The total PC 

area per device was 150 x 150 μm. 

 

 

 
 

FIG. 1. (a) Representative SEM image of a cleaved, as-etched PC layer; viewed along the [011] direction. The 

circular grating holes have a truncated-cone shape bounded by {111}-like sidewalls. (b) Schematic illustrating 

the change in grating geometry in Device A and B versus the etched profile. 

 

Immediately prior to MOVPE regrowth, wafers were cleaned using a UVCOS UV/ozone cleaner and 

etched in 10:1 buffered HF for one minute. Following this, they were loaded into a Thomas Swan 3x2ʺ CCS 

MOVPE reactor operating at a pressure of 100 mbar. The PC was then regrown with 120 nm of an AlAs/GaAs 

SL structure at a temperature of 650 °C and V/III ratio of 700, with a nominal growth rate of 6 nm/min on the 

(100) surface. The SL consists of alternating layers with nominal thicknesses of 9 nm and 1 nm, for AlAs and 

GaAs, respectively. The PC infill layer was immediately followed by a 1.5 μm thick p-doped Al0.41Ga0.59As 

cladding layer and finished with a 100 nm thick p+-GaAs contact layer. Trimethylaluminium (TMAl) and 

trimethylgallium (TMGa) were utilized as group-III precursors, with arsine (AsH3) and dimethylzinc (DMZn) as 

the group-V precursor and dopant source, respectively.  
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Following MOVPE regrowth, a 100 x 100 μm square mesa, etched to a depth of 300 nm, was defined 

in the p+-GaAs contact layer using a combination of photolithography and a solution of hydrogen peroxide 

and orthophosphoric acid. A 200 nm thick SiO2 passivation layer was then deposited across the wafer, into 

which a 100 x 100 μm contact window was opened on the mesa top using a CHF3/Ar reactive ion etch. A p-

type Ti/Pt/Au contact was then deposited, and a 60 μm-diameter circular emission aperture defined using a 

standard lift-off process. Fabrication was completed by the deposition of a backside Ni/Au/Ge/Ni/Au n-type 

contact and thick Ti/Au bond pads on the top surface.  

Whilst the as-etched grating profile was nominally identical in both devices (Fig. 1(a)), the geometry at 

the start of epitaxy was modified in order to influence the mechanism of void formation. This was realised 

within the MOVPE reactor by exploiting mass-transport phenomena during the temperature ramp cycle prior 

to regrowth.  Here, the micron-scale gradients in chemical potential that are introduced to the wafer by 

patterning and the exposure of different crystal planes result in thermally-activated diffusion of Ga as the 

system attempts to minimise its surface energy15. As discussed below, comparison of the as-etched profiles 

with the profiles observed in STEM indicates that there is a net transfer of material from the sharp, convex 

edges bounding the upper rim of the grating holes towards the (concave) bottom of the holes. This process 

ultimately minimises the surface chemical potential, and would lead to complete planarization if not 

quenched by the subsequent over-growth. By varying the temperature ramp rate, we can control the extent 

of Ga mass-transport and modify the grating profile in-situ. In this case, the temperature of the wafers was 

increased linearly from 330 °C to 650 °C under a constant AsH3 flow, ramping over six minutes for Device A 

and three minutes for Device B. 

The difference in cross-sectional profiles is illustrated in Fig. 1(b), where the profiles derive from STEM 

analysis (see below). Whereas the etched profile (in black) consisted of top and bottom (100) planes 

connected by {111}-like sidewalls, mass-transport during annealing substantially smooths those seen in the 

regrown devices. The extent of diffusion increases with anneal time and is greatest for Device A. It is 

characterised by a reduction in hole depth and overall increase in hole width, consistent with mass-

conservation in this transport regime. This is accompanied by significant changes in local crystallography 

within the hole, with the formation of planes adjacent to the top and bottom surfaces and the introduction 

of short connecting sidewalls. On the basis of the STEM analysis, the angles at which they intersect the (100) 

plane are consistent with {311} and {221}-like planes, respectively; the key point is that these are relatively 

high miller index planes and are therefore more reactive than either {111} planes or the (100) surface, 

increasing the sticking probability for arriving species and reducing the diffusion rate of adsorbed species. 

The reduced ramp time used for Device B, by compassion, resulted in much less diffusion and only minimal 

smoothing, characterised by a slight reduction in hole depth and the formation of only short {311]-like planes 

in the bottom corners of the hole. The grating profiles seen in the regrown devices form part of a surface-

energy-minimisation sequence that is in good agreement with that predicted by simulations of thermally 

promoted deformation of comparable pits etched in (100) Si surfaces16. Comparisons with such simulations 

suggest that subsequent deposition of the SL passivates the growth surface to prevent further deformation. 

Structural analysis of the regrown PC region was performed using a JEOL ARM200cF STEM operating 

at 200 kV. Cross-sectional specimens were prepared in a Thermo Fisher Xe-Plasma focussed ion beam (FIB) 

system by a standard lamella lift-out method17. Fig. 2(a) shows a cross-sectional high-angle annular dark-field 

(HAADF)-STEM image of a single grating period of the PC layer in Device A, as viewed along the [011] 

direction. As signal intensity in HAADF imaging is proportional to the atomic number squared for each of the 

elemental species present in the specimen, it follows that the central dark feature is a void that was 

encapsulated within the AlAs/GaAs infill layer during regrowth. In this case the void is bounded by near-

vertical sidewalls giving it a cylindrical “pill”-like shape, with a diameter and height of 50 nm and 120 nm, 

respectively. Such voids are present above each of the grating features and, due to the considerably larger 

refractive index difference between semiconductor and “air” void compared to GaAs and AlAs, will relate to 
the majority of the coupling coefficient for the laser. As such, the presence of the void forms the basis of the 

PC laser with a nominal r/a value of only 0.08, compared to a value of 0.4 if only the grating geometry is 

considered. 
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FIG. 2. (a) HAADF-STEM image of the regrown PC layer in Device A showing the formation of a void (black). 

(b) Schematic illustrating the growth front after Deposition of seven SL layers. Cross-sections viewed along 

the [011] direction. (c) Graph showing the relative growth rates normal to the {100} and {311} planes as 

measured by the displacement of successive GaAs SL along the lines (A-D) indicated. 

 

The lighter GaAs layers of the SL in the STEM image illustrate the growth front evolution during PC 

infill, with successive layers providing a time-resolved snapshot as the process proceeds. It is clear from Fig. 

2(a) that the growth front evolves through substantial lateral growth of the top (100) plane, with an 

accompanying reorientation and lengthening of the sidewalls toward the vertical {011} facets which bound 

the void. This mechanism contrasts with that seen during the growth of V-groove quantum wires18 and 

pyramidal quantum dots19 in which the original etch profile is retained by subsequent layers in what is termed 

“self-limited” growth. In the case of AlGaAs/GaAs quantum wires, the structures derive from an enhanced 

growth rate from the trench sidewalls relative to the (100) plane, and allow for the complete planarization 

of the patterned area without the formation of voids. In contrast, we attribute the void formation seen in 

Fig. 2(a) to restricted diffusion of absorbed species on the sidewalls, in comparison to the (100) surface, 
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during growth. Diffusion of material off the (100) surface leads to an accumulation of species, and hence 

apparently thicker SL periods on the slow diffusion bounding facets. It is known that Al has inherently lower 

mobility compared to GaAs or AlGaAs20, and lower rates on more open, higher Miller index surfaces is 

expected. The limited surface mobility is further suppressed by the use of a relatively low growth 

temperature and large V/III ratio, which have been shown to impede the diffusion of group-III species across 

similarly patterned substrates21. 

The evolving growth front seen in Device A is illustrated in the cross-sectional schematic shown in Fig. 

2(b). This diagram was constructed from the STEM image (Fig. 2(a)) using the seventh GaAs SL layer as a guide 

to the shape of the growth front after approximately 12 mins of deposition. The front has been simplified to 

remove the curved interfaces between planes, and a single domain emanating from each of the crystal planes 

that form the underlying grating (blue line) is highlighted; dashed arrows indicate the surface normal for each 

plane. Here we see that the lateral growth of the top surface and sidewall re-orientation are accompanied 

by a shrinking, and eventual elimination, of the top {311} planes. Measurements of the relative growth rates 

normal to each plane, shown in Fig. 2(c), reveal substantially thicker layers on {311} compared to the adjacent 

(100). The difference in growth rate between the sets of {311} planes seen in Fig. 2(c) is accentuated by 

reduced atomic flux impinging on planes at the bottom of the grating hole, resulting in the reorientation and 

lengthening of the sidewalls. The difference is exacerbated by the low mobility of Al in this system, which 

prevents the surface diffusion of species to bottom {311} surfaces, and increases over time as the aspect 

ratio of the aperture through which incident atomic flux passes increases. The void is formed following the 

merging of overhanging corners and the elimination of the top {311} planes from the growth front. At this 

point, lateral growth of the (100) plane dominates over deposition within the large-aspect-ratio hole, 

allowing the void to be encapsulated without further reduction in diameter. We note that, in this case, the 

void is ultimately enclosed by the AlGaAs cladding layer, as seen in Fig. 2(a). This is the result of enhanced 

growth within the hole compared to Device B (see below), which pushes the position of the void closer to 

the AlAs/GaAs-AlGaAs interface. 
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FIG. 3. (a) HAADF-STEM image of the regrown PC layer in Device B. (b) Schematic illustrating the growth front 

after deposition of seven SL periods. Cross-sections viewed along the [011] direction. 

 

A cross-sectional HAADF-STEM image of the regrown PC layer of Device B is shown in Fig. 3(a). The 

overall thickness of the regrown PC layer is the same as that of Device A, to facilitate comparison between 

the devices. Again, regrowth has resulted in void formation however, in this case, the voids are significantly 

larger than those seen in Device A. They also sit lower with respect to the initial GaAs surface, and therefore 

closer to the active region compared with Device A, as the grating hole is deeper and growth within it is 

reduced. Here the void is approximately 155 nm high and is ellipsoidal in shape, with a diameter of 110 nm 

at its widest point corresponding to an r/a value of 0.17. As discussed above, the 50 % reduction in 

temperature ramp time compared with Device A was successful in reducing the extent of Ga mass-transport, 

resulting in the retention of the {111}-like grating sidewalls defined at the etch stage. The evolution of the 

growth front for this system is illustrated in Fig. 3(b). Exact quantification of the sidewall SL layer thicknesses 

is limited because the layers appear less distinct, which we attribute to the relative thickness of the STEM 

cross-section: the projection of a curved, three-dimensional structure onto a two-dimensional image. 

However, there is a clear non-uniformity in the overall thickness, with enhanced growth at the interface of 

the top (100) plane and the sidewall, and rapid extension of the top (100) surface. This effect is consistent 

with that seen in the regrowth of V-grooves at lower temperatures and large V/III ratios21, in which the 

limited mobility of the group III-species prevents them from diffusing along {111} planes. It is this “bunching” 
of Al drives the lateral growth of the (100) planes that results in void encapsulation, confirming the 

importance of suppressed Al mobility during the regrowth process. 

The quasi-continuous wave (CW) LIV and spectral characteristics of the devices were measured at 20°C 

using a pulse width of 2 μs and 1 % duty cycle, and are shown in Fig.4.  In the case of Device A, lasing occurred 

at a threshold current of 440 mA (J = 4.4 kA/cm2) and a wavelength of 1074 nm. In addition, the device 

suffered from a low slope efficiency with an output power of only 64 pW recorded at 600 mA. The poor 

performance of the device can be attributed to the size of the PC voids. Previous simulations of square-lattice 

PCs consisting of circular holes have suggested that local maxima in the in-plane coupling coefficient are 

obtained when the r/a is either 0.2 and 0.410. The sub-optimal r/a of 0.07 for the voids in Device A are 

therefore associated with large values of in-plane loss and, in turn, large threshold current and low slope 

efficiency for the vertically emitted light. Similarly, it has been shown that, for a given r/a, maximum output 

power is achieved when the void height is equal to half of the grating period11. In this case the height is only 

75 % of the optimum value of 160 nm, and so the output power is further diminished due to destructive 

interference of light scattered out of plane.  

Device B displayed significantly improved laser performance over A, with an order of magnitude 

reduction in threshold current to 65 mA (J = 0.65 kA/cm2), and a measured output power of 2.8 mW at 250 

mA. The associated slope efficiency is 0.012 W/A, however it should be noted that light is collected from an 

aperture of only 28 % of the total pumped area due to obscuration by the top gold contact. The optical 

spectrum of the device (Fig. 4, inset) is characterised by a main lasing peak centred at 1074 nm, with a less 

intense peak at a shorter wavelength owing to the narrow splitting of bands at the Γ2-point of the photonic 

band structure. The dip in the spectrum between these peaks corresponds to the position of the local band 

gap for this PC structure. Whilst the use of an AlAs/GaAs superlattice is a good method for highlighting the 

evolving growth front for STEM analysis, its presence will have a detrimental effect on device characteristics, 

leading to an increased turn-on voltage compared with a device grown with a bulk infill layer. The 

improvements in threshold and output power can be attributed to the increase in grating coupling strength 

(through the reduction of parasitic in-plane loss) and decrease in vertical destructive interference associated 

with improved void radius (0.17 r/a) and height (155 nm), respectively, in line with the predictions of the 

simulation-based studies mentioned above10,11. The increase in forward voltage seen for Device B is also 

attributed to the increased void size due to the decrease in effective conduction cross-section for carriers 

moving through the PC layer. Further improvements to the performance of Device B may be achieved by 

reducing the thickness of the GaAs grating layer, therefore bringing the voids closer to the quantum wells, 

and increasing the coupling between the active region and PC. 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
5
0
3
8



7 

 

 

 
 

FIG. 4. Quasi-CW LIV characteristics and lasing spectrum (inset) of Devices A and B. Power values for Device 

A have been scaled by a factor of 10 for clarity. Devices were measured at 20 °C using a pulse width of 2 μs 

and 1 % duty cycle.  

 

We have presented a study of growth-front development in MOVPE-regrown GaAs-based PCSELs 

containing air-void PC, made possible by the use of an AlAs/GaAs superlattice structure. Two unique void 

geometries have been realised by controlling the extent of mass-transport-driven deformation of the PC 

grating during the pre-growth temperature ramp process within the reactor. STEM analysis of the regrown 

devices reveals the evolution of the growth front in each case, confirming that void formation is the result of 

rapid lateral growth of the inter-hole (100) surface and slow diffusion across higher order surfaces binding 

the hole. The device containing voids with a larger volume exhibited greatly improved threshold current and 

output power, confirming the results of previous simulation-based studies. Further optimisation of void 

geometry and device parameters can be achieved by considering different growth temperatures and V/III 

ratio. 
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