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Abstract—Numerical comparison is often key to verifying
the performance of optimization algorithms, especially, global
optimization algorithms. However, studies have so far neglected
issues concerning comparison strategies necessary to rank
optimization algorithms properly. To fill this gap for the first time,
we combine voting theory and numerical comparison research
areas, which have been disjoint so far, and thus extend the results
of the former to the latter for optimization algorithms. In partic-
ular, we investigate compatibility issues arising from comparing
two and more than two algorithms, termed “C2” and “C2+” in
this article, respectively. Through defining and modeling “C2”
and “C2+” mathematically, it is uncovered and illustrated that
numerical comparison can be incompatible. Further, two pos-
sible paradoxes, namely, “cycle ranking” and “survival of the
nonfittest,” are discovered and analyzed rigorously. The occur-
rence probabilities of these two paradoxes are also calculated
under the no-free-lunch assumption, which shows the first justifi-
able use of the impartial culture assumption from voting theory,
providing a point of reference to the frequency of the para-
doxes occurring. It is also shown that significant influence on
these probabilities comes from the number of algorithms and
the number of optimization problems studied in the compar-
ison. Further, various limiting probabilities when the number
of optimization problems goes to infinity are also derived and
characterized. The results would help guide benchmarking and
developing optimization and machine learning algorithms.

Index Terms—Cycle ranking, evolutionary computation,
machine learning, numerical comparison, optimization.
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I. INTRODUCTION

NUMERICAL comparison has been widely used in testing
and verifying the performance of optimization algo-

rithms, especially, global optimization algorithms such as
evolutionary algorithms [1]–[4]. Despite that a number of
comparison methods and amalgamated scoring systems [5]
exist, few studies have been reported on comparison strate-
gies so far. In this article, we study comparison strategies and
their mathematical properties. In particular, the compatibility
of different comparisons results by two popular comparison
strategies will be investigated in full. This article will cover
numerical comparison of algorithms on multiple optimization
problems.

As several matches of numerical tests can be included
in a comparison, a performance metric is needed to indi-
cate an algorithm’s performance rank in each match through
an appropriate comparison method. Fig. 1 shows the pro-
cess of the numerical comparison of optimization algorithms,
which requires numerical experiments (selecting optimization
algorithms and problems, and then testing the algorithms on
these problems), determination of a comparison strategy and
a comparison method, analyzing metric data and obtaining
comparison results. Following the comparison endeavoring,
declaration of a winner (or the “best”) algorithm is often
desired in an algorithm competition [4], [6], [7] or algo-
rithm development [8], [9]. The next section will outline more
background on this aspect.

Extensive studies have been undertaken to evaluate how to
compare or benchmark optimization algorithms numerically,
especially, on the design of test or benchmark problems and
the development of comparison methods [6], [7], [10], [11].
So far, however, there exist few reports on a comparison
strategy. In essence, several “matches” are often included in
the entire comparison, and a comparison strategy is about
how many matches are needed to complete the entire com-
parison and which algorithms need to be compared at each
match. Conversely, a comparison method deals with the
analysis in a single match. In other words, a compari-
son strategy tries to obtain algorithms’ performance ranking
when the entire comparison finishes, whilst a comparison
method seeks to obtain the performance rankings in a single
match.

In [4], a specially designed methodology called exploratory
landscape analysis was proposed to obtain a “winner”
or best algorithm from the black-box optimization
benchmarking (BBOB), COmparing continuous optimizers
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Fig. 1. Systematic framework and flow chart for the numerical comparison
of optimization algorithms. The red box highlights the focus of this article,
verifying the compatibility of comparison results to be obtained from different
comparison strategies.

(COCO) 2009–2010 comparison results [6], [12]. It was
concluded that it is not easy to aggregate rankings from
algorithm evaluations on individual problems into a consensus,
and some common pitfalls exist.

In this article, therefore, we dedicate our investigations to
the comparison strategy, especially, the compatibility of dif-
ferent comparison results from different strategies. Two basic
comparison strategies are to be mathematically defined and
modeled, and two probable paradoxes are to be illustrated.
The occurrence probabilities of these paradoxes are calculated
and their limiting values are provided to illustrate possibly
incompatible comparison results from different strategies and
that the number of algorithms and problems considered can
influence the results significantly.

The remainder of this article is organized as follows. In
Section II, the flow chart of Fig. 1 is discussed in detail,
where the comparison method and the comparison strategy are
reviewed after summarizing the necessity of numerical com-
parison. In Section III, two popular comparison strategies are
modeled mathematically to enhance analysis. Based on the
model, probable paradoxes are illustrated in Section IV, and
the probabilities of the paradoxes are calculated in Section V.
Finally, the conclusions are summarized in Section VI.

II. NUMERICAL COMPARISONS OF OPTIMIZATION

ALGORITHMS

Without loss of generality, many optimization algorithms
have been developed to solve the minimization problem

min f (t), t ∈ � ⊆ R
n (1)

where f (t) is the objective function and t is a vector containing
n decision variables. A maximization problem can be mod-
eled as the above minimization problem through, for example,

minus f (t). When � = R
n, problem (1) is unconstrained,

otherwise it is constrained.
When f (t) is nonconvex, problem (1) is often hard to solve.

Therefore, in the mathematical programming community, a
local optimal point t̂ satisfying

f (t̂) ≤ f (t) ∀t ∈ (t̂ − δ, t̂ + δ) ∀δ > 0 (2)

is often sought, where gradient information regarding f (t) is
often necessary in algorithm design and analysis. However,
in the evolutionary computation community and the global
optimization community, the global optimal point t� satisfying

f (t�) ≤ f (t) ∀t ∈ � (3)

is often sought and investigated, regardless of the availability
of gradient information.

With either local optimization or global optimization, it
is often necessary to compare different algorithms’ numer-
ical performance. To do this, certain algorithms are first
selected and then tested on certain optimization problems.
Both a proper comparison strategy and a comparison tactic,
i.e., method, are needed in analyzing the gathered test data.

In order to investigate the compatibility of different com-
parison results from different comparison strategies, we first
describe what numerical comparison of optimization algo-
rithms is and what the role of comparison strategy is. In
this section, we shall show why numerical comparison of
optimization algorithms is necessary, and shall describe its
main components (Fig. 1), namely, specifying algorithms
and test problems, numerical experiments, comparison strate-
gies, comparison methods, and data analysis and comparison
results.

A. Why Numerical Comparison

There exist a large number of optimization algorithms
developed for various kinds of optimization problems.
However, which algorithm is the best on a certain given
problem is often unclear or inconclusive [4], [13], [14].
Numerical comparison can bring helpful insight to the users
through verifying the performance of optimization algorithms,
whether being local or global.

For local optimization algorithms, they are often compared
theoretically through analyzing the convergence and the con-
vergence rate. The higher the convergence rate is, the better
the algorithm is. However, a higher convergence rate does
not imply a shorter CPU time. Moreover, convergence is a
property under limit conditions which may be inaccessible in
practice. Therefore, numerical comparison is necessary to ver-
ify local optimization algorithms’ performance before reaching
the limit.

For global optimization algorithms, the convergence is hard
to prove due to the absence of applicable mathematical optimal
conditions. Therefore, numerical comparison is often the only
way to verify the efficacy of a global optimization algorithm.

In summary, numerical comparison is necessary for both
local and global optimization algorithms’ design, analysis, and
development. Key components of the framework for numerical
comparison are detailed as follows.
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B. Specifying Algorithms and Test Problems

From Fig. 1, we can see that the selection of algorithms and
problems are the preconditions of numerical experiments (i.e.,
testing the algorithms on the problems).

The selection of optimization algorithms often depends on
the specific implementations. There are two popular imple-
mentations: 1) algorithm competition and 2) development of
a new algorithm. For algorithm competition, algorithms are
often selected if their developers decide to attend the compe-
tition. For the development of a new algorithm, the algorithm
is often selected by the developer of the new algorithm, and a
common practice is to select certain existing good algorithms
of the same type as the proposed new algorithm.

Numerous test problems, including benchmarking func-
tions [6], [10], [15] and practical test problems [16]–[18]
have been designed or modeled for numerical comparison
of optimization algorithms. There are some popular sets of
benchmark functions, for example, the series of conference
of evolutionary computation (CEC) benchmark sets [7], [20],
and series of BBOB sets [12].

However, there is still no comprehensive or systematic
research on how to select proper optimization problems for
numerical comparison. Without this guide, it is preferred to
select the whole set of a certain popular optimization problem
suite, and not part of it. Moreover, in this article, we shall
show that the number of optimization problems and its parity
have a significant impact on the final comparison result.

C. Numerical Tests

In this phase, each selected algorithm will be adopted
to solve each selected problem. If the algorithm is non-
deterministic or stochastic, then multiple independent runs
are required to alleviate random variances as far as possi-
ble. For local optimization, numerical experiments often stop
when a mathematical optimal condition is satisfied. However,
there is no suitable mathematical optimal condition for global
optimization. Therefore, numerical experiments often stop
after a given computational budget is consumed.

After all the experiments finish, the large amounts of data
gathered undergo post analysis. Although the data contain sev-
eral metrics, such as the function values and the CPU times,
the most popular metric is the series of the best solutions found
as the computational cost increases.

It is observed that numerical experiments are conducted
almost independently from later selections of either a com-
parison strategy or a comparison method. In effect, whatever
the comparison strategy or the comparison method is chosen,
the same implementations of numerical experiments described
above are often needed. The only differences are the selection
of performance metrics, e.g., the found best function values or
the CPU times, and the determination of parameters, such as
the computational budget and the number of dependent runs
for stochastic optimization algorithms. Although these selec-
tions may have a high influence on comparison results, they
do not affect the analysis on the compatibility of different
comparison strategies.

D. Comparison Strategies

A comparison strategy is meaningful when three or more
optimization algorithms need to be compared. In this case,
several matches may be included in the comparison. A com-
parison strategy determines how many matches are needed
and which algorithms are compared in each match. However,
a comparison strategy is often omitted or overlooked partly
because it is often considered as a default setting when choos-
ing an appropriate comparison method in each match. A more
important reason is that, to the best of our knowledge, there
exists no research in the optimization community to inform
what comparison results from different comparison strategies
may be incompatible.

When three or more algorithms are compared, there exist
two basic comparison strategies, namely, comparing by pair-
wise evaluation on each problem and comparing three or more
algorithms on each problem. In this article, we term them a
“C2” strategy and a “C2+” strategy, respectively, where “C”
stands for “comparing” and “2+” stands for “more than 2.”
Although there are several choices for the “C2+” strategy, the
most popular choice in practice is to compare all algorithms on
each problem. Therefore, in the latter of this article, “C2+” is
a strategy in which all participating algorithms are compared
on each problem, unless otherwise specified.

Both “C2” and “C2+” are popular in the optimization com-
munity, e.g., the “C2” strategy is adopted in algorithm design
or development in [9] and [21]–[25] and in the CEC algorithm
competition [20], while “C2+” is adopted in other algo-
rithm competitions, such as the BBOB COCO [6], [12], the
IOHprofiler [26], and the black-box optimization competition
(BBComp) [27], and also in algorithm design or development
in [11] and [28]–[32].

There exist two popular implementations of the “C2”
strategy, namely, the one-plays-all comparison and the all-
play-all comparison, both comparing two players at one time.
One-plays-all is often applied in the development of a new
algorithm, where the main concern is the determination of
whether or not the proposed algorithm performs better than
existing similar algorithms [9], [21], [24], [32]–[34]. All-play-
all is often called a round-robin comparison, i.e., it is a round
one-plays-all, usually applied in algorithm competition [15].
If there are k algorithms, then k − 1 matches are needed to
finish a one-plays-all comparison, while k(k − 1)/2 matches
are needed to complete an all-play-all comparison.

Fig. 2 shows a diagram of the “C2+” strategy where
three algorithms A, B, and C are compared by their data
profiles [11], [31]. Specifically, as the increase of compu-
tational cost, the proportions of problems solved by these
algorithms are displayed by cumulative distribution functions.
This strategy compares all the algorithms at a single match or
a few matches. Therefore, it is popular in algorithm compe-
tition [6], [26], [27], [35], [36] and the development of new
algorithms [29], [30], [37].

It is clear that “C2” often needs many more matches than
“C2+” to finish the whole comparison. Besides that, the
most important difference between them is that “C2+” often
adopts a certain kind of statistical aggregation method, such as
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Fig. 2. Example of the “C2+” strategy, where three algorithms A, B, and C
are compared simultaneously [11].

(a)

(b)

Fig. 3. Two “C2+” strategies when comparing three algorithms A1, A2, and
A3 on m optimization problems are illustrated under the analogy of running
competitions. (a) In the upper figure, only one single match is included in
the entire comparison. Comparison methods which can deal with three or
more algorithms and several problems simultaneously are allowable, e.g., the
performance profiles [28], the data profiles [31], and the visualizing confidence
intervals [11]. (b) In the lower figure, m matches are included. Comparison
methods which can deal with three or more algorithms but only one single
problem is allowable, e.g., analysis of variance [38]. In practice, the strategy
in (a) is much more popular than that in (b).

the cumulative distribution function, to obtain all algorithms’
ranking results directly. On the contrary, “C2” has to obtain
ranking in each match first and then aggregate them to obtain
a final ranking.

In order to make clearer the relationships of the above con-
cepts, e.g., a comparison, a match, a comparison strategy, and a
comparison method, it is interesting to consider the numerical
comparison of optimization algorithms as running competi-
tions. Under this analogy, optimization algorithms are regarded
as runners and each optimization problem corresponds to a
competition. Since there are several optimization problems,
therefore, the runners have to compete several times.

In Fig. 3, two “C2+” strategies when comparing three
algorithms A1, A2, and A3 on m optimization problems are
illustrated under the analogy of running competitions, where 1
match shown in Fig. 3(a) and m matches shown in Fig. 3(b) are
contained in the entire comparison, respectively. Three algo-
rithms are compared on each problem. Similarly, in Fig. 4, two
“C2” strategies are illustrated under the same analogy, where

(a)

(b)

Fig. 4. Two “C2” strategies when comparing three algorithms A1, A2, and A3
on m optimization problems are illustrated under the analogy of competitive
running. (a) In the upper figure, three matches are included in the entire
comparison. Comparison methods which can deal with two algorithms and
several problems are allowable, e.g., the performance profiles [28], the data
profiles [31], and the visualizing confidence intervals [11]. (b) In the lower
figure, 3m matches are included. Comparison methods which deal with two
algorithms and only one single problem are allowable, e.g., Student’s t-test
and the Wilcoxon’s rank-sum test [39].

the entire comparison includes 3 and 3m matches, respec-
tively. However, only two algorithms are compared on each
problem. In both Figs. 3 and 4, possible comparison methods
are provided in the captions.

E. Comparison Methods

After the comparison strategy is determined, a proper com-
parison method can be chosen for each single match. Many
methods for analyzing the experimental data gathered dur-
ing the experiments have been developed. We can classify
them into three kinds of methods, namely, static comparison,
dynamic ranking, and dynamic comparison by cumulative dis-
tribution functions, whose main characters are provided below,
referring to [11] for more details.

Static comparison methods often care about the final
state of numerical experiments, e.g., the best function val-
ues found. The means and standard deviations are often
calculated [21], [22], and certain statistical inferences, e.g.,
student’s t-test and Wilcoxon’s rank-sum test [39], are often
applied [9], [25]. In BBComp [27], the static comparison
method is adopted, however, only one single run is allowed
even for stochastic algorithms.
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Fig. 5. Illustration of the ranking results of the CEC algorithm competition,
where five algorithms are compared and 14 groups of rankings are provided
according to different computational costs [11].

Dynamic ranking methods tend to obtain more information
about the process states. A popular method is to display
the history of the best function values found for each
problem [23], [24]. Another way is to rank several (or many)
times during the process [15], [40], in other words, carrying
out the static comparison many times. For instance, In the
CEC algorithm competition [15], 14 static comparisons were
implemented to obtain dynamic rankings (see Fig. 5 for an
illustration).

Dynamic ranking is not suitable when the number of prob-
lems is large since it is often carried out for each problem. The
third kind of method overcomes this issue through employing
cumulative distribution functions. Specifically, the proportion
of problems solved by different algorithms are cumulated from
0 to 1 according to the increase of the computational cost (see
Fig. 2 for an example).

Since the third kind of methods are convenient for compar-
ing several algorithms simultaneously, they become more and
more popular in the optimization community. For instance, the
performance profiles method [28], [29] and the data profiles
method [30], [31] for comparing deterministic optimization
algorithms are almost necessary in mathematical program-
ming community (see Fig. 2). Recently, such a technique
has been extended to comparing stochastic optimization algo-
rithms [11], [26], [32], [41]. Comparing the average behav-
iors [32], [41] is a direct application. In BBOB COCO [41],
100 test instances were averaged for each problem and the
average behaviors were compared (Fig. 6), just like the data
profiles [31] for deterministic algorithms. More techniques
were developed to deal with stochastic errors, e.g., visualiz-
ing confidence intervals [11], [26]. In IOHprofiler [26], both
sample means and confidence bounds are displayed in a single
figure (see Fig. 7 for an example). However, two figures are
needed to display them sequentially in [11].

F. Data Analysis and Comparison Result

After the comparison strategy and the comparison methods
are determined, they are applied in the data analysis stage on
the experimental data obtained. The main task of this stage is
to complete the various calculations needed for the comparison

Fig. 6. Comparison results of the BBOB COCO 2009 algorithms competition,
where 31 algorithms are compared in a single match [6].

Fig. 7. Example of the comparison results of the IOHprofiler algorithms
competition [26].

methods. The outcome of these calculations is the comparison
result, which includes certain ranks. Within these ranks, the
most important information is which algorithm is the winner.

It is natural to seek a winner in an algorithm competition. In
algorithm designing or development, a winner is also desired
from numerical comparisons since it can provide information
about which operator in the algorithm works better. Such
information is helpful in further improving this algorithm or
even this kind of algorithms.

III. MODELING COMPARISON STRATEGIES

When the numerical experiments are finished, the experi-
mental data become an objective existence. Since both “C2”
and “C2+” are popular strategies in analyzing the exper-
imental data, it is of interest to investigate whether their
comparison results are always compatible. If not, what makes
them incompatible? Further, what is the occurrence probability
of incompatibility?

In order to answer these questions, in this section, we model
both “C2” and “C2+” strategies mathematically to pursue rig-
orous analysis. To start, we first model the comparison of
optimization algorithms with voting, as in an election.
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A. Voting: Analogy to Comparison

The comparison of optimization algorithms is the same as
an election in the sense of a mathematical model. Here, the
algorithms and the problems are regarded as the candidates
and the voters, respectively.

Now, the “selection” of candidates and voters is an anal-
ogy of the selection of algorithms and problems, and the
voting process is an analogy of the numerical experiments.
The comparison method is thus reduced to a counting method.
However, a comparison strategy is still important in an elec-
tion, and both “C2” and “C2+” are also popular in practice.

Under this analogy, it is natural and helpful to adopt the
existing voting theory and its results to analyze our questions.

B. Mathematical Models of the Comparison Strategies

Although different comparison methods are allowable for
applying the comparison strategy, only two ranking results are
possible in any match of two algorithms A1, A2 : A1 � A2
(implying A1 does not perform worse than A2) or A2 �
A1 (A1 does not perform better than A2). In numerical
optimization, the best objective function values found are often
employed to determine which algorithm performs better. For
convenience in later discussions, the following definition is
introduced.

Definition 1: Given a problem P, a fixed computational cost
and allowable accuracy, suppose that f i

min is the found opti-
mality, or the minimal objective function value, by algorithm
Ai, i = 1, 2. Then A1 is said to be no worse than A2 on P, i.e.,
A1 � A2, if and only if f 1

min ≤ f 2
min. Moreover, A1 � A2 if and

only if f 1
min < f 2

min, and A1 = A2 if and only if f 1
min = f 2

min.
Definition 1 can be easily extended to more general cases.

Suppose there are k algorithms Ai, i = 1, . . . , k. After adopting
them to solving any given problem, k best function values f i

min
are found (for any fixed computational budget), where f i

min is
the best function value found by Ai, i = 1, . . . , k. Through
comparing these function values, a ranking

Ai1 � Ai2 � · · · � Aik (4)

is obtained, where i1, . . . , ik is a permutation of 1, . . . , k, and
the relationship � is defined in Definition 1.

Note that a different ranking in (4) may occur on a differ-
ent problem, different run or different computational budget.
In theory, all k! rankings are possible. Therefore, it can be
regarded as random sampling from a multinomial distribution
for which m optimization problems are tested. For conve-
nience, such a sampling can be expressed as the following
matrix: ⎡

⎢⎢⎢⎢⎢⎢⎣

p1 · · · pk!
x1 · · · xk!
A1 · · · Ak

A2 · · · Ak−1
· · · · · · · · ·
Ak · · · A1

⎤
⎥⎥⎥⎥⎥⎥⎦

(k+2)×k!

(5)

where pi ∈ (0, 1) and xi ∈ [0, m] for i = 1, . . . , k! and satisfy
k!∑

i=1

pi = 1,

k!∑
i=1

xi = m. (6)

Model (5) is a probabilistic model of “C2+,” where the
first column implies that A1 � A2 � · · · � Ak occurs with
a probability p1 on each problem, actually occurring on x1
among m problems, and the rest is similar. In other words,
the random vector x = (x1, . . . , xk!)

T satisfies the multinomial
distribution with parameters m and p = (p1, . . . , pk!).

The winner of the probabilistic model (5) is determined by
the following plurality rule, which is also called the relative
majority rule and is very popular in numerical comparisons of
optimization algorithms [6], [9], [11], [21], [24].

Assumption 1 (Plurality Rule): An algorithm performs bet-
ter than the other algorithms if it performs better on more
problems than the others do.

Specifically, according to the probabilistic model (5), if xi ≥
xj, j = 1, 2, . . . , k!, then the algorithm lies in the ith column
and the third row is the winner of the comparison.

It is not difficult to deduce a probabilistic model of “C2” for
any pair of algorithms from model (5) of “C2+.” For instance,
if we consider the comparison of A1 and A2, then the model
can be expressed as follows:

⎡
⎢⎢⎣

q 1 − q
Y m − Y
A1 A2
A2 A1

⎤
⎥⎥⎦ (7)

where q and Y are the sum of pi and xi, respectively, for those
i with which A1 � A2 occurs at the ith column. It is clear that
Y satisfies the binomial distribution B(m, q).

Since (5) is the probabilistic model of “C2+” and includes
implicitly all the models of “C2,” it is convenient for our pur-
poses of rigorously studying numerical comparison strategies.
For example, in (7), we say A1 � A2 if and only if Y ≥ m−Y .

IV. RANKING AND SURVIVAL PARADOXES

In this section, we adopt the probabilistic model (5) to
illustrate two paradoxes. For simplicity, only three algorithms
(A1, A2, and A3) are considered in this section, and it is enough
for our purpose. In this case, there are 3! = 6 possible
rankings.

A. “Cycle Ranking” Paradox: From “C2”

The following matrix is an example of the probabilistic
model (5), where three algorithms are tested on 25 problems
and the parameters pi satisfy condition (6):

M =

⎡
⎢⎢⎢⎢⎣

p1 p2 p3 p4 p5 p6
0 5 10 0 5 5

A1 A1 A2 A2 A3 A3
A2 A3 A1 A3 A1 A2
A3 A2 A3 A1 A2 A1

⎤
⎥⎥⎥⎥⎦

. (8)

The second column of M implies that A1 � A3 � A2 occurs
on five problems, and the rest is similar.

If we adopt the “C2” strategy to compare these three algo-
rithms, then the following three matrixes can be derived from
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M:⎡
⎢⎢⎣

p12 1 − p12
10 15
A1 A2
A2 A1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

p13 1 − p13
15 10
A1 A3
A3 A1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

p23 1 − p23
10 15
A2 A3
A3 A2

⎤
⎥⎥⎦

(9)

where p12 = p1 + p2 + p5, p13 = p1 + p2 + p3, p23 = p1 +
p3 +p4, and which are the probabilistic models of “C2” when
comparing (A1, A2), (A1, A3), and (A2, A3), respectively.

From the first matrix of (9) we conclude that A2 � A1 since
A2 performs better than A1 on more problems (15 > 10).
Similarly, the left matrices imply that A1 � A3 and A3 � A2,
respectively. Thus, the comparison results A2 � A1, A1 �
A3, and A3 � A2 form a cycle, and we cannot tell which
algorithm performs the best. This phenomenon is termed a
“cycle ranking” paradox in this article, and its definition in
general cases is provided as follows.

Definition 2: When adopting the “C2” strategy to compare
optimization algorithms Ai, i = 1, . . . , k, a cycle ranking is
defined by a situation in which there is no Ai such that Ai � Aj

for all 1 ≤ j ≤ k. In other words, if no winner algorithm exists,
then we say a cycle ranking occurs, or the random event C

occurs for simplicity.

B. “Survival of the Nonfittest” Paradox: From “C2+”

The following matrix is another example of the probabilistic
model (5), where three algorithms are tested on 50 problems
and parameters pi satisfy condition (6):

N =

⎡
⎢⎢⎢⎢⎣

p1 p2 p3 p4 p5 p6
10 0 20 0 20 0
A1 A1 A2 A2 A3 A3
A2 A3 A1 A3 A1 A2
A3 A2 A3 A1 A2 A1

⎤
⎥⎥⎥⎥⎦

. (10)

If we adopt the “C2+” strategy to compare these three algo-
rithms, then A2 or A3 is the winner since both of them perform
the best on 20 problems, while A1 only performs the best on
ten problems.

However, if we adopt the “C2” strategy, then we have the
following three matrices:⎡
⎢⎢⎣

P12 1 − p12
30 20
A1 A2
A2 A1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

p13 1 − p13
30 20
A1 A3
A3 A1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

p23 1 − p23
30 20
A2 A3
A3 A2

⎤
⎥⎥⎦.

(11)

Therefore, A1 � A2, A1 � A3, and A2 � A3, respectively. In
other words, A1 is the winner under the “C2” strategy.

As a result, a different winner would be selected if a dif-
ferent comparison strategy were to be adopted. Specifically,
the loser (A2 or A3) under the “C2” strategy will be the win-
ners under the “C2+” strategy. Such phenomenon is termed
“survival of the nonfittest” in this article, whose definition in
general cases is provided as follows.

Definition 3: When comparing optimization algorithms, if
one of the losers under “C2” becomes the winner under
“C2+,” i.e., the winner under “C2+” is not the winner under

TABLE I
CYCLE RANKING PARADOX IN PRACTICE

TABLE II
SURVIVAL OF THE NONFITTEST PARADOX IN PRACTICE

“C2,” then we say that the survival of the nonfittest occurs, or
the random event S occurs for simplicity.

When comparing k > 3 optimization algorithms, all choices
of the “C2+” strategy imply that at least three algorithms
are compared on each problem. Therefore, survival of the
nonfittest paradox is possible for all choices of “C2+.”

C. Paradoxes Seen in Practice

In this section, we illustrate cycle ranking and survival of
the nonfittest with real data. The data were gathered when
comparing three global optimization algorithm functions in
MATLAB 2016b, namely, “particleswarm” (particle swarm
optimization), “ga” (genetic algorithm), and “simulannealbnd”
(simulate anneal). Twelve benchmark problems in the Hedar
test suite [42] were used in the tests, and 50 independent runs
were executed for each problem. At each run, the algorithms
stopped when 20 000 function evaluations were consumed.
The means and standard deviations of the found best function
values are provided in the supplementary material.

Tables I and II show the rankings under “C2+” of these
algorithms on 12 benchmark problems. For each problem in
Tables I and II, the ranking number “1” indicates that the
corresponding algorithm performs the best on this problem,
and “3” performs the worst.

If we adopt the “C2” strategy to analyze the rankings in
Table I, it is easy to find that “ga” � “particleswarm,” “parti-
cleswarm” � “simulannealbnd,” and “simulannealbnd” � “ga”
(each winning three times versus twice), i.e., cycle ranking
occurs. If we adopt the “C2” strategy to analyze the rankings
in Table II, then we have “particleswarm” � “simulannealbnd”
(5 versus 4), “particleswarm” � “ga” (7 versus 2), and “sim-
ulannealbnd” � “ga” (5 versus 4). Therefore, “particleswarm”
is the winner under “C2.” However, if we adopt “C2+” to
analyze Table II, then “simulannealbnd” is the winner by the
plurality rule since it wins most of the times (4 versus 3 versus
2). As a result, the survival of the nonfittest occurs, i.e., “simu-
lannealbnd” is not the winner under “C2,” but is under “C2+.”
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TABLE III
TWO POSSIBLE PARADOXES ARISING FROM TWO DIFFERENT COMPARISON STRATEGIES

Finally, we report details of how the above paradoxes were
discovered. To begin, we simply select four (“ps” besides the
three algorithms mentioned above) global optimization algo-
rithms in MATLAB 2016b and the whole Hedar test suite
which includes 27 problems (68 if consider different dimen-
sions). After numerical experiments finish, “ps” is excluded
partly because it is deterministic while all the other three algo-
rithms are stochastic, and partly because we wish to reduce
complexity. Through trivial statistical tests, rankings of these
three algorithms on each problem are obtained, and problems
with tie rankings are excluded. Finally, we select 12 problems
which provide enough evidences of paradoxes (see Tables I in
the supplementary material for the raw data).

D. Discussion and the Impact of Paradoxes

Table III summarizes these two possible paradoxes that
come from two different comparison strategies, relevant ref-
erences on algorithm development and four algorithms com-
petitions. Here, we provide a brief analysis about these four
algorithms competitions.

The “C2” strategy is adopted in the CEC algorithms com-
petition, in which several matches are needed to compare all
participating algorithms since only two algorithms are com-
pared in each match. Statistical test are adopted in each match
to determine the winner. Multiple groups of rankings are illus-
trated according to different computational costs, referring to
Fig. 5 for an example. From the analysis in Section IV-A, a
cycle ranking paradox may occur in the CEC competition.

The “C2+” strategy is adopted in the BBOB COCO,
IOHprofiler, and BBComp competitions, and only one sin-
gle match is enough to compare all participating algorithms.
The main difference among them is how to deal with the
randomness of stochastic algorithms. For BBComp, random
errors are neglected. Specifically, the stochastic algorithms are
treated the same as the deterministic ones since only one sin-
gle run is allowed for each algorithm. For BBOB COCO,
random errors are “averaged” through 100 independent runs,
and in this sense, the stochastic algorithms are treated as the
deterministic ones. For IOHprofiler, confidence intervals are
calculated to measure random errors, and a range defined by
confidence intervals is displayed dynamically for each algo-
rithm. Such comparison method is comprehensive, but makes
the comparison results, e.g., Fig. 7, difficult to comprehend
if the number of participating algorithms is relatively large.
According to the analysis of Section IV-B, the survival of
the nonfittest paradox may occur in all these three algorithms
competitions.

The existence of cycle ranking and survival of the non-
fittest show that the two comparison strategies (“C2, C2+”)
are not always compatible in benchmarking the optimality

performance of optimization algorithms. These phenomena are
examples of the well-known statement: a collective choice may
be irrational, even if all the individual choices are rational [43].
In many social problems and economic problems, such irra-
tional collective choices are well known, and the election is a
typical example [44].

In fact, since the 1950s, research on several paradoxes has
been in the mainstream of the voting theory, where both “C2”
and “C2+” are widely studied. The most well-known paradox
may be the Condorcet paradox (i.e., the cycle ranking para-
dox), which is pointed out by Marquis de Condorcet in 1785
and tells that the collective preference on all the candidates
may be cyclic [44]. The cycle ranking paradox proposed in this
article is an extension of the Condorcet paradox to numerical
comparison of optimization algorithms.

Moreover, the survival of the nonfittest paradox is an
extension of the strong Borda paradox and the strict Borda
paradox [44]. The strong Borda paradox requires the worst of
“C2” be selected as the winner of “C2+.” Besides this require-
ment, the strict Borda paradox requires the ranking be exactly
reversed, i.e., the worst of “C2” is the winner of “C2+,” the
second-worst of “C2” is the second winner of “C2+,” and so
on. The survival of the nonfittest paradox only requires that a
nonwinner of “C2” be selected as the winner of “C2+.”

An implication of the paradoxes illustrated in this section is
that we have to become more conservative when interpreting
comparison results and in benchmarking. At least, we should
realize the significant impact of the comparison strategy on
the comparison results.

A natural question regarding the existence of resultant para-
doxes is: are they deterministic or stochastic? If the latter, what
affects their occurrence probabilities and how does the triplet
(m, k, pi) influence the probabilities and benchmarking as a
whole?

V. OCCURRENCE PROBABILITIES OF PARADOXES

In this section, we calculate the occurrence probabilities of
the two paradoxes (cycle ranking and survival of the non-
fittest). We are particularly interested in how the probabilities
change as the number of problems m and/or the number of
algorithms k increase.

First, we need to determine the parameters pi, i = 1, . . . , k!
in the probabilistic model (5). From a theoretical viewpoint,
the no-free-lunch (NFL) theorem in optimization [45] is suit-
able for our purpose. According to the NFL theorem, all
possible (infinite) optimization problems as a whole are unbi-
ased on any optimization algorithm. In other words, for any
given set of optimization algorithms, each algorithm has the
same probability to perform the best on the full test set. In
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this article, we adopt the following NFL assumption, which is
a direct application of the NFL theorem.

Assumption 2 (NFL Assumption): For given k optimization
algorithms and a set of test problems, all k! possible rankings
of these algorithms are equally likely, i.e., all occurring with
probability pi given by

pi = 1

k!
, i = 1, 2, . . . , k!. (12)

This NFL assumption appears similar to but inequivalent
to the NFL theorem of [45] which assumes that an infi-
nite set of all possible optimization problems are unbiased
toward a particular optimization algorithm. Our NFL assump-
tion only requires that a given problem set (finite in practice)
is unbiased toward a given optimization algorithm. In this
regard, Assumption (12) is an application of the NFL theorem.
Moreover, the NFL assumption is the same as and the first jus-
tifiable actual use of the impartial culture (IC) assumption (or
condition) in voting theory [44].

We should highlight two facts here. The first is that the
NFL theorem does not change the desire for seeking a winner
on a numerical comparison of optimization algorithms. The
reason is that the NFL theorem only holds under a limit condi-
tion, while the numerical comparison is popular in practice for
verifying the performance of optimization algorithms before
reaching the limit. The second fact is that the NFL assump-
tion does not affect the existence of paradoxes. The reason
is that the NFL assumption only influences the probabilities
Pi, i = 1, . . . , k! in the mathematical model (5). However, the
existence of paradoxes does not depend on the exact values of
Pi, i = 1, . . . , k! (referring to Section IV).

In effect, the role of the NFL assumption in this article is
only to provide a convenient “platform” for the calculation of
occurrence probabilities of the paradoxes. Without the NFL
assumption, these calculations would be much harder, and the
values of the occurrence probabilities would be different.

A. Comparison Strategy Theorems

In this section, we provide several theorems to set the scene
for our later analysis.

1) Existence and Uniqueness of Winners:
Theorem 1: When comparing optimization algorithms,
1) a winner under “C2+” always exists and may not be

unique;
2) a winner under “C2” may not exist, and if it exists, then

it may not be unique.
Proof: 1) According to the plurality assumption, the winner

under “C2+” is the algorithm which lies in the ith column
and the third row of the matrix (5), where i satisfies xi =
max{x1, . . . , xk!}. Since i always exists and may not be unique,
the winner under “C2+” exists and may not be unique.

2) From Definition 2, the existence of a cycle ranking para-
dox implies that the winner under “C2” may not exist. If a
“C2” winner exists, then it may not be unique due to the
following two reasons. First, there may exist a tie between
all pairs of the best algorithms when m is even. Second, when
the number of algorithms exceeds 3, it is possible that the best

algorithms form a cycle, and each of them performs better than
the other algorithms.

Theorem 2: If there is an xi in matrix (5) that satisfies xi ≥
m/2, then both cycle ranking and survival of the nonfittest are
impossible.

Proof: According to the plurality assumption, since xi ≥
m/2, the algorithm which lies in the ith column and the third
row of matrix (5) must be the winner under “C2+.” Therefore,
a cycle is impossible. Moreover, this winner under “C2+”
is also the winner under “C2” since it votes Y ≥ xi [refer-
ring to matrix (7)]. Hence, survival of the nonfittest is also
impossible.

2) Division of the Sample Space: For the convenience of
expression, we present an additional definition below, of a
“normal” case when comparing optimization algorithms.

Definition 4: If one of the winners under the “C2+” strat-
egy is also the winner under the “C2” strategy, we say that
the random event N occurs.

Then, we have the following theorem, which is an extension
of [46, Th. 1].

Theorem 3: The random events C,N, and S is a partition
of the sample space when adopting the “C2” and “C2+”
strategies to compare optimization algorithms.

Proof: When adopting the “C2” strategy to compare
optimization algorithms Ai, i = 1, 2, . . . , k, there are 2k(k−1)/2

possible basic events. Some of these events form cycles, the
others do not. According to Definition 2, the former basic
events imply that the event C occurs, while the latter imply
that C does not occur.

Among those latter basic events, the winner under “C2”
always exists. According to Theorem 1, the winner under
“C2+” always exists, too. If all the winners under “C2+”
are not the winner under “C2,” then random event S occurs.
Otherwise, at lease one of the winners under “C2+” is the
winner under “C2,” and therefore, N occurs.

Since there are no other basic events left, the proof is thus
complete.

The following corollary is a direct application of Theorem 3,
which is helpful for our later calculations.

Corollary 1: When adopting the “C2” and “C2+” strategies
to compare optimization algorithms, the probabilities of the
random events C,S, and N satisfy

P(C) + P(S) + P(N) = 1. (13)

B. Occurrence Probability of “Cycle Ranking”

In this section, we calculate the occurrence probabilities of
cycle ranking. Only three algorithms (k = 3) are considered
first, and then the general case k > 3 is analyzed.

We have presented that the cycle ranking paradox studied in
this article is the same as Condorcet’s paradox in voting theory.
Certain results of Condorcet’s paradox are thus applied directly
to cycle ranking in this section. However, a new method and
new results are provided.

1) Case I [Comparing Three Algorithms (k = 3)]: The
calculation of occurrence probabilities of paradoxes is often
hard, especially, when k is large. Therefore, we consider the
case k = 3 first. The following theorem is reproduced from
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our recent conference paper [46], where the proof is absent
due to the limitation of space.

Theorem 4: When comparing three optimization algorithms
on m problems, the occurrence probability of random event C
is given by

P(C) = 1

6m

⎛
⎝2

∑
{xi}∈C1

m!

x1! · · · x6!
−

∑
{xi}∈C2

m!

x1! · · · x6!

⎞
⎠ (14)

where C1 and C2 are determined, respectively, by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + · · · + x6 = m
x1 + x2 + x5 ≥ m

2
x1 + x3 + x4 ≥ m

2
x4 + x5 + x6 ≥ m

2
xi ∈ {0, 1, . . . , m}

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + · · · + x6 = m
x1 + x2 + x5 = m

2
x1 + x3 + x4 = m

2
x4 + x5 + x6 = m

2
xi ∈ {0, 1, . . . , m}

, i = 1, . . . , 6.

(15)

Moreover, when m is odd, C2 is empty.
Proof: When comparing only three optimization algorithms

(say, A1, A2, A3) by the “C2” strategy, all possible basic
random events are given

(G1) A1 � A2 A2 � A3 A1 � A3

(G2) A1 � A2 A3 � A2 A3 � A1

(G3) A1 � A2 A3 � A2 A1 � A3

(G4) A2 � A1 A2 � A3 A3 � A1

(G5) A2 � A1 A2 � A3 A1 � A3

(G6) A2 � A1 A3 � A2 A3 � A1

(G7) A2 � A1 A3 � A2 A1 � A3

(G8) A1 � A2 A2 � A3 A3 � A1. (16)

Both G7 and G8 imply that the occurrence of the random event
C, and all the other six basic random events bring clear final
winners. Therefore,

P(C) = P(G7) + P(G8) − P(A1 = A2, A2 = A3, A3 = A1).

Due to the symmetry, P(G7) = P(G8). Thus,

P(C) = 2P(G8) − P(A1 = A2, A2 = A3, A3 = A1).

In this case, the following matrix:
⎡
⎢⎢⎢⎢⎣

1/6 1/6 1/6 1/6 1/6 1/6
x1 x2 x3 x4 x5 x6
A1 A1 A2 A2 A3 A3
A2 A3 A1 A3 A1 A2
A3 A2 A3 A1 A2 A1

⎤
⎥⎥⎥⎥⎦

(17)

is the mathematical model we need, where xi satisfies

6∑
i=1

xi = m, xi ∈ [0, m], i = 1, . . . , 6. (18)

Since (x1, . . . , x6)
T satisfies the multinomial distribution with

parameters m and (1/6, . . . , 1/6), we have, therefore,

P(G8) =
∑

{xi}∈C1

m!

x1! · · · x6!

1

6m

Fig. 8. How the probability of cycle ranking P(C) changes as the number
of problems m increases, where the number of algorithms k = 3 is fixed.

where C1 = {(x1, . . . , x6)|A1 � A2, A2 � A3, A3 � A1} is
defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + · · · + x6 = m
x1 + x2 + x5 ≥ m

2 [A1 � A2]
x1 + x3 + x4 ≥ m

2 [A2 � A3]
x4 + x5 + x6 ≥ m

2 [A3 � A1]
xi ∈ {0, 1, . . . , m}, i = 1, . . . , 6.

(19)

In (19), A1 � A2 requires that x1+x2+x5 ≥ x3+x4+x6, which
is equivalent to x1 + x2 + x5 ≥ m/2 due to condition (18).
Similarly, A2 � A3 requires that x1 + x3 + x4 ≥ m/2, and
A3 � A1 requires that x4 + x5 + x6 ≥ m/2.

Consequently, we have

P(A1 = A2, A2 = A3, A3 = A1) =
∑

{xi}∈C2

m!

x1! · · · x6!

1

6m

where C2 = {(x1, . . . , x6)|A1 = A2, A2 = A3, A3 = A1} is
defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + · · · + x6 = m
x1 + x2 + x5 = m

2 [A1 = A2]
x1 + x3 + x4 = m

2 [A2 = A3]
x4 + x5 + x6 = m

2 [A3 = A1]
xi ∈ {0, 1, . . . , m}, i = 1, . . . , 6.

Hence, the probability P(C) is given by (14). It is obvious
C2 is empty when m is odd since A1 = A2 is impossible.

Although probability P(C) is expressed explicitly in
Theorem 4, it is still hard to calculate its exact value, espe-
cially, when the number of problems m is relatively large.
In [46], P(C) is calculated numerically for m = 1, 2, . . . , 100.

In this article, more probabilities are calculated numeri-
cally. Specifically, all possible (x1, x2, . . . , x6) satisfying con-
dition (18) and Theorem 2 (i.e., xi < m/2 for all i) are
enumerated first. If (15) is satisfied, then they are summed up
through (14) to calculate P(C). Fig. 8 shows the probability for
m = 1, 2, . . . , 201. Many of these values have been reported
in voting theory, especially, the probabilities for odd m [44].

From Fig. 8, we can see two opposite trends. When m is
even, P(C) decreases from 0.5 to near 0.1187 as m increases.
On the contrary, when m is odd, P(C) increases from 0 to
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TABLE IV
OCCURRENCE PROBABILITY OF CYCLE RANKING P(C) WHEN

COMPARING k ALGORITHMS ON m PROBLEMS

near 0.0873 as m increases. An interesting question is what
the value of P(C) is when m → ∞. The answer is derived as
follows:

lim
m→∞ P(C) = 1

2π
arccos

(
23

27

)
≈ 0.0877 (20)

which is a direct application of the IC-based limiting proba-
bility of Condorcet’s paradox [44] with the NFL assumption.
Several methods have been reported to calculate this important
value [44], [47]. In [47], a special technique, a pictogram, for
vote vector with a cycle is introduced, and the Condorcet para-
dox is discussed by means of a pictogram. Through abstruse
mathematical calculations, the result (20) is obtained. Refer
to [44] and [47] for more technical details.

Therefore, we can conclude that the occurrence probability
of cycle ranking is about 8.77% when only three algo-
rithms are compared and the number of optimization problems
approaches infinity. An odd number of optimization prob-
lems is preferred since it brings a much lower occurrence
probability than its even neighbors.

2) Case II (Comparing More Than Three Algorithms):
As the number of algorithms k increases, the calculations of
probabilities becomes harder and harder. In this section, we
reproduce the results of Condorcet’s paradox under the IC
assumption. Since the NFL assumption is an example of the
IC assumption, these results are thus also true for cycle ranking
under the NFL assumption.

Table IV shows the occurrence probabilities of cycle
ranking when comparing k = 3, 4, . . . , 11 algorithms
on m = 5, 15, . . . , 45,∞ problems. When k is odd,
the results are the complementary probabilities of those
listed in [44, Table 4.6]. These values were calculated through
designing some subtle computer enumeration procedure, refer
to [44] and references therein for details.

From Table IV, we can see that P(C) increases as m or k
increases. Specifically, it increases slowly as m > 15 increases.
However, it increases rapidly (for any given m) as k increases.
The limiting probabilities of P(C) are very important theoret-
ically, and the last column of Table IV shows that they grow
as k increases, as shown Fig. 9.

These results imply that cycle ranking may be frequent in
a large competition of optimization algorithms (i.e., when k
is large). Although k < 10 is more often the case in prac-
tice or in optimization research, the occurrence probability of
cycle ranking is still too large to be ignored, especially, in
benchmarking.

Fig. 9. How the limiting probability of cycle ranking changes as the number
of algorithms k increases.

C. Occurrence Probability of “Survival of the Nonfittest”

It is harder to calculate the occurrence probability of sur-
vival of the nonfittest paradox or the random event S than
that of C. One reason is that the “nonfittest” contains many
possibilities especially when k is large. In this section, we
first consider the case of only three algorithms, and then ana-
lyze the general case. For the former case, we calculate P(S)

directly. For the latter case, some results of the voting theory
are adopted to calculate P(S) indirectly.

1) Case I (Comparing Three Algorithms): The following
theorem is reproduced from our recent conference paper [46]
with a minor revision correcting an error there. Its proof is
omitted in [46] due to the limitation of space.

Theorem 5: When comparing three optimization algorithms
on m test problems, the occurrence probability of a random
event S is given by

P(S) = 3

6m

⎛
⎝ ∑

{xi}∈S1

m!

x1! · · · x6!
+

∑
{xi}∈S2

m!

x1! · · · x6!

⎞
⎠ (21)

where dominant S1 and S2 are defined as

S1:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + · · · + x6 = m
x1 + x2 + x5 > m

2
x1 + x2 + x3 > m

2
max{x3 + x4, x5 + x6} > x1 + x2
xi ∈ {0, 1, . . . , m}, i = 1, . . . , 6

S2:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 + · · · + x6 = m
x1 + x2 + x5 = m

2
x1 + x2 + x3 > m

2
x1 + x3 + x4 > m

2
x5 + x6 > max{x1 + x2, x3 + x4}
xi ∈ {0, 1, . . . , m}, i = 1, . . . , 6.

Moreover, when m is odd, S2 is empty.
Proof: From (16), the basic random events G1–G6 may

result in the occurrence of random event S or N. If the winner
of “C2+” is not the winner of “C2+,” then random event S
occurs. Otherwise, random event N occurs.

Since the intersection of some of these six basic random
events is not empty, we repartition them as the following
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random events, any two of which are empty intersected:
(
G′

1

)
A1 � A2 A1 � A3(

G′
2

)
A2 � A1 A2 � A3(

G′
3

)
A3 � A1 A3 � A2(

G′
4

)
A1 = A2 A2 � A3 A1 � A3(

G′
5

)
A2 = A3 A2 � A1 A3 � A1(

G′
6

)
A3 = A1 A1 � A2 A3 � A2. (22)

If we denote A∗
C2+ as the winner algorithm under the “C2+”

strategy, then the random event S can be partitioned as follows:

(H1) A1 � A2 A1 � A3 A∗
C2+ �= A1

(H2) A2 � A1 A2 � A3 A∗
C2+ �= A2

(H3) A3 � A1 A3 � A2 A∗
C2+ �= A3

(H4) A1 = A2 A2 � A3 A1 � A3 A∗
C2+ = A3

(H5) A2 = A3 A2 � A1 A3 � A1 A∗
C2+ = A1

(H6) A3 = A1 A1 � A2 A3 � A2 A∗
C2+ = A2. (23)

Here, H1 implies that A1 is the winner under “C2,” while it
is not the winner under “C2+.” The other random events can
be explained similarly. Therefore,

P(S) =
6∑

j=1

P
(
Hj

) = 3(P(H1) + P(H4)). (24)

The symmetry is adopted to reduce the second equality.
Following the mathematical model (17) and the multinomial

distribution with parameters m and (1/6, . . . , 1/6), we have:

P(H1) =
∑

{xi}∈S1

m!

x1! · · · x6!

1

6m
(25)

where S1 = {(x1, . . . , x6)|H1} is defined as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + · · · + x6 = m
x1 + x2 + x5 > m

2 [A1 � A2]
x1 + x2 + x3 > m

2 [A1 � A3]
max{x3 + x4, x5 + x6} > x1 + x2

[
A∗

C2+ �= A1
]

xi ∈ {0, 1, . . . , m}, i = 1, . . . , 6.

(26)

Similarly, we have

P(H4) =
∑

{xi}∈S4

m!

x1! · · · x6!

1

6m
(27)

where S4 = {(x1, . . . , x6)|H4} is defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 + · · · + x6 = m
x1 + x2 + x5 = m

2 [A1 = A2]
x1 + x2 + x3 > m

2 [A1 � A3]
x1 + x3 + x4 > m

2 [A2 � A3]
x5 + x6 > max{x1 + x2, x3 + x4}

[
A∗

C2+ = A3
]

xi ∈ {0, 1, . . . , m}, i = 1, . . . , 6.

(28)

Therefore, the probability P(S) is given by (21), and it is
obvious that S2 is empty when m is odd since A1 = A2 is
impossible.

Based on Theorem 5, for any given m, we can calculate the
probability P(S) by enumeration. However, it is computation-
ally expensive. Fig. 10 shows the numerical results of P(S)

Fig. 10. How the occurrence probability of survival of the nonfittest P(S)

changes as m increases, where the number of algorithms k = 3 is fixed.

for m = 1, 2, . . . , 201, which includes many more values than
those provided [46].

From Fig. 10, we can observe that P(S) increases slowly as
m > 20 increases, whether m is even or odd. However, P(S)

is always smaller for even m than its odd neighbors.
An interesting and important question is whether there is

a limit of P(S) when m → ∞? The answer is yes, and the
limiting probability is given as follows:

lim
m→∞ P(S) = 0.2215. (29)

See the next subsection for the reason.
2) Case II (Comparing More Than Three Algorithms): The

calculation of P(S) becomes more and more difficult as the
number of algorithms k increases. In this section, we introduce
certain results of “Condorcet efficiency” in voting theory, and
then calculate P(S) indirectly.

The “Condorcet efficiency” is a conditional probability
which tells the chance whether a voting rule will select the
Condorcet winner if it exists [44]. The Condorcet winner is
a candidate which can beat all the other candidates under the
“C2” comparison strategy. In other words, if the winner under
“C2” exists, the “Condorcet efficiency of plurality rule” is the
conditional probability that a winner under “C2” is also the
winner under “C2+.”

According to Definition 2 and Theorem 3, there are
only three random events C,N, and S in a comparison of
optimization algorithms, and the winner under “C2” exists if
and only if when a cycle ranking does not occur. Therefore, the
“Condorcet efficiency of plurality rule” Pe can be rewritten as

Pe = P(N)

1 − P(C)
= 1 − P(S)

1 − P(C)
. (30)

Thus, we have

P(S) = (1 − Pe)(1 − P(C)). (31)

Since P(C) has been calculated in previous section and several
results of Pe are known in voting theory, then (31) can be used
to calculate P(S) indirectly.

Table V shows how the limiting probability of Pe, P(C) and
P(S) change as k increases. The values of Pe in the second
row are reproduced from [48], where a computer simulation
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TABLE V
HOW THE LIMITING PROBABILITIES OF Pe , P(C), P(S), AND P(N)

CHANGE AS k INCREASES. ALL VALUES WITH ONLY THREE

DIGITS ARE SIMULATION ESTIMATES

process was developed-based upon the representation of the
Condorcet efficiencies as multivariate normal positive orthant
probabilities [48]. The values of P(C) in Table V are repro-
duced from Table IV in this article, and the values of P(S)

are calculated according to (31). Since the values of Pe are
estimated from simulations except when k = 3, all values
with only three digits are therefore simulation estimations. It
is suggested that the simulated values of Pe possess a maxi-
mum error about 0.025 [48]. According to (31), the values of
P(S) possess almost the same error.

Since Pe and P(C) possess different monotonicity as k
increases, the monotonicity of P(S) is unclear according
to (31). From Table V, we can see that P(S) increases when
k = 3, 4, 5, 6, and 7, and then decreases when k = 8 and 9.
Therefore, P(S) obtains its maximal value 35.3% when k = 7.

D. Occurrence Probability of the Random Event N

According to (13) or (30), we can calculate the probability
P(N) through

P(N) = 1 − P(C) − P(S) = Pe(1 − P(C)). (32)

Fig. 11 shows the values of P(N) for k = 3 and 1 ≤ m ≤ 201,
and the fifth row of Table V shows the limiting values of P(N)

for k = 3, 4, . . . , 9.
From Fig. 11, we have found that P(N) zigzags violently

when m is small, and the amplitude becomes very small when
m > 60. Approximately, P(N) decreases slowly as m > 30
increases, and, it finally converges to about 0.6908 (Table V).

From Table V, we can see that the limiting values of P(N)

decreases as k increases. This is arises from (32) since both
Pe and 1 − P(C) decrease as k increases. In other words, the
more algorithms that are compared, the smaller the probability
that the winner under “C2+” is also the winner under “C2.”
For example, when k = 3, 5, and 7, the probabilities are about
69%, 43%, and 28%, respectively.

E. Discussion

The analysis and calculations proposed in this article show
that both “C2” and “C2+” can have problems with their use.
The “C2” strategy may bring the occurrence of cycle ranking,
and therefore no winner algorithm will be elected. On the other
hand, “C2+” may cause the survival of the nonfittest, i.e., the
winner under “C2+” will be defeated in at least one match
of “C2.”

Although the occurrence probability of cycle ranking is
small (less than 9% in the sense of limiting probability)
when there are only three algorithms being compared, it
increases significantly as the number of algorithms increases.

Fig. 11. When only three algorithms are compared, how P(N) changes as
m increases.

For instance, the limiting probability becomes larger than 30%
when there are six algorithms, and larger than 40% when there
are eight algorithms (Table V). On the contrary, the occur-
rence probability of survival of the nonfittest increases slowly
as the number of algorithms increases. Moreover, it begins
to decrease when the number of algorithms is greater than
7 (Table V). Therefore, “C2+” is more preferred than “C2”
when the number of algorithms is relatively large.

Despite that cycle ranking may occur on a “C2” strategy,
it is self-verified. Specifically, after the whole comparison of
“C2,” it is clear whether the cycle ranking paradox happens
or not. If not, then the result is certain. On the other hand,
“C2+” is not self-verified and thus its results are doubtful. In
effect, only when both “C2+” and “C2” are adopted, can it
be known whether survival of the nonfittest happens or not.
In this sense, “C2” is more preferred than “C2+.”

All the probabilities are derived under the NFL assump-
tion, which is a strong condition. Therefore, the probabilities
derived in this article should not be used unrestricted for any
given set of optimization problems. The main effect of these
probabilities is to provide a point of reference to the frequency
of possible paradoxes. Further, it is a useful reference to future
calculations without the NFL assumption.

VI. CONCLUSION

This article has investigated compatibility issues arising
from comparing optimization algorithms and has mathemat-
ically defined and modeled the popular “C2” and “C2+”
comparison strategies for the first time. To the best of
our knowledge, few studies have considered the differences
between these two strategies. This article has rigorously illus-
trated that the results can be incompatible. In particular, two
paradoxes, namely, cycle ranking and survival of the non-
fittest, are discovered probable in numerical comparison of
optimization algorithms.

Then the occurrence probabilities of the paradoxes are
derived based on the NFL assumption. It is also shown
that significant influence on these probabilities comes from
the number of algorithms and the number of optimization
problems studied in the comparison. Further, the limiting prob-
abilities when the number of optimization problems goes to
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infinity are also derived and characterized. Based on the anal-
ysis in this article, we recommend adopting “C2” first. If
cycle ranking occurs, then consider “C2+.” Under this strat-
egy, the ranking of algorithms is certain if cycle ranking does
not occur; otherwise, the ranking is still compatible.

In this article, an analogy has been drawn between voting
theory and optimization comparison. This is to help users and
developers of optimization algorithms understand the cycle
ranking and survival of the nonfittest paradoxes more sys-
tematically as similar paradoxes have been studied rigorously
in voting theory over the past decades. Some of the results
in voting paradoxes are extended to optimization theory in
this article. In this sense, our findings can be regarded as
an application of those results to numerical comparison in
optimization and have shown the first justifiable actual use
of the IC condition in voting theory.

Optimization attracts significant attention in scientific
research and engineering applications. As numerical com-
parison is key to designing and analyzing optimization and
machine learning algorithms, rigorous studies and theories on
comparison strategies of these algorithms are necessary and
desirable. It is hoped that this article will lay down a stepping-
stone to guided development of future algorithms. Prior to this,
two research directions could arise from this work. First, it is
possible to calculate probabilities when the NFL assumption is
violated. Second, designing a better comparison strategy than
“C2” and “C2+” with a theoretical foundation is also attrac-
tive and could offer guidance to benchmarking optimization
algorithms more rigorously.
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