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Abstract

Azevedo and Gottlieb [2017] (AG) define a notion of equilibrium that always ex-

ists in the Rothschild and Stiglitz [1976] (RS) model of competitive insurance mar-

kets, provided costs are bounded. However, equilibrium predictions are fragile:

introducing an infinitesimal mass of high-cost individuals discretely increases all

prices and reduces coverage for all individuals. We study sensitivity w.r.t cost bounds

by considering sequences of economies with increasing upper bounds of cost, and

determining whether their equilibria converge. We present sufficient conditions un-

der which AG equilibrium exists when cost is unbounded. For simple insurance

markets, we derive a necessary and sufficient condition for existence: surplus from

insurance increases faster than linearly with expected cost. This condition is em-

pirically common. If the condition fails, a higher bound on cost results in market

unraveling: all prices diverge and, in the limit, an AG equilibrium does not exist.

We use these results to show that the equilibrium for an insurance market with an

unbounded continuum of types is characterized by a simple differential equation.

We also provide examples of non-existence for a (single-product) market for lemons

with unbounded cost.
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1 Introduction

The Rothschild and Stiglitz [1976, henceforth RS] model of competitive insurance mar-

kets has (at least) two limitations. First, there need not exist a pure-strategies Nash equi-

librium. Second, equilibrium is sensitive to assumptions about the upper bound of the

cost distribution: introducing an infinitesimal mass of high cost individuals discretely

increases the equilibrium price of all contracts (Mailath et al. [1993]). Azevedo and Got-

tlieb [2017, henceforth AG] suggest a notion of equilibrium that always exists in the RS

context. By tackling existence, the AG equilibrium concept allows us to focus on the

second limitation, sensitivity to cost bounds. In fact, AG equilibrium is only guaranteed

to exist when cost is bounded. Moreover, AG equilibrium predictions are similarly sen-

sitive to cost bounds. This limits the policy usefulness of insurance models because it is

often unclear what is a reasonable assumption for the upper bound of cost. Moreover,

it is unclear what economic environments feature the sensitivity of the RS setting.

This article derives conditions under which screening markets with adverse selec-

tion (and, in particular, insurance markets) have AG equilibria which are robust w.r.t.

cost bounds. We do so by considering sequences of truncated economies where cost is

bounded, and progressively relaxing this truncation. Our measure of robustness w.r.t.

cost bounds is whether the equilibria of the truncated economies converge. That is,

whether an equilibrium exists for the limit economy with unbounded cost.

Our motivation is not that unbounded costs are particularly relevant or realistic.

Instead, we take existence of equilibria as our measure of whether a model’s predic-

tions are sensitive to assumptions about the support of costs. If equilibria of bounded

economies converge to an equilibrium of the unbounded economy, then model predic-

tions are robust w.r.t. assumptions on cost bounds. Conversely, if assumptions about

the support of cost can have an unbounded impact on equilibrium predictions, this can

be diagnosed by determining that the limit economy has no equilibrium.

We first consider the setting described in AG. Intuitively, an AG equilibrium is a set

of prices and choices such that: a) individuals optimize; b) each contract breaks even;

and c) choices and prices of non-traded contracts are robust to small perturbations in

fundamentals. In this general setting, we provide sufficient conditions for equilibrium

existence when cost is unbounded. However, our most general existence result has a

limitation: it does not impose conditions directly on model primitives.

We then focus on the case of insurance markets, as in RS. We allow individuals to

differ in risk and risk aversion (but a single parameter determines both, so types are ef-

fectively one-dimensional), and assume costlier types have higher marginal willingness

to pay for insurance generosity.

In the two-type RS model, there exists a unique AG equilibrium which predicts the
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same allocation as the pure strategies Nash equilibrium (when it exists). We provide a

novel characterization of the (unique) AG equilibrium for an arbitrary number of (possi-

bly unbounded) discrete or continuous types. We then show that, if cost is unbounded,

the price of full insurance is also unbounded in any equilibrium.

Our main contribution is a condition on model primitives which is both necessary

and sufficient for existence of equilibrium when cost is unbounded. Intuitively, this

condition requires that surplus from insurance increases faster than linearly with ex-

pected cost. The condition divides insurance economies into “robust” and “fragile” w.r.t.

cost bounds. For fragile economies, as cost becomes unbounded, the market unravels:

the price of each alternative increases without bound and the chosen level of coverage

of each type converges to zero. For fragile economies with unbounded cost, an equilib-

rium does not exist. Conversely, economies that are robust w.r.t. cost bounds have an

equilibrium no matter what assumption is imposed on the support of cost.

This condition is intuitive and empirically relevant. For instance, if utilities are CARA

and wealth shocks Gaussian, equilibrium exists if the variance of wealth shocks in-

creases (asymptotically) faster than linearly relative to the mean of these shocks. This

condition is satisfied in the empirical findings of Handel et al. [2015] and, more broadly,

it seems empirically common that individuals with higher expected cost experience

higher variance in insurable shocks (Brown et al. [2014], Hendren [2013]) and therefore

obtain higher surplus from insurance. Therefore, insurance economies robust w.r.t. cost

bounds seem empirically common. The results further imply that, if individuals differ

only in their cost (as in RS), and costs are unbounded, then the economy is fragile: AG

equilibrium does not exist.

We use these results to characterize the equilibrium of an insurance market with an

unbounded continuum of types, and show it is defined by a simple differential equation.

We also characterize the equilibrium for an economy with unbounded discrete types.

We then briefly consider markets for lemons (Akerlof [1970], Einav et al. [2010]),

where there is a single non-zero insurance contract available. Even in such simple set-

tings, unbounded costs can result in equilibrium non-existence.

We extend several results to more general insurance markets. For instance, unbounded

costs imply unbounded prices even in more general settings where types are truly multi-

dimensional, so there is pooling of multiple types in each contract. This result identifies

a large class of economies with unbounded costs where equilibrium does not exist.

Our results are useful in two ways. First, when model primitives are well known,

we provide a novel characterization of equilibrium, showing under which conditions a

wider distribution of cost types causes a market to unravel. Second, when model primi-

tives are uncertain, we identify conditions under which assumptions about the support

of the cost distribution have a large impact on equilibrium.
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Section 2 summarizes the setting and results of AG. Section 3 describes our general

existence result. Section 4 specializes the model to insurance markets. Section 5 con-

siders markets for lemons. Section 6 generalizes several results. Section 7 concludes. All

proofs are in the Appendix (including the Online Appendix), although we provide some

intuition for the proofs in the main text.

2 A Summary of AG

We now describe the model presented in AG and their existence result, generalized ap-

propriately to encompass unbounded costs and other aspects we will require. A con-

sumer type is a vector θ ∈ Θ, where Θ is a Polish space with measure P .1 The type θ

can describe each individual’s risk, risk aversion, wealth, etc. An alternative is a vector

x ∈ X, whereX is a locally compact Polish space. Alternatives x can be characterized by

deductibles, co-insurance rates, etc. Price is p ∈ R+. A contract is a pair (x, p) ∈ X ×R+.

We consider Borel-measurable price functions p : X → R+ where p (x) is the price of

alternative x. An economy E is a triple E = [Θ, X, P ].
Utility is a continuous function u (θ, x, p) = uθ(x, p), where u : Θ × X × R+ → R is

strictly decreasing in p. Cost is a continuous function c (θ, x) ≥ 0, where c : Θ ×X → R+.

Cost depends on type θ which creates the possibility of adverse selection.

An allocation is a distribution α on Θ ×X with marginal P on Θ, and marginal αX on

X, such that
∫

Θ×X c(θ, x)dα < ∞. Intuitively, α ({θ, x}) is the mass or density of types θ

purchasing alternative x under allocation α.

AG assume that Θ, X are compact and c (θ, x) is continuous, which implies that cost

is bounded. We will allow Θ, and therefore cost, to be unbounded. We assume only that,

for each compact sub-set of alternatives K ⊆ X, if all agents choose alternatives in K,

expected cost is finite:
∫

Θ supx∈K c(x, θ)dP (θ) < ∞.

AG define a “weak equilibrium” as a price function and an allocation (p, α) where

individuals are maximizing utility and each contract breaks even.

Definition 1. A pair (p, α) constitute a weak equilibrium of an economy E = [Θ, X, P ] if,

for α-a.e. (θ, x) ∈ Θ × X the following conditions hold. First, individuals maximize: for

α − a.e. (θ, x), we have supx′∈X uθ(p(x′), x′) = uθ(p(x), x). Second, each contract breaks

even: for α− a.e. x, we have p(x) = Eα[c | x].2

Typically, there exists many weak equilibria because, if x is not traded, p (x) is arbi-

trary. This motivates AG’s definition of equilibrium: a weak equilibrium that is robust

1A Polish space is a complete, separable metrizable space.
2The conditional expectation is well-defined, since X is locally compact and, for each compact set

K ⊆ X,
∫

Θ supx∈K c(x, θ)dP (θ) < ∞.
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to the introduction of a small mass of zero-cost “behavioral” consumers who purchase

every alternative x ∈ X.3 More precisely, an equilibrium is the limit of a sequence of

weak equilibria of perturbed economies Ej where the mass of behavioral types vanishes

as j → ∞. We use “equilibrium” exclusively to refer to the equilibrium notion of AG

(formalized below after some generalization).

Definition 2. Consider the economy E = [Θ, X, P ], and the sequence of perturbed

economies Ej = [Θ ∪ Xj, Xj, P + ηj]. Let (Xj)j∈N be a sequence of finite subsets of X

which converge to X in the sense of Haussdorf,4 where X is a Polish space such that X

is dense in X.5 Let (ηj)j∈N be a sequence of measures, with ηj supported on Xj , strictly

positive on Xj , and ηj(Xj) → 0. Suppose there exists a sequence of pairs (pj, αj)j∈N,

satisfying the following conditions. First, (pj, αj) is a weak equilibrium of Ej , where the

behavioral type x ∈ Xj has zero cost and prefers x to any other alternative regardless

of price. Second, αj → α weakly.6 Third, whenever (xj)j∈N converges to x ∈ X with

xj ∈ Xj , then pj(xj) → p(x). Then, the pair (p, α) is an equilibrium of E = [Θ, X, P ].

AG prove every economy has an equilibrium (Theorem 1) if certain technical condi-

tions hold. Importantly, AG require Θ, X be compact.

Theorem 1. Suppose that X,Θ are compact metric spaces. Suppose also that u obeys a

form of Lipschitz-ness inX uniformly over types,7 and that c is continuous (which implies

c is bounded). Then, an equilibrium exists.

AG derive additional equilibrium properties (their Proposition 1). An equilibrium

is a weak equilibrium so, in equilibrium, a.e. agent is optimizing (we use this implic-

itly throughout this article). The price function p (·) is Lipschitz and continuous. Every

alternative not traded in equilibrium has a price low enough that some individual is in-

different between buying it and not, and the cost of that individual at the non-traded

alternative is at least as high as the price of the alternative. The continuity of p(·) and

the fact that equilibrium is a weak equilibrium is generalized to environments with un-

bounded types in Section H of the Online Appendix.

3A similar construction is used by Dubey and Geanakoplos [2002]. AG prove that every equilibrium,
under their compactness and other assumptions, is a weak equilibrium.

4I.e., for each x ∈ X, there is (xn)n∈N converging to x with xn ∈ X
n

for each n ∈ N.
5Formally, X embeds to a dense subset of X. We disregard such technicalities for brevity at no cost to

the generality. In insurance markets, we often take X = [0, 1) which naturally embeds in X = [0, 1].
6That is, for each f : Θ ×X → R continuous and bounded, we have

∫
fdαn →

∫
fdα.

7Formally, there exists L, such that for any p ≤ p′ in the image of c, any x, x′ ∈ X, and any type θ ∈ Θ, if
u(x, p, θ) ≤ u(x′, p′, θ), then p′ − p ≤ Ld(x, x′), where d(·, ·) is a metric. This is Assumption 2 in AG. If utility
is of the form u(θ, x, p) = v(θ, x) − p, this amounts to u(θ, x, p) being Lipschitz in x, uniformly in θ (same
Lipschitz constant for all θ).
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3 Existence with Unbounded Cost

We now describe conditions under which equilibrium exists when cost is unbounded

(Proposition 1). This result has a limitation: it imposes conditions on endogenous ob-

jects. In Section 4, we provide conditions on primitives that are necessary and sufficient

for Proposition 1 to hold. However, Proposition 1 is a crucial building block of our anal-

ysis of insurance markets in Section 4, so we present it here briefly.

We consider sequences of bounded economies, approximating an economy with

unbounded cost. We then consider whether their equilibria converge. The truncated

economy En = [Θn, X, P (· | Θn)] has a bounded type space Θn. We consider a sequence

of compact subsets Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θ with ∪nΘn = Θ. We assume that for each

n ∈ N, each θ ∈ Θn and each θ′ ∈ Θ\Θn, we have c(θ, ·) ≤ c(θ′, ·). That is, types not

in Θn have costs higher than those in Θn. The alternative space X̄ is the compactifi-

cation of X (the union of X with its limit points). We assume that c(·, ·) and u(·, ·, ·)
extend continuously to X × Θ and X × Θ × R+. Conditional distributions are standard:

P (· | Θn) = P (· ∩ Θn) /P (Θn). By Theorem 1, each En has an equilibrium (pn, αn). Our

first existence result will use the following condition.

Condition 1. There exists a cost c0 > 0 such that, for large enough k and n > k, types

in Θn\Θk purchase only options x with cost pn(x) ≥ c0. Formally: αn({pn(x) ≥ c0} | α ∈
Θn\Θk) = 1.

Condition 1 requires that costly types do not purchase cheap contracts. This condi-

tion holds naturally in many models, including those of Section 4.8

Proposition 1. For each n ∈ N, let (pn, αn) be an equilibrium of the truncated economy

En = [Θn, X, P (· | Θn)], and suppose that the following assumptions hold. First, there is

a function p : X → R+ s.t. pn → p uniformly on compact subsets of X. Second, there is a

distribution α on Θ × X ⊆ Θ × X s.t. αn → α weakly. Third, Condition (1) holds. Then,

(p, α) is an AG equilibrium of the unbounded economy E = [Θ, X, P ].

Proof. The proof uses a diagonalization argument. Each En has an equilibrium (pn, αn)
which is the limit of the weak equilibria

(
pn

j , α
n
j

)
of a sequence of perturbed economies

En
j which have a vanishing mass of behavioral types, as in AG. We then consider the se-

quence En and show that an appropriate diagonal of weak equilibria
(
pn

jn
, αn

jn

)
converge

to an AG equilibrium of E when n → ∞. Finally, we modify the equilibria on this diag-

onal to include all types, as αn
j only allocates types in Θn. Due to the behavioral types,

this can be done without changing the price pn
j . See Appendix A.1 for details.

8Indeed, for insurance markets, in some neighborhood of full insurance (x = 1), the equilibrium price
p(·) (and hence pn) satisfy pn(x) ≥ c0 and p(x) ≥ c0. Moreover, types with high riskiness (and hence high
willingness to pay) will purchase coverage in this neighborhood; this intuition is formalized in Lemma 1
of Section A.
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4 Simple Insurance Markets

This section contains the bulk of our contribution. We specialize the model of Section

2 to insurance settings. First, we provide a novel characterization of the (unique) equi-

librium with arbitrarily many (and possibly unbounded) types. Second, we derive a

condition on model primitives that is necessary and sufficient for existence in insur-

ance markets with unbounded cost. Third, we characterize equilibrium for insurance

economies with unbounded continuous types and unbounded discrete types.

4.1 A Model of Insurance

An individual of type θ ∈ Θ is exposed to a stochastic wealth loss described by the ran-

dom variable Zθ. Let µ : Θ → R++ be a continuous map assigning type θ to her expected

loss. Let risk types be µθ = µ (θ) = E [Zθ]. We assume µθ > 0 P -a.s. Importantly, we

allow the marginal distribution of µθ to not be bounded: ∀M ≥ 0, P ({θ | µθ ≥ M}) > 0.
Denote the marginal probability of µ by Pµ = P ◦ µ−1, and let µ = min (supp (Pµ)), where

supp denotes the support.

We assume the following parameterization of alternatives x ∈ X. An individual who

purchases alternative x ∈ [0, 1] is only exposed to the random shock (1 − x)Zθ, with

the remaining xZθ being absorbed by the insurer. Full insurance corresponds to x = 1,

and zero insurance to x = 0. The alternative space, unless otherwise specified, is either

X = [0, 1] or X = [0, 1). We may choose to use X = [0, 1), because, as we will show in

Section 6.5, any equilibrium with unbounded cost must have limx→1 p(x) = ∞.9

The cost to a risk neutral insurer of alternative x sold to type θ is c(θ, x) = xµθ. We

assume that even if each individual chooses full insurance (x = 1), expected cost is

finite:
∫

Θ µθdP < ∞.

We make the following assumption regarding utilities.

Assumption 1. Utility (certainty equivalent) is u(θ, x, p) = xµθ + g(x)νθ − p, for some

continuous function νθ : Θ → R++. We assume g : [0, 1] → R is twice continuously

differentiable, with g′ > 0 in x ∈ [0, 1), g′ (1) = 0, g′′ ≤ 0, and g′′ (1) < 0.

Utility from alternative x has three components. First, xµθ is the individual’s ex-

pected cost, passed on to the insurer. Second, g(x)νθ captures the individual’s surplus

from insurance, where νθ is the individual’s “insurance value.” Notice that g(x) is com-

mon to all individuals, while νθ is heterogeneous. If νθ > 0, individuals are willing to

pay for insurance above their expected cost (for instance, due to risk aversion). There

are decreasing marginal returns from insurance. At full insurance, insurance has zero

9In fact, all the results in Section 4 hold, with natural minor modifications, if the upper bound of cov-
erage is replaced with xmax ∈ (0, 1).
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marginal value: g′ (1) = 0. We assume certainty equivalents are quasilinear in prices.

This assumption is not innocuous, but is common in models with constant absolute risk

aversion (CARA).10 These assumptions imply that types are effectively two-dimensional,

since only (µθ, νθ) matter for decisions and costs.

The marginal willingness to pay for additional insurance is

wθ(x) = ∂uθ

∂x
(x, p) = µθ + g′ (x) νθ ≥ µθ.

with equality iff x = 1. By Assumption 1, wθ is independent of price.

We also make the following assumptions on the distribution of types.

Assumption 2. νθ = ν (µθ) with ν (·) a weakly increasing function, locally Lipschitz and

ν (µθ) > 0 for µθ > µ.

Assumption 3. Pµ is absolutely continuous with a.e. positive density on a (bounded or

unbounded) interval, or purely atomic with finitely many atoms in each bounded inter-

val.

Assumption 2 implies the marginal willingness to pay wθ is strictly increasing in cost

µθ. This monotonicity is assumed in RS, Riley [1979], AG’s discussion of the RS and

Akerlof [1970] models, and in all models of insurance with one-dimensional types we

are aware of.11 Under Assumption 2, two types with the same risk also have the same

marginal willingness to pay, so types are effectively one-dimensional: (µθ, ν (µθ)).12 Still,

this setting generalizes RS (and AG’s discussion of RS), where ν (µθ) was assumed con-

stant. Assumption 2 also implies the Spence [1973]-Mirrlees [1971] single-crossing con-

dition: indifference curves of any two agents intersect at most once.13

Assumption 3 imposes regularity on the marginal distribution of µθ. The condition

is technical, mild, and satisfied in all insurance models that we are aware of.

Example 1 describes a setting where Assumptions 1 and 2 hold. This CARA-Gaussian

parameterization is used, for instance, in Veiga and Weyl [2016], Levy and Veiga [2017].

Example 1. Suppose wealth shocks are Gaussian: Zθ ∼ N (µθ, σ
2
θ). Suppose utility is

CARA:Uθ (y) = e−aθy where y is wealth and aθ is risk aversion. Each type has initial wealth

wθ. Then, insurance value is νθ = aθσ
2
θ and certainty equivalents are u(θ, x, p) = xµθ +

1
2

(
1 − (1 − x)2

)
νθ − p. Marginal willingness to pay for insurance iswθ(x) = µθ + (1 −x)νθ

10Notice that quasi-linearity implies that utility is 1-Lipschitz in price.
11This assumption is not present in models with multidimensional types. Villeneuve [2003] and Smart

[2000] consider heterogeneity in risk and risk aversion, but costs are bounded. Wambach [2000], Crocker
and Snow [2011], De Meza and Webb [2001] and Snow [2009] consider other forms of multidimensional
heterogeneity, again with bounded cost.

12For this reason, we sometimes write, for instance, wµ instead of wθ.
13In Section 6.2 we discuss a relaxation of this assumption, which is equivalent to single-crossing under

mild regularity conditions.
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AG equilibrium with 2 types
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Figure 1: Equilibrium in an insurance market with 2 types. Dashed black lines represent
zero-profit lines for each type. Solid lines represent each type’s indifference curves at
her chosen contract. The equilibrium price p (x) is the upper envelope of the two indif-
ference curves, and the line p = 0. Red diamonds represent the contracts (p, x) chosen
by each type.

and Assumption 1 is satisfied. Assumption 2 is satisfied if νθ = ν (µθ) for any weakly

increasing ν (·).

AG specialize their general model to insurance markets with two cost types, as in RS.

In insurance markets, since c(θ, x) = xµθ, the break-even condition becomes

p(x) = x · Eα[µθ | x], α − a.e. x. (1)

AG derive several properties of equilibrium for insurance markets (AG’s Corollary 1).

An equilibrium exists and is unique. The high-cost type obtains full insurance (x = 1),

and is indifferent between her choice and the contract chosen by the low-cost type.14

The equilibrium price function p (x) is the upper envelope of p = 0 and each type’s

indifference curve at her chosen contract. Notice that only 2 contracts are purchased in

equilibrium but p (x) is defined for all x ∈ X. This is illustrated in Figure 1.

4.2 Equilibrium Characterization

We generalize AG by characterizing equilibrium in insurance markets with arbitrarily

many (possibly unbounded) types. Recall that X = [0, 1] when cost is bounded and

14In the RS model, the AG equilibrium has the same allocation as the Riley [1979] equilibrium, which
is also the Nash equilibrium, when the latter exists. However, a Riley [1979] equilibrium need not always
exist, as shown by Azevedo and Gottlieb [2016].
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X = [0, 1) otherwise.

Theorem 2. Suppose Assumptions 1, 2 and 3 hold for a bounded or unbounded insurance

economy E = [Θ, X, P ]. There is at most one equilibrium (p, α) for E . If an equilibrium

exists, it has the following properties.

1. Price p(x) is continuous, and it is strictly increasing in {x | p(x) > 0}.

2. There is a continuous and strictly increasing mapping σ : supp(Pµ) → X that as-

signs to each type µθ, the alternative σ(µθ) that she chooses α-a.s.

3. Each contract breaks even: P − a.s., p(σ(µθ)) = µθ · σ(µθ).

4. Full insurance (x = 1) is in the support of the equilibrium and zero insurance (x =
0) is purchased by a set of individuals with measure zero.

5. Price is Lipshitz in any interval bounded away from full insurance (x = 1); if µθ is

bounded P -a.s., price is Lipshitz.

6. If Pµ is discrete, each type is indifferent between the contract she chooses α-a.s. and

the next highest coverage purchased in α.15

Proof. Except for uniqueness, Theorem 2 follows from the more general Proposition 8,

proved in Appendix C. Uniqueness (if equilibrium exists) follows from Corollaries 2 and

Corollary 4 for continuous types. For discrete types, uniqueness follows from Proposi-

tion 2 and Proposition 4.16

When µθ is essentially bounded, existence follows from Theorem 1, but Theorem

2 establishes uniqueness.17 When µθ is unbounded, Theorem 2 shows equilibrium is

unique if it exists. In equilibrium higher cost types purchase more generous insurance,

full insurance is purchased by some type in equilibrium, and incentive compatibility

binds “downwards.” Theorem 2 also implies that, for unbounded economies, the equi-

librium prices of the most generous contracts are unbounded.

Corollary 1. Under Assumptions 1, 2 and 3, if Pµ is not compactly supported, then in any

equilibrium limx→1 p (x) = ∞.

15Formally: Let µ1 < µ2 be two atoms of Pµ with no atom between them. Suppose type µ1 purchases x1
and type µ2 purchases x2 α-a.s.. Then, type µ2 is indifferent between (x2, p(x2)) and (x1, p(x1)).

16Although Theorem 2 is used to prove Corollary 2, Corollary 4, Proposition 2 and Proposition 4, these
proofs do not rely on the uniqueness of equilibrium. Instead, those proofs rely only on the other proper-
ties listed in Theorem 2 (so the reasoning is not circular). We present the uniqueness as part of Theorem
2 for expositional simplicity, instead of leaving this conclusion for a later corollary.

17Recall that a random variable µ is essentially bounded if there exists some M < ∞ such that
Prob(|µ| > M) = 0.
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Proof. The allocation σ(µθ) is strictly increasing, and prices are actuarily fair (Theorem

2). Hence, if cost is unbounded, the price of full insurance diverges.

We do not take Corollary 1 to predict infinite prices in any insurance market. Our

goal in studying the equilibrium of unbounded economies is to determine robustness

w.r.t. cost bounds. Corollary 1 will play a key role in our analysis by allowing us to

easily show non-existence of equilibrium. Corollary 1 is also why, for economies with

unbounded cost, we consider the (non-compact) alternative space X = [0, 1).

4.3 Continuum of Types

We now consider an insurance market with a continuum of cost types. We show that

equilibrium (when it exists) is characterized by a simple differential equation. Riley

[1979] showed that a Nash equilibrium (in pure strategies) does not exist. An AG equi-

librium exists provided that costs are bounded (Theorem 1). Theorem 2 then shows that

equilibrium (if it exists) is unique. Building on these, we derive a simple, necessary and

sufficient condition for existence when cost is unbounded. When this condition fails,

the economy is “fragile”: assumptions about the support of costs can have large effects

on equilibrium prices. For fragile economies, expanding the support of costs may result

in unravelling: the equilibrium allocation to each type converges to zero.18

We consider an unbounded economy E = [Θ, X, P ] with alternative space X = [0, 1)
(recall Corollary 1), cost types µθ ∈ Θ = [µ,∞) and distribution P with Lebesgue-a.e.

positive density (Assumption 3).

We will consider a sequence of bounded economies En = [Θn, X̄, P (· | Θn)] which

approximate E , as in Section 3. Economy En has alternative space X̄ = [0, 1], cost types

µθ ∈ Θn =
[
µ, µn

]
and distribution P (· | Θn) = P (· ∩ Θn) /P (Θn). First, we characterize

the equilibrium of En. Building on this, we derive a necessary condition for equilibrium

existence in E . Finally, we show that this condition is also sufficient.

Fix some n ∈ N. Since X̄, Θn are compact, each En has an equilibrium (pn, αn) with

a continuous increasing allocation rule σn : [µ, µn] → [0, 1]. We omit superscript n for

notational simplicity. For each type µθ ∈ (µ, µn), the optimal choice is characterized,

assuming price is differentiable, by the First Order Condition

∂uθ

∂x
|x=σ(µθ)= µθ + g′ (σ(µθ)) v (µθ) − p′ (σ(µθ)) = 0.

(Appendix E considers the case where p is not differentiable). Since σ(µθ) is strictly in-

creasing, it admits an inverse τ = σ−1, which implies

18This article is concerned only with robustness w.r.t. cost bounds. This is a different notion of ro-
bustness than, for instance, the one in Debreu [1970] where, informally, a robust economy is one where
equilibria are locally unique and change continuously with fundamentals.
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τ(x) + g′ (x) v (τ(x)) − p′ (x) = 0.

For every x in the interior of the support of αX , contract x breaks even:

p (x) = τ(x) · x ⇒ p′(x) = τ(x) + x · τ ′(x).

Summing these implies

τ ′ (x)
ν(τ(x))

= g′(x)
x

. (2)

Then σn (µθ) can be recovered by integrating both sides of (2) over x and using the

change of variables τ (x) = µθ. Proposition 8 provides the boundary condition σn(µ) = 1.

We therefore obtain the following result.

Corollary 2. The bounded economy En has a unique equilibrium (pn, αn), where the choice

rule σn(µθ) satisfies, ∀µθ ∈
[
µ, µn

]
,

∫ µn

µθ

1
ν(µ)

dµ =
∫ 1

σn(µθ)

g′(x)
x

dx. (3)

In particular, σn(µθ) > 0 for µθ > µ.19

Proof. Since g′(x)/x ≥ 0, there is a unique σn (µθ) that solves (3) for each µθ, so integra-

tion establishes uniqueness and (3). See Appendix E.2 for details.

We now consider the sequence of economies En as µn → ∞. Our goal is to apply

Proposition 1 in this insurance setting.20 Corollary 2 suggests that a necessary condition

for the equilibria (pn, αn) to converge is that the improper integral on the left-hand side

of (3) converges. That is, for some µ ∈ [µ,∞),

∫ ∞

µ

1
ν(µ′)

dµ′ < ∞. (4)

Corollary (3) formalizes the result.

Corollary 3. Suppose (4) does not hold. Then, for each x > 0, price diverges: limn→∞ pn(x) =
∞. For each µθ, coverage converges to zero: limn→∞ σn(µθ) = 0. Moreover, E does not have

an equilibrium.
19If ν(µ) > 0, σn(µ) > 0.
20Lemma 1 (Appendix A.1) shows that the technical Condition (1) holds in insurance markets. While

Proposition 1 requires knowledge of the limit equilibrium (p, α), this result is enough for the setting of
simple insurance markets because the structure of equilibrium is known from Theorem 2.
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Proof. From Corollary 1, as µn → ∞, we must have limx→1 p
n (x) = ∞. Each function

pn (x) must also satisfy incentive compatibility. If (4) fails, pn (x) cannot be sufficiently

convex to diverge at full insurance without also diverging at every other alternative.

In that case, as µn → ∞, all prices diverge and the allocation of every individual ap-

proaches x = 0. In the limit, an AG equilibrium does not exist (because prices are not

defined). See Appendix E.4 for details.

For “fragile” economies ((4) fails), relaxing the truncation of the cost distribution re-

sults in market unravelling. The price of each alternative x > 0 increases without bound

and the levels of coverage chosen by each type µθ approaches zero. The limit economy

E does not have an AG equilibrium.

For “fragile” unbounded economies, it is tempting to think that the equilibrium is

“all types buy zero insurance.” Indeed, the allocation σn(µθ) converges to zero for each

type. However, price pn(x) diverges for each contract. AG equilibrium requires that all

prices be defined, so E has no equilibrium. Predicting market outcomes would require

defining a new notion of equilibrium, which is outside the scope of this article.

When (4) fails, cost bounds have an unbounded effect on equilibrium prices. Notice

that, if ν(µθ) = ν0 is a constant (that is, individuals differ only in risk, as in RS), and cost

is unbounded, then the economy is fragile. It is known that equilibria in RS (and other

similar) settings can change discontinuously when the mass of a given type vanishes

(Mailath et al. [1993]). Our contribution is to show formally that, in insurance markets,

increasing the upper bound of cost results in full unravelling.

This result is illustrated in Figure 2. The left panel depicts a numerical simulation

where ν is constant, so (4) fails. The figure shows the price functions pn(x) in the equi-

librium of several truncated economies En with increasing values of the upper bound

µn, showing that pn (x) diverges for each x.21

Condition (4) is necessary for equilibrium existence, but also sufficient. When (4)

holds, changes in the support of the type distribution have a bounded effect on equi-

librium prices. Therefore, (4) creates a sharp distinction between economies that are

robust and fragile w.r.t. cost bounds, as formalized by Corollary 4.

Corollary 4. Suppose (4) holds. Then there exists a unique equilibrium (p, α) of E , and

the associated choice rule σ : [µ,∞] → [0, 1) is defined by

∫ ∞

µ0

1
ν(µ)

dµ =
∫ 1

σ(µ0)

g′(x)
x

dx. (5)

for any µ0 > µ. In particular, σ(µ0) > 0 for µ0 > µ.22

21A graph of µθ = σ−1 (x) would look similar (since each price p is associated to a single cost µθ). This
implies that, as n → ∞, each type µθ obtains progressively lower coverage in equilibrium.

22If ν(µ) > 0, σ(µ) > 0 .
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Figure 2: Left panel: equilibrium does not exist when ν constant. Right panel: equi-
librium exists when νθ = (µθ)1.2. The different curves correspond to the prices pn(x) of
simulated economies where log10 (µn) ∈ {1, 2, 3, 4, 5} when νθ constant and log10 (µn) ∈
{5, 10, 15, 20, 25} when νθ = (µθ)1.2.

Proof. By Condition (4), Proposition 1 holds, so equilibrium exists. Uniqueness and (5)

follow since, for any µ > µ0 > µ, we have
∫ µ

µ0
1

ν(µ)dµ =
∫ σ(µ)

σ(µ0)
g′(x)

x
dx. Taking µ → ∞ gives

the result, as limµ→∞ σ(µ) = 1 by Theorem 2. See Appendix E.3 for details.

The result is illustrated in Figure 2, where the right panel shows a setting where νθ =
(µθ)1.2, so (4) holds. As the support of µθ expands, the functions pn (x) converge to p (x),

and each type’s choice σn (µθ) converges to σ (µθ).

How restrictive is (4)? It is satisfied, for instance, if P -a.s., νθ grows asymptotically at

least as fast as C (µθ)α for some C > 0 and α > 1.23 In the CARA-Gaussian framework

of Example 1, νθ = aθσ
2
θ is the product of the CARA risk aversion coefficient aθ and the

variance of shocks σ2
θ . In this case, (4) holds if aθ is constant and σ2

θ increases more than

linearly with the expected cost µθ. On the other hand, the result also shows that models

where νθ is constant necessarily describe “fragile” economies.

Condition (4) is empirically likely in markets like health and auto insurance where

individuals with higher expected risk tend to have larger variance in outcomes, as de-

scribed by Brown et al. [2014], Hendren [2013]. For instance, Handel et al. [2015] esti-

mate the distribution of healthcare expenditures conditional on individual covariates

and based on an empirical model with CARA utility. Those authors find (Table III of

their article) that, as age increases, both the variance σ2
θ and the mean µθ increase, but

the former increases faster than linearly w.r.t. the latter.

23Formally, lim inf µ→∞
ν(µ)
µα > 0, where the limit is taken along the support of Pµ.
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Condition (4) fails, for instance, if for someC,D ∈ R, νθ ≤ Cµθ +D P -a.s.. Section 6.5

provides a class of economies where this condition implies equilibrium non-existence,

in a more general setting where θ = (µθ, νθ) may be truly two-dimensional.

4.4 Discrete Types

We now consider an insurance market with unbounded discrete types. Our goal is to il-

lustrate features of the equilibrium familiar from RS and AG. For instance, p (x) is the up-

per envelope of indifference curves and incentive compatibility constraints bind “down-

wards.” We present heuristic arguments here, and proofs in Appendix F.

The unbounded economy E = [Θ, X, P ] has types Θ = {(µk, νk)∞
k=1} where µk, νk are

strictly increasing in k and µk → ∞, νk → ∞. The alternative space is X = [0, 1). The

truncated economy En = [Θn, X̄, P (· | Θn)] has types Θn = {(µk, νk)k≤n}, alternative

space X̄ = [0, 1] and distribution P (· | Θn) = P (· ∩ Θn) /P (Θn).

First, we construct the unique equilibrium of En. Type θk chooses (xn
k , p

n
k), where

xn
k , p

n
k are strictly increasing in k. Each contract breaks even: pn

k = xn
kµ

n
k ,∀k. Type µn

k is

indifferent between (xn
k , p

n
k) and (xn

k−1, p
n
k−1). Together, these imply

µn
k − µn

k−1
νn

k

=
g(xn

k) − g(xn
k−1)

xn
k−1

(6)

which is the discrete analogue of (2). The highest-cost type µn
n obtains full insurance

(x = 1) at a price pn
n = µn

n. Then, (6) pins down the value of xn
n−1, then of xn

n−2, and so

forth. In fact, (6) implies that there exists a continuous function ϕk (·) that determines

any xn
k = ϕk(xn

k+1) based on knowledge of xn
k+1, so equilibrium choices can be defined

recursively.24 Let In
k : [0, 1] → R be the indifference curve of type µn

k through her chosen

contract, (xn
k , p

n
k).25 We define pn(x) = In

k (x) if x ∈
[
xn

k−1, x
n
k

]
.26 Incentive compatibility

requires In
k (xn

k) = In
k+1(xn

k), so pn(·) is continuous.27 Moreover, In
k (xn

k) = µkx
n
k so the

break-even condition is satisfied. Notice that pn (x) is the upper envelope of indifference

curves at each individual’s chosen contract, as in AG. This construction is formalized in

Proposition 2 which generalizes AG’s Corollary 1. Figure 3 provides a visual illustration

of the equilibrium for a truncated economy with four cost types, E4.

Proposition 2. The truncated economy En has a unique equilibrium where price is pn(·)
and the allocation αn is concentrated on (µk, νk, x

n
k)k≤n, with αn ({(µk, νk, x

n
k)}) = P (µk)

P (Θn) .
24We have xn

k := ϕk(ϕk+2(· · · (ϕn−1(1)) · · · )). For instance, in the CARA-Gaussian framework of Example
1, ϕk (·) is the positive solution of a second degree equation.

25In
k is expressed algebraically by (17) in Appendix D.1.

26Let xn
0 = min[x | In

0 (x) ≥ 0], and for convenience, set xn
−1 = 0 and In

0 = 0.
27Notice also that, for x ≤ xn

k , the indifference curve is below the break even line (In
k (x) ≤ µnx

n
k ), as

shown in Figures 1 and 3.
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Figure 3: Construction of the Price Function p4(x) for E4. For each interval x ∈
[
x4

k−1, x
4
k

]
,

prices are given by p4(x) = I4
k(x) where I4

k(x) is the indifference curve of type k, who
chooses (xk, pk). The price p4 (x) corresponds to the upper envelope of the indifference
curves of buyers.

Proof. Follows from Theorem 2.28

We now construct the equilibrium of the limit economy E . Appendix F shows (xn
k)∞

n≥k

is monotonically decreasing for each k, so limn→∞ xn
k = xk ∈ [0, 1) exists, and corre-

sponds to the choice of type k in E . Continuity of ϕk (·) implies incentive compatibility

in E , i.e. xk = ϕk(xk+1), as desired. The equilibrium allocation is α({(µk, xk)}) = P (µk).

Let Ik : [0, 1] → R be the indifference curve of µk through (pk, xk), and piece these to-

gether as above to form p(x) = Ik(x) if x ∈ [xk−1, xk].29

Since (6) is the discrete analogue of (2), it seems likely that a necessary condition for

existence will be a discrete analogue of (4), namely

∞∑
k=1

µk+1 − µk

νk+1
< ∞. (7)

Proposition 3 (which mirrors Corollary 3) shows this condition is indeed necessary.

Proposition 3. Suppose (7) does not hold. Then, for each x > 0, price diverges: limn→∞ pn(x) =
∞. For each k ∈ N, coverage converges to zero: limn→∞ xn

k = 0. Moreover, E does not have

an equilibrium.

Proof. See Appendix F.

28To avoid logical circularity, the uniqueness stated in Theorem 2 is not be relied on here, but the allo-
cations follow from the other properties, as the highest type purchases full insurance and the other types
allocations are determined inductively.

29Again, x0 = min[x | I0(x) ≥ 0], and set x−1 = 0 and I0 = 0. Notice that p(·) is well-defined and
continuous, and p (x) = maxk∈N gk (x). Also, p involves ’infinitely many pieces’ and hence is not defined
at x = 1.
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)
, since limx→1 p (x) = ∞.

If (7) fails, relaxing the truncation of E raises the price of each contract without

bound and reduces each type’s chosen coverage to zero. In the limit, equilibrium does

not exist. In parallel to the analysis of economies with continuous types, (7) is also suf-

ficient for existence.

Proposition 4. Suppose that (7) holds. Then xk > 0 for all k ∈ N; pn → p uniformly

on compact subsets of [0, 1), and αn → α weakly. Therefore, by Proposition 1, (p, α) is an

equilibrium. Moreover, the equilibrium is unique.

Proof. We have xk > 0 for all k ∈ N, which follows from (7) by calculation. Conver-

gence follows from the definitions of αn, α, pn, p in terms of the xn
k , since xn

k → xk for

each k, and since each compact subset of [0, 1) contains finitely many of the points xn.

For uniqueness, in any equilibrium, for each k ∈ N, the contract xk purchased by type

(µk, νk) satisfies xk := limn→∞ ϕk(ϕk+2(· · · (ϕn(1)) · · · )) and that limit is well-defined. For

details, see Appendix F.

Intuitively, the summability condition (7) is similar to the integrability condition (4).

In the discrete case, p (x) is the upper envelope of indifference curves, and the slope of

these curves is wθ(x) = µθ + (1 − x)νθ. For unbounded economies, limx→1 p (x) = ∞
by Proposition 10, so wθ must increase sufficiently fast as x → 1. Since the choice of

x increases with µθ, then νθ must increase sufficiently fast to allow for limx→1 p (x) = ∞
without also arbitrarily raising prices for all x < 1 (which would result in non-existence).

The price function p (·) of the unbounded economy E is illustrated in Figure 4.30

30Appendix I also contains an alternative proof that (p, α) is an equilibrium of E . This is a “direct” con-
struction of the equilibrium which does not use Proposition 1.
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5 Market for Lemons

In this section we briefly consider markets for lemons, as in Akerlof [1970], where a

single option is available. Several empirical studies assume a single or small number

of options (e.g., Einav et al. [2010], Handel et al. [2015]), with estimation often assum-

ing unbounded distributions for cost such as log-normal or truncated Gaussian. First,

we give a condition on primitives such that equilibrium exists with unbounded cost.

Then, we provide an example of non-existence when cost is unbounded. Therefore,

non-existence is not an artifact resulting from a continuum of contracts.

We maintain the insurance framework of Section 4, including Assumption 1. There

is a single non-zero product, so X = {0, x̄} for some x̄ > 0. For simplicity, we assume

that the insurance value ν = ν(·) is constant in this case, and assume µθ distributes with

positive PDF on some interval (µ,∞). The utility from purchasing non-zero (resp. zero)

coverage at price p for an agent of riskiness µθ is uθ = x̄µθ + g(x̄)ν − p (resp. uθ = −p).31

The cost is c(θ, x) = xµθ. When individuals do not buy (x = 0), their cost is zero: c(θ, 0) =
0,∀θ.

By Theorem 1, an equilibrium exists if risk µθ is bounded. The equilibrium (if it ex-

ists) must prescribe p(0) = 0 and p(x̄) equals the average cost of buyers. Let p = p(x̄)
denote the price of the non-zero alternative. If x̄ · µ + g(x̄)ν > x · E[µ], then charging a

price p = x · E[µθ] and having all agents purchase is an AG equilibrium. Otherwise, let

the marginal type (indifferent about purchasing) be µ⋆ defined by x̄µ⋆ + g(x̄)ν = p. The

equilibrium price p satisfies p = x̄E[µθ | µθ ≥ µ⋆]. If types are bounded, such a price p

always exists. Our existence result is as follows.

Proposition 5. If µθ distributes with positive PDF on some interval (µ,∞) s.t.

lim
M→∞

E[µθ | µθ ≥ M ] −M = 0 (8)

then an equilibrium exists for any x ∈ (0, 1] and any ν > 0. In particular, (8) holds if µθ

distributes with PDF ϕ and CDF Φ s.t. limM→∞ ϕ(M) = 0 and limM→∞
1−Φ(M)

ϕ(M) = 0.

Proof. The condition p = E[x̄ · µ | µ ≥ µ⋆] is equivalent to x̄µ⋆ + g(x̄)ν = xE[µ | µ ≥
µ∗] = xµ∗ + xζ(µ∗), where ζ(z) = E[µ − z | µ ≥ z]; hence, limz→∞ ζ(z) = 0 and ζ(·) is a

continuous function. The above equality is equivalent to g(x̄)
x̄
ν = ζ(µ∗); there exists such

a point, or ζ(µ) < g(x̄)
x̄
ν, in which case, as remarked above, p = x · E[µ] is an equilibrium

in which all types purchase coverage. The second part follows by L’Hospital’s rule.32

Example 2. Suppose risk µθ ≥ 0 distributes with a half-Gaussian distribution. That is,

31In this article, we do not consider existence when the space of alternatives is a fixed finite subset of
[0, 1]. That analysis is outside the scope of this article and left for future research.

32The authors are grateful to Ilan Nehama for pointing out this argument. Let P (·) denote distribution
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µ ∼ |µ̃| for µ̃ ∼ N (0, 1). Let Φ denote the CDF of N (0, 1) and ϕ(x) =
√

2
π

· e− 1
2 x2

the

PDF of µ in R+. Notice that ϕ′(x) = (−x) · ϕ(x), so by L’Hopital’s law, limM→∞
1−Φ(M)

ϕ(M) =
limM→∞

−ϕ(M)
ϕ′(M) = limM→∞

1
M

= 0. Therefore, an equilibrium exists.

We now provide two examples of non-existence. Equilibrium does not exist if every

price is lower than the average cost of those who would purchase at that price, so firms

are unable to break even at any price. Formally, p < E[x̄µθ | µθ ≥ µ⋆]. In this case, as in

Section 4, if the support of cost is progressively expanded, the share of individual who

buys the contract x = x̄ converges to zero.

Here again, it is tempting to conclude that “nobody buying” is an equilibrium. It

is not, because AG equilibrium requires defining the price of all contracts. Since p(x̄)
diverges, an AG equilibrium does not exist. An alternative definition of equilibrium,

which might exist under these circumstances, is left for future research.

Example 3. Suppose that µθ has an exponential distribution with parameter 1
λ

, so that

E[µθ] = λ and E [µθ | µθ ≥ µ⋆] = µ⋆ + λ. Equilibrium does not exist if x̄µ⋆ + g(x̄)ν <

x̄ (µ⋆ + λ) ⇔ g(x̄)
x̄
ν < λ (that is, if average cost λ is large and risk aversion ν is low).

Example 4. Suppose that µθ has a Pareto distribution with parameters µ0 and λ > 1.33

The conditional mean is E [µθ | µθ ≥ µ⋆] = λ
λ−1µ

⋆ for any µ∗ ≥ µ0. Equilibrium does not

exist if x̄µ⋆ + g(x̄)ν < x̄ λ
λ−1µ

⋆ ⇔ g(x̄)
x̄
ν < 1

λ−1 (that is, if risk aversion is sufficiently low).

6 Generalization & Variations

In this section, we first present a variant of Proposition 1, which applies when the limit

equilibrium is not known. Then, we extend several results from Section 4 to more gen-

eral insurance markets. This section can be skipped without loss of comprehension.

6.1 Existence When the Limit Equilibrium is Unknown

Proposition 1 requires knowledge of the equilibrium (p, α) of the limit economy E . Propo-

sition 6 does not require such knowledge but requires stronger assumptions. Like in

Proposition 1 consider a sequence of compact subsets Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θ with ∪nΘn =
Θ, such that for each n ∈ N, each θ ∈ Θn and each θ′ ∈ Θ\Θn, we have c(θ, ·) ≤ c(θ′, ·).

of types, and Y + = max[Y, 0]. Then,

E[µ | µ ≥ M ] −M = E[µ−M | µ−M ≥ 0] = E[(µ−M)+]
P (µ ≥ M)

=
∫∞

0 P ((µ−M)+ ≥ x)dx
P (µ ≥ M)

=
∫∞

0 P ((µ−M)+ ≥ x)dx
P (µ ≥ M)

=
∫∞

M
P (µ ≥ x)dx
P (µ ≥ M)

=
∫∞

M
(1 − Φ(x))dx
1 − Φ(M)

−→
M→∞

lim
M→∞

1 − Φ(M)
−ϕ(M)

= 0

33That is, µθ is concentrated on (µ0,∞) with PDF f(µθ) = λµα
0 (µθ)−λ−1 and CDF F (µθ) = 1 − (µ0/µθ) λ.
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Proposition 6. Assume that, for every two alternatives x, y ∈ X, price p ≥ 0, and type θ ∈
Θ, there is price q high enough s.t. u(θ, x, p) > u(θ, y, q). Moreover, for each n, let (pn, αn) be

an equilibrium of En such that the following conditions hold. First, the collection (pn)∞
n=1

is point-wise bounded and equicontinuous in X.34 Second, for every M ∈ R, there is a

compact subset K of X, s.t. infx/∈K pn(x) ≥ M for all n large enough. Third, Condition (1)

holds. Then, there exists an equilibrium (p, α) of the unbounded economy E , which is the

limit of a subsequence of the equilibria (pn, αn)∞
n=1 in the sense of Proposition 1.

Proof. See Online Appendix K.

The first assumption of Proposition 6 holds if supp≥0
∂u
∂p

(θ, x, p) < 0 for each θ ∈ Θ, x ∈
X. We use Proposition 6 below to derive existence results in insurance markets more

general than those of Section 4.35

6.2 General Insurance Markets Setup

We now describe a more general insurance setting, where Assumptions 1, 2 and 3 need

not hold. We maintain the notation µθ = µ (θ) = E [Zθ], and the parameterization that

alternative x covers a share x ∈ [0, 1] of cost, so c (θ, x) = xµθ. We require that utility

uθ(x, p) is defined for all x ∈ [0, 1] and all p ∈ R+. Unless otherwise specified, we take

X = [0, 1] or X = [0, 1).

We now list several assumptions which will be used in the remainder of this section.

Notice that not all assumptions are needed for each result.

Assumption 4. Utility is quasilinear in price: uθ(x, p) = xµθ+gθ(x)−p, with gθ : [0, 1] → R
smooth, strictly increasing and concave (g′

θ(x) > 0, g′′
θ (x) < 0 for x ∈ (0, 1)), with g′

θ(1) = 0.

Assumption 4 generalizes Assumption 1, where it was required that gθ (x) = g (x) νθ,

but still maintains quasi-linearity in price. Under Assumption 4, the marginal willing-

ness to pay for additional insurance is wθ(x) = ∂uθ

∂x
(x, p) = µθ + g′

θ(x) ≥ µθ with equality

if and only if x = 1. By quasi-linearity, wθ is independent of price.36

Assumption 5. Utility is u : Θ × [0, 1] × R+ is continuous, uθ(·, ·) is twice differentiable

for all θ ∈ Θ and the second derivatives are continuous in (θ, x, p), with ∂uθ

∂x
> 0, ∂uθ

∂p
< 0,

and wθ(x, p) = −∂uθ

∂x
(x, p)/∂uθ

∂p
(x, p) satisfies wθ ≥ µθ with equality iff x = 1, and ∂wθ

∂x
≤ 0 in

(0, 1).

34A collection of real-valued functions F on a metric space (X, d) is point-wise bounded if ∀x ∈ X,
supf∈F |f(x)| < ∞. Moreover, F is equicontinuous if, for each ε > 0 and each x ∈ X, there is δ > 0 such
that if y ∈ X with d(x, y) < δ, then |f(y) − f(x)| < ε for all f ∈ F .

35Note that the first condition required in Proposition 6 (one option is preferred over another if the
latter’s price is high enough) holds when utility is quasi-linear in price, as in Section 4.

36Assumption 4 also guarantees the condition on utilities required by Proposition 6.
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Assumption 5 is an alternative assumption on utility functions. Note that, under

Assumption 5, wθ may depend on both coverage and price.

Assumption 6. For each (x, p) ∈ [0, 1] × R+, wθ2(x, p) ≥ wθ1(x, p) iff µ(θ2) ≥ µ(θ1).

Assumption 6 generalizes Assumption 2. If Assumption 6 holds, all types with the

same riskiness have the same utility function, so we may view νδ as a function of µθ, de-

fined on the support of Pµ. That is, types are effectively one-dimensional.37 We remark:

Proposition 7. Assume Assumption 5; further assume Θ is an open subset of a Euclidean

space s.t. the maps θ → µ(θ) and θ → wθ(x, p) are everywhere non-singular (i.e., non-zero

gradient). Then Assumption 6 holds iff single crossing holds, i.e., iff indifference curves of

types (whose preferences are not identical) intersect at most once.

We remark that the topological and regularity assumptions in the proposition can

be relaxed, and we have merely assumed ’comfortable’ assumptions for illustrative pur-

poses.

Proof. The assumptions on Θ, µ, w imply a continuous type space and that the costs

and marginal willingness to pay possess some regularity. It is immediate that Assump-

tion 6 implies single crossing. To show the converse, suppose µ(θ2) > µ(θ1) but, by way

of contradiction, there were some x0, p0 ∈ [0, 1] × R+ at which wθ2(x0, p0) < wθ1(x0, p0).

Then, the indifference curve of θ1 through (x0, p0) at full coverage is, by single crossing,

higher than the indifference curve of θ2 through (x0, p0) at full coverage. As we move

the ’pivot point’ (x0, p0) along the latter curve towards higher coverage, this reality must

flip at some point because, near full coverage, wθ2 ≈ µ(θ2) > wθ1(x0, p0) ≈ µ(θ1). How-

ever, by single-crossing, if indifference curves intersect at (x0, p0) they do not intersect

elsewhere, which yields a contradiction. Formal details are in Online Appendix K.

Assumption 7. For every µ∗ > µ, the set {θ | µ(θ) ≤ µ∗} is compact in Θ.

Assumption 7 implies that, for each upper bound on cost, only a compact set of types

have cost below this bound. Like Assumption 6, Assumption 7 rules out unbounded

distributions like (for instance, Gaussian and log-normal). We know of no case in which

Assumption 6 holds and Assumption 7 does not, so Assumption 7 is with a small addi-

tional loss of generality.38

37Recall µ = min(supp(Pµ)). If (a, b) is a maximal open interval not intersecting the support of Pµ, (that
is, there are no types with riskiness µ in (a, b), but a, b ∈ supp (Pµ)), we interpret νδ(µ) = νδ(a) in (a, b).
That is, we complete the function νδ from the domain supp(Pµ) to [µ,∞) such that νδ(µ) = νδ(max{ζ ∈
supp(Pµ) | ζ ≤ µ}).

38A weakening of Assumption 7 which is sufficient for all our purposes, including Proposition 8, is given
in Online Appendix J; this weakening would make the analysis at some points significantly lengthier.

20



6.3 Equilibrium Characterization

Proposition 8 generalizes Theorem 2.

Proposition 8. Suppose that Assumptions 5, 6, and 7 hold. Any equilibrium (p, α) of

the bounded (X = [0, 1]) or unbounded (X = [0, 1)) insurance economy E = [Θ, X, P ],
satisfies:

1. Price p (x) is continuous and strictly increasing on the domain on which it is non-

zero (Lemma 11).

2. There is a continuous mapping σ : supp(Pµ) → [0, 1], strictly increasing on the

domain in which it is non-zero, that assigns to each type µθ her chosen contract.

Formally, α
{
(µθ, x) | x = σ(µθ)

}
= 1.39 (Lemma 6)

3. Contracts are actuarily fair. Formally, P − a.s., p(σ(µθ)) = µθσ(µθ). (Lemma 4)

4. Full insurance is in the support of the equilibrium.40 (Corollary 7)

5. Let x0 < 1 . If L ≥ wθ in {x ≤ x0, p ≤ p(x0)} for a.e. θ which chooses coverage up to

x0 (i.e., α(· | x ≤ x0) − a.s.) then p(·) is L-Lipshitz in [0, x0].41 Formally, we may take

L = ess− sup{max{x≤x0,p≤p(x0)} (wθ | σ(µθ) ≤ x0)}.42

6. Let x ∈ (0, 1] and p(x) > 0. Let η(µθ, x) be the price at which type µθ is indifferent

between his purchased contract (σ(µθ), p(σ(µθ)) and (x, η(µθ, x)). Then, for every

y > x for which αX((x, y]) > 0,

p(x) = ess− sup{η(µθ, x) | x < σ(µθ) ≤ y} (9)

That is, price is an envelope of indifference curves, and in fact one can take just

those indifference curves of types who buy the ’next alternatives above it’.43

7. If in addition Assumption 3 holds, then 0 is α-a.s. never purchased, and in partic-

ular σ : supp(Pµ) → [0, 1] is strictly increasing.

Proof. See Appendix C.
39Under Assumptions 1, 2, and 3, we show that x = 0 is never chosen in equilibrium (see Sections 4.3

and 4.4). However, we have not been able to show this in more general settings. Therefore, we only assert
that σ is strictly increasing on supp(Pµ)\σ−1({0}).

40The support of a positive measure is the smallest closed non-null set. Therefore, we mean that every
neighborhood of x = 1 has strictly positive measure under α.

41If Θ is compact, this implies that the price function is Lipshitz.
42Recall that the essential supremum (“ess − sup”) of a random variable X with distribution P is the

supremum over all x ∈ R s.t. P (X > x) > 0; intuitively, this is the ’supremum up to measure zero’.
43In particular, if µ1 < µ2 are atoms of Pµ but there are α-a.s. no types with riskiness between µ1, µ2,

then type µ2 is indifferent between (σ(µ2), p(σ(µ2)) and the alternative “just below”, (σ(µ1), p(σ(µ1)). This
follows by taking x = σ(µ1), y = σ(µ2) in the first part.
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6.4 Existence in Insurance Markets

We now generalize the existence results of Sections 4.3 and 4.4. The result uses Assump-

tions 4 and 6 and therefore requires that types be effectively one-dimensional.
First, we introduce some notation. For a given δ > 0,

νδ(θ) := max
{

−∂wθ

∂x
(x) | x ∈ [1 − δ, 1]

}
, νδ(θ) := min

{
−∂wθ

∂x
(x) | x ∈ [1 − δ, 1]

}
(10)

Intuitively, νδ(θ) (resp. νδ(θ)) is the highest (resp. lowest) level of curvature, in (x, p)-

space, of type θ among contracts with generosity x ∈ x ∈ [1 − δ, 1].44 Notice that

−∂wθ

∂x
(x) = −∂2uθ

∂x2 (x) > 0 is the curvature of indifference curves in (x, p)-space for type θ.

If Assumption 6 holds, riskiness determines type, and we may write νδ(µ),νδ(µ) instead;

these are defined Pµ = P ◦ µ−1-a.s.

Proposition 9. Suppose that Assumptions 4, 6, and 7 hold. Suppose that for some δ > 0,

∫ ∞

µ

1
νδ(µ)

dµ < ∞. (11)

(the integrand assumes the maximal value of the two endpoints on any interval which

has measure zero under Pµ). Then, E possesses an equilibrium. When Pµ is purely atomic

and supported on µ1 < µ2 < µ3 < · · · , the required condition is
∑∞

n=1
µn+1−µn

νδ(µn) < ∞.

Proof. See Online Appendix G.

6.5 Unbounded Price and Existence

We now generalize Corollary 1. We also use it to describe a more general class of un-

bounded economies where an equilibrium does not exist. The results in this subsection

do not require X = [0, 1), instead requiring only that X ⊆ [0, 1) be Borel45 such that full

insurance is a limit point of X.46 Importantly, the results also do not require that νθ is

a function of µθ (Assumption 6), so types can be truly multi-dimensional and different

types may pool within each contract. First, we elaborate an assumption needed for our

result.47

Assumption 8. For each µ, there is a δ > 0 such that νδ can be bounded as a function of

µ. Formally, for each µ s.t. P (µθ ≤ µ) > 0, there is ρ = ρδ(µ) s.t. P (νδ(θ) ≤ ρ | µ ≤ µ) = 1.

44In the CARA-Gaussian framework of Example 1, νδ(θ) = νδ(θ) = νθ is independent of δ.
45We require X be Borel to be able to define a Borel measure on X. As Section 4.4 hints, a countable

discrete set is often appropriate.
46I.e., there is a sequence (xn) in X with xn → 1 but ∀n, xn < 1. We require that x = 1 is a limit point of

X in order to prove that full insurance is not an atom of the equilibrium, in Proposition 10.
47Recall the notation νδ defined in (10).
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Assumption 8 constrains the joint distribution of µθ and νθ. WLOG, we can take ρδ(·)
increasing and right-continuous.48 This assumption, while allowing for unbounded µ,

does not allow the distribution of (µ, v) to be arbitrary (for instance, bivariate Gaussian

or lognormal), although such distributions can be approximated arbitrarily closely.

Proposition 10. Suppose Assumptions 4 and 8 hold, and that Pµ is not compactly sup-

ported. Then, in any equilibrium, limx→1 p (x) = ∞. In particular, 1 /∈ X, i.e., full insur-

ance is not a possible contract.

Proof. First, we use Assumption 8 to establish bounds on the slope of p (x) in equilib-

rium. Second, we show that full insurance cannot be an atom of an equilibrium (unless

x = 1 is bought by a single atomic type). Third, we show that smaller and smaller neigh-

borhoods of full insurance attract arbitrarily large risks. Fourth, we use this to show that

the price cannot be bounded in equilibrium. See Appendix D for details.

Assumption 8 is not a significant restriction on the result’s implications. Any dis-

tribution is arbitrarily well approximated by a distribution satisfying Assumption 8.49

Therefore, the result should be understood as saying that no economy satisfying As-

sumption 4 on utility and Pµ not compactly supported, can possess an equilibrium with

bounded prices which is robust in any reasonable sense.

In Section 4, we mentioned that Condition (4) would not hold if ν ≤ Cµα + D with

α ≤ 1. Proposition 10 describes a more general class of economies in which equilibrium

prices must be unbounded. We now show that, under these more general conditions,

such a bound will imply non-existence of equilibrium. The result requires only Assump-

tion 4, so types are allowed to be “truly” multidimensional.

Proposition 11. Under Assumption 4, if Pµ is not compactly supported, and for some

δ, C,D > 0 P -a.s., νδ(θ) ≤ C · µ(θ) +D, there exists no AG equilibrium.

Proof. Note that the assumption of the proposition implies Assumption 8. Intuitively,

the bound on slopes implies that price cannot increase quickly enough to be unbounded,

contradicting Proposition 10. See Appendix D.5.

In the framework of Section 4.1, Proposition 11 applies if νθ is bounded by a linear

function of µθ. This includes the case of consumers homogeneous in risk aversion (as in

RS) but also applies in settings where types are truly multidimensional.

48If ρδ(·) is not monotonic, it can just be replaced with its ’monotonic closure’, x → sup0≤y≤x ρδ(y). If
it is not right-continuous, it can be replaced with x → limy→x+ ρδ(y). Both of these operations preserve
linear growth, which is what we require in Proposition 11.

49Suppose, for instance, that the distribution of types f⋆(θ), for which 8 did not hold, resulted in a
bounded equilibrium price p⋆(·). Approximating f⋆(θ) arbitrarily closely with a distribution f(θ) for which
8 holds, would result in some unbounded equilibrium prices p(.) which would be arbitrarily different from
p⋆(·).
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7 Conclusion

The analysis of insurance markets in RS and AG is sensitive to assumptions on the

bounds of the cost distribution. We show that, when assumptions on these bounds

are fully relaxed, AG equilibria need not exist. We also provide sufficient conditions for

equilibrium to exists when costs are unbounded.

In the context of insurance markets, we derive new properties of equilibrium that

generalize AG and RS. We also present a necessary and sufficient condition for the ex-

istence of a unique equilibrium. We are able to derive a characterization of equilib-

rium for insurance markets with an unbounded continuum of types which is particu-

larly tractable and based on a simple differential equation. We also show that, when it

exists, the equilibrium features unbounded price at full insurance.

There are a number of interesting avenues for future research. First, our characteri-

zations of equilibrium for simple insurance markets required a number of assumptions

on utilities, contracts, and the distribution of types. In particular, several of our results

require that types effectively be one-dimensional. Relaxing these assumptions would be

an interesting avenue for future research. Second, in this article, we have focused on the

AG equilibrium concept, which exists in a wide range of screening markets. It would be

interesting to replicate the exercise in this paper to other equilibrium concepts, such as

those of Miyazaki [1977], Wilson [1977], Spence [1978], Riley [1979].50 Third, we also do

not consider existence when the space of alternatives is a fixed finite subset of [0, 1] (for

instance, as in Handel et al. [2015] who consider two contracts). This analysis is outside

the scope of this article and also left for future research.

Appendix

A Existence in Unbounded Economies

A.1 Proposition 1

Given the definition of AG equilibrium in Section 2, we say that ((Xj), (pj, αj), (ηj)) wit-

nesses that (p, α) is an equilibrium.

For each n, let Xn be a Polish space in which X is dense and let (Y k
n )k∈N, (ζk

n)k∈N,

(qk
n, β

k
n)k∈N be sequences finite sets of alternatives in Xn, of distributions of behavioral

50These equilibrium concepts are not guaranteed to exist in general. For instance, Azevedo and Got-
tlieb [2016] provide an example of non-existence of Riley [1979] equilibrium. Gemmo et al. [2018] shows
existence of the Miyazaki [1977], Wilson [1977], Spence [1978], Riley [1979] equilibrium for continuous
type distributions.
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types, and of weak equilibria which witness that (pn, αn) is an equilibrium of the re-

stricted economy n. Note that qk
n refers to the price function while βk

n refers to the distri-

bution over types and contracts. For each n ∈ N, Xn ⊆ X, where X is a fixed compacti-

fication of X.51 . Note that Y k
n generally includes points of X which are not in X.

Let (Zj)j∈N be a sequence of compact subsets ofX withX = ∪jZj , and for each j ∈ N,

Zj ⊆ int(Zj+1). Such exists as X is locally compact and separable. Note that since each

pn(·) is continuous (Lemma 16, Online Appendix H), X is locally compact, and pn → p

uniformly on compact sets, then p is continuous. WLOG, since each Y n
n is finite and

pn → p on uniformly on compact sets in X, we may assume52 there there are indices

(kn)n such that (after passing possibly to a sub-sequence of (pn, αn)):

• For all n ∈ N and all x ∈ Zn, |pn(x) − p(x)| < 1
n

.

• For all n ∈ N and all x ∈ Y kn
n , |qkn

n (x) − pn(x)| < 1
n
.

• For all n ∈ N, d(βkn
n , αn) < 1

n
, where d(·, ·) is a metric for the weak topology.

Now, denote γn = βn
kn

, rn = qkn
n ,W n = Y kn

n . Then γn is concentrated on (Θ ∪ W n) × W n,

γn → α, and for all n ∈ N, |rn(x) − p(x)| < 2
n

for all x ∈ W n ∩ Zn. We contend that for

each x ∈ X, and each sequence (xn) in X with xn → x and xn ∈ W n for each n ∈ N,

rn(xn) → p(x). Indeed, since x ∈ X there is N s.t. for all n ≥ N , xn ∈ int(Zn); hence

xn ∈ int(Zn) ∩ W n, so |rn(xn) − p(xn)| < 2
n

, and since p is continuous at x, p(xn) → p(x);

hence, rn(xn) → p(x).

We should like to say that the weak equilibria (γn, rn) witness that (p, α) is an equilib-

rium. The problem is that the marginal of γn on Θ is P (· | Θn), not P , so we must modify

it. After adding the types in Θ\Θn to the distribution γn (where each type is choosing a

utility-maximizing option inW n), price can only go up, as elements outside Θn are more

costly than those in it. Hence, by adding some behavioral types (who have cost 0) the

added cost cancels out.53 For formal details, see Online Appendix K.

A.2 Condition (1) holds in simple insurance

Lemma 1. Under Assumption 1, Assumption 4, or Assumption 5, and where cost has the

form c(θ, x) = µθx and wθ ≥ µθ), the condition (1) is satisfied when the other conditions

of Proposition 1 or Proposition 6 hold.

Proof. First, we show there is c0 > 0 and x1 ∈ (0, 1) s.t. pn ≥ c0 in {x > x1} for n large

enough. In the case of Proposition 6, this is assumed. In the case of Proposition 1: Fix

51Formally, for each n ∈ N there is an embedding ϕn : Xn → X, which is identity on X.
52To show that the second bullet point may be assumed, see Lemma 17 of Online Appendix H.
53It is for these fine details that the assumption that types outside Θn have higher costs than those in

Θn, as well as Condition 1, is used.
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some 0 < x0 < 1 for which p(x0) > 0; by the break-even condition and the continuity of

p, such x0 exists. Hence there is c0 > 0, a neighborhood U of p(x0), and N s.t. if n > N ,

pn ≥ c0 in U ; since each pn is monotonic, this means that there is x1 < x0 such that

pn ≥ c0 in {x > x1}. Now, letting µn = infΘn\Θn−1 µ, we have by assumption µn → ∞
monotonically; fix N s.t. µN ≥ p(x0)

x0−x1
. Suppose by way of contradiction type θ ∈ Θ\ΘN

purchases under pn coverage x < x1. Since

wθ ≥ µN ≥ p(x0)
x0 − x1

>
p(x0) − p(x)
x0 − x

,

he must strictly prefer (x0, p(x0)) to (x, p(x)), a contradiction.

B Auxiliary Tool for Analyzing Allocations

Fix a distribution α on Θ × X, with X = [0, 1] (e.g., (p, α) may be an equilibrium). Let

marginal distribution of α on Θ be P . Let the marginal of α on X be αX . We define ana-

logues of the maximum and minimum risk µ purchasing each alternative x. To avoid the

influence of zero-measure sets of types, we use a variation of the essential supremum

and infimum, defined for x ∈ supp(αX) as54

ψ+(x) = lim
δ→0+

[
sup

{
µ | α

(
{θ | µθ ≥ µ} × (x− δ, x+ δ)

)
> 0

}]
(12)

ψ−(x) = lim
δ→0+

[
inf

{
µ | α

(
{θ | µθ ≤ µ} × (x− δ, x+ δ)

)
> 0

}]
. (13)

Intuitively, ψ+(x) captures the largest value of µ which purchases x under α, and ψ−(x)
as the lowest such value of µ.

Note that either of these quantities can, a priori, be infinite. Moreover, note that for

each A ⊆ supp(αX),

sup
{
µ | α

(
{θ | µθ ≥ µ} × A

)
> 0} ≤ sup

x∈A
ψ+(A) (14)

inf
{
µ | α

(
{θ | µθ ≤ µ} × A

)
> 0} ≥ inf

x∈A
ψ−(A) (15)

Therefore, by comparing the left-hand terms of the following expressions to the left-

hand terms of the previous expressions for shrinking neighborhoods A around x,

lim supy→xψ
+(y) ≤ ψ+(x), lim inf y→xψ

−(y) ≥ ψ−(x) (16)

54If α′ is the marginal of α on the variables (µ, x) - i.e., α′ = P ◦ (µ, id)−1 - and x → α′(· | x) is a
decomposition of α′ conditional on x, then for α-a.e. x ∈ X, ψ+(x) (resp. ψ−(x)) is the supremum (resp.
infimum) of the support of α′(· | x). The limits exist as the terms they are taken over are monotonic.
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where the limits are taken along supp(αX). These hold with equality when x is not an

atom of supp(αX); Indeed, if x ∈ supp(αX), then for each µ < ψ+(x) and δ > 0, α
(
{θ |

µθ ≥ µ−ε}×(x−δ, x+δ)
)
> 0. If x is not an atom ofαX , then for some y ∈ (x−δ, x+δ)\{x},

ψ+(y) ≥ µ by (14), and this was for any δ > 0 and any µ < ψ+(x).

C Equilibrium Characterization

We now discuss the proofs of Theorem 2 and Proposition 8.

We require only Assumptions 5, 6, and 7. Henceforth, fix an equilibrium (p, α). Recall

X = [0, 1) or X = [0, 1]. Recall also the pairs of functions ψ+, ψ− defined on the support

of αX , the projection of the distribution α to [0, 1], in Appendix B. Throughout we rely on

the continuity of prices in equilibrium (Lemma 16 of Online Appendix H).

C.1 Coverage Increasing in Risk & Separation of Types

We now show that riskier types purchase strictly higher coverage (except possibly at x =
0). Also, types of same riskiness purchase the same level. We begin with a weak version.

Lemma 2. It holds α-a.s. that for each pair (θ2, x2), (θ1, x1), x2 > x1 implies µ(θ2) ≥ µ(θ1).

This is also true ifX ′ ⊆ X is finite andα′ is a weak equilibrium of the economy [Θ∪X ′, P∪
η,X ′], where X ′ refers to behavioral types as well.55

Proof. Suppose not. Then there are open subsets U, V of Ω × [0, 1] with αX(U) > 0,

αX(V ) > 0, and such that for each (θ1, x1) ∈ U, (θ2, x2) ∈ V , x1 > x2 but µ1 = µ(θ1) < µ2 =
µ(θ2). Fix such a pair. Then p(x1) must be above the indifference curve of type θ2 through

(x2, p(x2)), and p(x2) must be above the indifference curve of type θ1 through (x1, p(x1)).

Since the latter indifference curve is strictly flatter, this is impossible. Somewhat more

formally, if ϕj denotes the indifference curve of µj through (xj, pj) for j = 1, 2, then

ϕ1(x1) = p(x1) ≤ ϕ2(x1) and ϕ2(x2) = p(x2) ≤ ϕ1(x2). However, ϕ′
j(x) = wµj

(x, ϕj(x))
for j = 1, 2 a.e. and ϕ1, ϕ2 are absolutely continuous, and furthermore wµ1 < wµ2 are

continuous, hence ϕ1(x′) < ϕ2(x′) in a neighborhood of x′ of any point x′ ∈ [x1, x2] at

whichϕ1(x′) = ϕ2(x′), contradiction. The same logic holds for weak equilibrium with

behavioral types on a finite set of alternatives.

The following corollary shows that, if an agent with riskiness at least µ0 purchases a

contract with coverage less than x, then the price of x must be higher than the cost of

type µ0 purchasing that contract.

55The conclusion then holds α′(· | Θ)-a.s., i.e., holds for types in Θ, not behavioral types for whom µ is
not defined.

27



Corollary 5. For x < y < z, we have ψ+(x) ≤ ψ−(y) ≤ ψ+(y) ≤ ψ−(z).This is also true if

X ′ ⊆ X is finite and α′ is a weak equilibrium of the economy [Θ ∪X ′, P ∪ η,X ′].

Now, we show that there is no pooling of types: different levels of riskiness purchase

different levels of coverage.

Lemma 3. ψ− = ψ+ in supp(αX) ∩ (0, 1].

Proof. It follows from the corollary that for each 0 ≤ y < x < z ≤ 1, p(y) ≤ x · ψ−(x) ≤
x·ψ+(x) ≤ p(z), as x·ψ−(x) ≤ p(x) ≤ x·ψ+(x)αX a.s. by (1). The continuity of prices gives

the lemma for x ∈ (0, 1). For x = 1, observe that if ψ−(1) < ψ+(1), then since ψ− = ψ+ in

X ∩ (0, 1), 1 must be an atom of αX ; then by the same continuity of prices (Lemma 16),

p(1) ≤ ψ−(1), and yet p must be a strict average of ψ−(1), ψ+(1), a contradiction.

Hence, denote ψ = ψ− = ψ+. By (1), we have

Lemma 4. α({θ, x | p(x) ̸= µ(θ) · x}) = 0, and (equivalently), p(z) = z · ψ(z) for all

z ∈ supp (αX) .

Combined with the following lemma, price is strictly increasing in supp(αX) ∩ (0, 1].

Lemma 5. supp(Pµ) = range(µ).

Proof. Follows from Assumption 7 together with the continuity of µ : Θ → R+.

The proof of the follow proposition, using Assumption 7, is given in Online Appendix

K.

Proposition 12. The following set is open:

{(µ, p, x, q, y) ∈ supp(Pµ) × R+ × [0, 1] × R+ × [0, 1] | µ strictly prefers (p, x) over (q, y)}

Lemma 6. ψ is strictly increasing in supp(αX) ∩ (0, 1].

Proof. Suppose not; let a < b be such that ψ(a) = ψ(b) = µ0. Corollary 5 then implies

that p(x) = µ0 · x for all x ∈ [a, b]. But since wµ0 > µ0 at all but full insurance, types with

riskiness µ0 would all prefer (b, p(b) = µ0 · b) over (a, p(a) = µ0 · a). Hence by applying

Proposition 12, types with riskiness near µ0 purchasing near (a, p(a)) would prefer to

purchase (b, p(b)), and recalling the definition of ψ(·), gives the required result.

C.2 Coverage Continuous and Increasing in Risk

Corollary 6. There is a mapping σ : supp(Pµ) → [0, 1], strictly increasing and continuous

on supp(Pµ)\σ−1({0}), s.t. α
{
(θ, x) | x = σ(µ(θ))

}
= 1.
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Proof. Let W ⊆ Θ such that α({θ ∈ W}∆{x > 0}) = 1, i.e., those types which choose

positive coverage. Let σ = ψ−1. σ is well-defined Pµ-a.e. on supp((Pµ(· | W )), and by

the previous results in strictly monotonic. Extend σ to supp(Pµ(· | Θ\W )) by 0; by the

previous results, this is well-defined (α-a.s., any types θ s.t. µ(θ) ∈ supp((Pµ(· | W )) ∩
supp(Pµ(· | Θ\W )) choose 0 coverage, i.e., are not in W .)

C.3 Full Insurance is in the Support

Lemma 7. The supremum of the support of αX is full insurance.

Proof. Suppose x∗ < 1 is the supremum of the support of αX . By Corollary 5 (applied

to a sequence of weak equilibria on finite grids which witness the equilibrium), for each

x > x∗ and each µ ∈ supp(Pµ), p(x) ≥ µx. Hence, Pµ is compactly supported. Denote

µ = max supp(Pµ). Hence, p(x) ≤ µx for x ≥ x∗ (price per unit cannot be more than

maximum costliness) and since p is continuous and prices are actuarily fair, p(x∗) = µx∗;

so p(x) = µx in [x∗, 1]. A contradiction follows as in the proof of Lemma 6.

The proof is illustrated in Figure 7 below in Online Appendix K.

C.4 Lipschitz-Type Property

The fact that L-Lipschitz-ness of price in [0, x0] if wθ ≤ L in {x ≤ x0, p ≤ p(x0)} for

a.e. types purchasing coverage up to x0 follows along the lines of Part 3 of Proposition

1 of AG, so we omit a complete proof. Essentially, the restriction of the economy to

those types that choose coverage up to x0 satisfies the framework and Lipschitz-ness

conditions of that paper. As for the conclusion that p(·) is Lipschitz (for some constant)

in [0, x0] without assuming a bound on wθ, observe that since the coverage function is

increasing in µ, and the willingness to pay in increasing is risk (Assumption 6). Take any

θ with σ(µ(θ)) > x0 and set L = max{wθ(x, p) | x ≤ x0, p ≤ p(x0)}. Then, wθ ≤ L in

{x ≤ x0, p ≤ p(x0)} for a.e. all types purchasing coverage up to x0.

C.5 Price as Approximate Upper Envelope

We prove the upper envelope property of equilibrium, expressed in 9. Inequality (≥)

holds: otherwise there would be a positive mass of types with σ(µ(θ)) > x and η(θ, x) >
p(x), so they would prefer (x, p(x)) over their purchased contract - a contradiction.

Conversely, suppose for some x∗ < y∗ and δ > 0, we have αX((x∗, y∗]) > 0 but

p(x∗) > ζ(x∗, y∗). Then, there is a gap (x∗, z∗) in with αX((x∗, z∗)) = 0 but z∗ ∈ supp(αX).

Similarly, there is a gap Pµ(µ∗, µ
∗) = 0 , σ(µ∗) = z∗. We contend µ∗ strictly prefers
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B := (z∗, p(z∗)) to A := (x∗, p(x∗)). If he weakly preferred A to B, he would strictly pre-

fer A′ = (x∗, p(x∗)+ζ(x∗,y∗)
2 ) to B; but then by Proposition 12, types near µ∗ would strictly

prefer A′ to contracts near z∗, contradicting ζ(x∗, y∗) < p(x∗)+ζ(x∗,y∗)
2 . Again by Proposi-

tion 12, type µ∗ (and hence, since wµ is increasing in µ, all types with riskiness ≥ µ∗)

prefer all contracts in some neighborhood V of B to all those in some neighborhood U

of A. Letting (pn, αn)∞
n=1 be weak equilibria converging to (p, α) in the required sense;

the following lemma (proved in Online Appendix K) gives a contradiction, as for n large

enough, contracts in V are available:

Lemma 8. For each ε, δ > 0, for n large enough, under αn a positive measure of types with

riskiness in [µ∗, µ∗ + δ) purchase coverage in (x∗ − ε, x∗ + ε).

C.6 No Purchasing of 0 Coverage

If P is discrete, with atoms µ1 < µ2 < · · · , then for some n, σ(µn) > 0, and by backward

induction using the ’upper-envelope’ property of prices, σ(µk) > 0 for all k < n as well.

The continuous case is sketched in Online Appendix K.

D Unbounded Price

We prove Proposition 10. Throughout this section, fix δ > 0 for which Assumption 8

holds. Suppose that (p, α) constitute an AG-equilibrium. We associate to the distribu-

tion α a pair ψ+, ψ− as defined in Section B. We proceed in several steps.

D.1 Comparisons of Utilities

Assumption 4 implies Lemma 9 below, which is later used to obtain upper and lower

bounds on the slopes of the price in equilibrium.

Lemma 9. Under Assumption 4, in any equilibrium (or weak equilibrium) (p, α), if 1 ≥
x2 ≥ x1 ≥ δ ≥ 0, then for any given type θ ∈ Θ:

uθ(p2, x2) ≥ uθ(p1, x1) ⇒ p2 − p1

x2 − x1
≤ µθ + νδ(θ) · (1 − x1 + x2

2
) (17)

uθ(p2, x2) ≤ uθ(p1, x1) ⇒ p2 − p1

x2 − x1
≥ µθ + νδ(θ) · (1 − x1 + x2

2
) (18)
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Proof. By Assumption 4, uθ(x, p) = gθ(x) − p and wθ(1) = µθ + ∂gθ

∂x
|x=1 = µθ, so ∂gθ

∂x
(s) =

µθ −
∫ 1

s
∂2gθ

∂2x
dx. Now, for any 0 ≤ x1 < x2 ≤ 1,

uθ(x2,p2) − uθ(x1, p1) = p1 − p2 +
∫ x2

x1

∂gθ

∂x
dx = p1 − p2 + µθ(x2 − x1) +

∫ x2

x1

∫ 1

s
(−∂2gθ

∂2x
)dx.

Observing that

∫ x2

x1

∫ 1

s
1dx = 1

2
(1 − x1)2 − 1

2
(1 − x2)2 = (x2 − x1)(1 − x1 + x2

2
).

and that for x2 > x1 ≥ δ, νδ(θ) ≤ −∂2gθ

∂2x
≤ νδ(θ), completes the proof.

D.2 Price is Locally Lipschitz in Equilibrium

The results of this section are where we use the assumption, made for convenience, that

ρδ(·) is right-continuous. Our first auxiliary results establish bounds on prices in a weak

equilibrium (hence also in equilibrium).56

Lemma 10. Assume (p, α) is an equilibrium or weak equilibrium s.t. p is continuous on

supp (αX).57 Let 0 < x1 < x2 be two points in supp (αX). Then,

p(x1)
x1

≤ ψ+(x1) ≤ p(x2) − p(x1)
x2 − x1

≤
if x1>1−δ

ψ−(x2) + (1 − x1 + x2

2
)ρδ(ψ

−(x2)) ≤ p(x2)
x2

+ (1 − x1 + x2

2
)ρδ(

p(x2)
x2

)

In particular, ψ+(x) must be finite for each x ∈ supp(αX) with x < 1.

Proof. The break-even condition (p(x) = Eα[c | x], α−a.e. x) requires that for αX-a.e. x >

0 in supp (αX), ψ−(x) ≤ p(x)
x

≤ ψ+(x). This, together with the monotonicity of ρδ , implies

the first and last inequalities. The third inequality follows primarily from Lemma 9 and

the fact that 0 ≤ νδ ≤ νδ ≤ ρδ; details in Online Appendix K.

The second auxiliary result shows the outer-most bounds hold for equilibria every-

where (not just on the support of αX).

Lemma 11. Assume (p, α) is an equilibrium. If 0 < 1 − δ < x1 < x2 with p(x2) > 0 (x1, x2

are not necessarily in the support of αX), then

p(x1)
x1

≤ p(x2) − p(x1)
x2 − x1

≤ p(x2)
x2

+ (1 − x1 + x2

2
)ρδ

(
p(x2)
x2

)
56We defined “weak equilibrium” in Section 2.
57In particular, this is true if supp (αX) is finite.
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In particular, p is non-decreasing.

Proof. If p(x1) = 0, the first inequality is trivial, so assume p(x1) > 0; the result follows by

applying Lemma 10 to each of a sequence of weak equilibria which converge to (p, α);

for details see Online Appendix K.

D.3 Full insurance is Not a Heterogeneous Atom

We show full insurance (x = 1) cannot be an atom of αX purchased by multiple types if

µθ is not essentially bounded w.r.t. P . This proposition is only relevant when 1 ∈ X.

Lemma 12. If x = 1 is an atom of αX , it must be that α(· | {x = 1}) is concentrated on one

riskiness, i.e., there must be µ̃ ∈ R+ s.t. α(µ(θ) = µ̃ | x = 1) = 1.

Proof. Suppose, by way of contradiction, that x = 1 is an atom of αX but not concen-

trated on a single riskiness. Then, the break-even condition (1) requires that there are

some types buying x = 1 who are less risky than the average buyers of that contract,

with p (1) being determined by these average buyers. Define µ⋆ = ψ−(1) and p⋆ := p(1);

then µ⋆ < Eα[µ | x = 1] = p(1) = p⋆. Lemma 10 implies that, for any x ≥ 1 − δ,

p(x)
x

≤ p⋆ − p(x)
1 − x

≤ µ⋆ + 1
2
ρδ(µ

⋆)(1 − x).

In turn, this implies

p⋆x ≥ p(x) ≥ p⋆ − µ⋆(1 − x) − 1
2
ρδ(µ

⋆)(1 − x)2.

It then follows that 1
2ρδ(µ⋆)(1 −x) ≥ p⋆ −µ⋆.However, this last condition cannot hold for

x close enough to 1 since p⋆ > µ⋆, a contradiction.

Figure 5 illustrates graphically the idea of the proof of Lemma 12.

D.4 Proposition 10

Suppose not. Denote p⋆ = limx→1 p(x) < ∞. Fix some 0 < δ ≤ δ < 1. Recall that

p⋆ = p(1). Then, from Lemma 11 and the facts that p and ρδ are non-decreasing, for all

1 − δ ≤ x1 < x2 in X,

ψ+(x1) ≤ p(x2) − p(x1)
x2 − x1

≤ p(x2)
x2

+ ν

(
p(x2)
x2

)
≤ M := p∗

1 − δ
+ ρδ

(
p∗

1 − δ

)
,

while for x1 ≤ 1 − δ in X,

ψ+(x1) ≤ lim
x2→1−

p(x2) − p(x1)
x2 − x1

= p∗ − p(x1)
1 − x1

≤ p∗

δ
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Figure 5: Proof of Lemma 12.

Hence, supx<1 ψ
+(x) ≤ max

[
M, p∗

δ

]
. Since full insurance cannot be an atom with un-

bounded support of riskiness ofα, by Lemma 12, the projection ofα(· | [0, 1)) to riskiness

µ is not compactly supported. Applying (14) with A = X\{1} gives supx<1 ψ
+(x) = ∞.

D.5 Non-Existence: Premium Bounded by Linear Function of Risk

Fix δ > 0 for which Assumption 8 holds. Let C,D be such that νδ(θ) ≤ Cµ(θ) + D P -a.s..

Let xn → 1 strictly monotonically in X. WLOG, x1 > 1 − δ. Denote B = max[ 1+C
x1
, D] and

pn = p(xn). Then, ρδ(
pn+1
xn+1

) ≤ C pn+1
xn+1

+D, so by Lemma 11,

pn+1 − pn

xn+1 − xn

≤ pn+1

xn+1
+ (1 − xn)ρδ(

pn+1

xn+1
) ≤ pn+1

xn+1
+ C

pn+1

xn+1
+D ≤ B(pn+1 + 1)

Denote qn = pn + 1 and δn = B(xn+1 − xn); w.l.o.g. δn < 1 for all n, and hence

qn+1 − qn ≤ δnqn+1 =⇒ qn+1 ≤ qn

1 − δn

=⇒ qn ≤ q1 ·
∏
j<n

1
1 − δj

by induction. Then,
∑
δn = ∑

B(xn+1 − xn) = B(1 − x1) < ∞ which implies
∏

j<∞
1

1−δj
<

∞. This, together with the monotonicity of p(·), shows that supx∈X p(x) = limn→∞ pn < ∞
which contradicts Proposition 11.
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E Simple Insurance: Continuous Types

E.1 Proposition 13

Proposition 13. If Pµ, conditional on some interval I = (µ, µ), has full support with a.e.

strictly positive density w.r.t. the Lebesgue measure, and (p, α) is an equilibrium with

associated coverage function σ with σ(µ) > 0, then

∫ µ

µ

1
ν(µ)

dµ =
∫ σ(µ)

σ(µ)

g′(x)
x

dx (19)

Proof. Let (p, α) be an equilibrium, with associated σ : I → [0, 1]. Denoting J = [σ(µ), σ(µ)],
αJ is equivalent (i.e., has the same null sets) as the Lebesgue measure in J (see Proposi-

tion 15 of Online Appendix K). Given the differentiability of the price function Lebesgue

a.s. in J (equivalently, αJ -a.s.), utility maximization implies

∂

∂x
(uµ(x, p(x))) | x=σ(µ) = 0 ⇔

∂uτ(x)

∂x
(x, p(x)) +

∂uτ(x)

∂p
(x, p(x)) · p′(x) = 0, a.e.x ∈ J (20)

where τ(x) = p(x)
x

= σ−1(x). Explicitly: For this to hold at some x we need two condi-

tions: p to be differentiable at x, and for the type with riskiness µ = σ−1(x) to be a utility

maximizer. Both of these properties hold Lebesgue a.s. in J , equivalently, αJ -a.s. Hence,

p′(x) = −
∂uτ(x)

∂x
(x, p(x))

∂uτ(x)
∂p

(x, p(x))
= p(x)

x
+ g′(x) · ν(p(x)

x
), a.e.x ∈ J

Denote τ = σ−1 on J . The equilibrium property of actuarily fairness (and continuity of

prices and τ ) shows that p (x) = τ(x) · x, ∀x ∈ J and hence σ−1 is differentiable a.e. and

p′(x) = τ(x) + x · τ ′(x), a.e .x ∈ J.

Rewriting (20) gives

τ(x) + g′ (x) v (τ(x)) − p′ (x) = 0, a.e. .x ∈ J.

Summing these gives

g′(x) · ν(τ(x)) = x · τ ′(x) =⇒ g′(x)
x

= 1
ν(τ(x))

τ ′(x), a.e. .x ∈ J
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and hence, by change of variable (note that τ is strictly increasing),

∫ σ(µ)

σ(µ)

g′(x)
x

dx =
∫ σ(µ)

σ(µ)

1
ν(τ(x))

τ ′(x)dx =
∫ µ

µ

1
ν(µ)

dµ

as required. Note that we have made use of a change of variable formula for functions

which are differentiable a.e., see for instance Rudin [1987, Theorem 7.26].

E.2 Corollary 2

Follows from Proposition 13. From Proposition 8, under these assumptions, we have

σ(µ) = 1. The right-hand side defines σ uniquely as g′ > 0 except possibly at 1. The last

conclusion follows since g′(0) > 0 so
∫ 1

0
g′(x)

x
dx = ∞.

E.3 Corollary 4

We prove the characterization part first: WLOG, (µn)n is increasing. Define the function

σ using (5). Since g′ > 0 in (0, 1) and
∫ 1

0
g′(x)

x
dx = ∞ >

∫∞
µ

1
ν(µ)dµ for all µ > µ, this is

well-defined, continuous, and its image is an interval. Let xmin = ess − inf(σ(µ(θ))),

and xn
min = ess − inf(σn(µ(θ))).58 Define τ = σ−1 : [xmin, 1) → R, p(x) = x · τ(x) for

x ∈ [σ(µ), 1), and extend p in [0, xmin) in the following way: For each x ∈ [0, xmin), set

p(x) = max[0, ess− supθϕ(θ, x)] where ϕ(θ, x) = p(σ(µ(θ)) −
∫ σ(µ(θ))

x
wθ(t)dt

whereϕ(θ, ·) is the indifference curve of type θ through his purchased contract (σ(µ, θ), p(σ(µ(θ)).

Finally, define the application α for Θ̃ ⊆ Θ and a < b by,

α(θ ∈ Θ̃, x ∈ (a, b)) = P
(
θ ∈ Θ̃, µ(θ) ∈ (τ(a), τ(b))

)
By (3), we obtain ∫ µn

µ

1
ν(µ)

dµ =
∫ 1

σn(µ)

g′(x)
x

dx.

Comparing with (5), it follows that σn → σ point-wise, and in particular xn
min → xmin,

and (xn
min) is monotonically decreasing. Letting τn = σ−1

n : [xmin, 1), we have τn → τ

point-wise. Therefore, pn → p point-wise on [xmin, 1], as pn(x) = x · τn(x) on [xn
min, 1]. Let

x′ < xmin; for large enough n, x < xn
min. Recall from Proposition 8,

pn(x) = max[0, ess− supθϕ
n(θ, x)] where ϕn(θ, x) = p(σn(µ(θ)) −

∫ σn(µ(θ))

x
wθ(t)dt

58The essential infimum is defined similar to the essential supremum.
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ϕn(θ, ·) is the indifference curve of type θ through his chosen contract under (pn, σn).

Notice for n > k,, µn ≥ µk, so σn ≤ σk, so τn ≥ τk; furthermore, ϕn ≥ ϕk (the indifference

curve of each type moves to the left, alongside the actuarily fair price for that type, a line

whose slope is flatter than that types indifference curve), so pn ≥ pk . Hence pn → p

point-wise in [0, xmin] as well, as (ϕn(θ, ·)) increasing in n.59 Hence, pn → p point-wise.

Since n > k → pn ≥ pk, Dini’s theorem implies that pn → p uniformly in every compact

subset of [0, 1).

Finally, for any continuous bounded f : [µ,∞) × [0, 1] → ∞,

∫
f(µ, x) · dα =

∫
f(µ, σ(µ))dPµ = lim

n→∞

∫
f(µ, σn(µ))dPµ = lim

∫
f(µ, x) · dαn

by the bounded convergence theorem, and hence αn → α weakly.

We now prove the first point of Corollary 4. Existence now follows from the approx-

imation result Proposition 1. Uniqueness can we proved as follows. Given any equilib-

rium with associated choice function σ, for each µ > µ, (19) holds. Take µ → ∞. Since

full coverage is in the support of the equilibrium and σ is increasing, limµ→∞ σ(µ) = 1.

The last part of the proposition follows again as
∫ 1

0
g′(x)

x
dx = ∞.

E.4 Corollary 3

For the non-existence part: We can find intervals I = [an, bn] with an, bn → ∞ for which∫ bn
an

1
ν(µ)dµ → ∞ but since σ(an), σ(bn) → 1,

∫ σ(bn)
σ(an)

g′(x)
x
dx → 0, which contradicts (19).

For the price divergence (equivalently, purchasing converging to 0): fixing µ ∈ µ(Θ),

∫ µn

µ

1
ν(µ′)

dµ′ =
∫ 1

σn(µ)

g′(x)
x

dx =⇒
∫ ∞

µ

1
ν(µ′)

dµ′ = ∞ = lim
n→∞

∫ 1

σn(µ)

g′(x)
x

dx

However, ∫ 1

σn(µ)

g′(x)
x

dx ≤ max
[0,1]

g′ ·
∫ 1

σn(µ)

1
x
dx = ln(σn(µ)) · max

[0,1]
g′

For this to converge to ∞, we must have σn(µ) → 0.

F Simple Insurance: Discrete Types

For each k ∈ N and each coverage u ∈ [0, 1], let v = ϕk(u) denote the unique coverage v <

u such that type θk+1 = (µk+1, νk+1) is indifferent between contracts (p, x) = (µk+1 · u, u)
and (p, x) = (µk ·v, v), where the second contract is actuarily fair for type θk. Such unique

v exists as wθk+1(x) > µk+1 > µk for all x ∈ (0, 1). Clearly z > ϕk(z) for z ∈ (0, 1].
59Lemma: Let (fn) be a sequence of bounded Borel functions on a measurable space, f1 ≤ f2 ≤ f3 ≤ · · ·

which converge point-wise to f . Then ess− sup(fn) → ess− sup(f).
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Lemma 13. 0 < ϕ′
k ≤ 1 in (0, 1). Therefore, ϕk is strictly increasing (in particular, ϕk(u) = 0

if and only if u = 0). Moreover, ϕk is non-expansive (i.e., 1-Lipschitz).

Proof. The definition of ϕk (·) requires that, for each z ∈ (0, 1], type k + 1 is indifferent

between (µk+1 · z, z) and(µk · ϕk(z), ϕk(z)). This implies

µk+1 · ϕk(z) + g(ϕk(z)) · νk+1 − µk · ϕk(z) = µk+1 · z+ g(z) · νk+1 − µk+1 · z = g(z) · νk+1 (21)

where νk+1 = ν(µk+1). g is differentiable with g′ > 0 in (0, 1), so ϕk is differentiable with,

ϕ
′

k(z) · [µk+1 − µk + g′(ϕk(z)) · νk+1] = g′(z) · νk+1 =⇒

ϕ
′

k(z) = g′(z) · νk+1

µk+1 − µk + g′(ϕk(z)) · νk+1
≤ g′(z) · νk+1

g′(ϕk(z)) · νk+1
= g′(z)
g′(ϕk(z))

.

Since g is concave, g′ is decreasing. Sinceϕk(z) < z, so g′(ϕk(z)) > g′(z), so 0 < ϕ
′
k ≤ 1

We now prove Proposition 4. First we show uniqueness: suppose an equilibrium in

which type (µk, νk) purchases coverage xk = σ(µk) then x1 < x2 < · · · By the equilibrium

properties, σ(µk) = ϕk(σ(µk+1)), i.e., xk = ϕk(xk+1). Inductively, for any n > k,

xk := ϕk(ϕk+2(· · · (ϕn−1(xn)) · · · )) = lim
n→∞

ϕk(ϕk+2(· · · (ϕn(1)) · · · ))

where the latter equality follows from Lemma 13, which shows that ϕk is non-expansive,

which defines xk uniquely (since each ϕk is monotonic, the expression the limit is taken

over is decreasing with k but non-negative, so the limit exists).

We now present a slightly heuristic (but easily formalized) argument, for why (7)

guarantees existence of equilibrium, by choosing that we have a well-defined sequence

of positive elements (xk)∞
k=1. (It suffices to show it gives some positive xK , and then

x1, . . . , xK−1 are defined from it recursively using ϕ1, . . . , ϕK−1.) Fix δ small and a range of

values, and suppose z, ϕk(z) ≈ 1 − δ ; denoting G = −g′′(1) > 0, since g′(1) = 0, a second

order expansion around x = 1 gives

g(z) − g(ϕk(z)) ≈
[
g (1) + g′′ (1)

2
(1 − z)2

]
−
[
g (1) + g′′ (1)

2
(1 − ϕk(z))2

]
=

= G

2
[2 − z − ϕk(z)] (z − ϕk(z)) ≥ G · δ · (z − ϕk(z))

where the first ≈ refers to a second-order approximation. (21 ) then gives

z − ϕk(z) ≈≤ g(z) − g(ϕk(z))
G · δ

= (µk+1 − µk) · ϕk(z)
νk+1 ·G · δ

≤ 1
G · δ

· (µk+1 − µk)
νk+1

(22)

If we had xn
k →

n→∞
0, it’s easy to see that if δ > 0 was chosen small enough, then it holds
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for each large enough n, there is kn with xn
kn

∈ (δ, 1− δ). But if ( (µk+1−µk)
νk+1

)∞
k=1 is summable,

if n is large enough for this to hold, and if
∑

j>K
1

G·δ · (µk+1−µk)
νk+1

< δ
2

xn
K = (ϕK(· · · (ϕkn(xn

kn
)) · · · )) = xn

kn
− [xn

kn
− ϕkn(xn

kn
)] − [ϕkn(xn

kn
) − ϕkn−1(ϕkn(xn

kn
)] − · · ·

− [ϕK+1(· · · (ϕkn(xn
k)) · · · ) − ϕK(ϕK+1(· · · (ϕkn(xn

kn
)) · · · )] ≥ δ − δ

2
= δ

2

hence, xK ≥ δ
2 > 0.

We observe that the analysis above shows that xn
k which is purchased under (pn, αn)

by type (µk, νk) satisfies xn
k := ϕk(ϕk+1(· · · (ϕn(1)) · · · )) ; hence, limit xk := limn→∞ xn

k

exists since (xn
k)n≥k is monotonically decreasing and xk > 0 for each k by the above

argument. Let (p, α) be the candidate equilibrium, in (µk, νk) purchases coverage xk and

price µkxk - as described in Section 4.4. The proof of the required convergence - ie.,

pn → p uniformly on compact subsets of [0, 1), and αn → α - follows along lines similar

to the continuous case, and hence it is presented in Online Appendix K.

To show Proposition 3, we see that if z − ϕk(z) ≥ 1 − δ, we have g(z) − g(ϕk(z)) ≈≤
G(z− ϕk(z)), so z− ϕk(z) ≈≥ 1

G
· (µk+1−µk)

νk+1
. If (µk+1−µk

νk+1
)∞

k=1 is not summable, the argument

above shows for each k, if n is large enough, xn
k ≤ 1 − δ so as to be outside of this domain

(1 − δ, 1) in which the approximation is valid; so (xk)∞
k=1 all lie in [0, 1 − δ], contradicting

Theorem 2 (full coverage in equilibrium support); the other conclusions of Proposition

3 can follow using similar approximations.
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Appendix for Online Publication

G Existence in General Insurance

We now prove Theorem 9: equilibrium existence in insurance markets exists under con-

ditions more general than those stated in Section 4.

Fix a sequence of compact subsets Θ1 ⊆ Θ2 ⊆ · · · Θ with Θ = ∪Θn. Let Mn be the

essential supremum of µ w.r.t. P (· | Θn). Then M1 ≤ M2 ≤ M3 ≤ · · · with Mn → ∞,

Mn ∈ supp(Pµ) for each n ∈ N. Let P n = P (· | Θn), andX = [0, 1]. By AG, En = [Θn, X, P n]
has an equilibrium.

Fix one such equilibrium (αn, pn) for each economy. Proposition 8 implies that in

each of these equilibria, there is a strictly increasing function σn : supp(P n
µ ) → [0, 1] such

that type with riskiness µ ∈ supp(P n
µ ) purchases coverage σn(µ) αn-a.s., with σn(Mn) = 1.

We will require the following two results.

Lemma 14. For each µ ∈ supp(Pµ), lim supn→∞ σn(µ) < 1.

The intuition is simple: Fixing µ1 < µ2, then σn(µ1) ≤ σn(µ2) for all n, and if σn(µ2)
is close to 1, then σn(µ1) should not be more (approximately) than the coverage z that

makes type µ2 indifferent between contract (x = 1, p = µ2) and (z, µ1 · z).

Proof. For each θ2, θ1 with µ2 = µ(θ2) > µ1 = µ(θ1) and each u ∈ [0, 1], let ϕ(µ1, µ2, u)
denote the unique v < u s.t. type θ2 is indifferent between contracts (µ2 · u, u) and

(µ1 · v, v); such unique v exists as wθ2(x) > µ2 > µ1 for all x ∈ (0, 1), ϕ is continuous

on R++ × R++ × [0, 1], and ϕ(µ1, µ2, u) < u for u ∈ (0, 1].
Suppose µ1 ∈ supp(Pµ) with limn→∞ σkn(µ1) = 1 for some indices (kn). Fix some

µ2 > µ1 with µ2 ∈ supp(Pµ), and hence w.l.o.g., µ2 ∈ supp(P kn
µ ) for all n ∈ N. For each kn,

σkn(µ1) ≤ ϕ(µ1, µ2, σ
kn(µ2)), as otherwise type θ with µ(θ) = µ1 would instead choose

coverage σkn(µ2). Then limn→∞ σkn(µ2) = 1 as each σkn is monotonically increasing.

Hence,

1 = lim
n→∞

σkn(µ1) ≤ lim
n→∞

ϕ(µ1, µ2, σ
kn(µ2)) = ϕ(µ1, µ2, lim

n→∞
σkn(µ2) = 1) = u(µ1, µ2, 1) < 1

a contradiction.

Notice that Lemma 14 does not rely on the condition given in Equation (11). Lemma

15 however, crucially, does:

Lemma 15. For each 0 < m < 1, there is M > 0 such that if µ > M and n ∈ N is such that

µ ∈ supp(P n
µ ), then σn(µ) > m.
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The idea is to make observe types purchasing a sequence µ1 < µ2 < · · · , and bound

the differences between the coverages chosen by two adjacent types in this sequence.

(It is tempting to think we are making a reduction to the discrete case, but since the

utility has a more general form that in Section 4.4, the arguments have to be slightly less

direct.)

Proof. Fix types θ′′, θ′ and denote µ′′ := µ(θ′′) > µ′ := µ(θ′), x′′ := σ(µ′′) > x′ := σ(µ′) ≥
1 − δ , and ν ′′ := νδ(θ′′), ν ′ := νδ(θ′). Denote

∆µ = µ′′ − µ′ ∆x = x′′ − x′

∆p = p(x′′) − p(x′) = µ′′ · x′′ − µ′ · x′ = µ′ · ∆x+ x′′ · ∆µ

It follows from Lemma 9 of Section D.1 that

∆p ≥ ∆x ·
[
µ′ + ν ′ · (1 − x′ + x′′

2
)
]

(23)

Combining these,

x′′ · ∆µ ≥ ∆x · ν ′ · (1 − x′ + x′′

2
) → ∆x ≤ ∆µ

ν ′ (1 − x′ + x′′

2
)−1

Hence,

∆x ≤ ∆µ
ν ′ · 2

2 − x′ − x′′ <
∆µ
ν ′ · 1

1 − x′′

Also, since 2 − x′ − x′′ ≥ x′′ − x′ = ∆x,

∆x ≤ ∆µ
ν ′ · 2

∆x
→ ∆x ≤

√
2 · ∆µ

ν ′

Now, by (11), there exists a sequence of types (θj) such that, denoting µj = µ(θj), we

have µ1 < µ2 < · · · , and such that denoting νn = νδ(θn),

∞∑
n=1

µn+1 − µn

νn

< ∞

Fix m, η > 0 with m < 1 − 4η < 1, and choose K such that

∞∑
n=K

µn+1 − µn

νn

< η2

Each term is hence also less than η2. Suppose by way of contradiction, σ(θK) ≤ m. Then
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for each n ≥ K, if xn+1 > 1 − η we can say

xn+1 − xn ≤
√

2 · η2 < 2η

while if xn+1 ≤ 1 − η, we can say

xn+1 − xn ≤ 1
η

· µn+1 − µn

νn

From the first of these, we see that there is N > K such that 1 − 3η < xN < 1 − η.

Then,

xN − xK ≤ 1
η

N∑
n=K

µn+1 − µn

νn

≤ 1
η

· η2 → xK ≥ xN − η > (1 − 3η) − η > m

a contradiction. Hence, we may take M = µK .

As a result, the conditions of Proposition 6 hold: As remarked there, Assumption

1 - in particular, the quasi-linearity of utility in prices - implies that for every two al-

ternatives x, y ∈ X, price p ≥ 0, and type θ ∈ Θ, there is price q high enough s.t.

u(θ, x, p) > u(θ, y, q). As for the required properties of the equilibria (pn, αn)∞
n=1:

1. First we show that if [0,m] ⊆ [0, 1), then (pn) is point-wise (in fact, uniformly)

bounded and equicontinuous on [0,m]: Choose some θ0 ∈ Θ such that, denot-

ing µ0 = µ(θ0), σn(µ0) > m whenever µ0 ∈ supp(P n
µ ). Such θ0 exists by Lemma 15.

Then for all such n and all x ≤ m, pn(x) ≤ pn(m) ≤ µ0 · m, so we have the bound-

edness in [0,m]. Denote w ≡ wθ0 . Then for α-a.e. type θ that choose coverage in

[0,m], σ(µ(θ)) ≤ σ(µ0) = σ(µ(θ0)) so by Assumption 10, wθ ≤ wθ0 , and each type

has Lipschitz utility (with the same Lipschitz constant as wθ0 .)

2. Next we verify that for each M ∈ R, there is a compact K ⊆ [0, 1), s.t. for large

enough n, infx/∈K pn(x) ≥ M . Fix M > 0 and some µ ∈ supp(Pµ) with µ > 2M , let

N ∈ N and 1
2 < t < 1 be such that σn(µ) < t for all n > N ; such N, t are guaranteed

by Lemma 14. By the monotonicity of each σn and pn, for n > N and x /∈ K := [0, t],

pn(x) > pn(t) ≥ pn(σn(µ)) = σn(µ) · µ ≥ t · 2M > M

3. Lemma 1 shows that Condition (1) (required by Proposition 6) holds.

Hence, an equilibrium (p, α) of the economy [X,Θ, P ] exists.
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H Generalized Equilibrium Properties

This section shows that several properties of equilibrium derived by AG also hold in set-

tings where costs are unbounded. (Note that Lemma 16 is used, implicitly or explicitly,

at several points in the various proofs.) Proposition 14 is used implicitly throughout, in

particular the fact that in equilibrium, a.e. agent is selecting an optimal contract.

H.1 Continuity

The continuity (and in fact Lipschitz-ness) of prices was proven in AG (for the bounded

environments they consider). Here, we prove the continuity of prices in generic un-

bounded settings. 60

Lemma 16. If (p, α) is an AG-equilibrium, then p is continuous.

Proof. Suppose xn → x in X, and let (pn, αn)∞
n=1 be the approximating sequence of weak

equilibria with alternatives (Xn)∞
n=1. By passing to a subsequence of (pn, αn), we may

assume that for each n, there is yn ∈ Xn such that

|yn − xn| < 1
n

and |pn(yn) − p(xn)| < 1
n

Hence, yn → x. Therefore, since (pn, αn)∞
n=1 witnesses that (p, α) is an equilibrium,

pn(yn) → p(x). By the second inequality, p(xn) → p(x), as required.

H.2 Equilibrium is Weak Equilibrium

AG shows under their weaker assumptions that equilibria are, in particular, weak-equilibrium.

This will also be true in our case although, to prove it, we need the following auxiliary

result.

The following lemma, stated in greater generality than needed, may be of indepen-

dent interest.

Lemma 17. Let X be a locally compact separable metric space, (Xn) a sequence of finite

subsets, p : X → R continuous and for each n ∈ N, pn : Xn → R, s.t. if (xn) is a sequence

in X with xn → x ∈ X s.t. xn ∈ Xn for each n ∈ N, then pn(xn) → p(x).

Then there are extensions of the pn to continuous functions p̃n : X → R+ s.t. p̃n → p

uniformly on compact sets. In particular, if X is compact, then ∀ε > 0, there is N ∈ N, s.t.

∀n > N and∀x ∈ Xn, |pn(x) − p(x)| < ε.

60The continuity of prices in the particular case of the utility functions of insurance markets discussed
in this paper, as introduced in Section 6.2, follow from Lemma 11. 16 holds in a much more general setup.
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The latter conclusion, for the case of compact X, follows from the first part. We

note, however, that the latter conclusion actually already follows from the first step in

the proof.

Proof. Let (Kj)∞
j=1 be an increasing sequence of compact sets with X = ∪jKj and Kj ⊆

K◦
j+1; such exists as X is locally compact and separable metric. Fix J ∈ N: We contend

that ∀ε > 0, there is N ∈ N, s.t. ∀n > N and∀x ∈ Xn ∩ KJ , |pn(x) − p(x)| < ε. Indeed,

if not, there is ε > 0, a sequence n1 < n2 < · · · of indices, a sequence (xj) with xj ∈
Xnj

∩ KJ , |pnj
(xj) − p(xj)| ≥ ε, and such that (xj) converges; denote the limit x ∈ KJ .

Hence, pnj
(xj) → p(x) by assumption. Since p is continuous by Lemma 16, p(xj) → p(x).

Together, these give a contradiction.

Hence, define qn : Xn → R by qn = pn − p. Denote Yn = Xn ∩ Kn, εn = maxx∈Yn |qn|.
By the last paragraph, εn → 0. The Tietze extension theorem implies, for each n ∈ N, the

existence of a continuous extension q̃n of qn to X satisfying εn = maxKn |q̃n|. (Formally,

first extend the restriction of qn to Yn to a function q̃n on Kn satisfying εn = maxKn |q̃n|
via Tietze’s theorem, and then extend it to a function on X agreeing with qn on Xn in

an arbitrary continuous way, again via Tietze’s theorem.) Defining p̃n = q̃n + p for each

n ∈ N give the required extensions, since for any compact subset K ⊆ X, there is J s.t.

for all j > J , K ⊆ Kj .

Now, the proof of Proposition 14 follows along lines similar to the corresponding

Proposition in AG, with some care required since our setup allows for unbounded cost.

Proposition 14. An equilibrium is also a weak equilibrium.

Proof. Take a sequence (Xn, pn, αn) of weak equilibria on finite subsets Xn ⊆ X which

witnesses that (p, α) is an equilibrium. Let (p̃n) correspond to (pn), (Xn), and p as in

Lemma 17. For any continuous function f : X → R with compact support, since the

p̃n are uniformly bounded on compact sets (p is continuous and p̃n → p uniformly on

compact sets), and since p̃n(x) = pn(x) = Eαn [c | x] for all x ∈ supp(αn),

∫
Θ×X

f · p · dα = lim
n→∞

∫
Θ×X

f · p · dαn = lim
n→∞

∫
Θ×X

f · p̃n · dαn

= lim
n→∞

∫
Θ×X

f(x) · c(x, θ)dαn(x, θ)

Denoting by K ⊆ X the compact support of f . Recall that by assumption,

∫
Θ

max
x∈K

c(x, θ)dP (θ) < ∞,

so for each ε > 0, there is compactly support gε : Ω → [0, 1] s.t.

∫
Θ

(1 − gε(θ)) max
x∈K

c(x, θ)dP (θ) < ε.
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Clearly,

∫
Θ×X

f(x) · c(x, θ)dαn(x, θ) =
∫

Θ×X
f(x)gε(θ) · c(x, θ)dαn(x, θ)

+
∫

Θ×X
f(x)(1 − gε(θ)) · c(x, θ)dαn(x, θ)

∫
Θ×X

f(x) · c(x, θ)dα(x, θ) =
∫

Θ×X
f(x)gε(θ) · c(x, θ)dα(x, θ)

+
∫

Θ×X
f(x)(1 − gε(θ)) · c(x, θ)dα(x, θ)

Now,

limn→∞

∫
Θ×X

f(x)gε(θ) · c(x, θ)dαn(x, θ) =
∫

Θ×X
f(x)gε(θ) · c(x, θ)dα(x, θ)

and the errors terms are at most ε · sup |f |, and ε > 0 was arbitrary. Hence,

∫
Θ×X

f(x) · p(x)dα(x, θ) =
∫

Θ×X
f(x) · c(x, θ)dα(x, θ)

and this was for any f : X → R compactly supported. Hence, p(x) = Eα[c(x, θ) | x] α-a.s.

Now, let ϕ : R → R be a strictly monotonically increasing continuous funding with

bounded range, e.g., ϕ(x) = arctan(x) or ϕ(x) = x
1+|x| . Since αn is a weak equilibrium, it

holds

u(θ, p̃n(x), x) = sup
x′∈Xn

u(θ, p̃n(x′), x′), for αn − a.e.(θ, x) ∈ Θ ×Xn

Hence, it is also true that, denoting v = ϕ ◦ u

v(θ, p̃n(x), x) = sup
x′∈Xn

v(θ, p̃n(x′), x′), for αn − a.e.(θ, x) ∈ Θ ×Xn

Let α′ be a ’deviation to α’ - i.e., a measure on Θ ×X whose projection to Θ is P , and

letting (α′
n) be a sequence of measures on (Θ∪X)×X, withα′

n supported on (Θ∪Xn)×Xn

and α′
n → α weakly, we have since (pn, αn) is a weak equilibrium,

∫
Θ×X

v(θ, p̃n(x), x)dαn ≥
∫

Θ×X
v(θ, p̃n(x), x)dα′

n

αn → α, α′
n → α′ , so the families (αn) and (α′

n) are tight, and v is bounded. Hence, for

each ε > 0, there is ζε : Θ ×X → [0, 1] continuous and compactly supported, such that

∫
Ω×X

(1 − ζε(x, θ)) · |v(θ, p̃n(x), x)|dβ < ε, for any β = αn, α, α
′
n, α

′, n ∈ N
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Since p̃n → p uniformly on the support of ζε,

∫
Θ×X

ζε(x, θ)v(θ, p̃n(x), x)dαn →
∫

Θ×X
ζε(x, θ)v(θ, p(x), x)dα

and ∫
Θ×X

ζε(x, θ)v(θ, p̃n(x), x)dα′
n →

∫
Θ×X

ζε(x, θ)v(θ, p(x), x)dα′

Since this was for any compactly supported ζε, it follows that

∫
Θ×X

v(θ, p(x), x)dα ≥
∫

Θ×X
v(θ, p(x), x)dα′

Since this was for any measure α′ on Θ ×X whose projection to Θ is P ,

v(θ, p(x), x) = sup
x′∈X

v(θ, p(x′), x′), for α− a.e.(θ, x) ∈ Θ ×X

and therefore

u(θ, p(x), x) = sup
x′∈X

u(θ, p(x′), x′), for α− a.e.(θ, x) ∈ Θ ×X

I Discrete types: Direct Construction

In this Section we provide a “direct” construction of the AG equilibrium for a simple

insurance economy with discrete types, without using Proposition 1.

I.1 Equilibrium in bounded economies

We now show that, for a truncated economy En, the allocation described in Proposition

4 is indeed an AG equilibrium.

Proof. Since utilities are quasi-linear and p > 0 on (0, 1),61 it is enough to approximate

(p, α), in the same manner described in Section 1, but on X ′ = (x0, 1) instead of [0, 1) (as

p ≡ 0 in (0, x0)) and with ηn not necessarily strictly positive on the behavioral types X
n

;

afterwards the weight of the behavioral types could be increased slightly to be strictly

positive in such a way that the price goes down by the same amount for each alternative

in X
n

.
61p(0) = 0, but ∀n,Xn ⊆ (0, 1) in our construction to follow, so p is positive on X

n
.
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We will also index the sequence of economies by n. For each n, let X
n

be the set

X
n = {xij | i = 1, . . . , n, j = 1, . . . , n} ∪ {x1, . . . , xn}.

The contracts x1, . . . , xn are obtained as in Section 4.4, the contracts purchased by the

first n types. That is, economy n has only the first n contracts x1, . . . , xn. Moreover, to

each contract i are associated n behavioral types xi1, . . . , xin are distributed (e.g., evenly)

strictly between xi−1 and xi. (Recall that x0 is the right-most point s.t. p(x0) = 0, i.e.,

where type 1 is indifferent between (0, x0) and (p1, x1).) The mass of agents at each xij

(which denote ηn) is defined below.

As in AG, the behavioral agents in X
n

have riskiness µ = 0, i.e., zero cost. We set

prices pn ≡ p for contracts on X
n

. Moreover, we set the distribution of the weak equilib-

rium (αn) such that

αn({µi, xi}) = Pi

[
1 − 1

n

]
,∀i = 1, . . . , n

αn({µi+1, xij}) = Pi+1
1
n2 ,∀i, j = 1, . . . , n

That is, of the original mass Pi of “regular” types µi, all but a 1
n

-fraction choose xi, while

the rest evenly spread themselves between the contracts xi,1, . . . , xi,n, such that the mass

of type µi in each of these contracts is a share 1
n2 of the total mass Pi. Recall that xi−1 <

xi1 < . . . < xi,n < xi and moreover p (x) is defined so that types µi are indifferent between

all these contracts.

We also construct the distribution αn such that, all types k > n (each with mass Pk)

purchase the highest coverage available (xn):

αn({µk, xn}) = Pk, ∀k > n.

Since µn, νn increasing, this maximizes their utility when contracts xk for k > n are not

available. This construction of αn is illustrated by Figure 6.

We then define αn({(xij, xij)}) = ηn({xij}) for all i, j to be the mass of behavioral

types who purchase contract xij (which, recall, will also be purchased by some mass of

types µi). We define ηn(xij) to satisfy

gi(xij) = xijµi

Pi · 1
n2

Pi · 1
n2 + ηn(xij)

≤ 1.

This will imply that each contracts xij breaks even:

Eαn [µ·x | xij] = xijµi+1·
αn(µi, xij)

αn(µi, xij) + ηn(xi,j)
+0 = xijµi+1·

Pi · 1
n2

Pi · 1
n2 + ηn(xi,j)

= gi(xij) = p(xij)

(24)
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X1	 X2	X2,2	X2,1	

Mass	of	regular	consumers		

Mass	of	behavioral	consumers		

½	P1		

X1,1	

¼	P2	
¼	P2	

η2,2	
η2,1	

½	P2		

P3	+	
P4	+	
P5	+	
…   	

η1,2	

¼	P1	

X1,2	

η1,1	

¼	P1	

Figure 6: Illustration ofαn used in Section F. Specifically, the figure illustrates the second
perturbation, α3.

Moreover, since xi−1 ≤ xij ≤ xi, we also have

gi(xi−1)
xiµi

≤
Pi · 1

n2

Pi · 1
n2 + ηn(xij)

and therefore, as n → ∞, we have supxij
ηn(xij) → 0.

We also assume that, in economy n, there are no behavioral types purchasing con-

tracts xi for i ≤ n− 1:

ηn(xi) = 0, i = 1, . . . , n− 1

Regarding the top contract xn, the mass of behavioral types ηn(xn) is defined such that

µn = p(xn)
xn

= Eαn [µ | xn] =
µnPn

n−1
n

+∑
j>n µjPj

Pn
n−1

n
+∑

j>n Pj + ηn(xn)

i.e., ηn(xn) is chosen such that although the riskiest agents all choose the top contract, its

price nonetheless satisfiesµn = p(xn)
xn

. The fact that
∑

n Pnµn < ∞ implies limn→∞ ηn(xn) =
0.

In this way, for each i, the break even condition Eαn [µx | xi] = pn(xi) = p(xi) holds

for each i = 1, . . . , n in (pn, αn); indeed, for each i = 1, . . . , n − 1, only types µi purchase

xi, while for i = n this results from our definition of pn(xn) = p(xn) and by (24).
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I.2 Convergence to equilibrium of unbounded economy

We now prove that the equilibria described above for each truncated economy En con-

verge to the equilibrium of E .

Proof. We claim that the sequence (pn, αn) demonstrates that (p, α) is an equilibrium. ,

pn ≡ p on X
n

and X
n → X ′ = [x0, 1) in the sense of Haussdorf.

Moreover, αn → α weakly: Notice αn is concentrated on the set of types {(µk, νk)}k∈N

and the behavioral types, with αn(µk, νk) = α(µk, νk) = Pk . Define Ik,m = 1 {k = m} be

an indicator function. Then,

αn(µk, xm) = Ik,m · Pm

[
1 − 1

n

]
→ Ik,m · Pm = α(µk, xm)

and for each m ∈ N,

αn({x ∈ (xm−1, xm)}) = Pm
1
n

→ 0 = α({x ∈ (xm−1, xm)}).

Hence for each δ < 1, αn(· | {x ≤ δ}) → α(· | {x ≤ δ}) converges in total variation norm.

This implies that αn → α weakly.

Furthermore, αn-a.s. the original agents {(µn, νn)}∞
n=1 are utility maximizing: agents

of type i ≤ n are utility maximizing since they either choose the same option xi in

X
n ⊆ X = [0, 1), at the same price pn(xi) = p(xi), as they do when they can choose

any alternative in X, or they choose an alternative xi,1, . . . , xi,n which delivers the same

utility as xi at prices pn ≡ p. Agents of type k > n are utility maximizing since their

willingness to pay for x is higher than that of type n, who (weakly) prefers the contract

xn = max
[
X

n
]

to any other alternative in X
n

at prices pn ≡ p. Therefore, each (pn, αn) is

a weak equilibrium, so (p, α) is an equilibrium.

J Weakening Assumption 7

We remark that Proposition 8 would hold if Assumption 7 would be replaced with the

following weaker assumption, although the proof would be somewhat more technical

and lengthier.

Assumption 9. For each µ′ ∈ supp(Pµ) with µ′ > µ(:= min supp(Pµ)), for each 0 < x1 <

x2 < 1, and each 0 < p1 < p2, there is ε > 0 s.t. denoting D = [x1, x2] × [p1, p2] and

T = {θ | µ′ − ε < µ(θ) ≤ µ′}.

inf
T

min
D

(wθ(x, p) − µθ) > 0 and inf
T

min
D

∂uθ

∂p
< 0
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We know for each x < 1 and p ∈ R, wθ(x, p) − µθ > 0. Hence, by continuity, for each

θ ∈ Θ , each 0 < x1 < x2 < 1, and each 0 < p1 < p2, minD(wθ(x, p) − µθ) > 0. However, we

need this positivity to be uniform over all types whose riskiness µ is close to any given µ′.

Similarly, we need the sensitivity to price to be bounded away from 0 in such a domain

for all types with riskiness close enough to µ′.

K Other Proofs

K.1 Completion of Proof of Proposition 1

We formalize the idea given at the end of Section A.1: Let ρn be a measure on Θ\Θn ×
Xn ⊆ Θ ×Xn s.t.

ρn

(
(θ, x) ∈ Θ\Θn ×Xn | ∀y ∈ Xn, u(x, θ, qn(x)) ≥ u(y, θ, qn(y))

)
= P (Θ\Θn)

- i.e., ρn is an allocation for those types not in Θn in which they a.s. maximize their utility

in Xn at prices qn(·). By assumption,

Eγn+ρn [c | x] ≥ Eγn [c | x] = rn(x),∀x ∈ W n

with equality if rn(x) < c0, i.e., the types in Θ which not in Θn only increase costs. Note

that γn + ρn may not be normalized; throughout this proof, when σ is a non-normalized

measure, Eσ[f ] = 1
σ(Θ)

∫
Θ fdσ. Define πn(x) ≥ 0 s.t.

γn(x) + ρn(x)
γn(x) + ρn(x) + πn(x)

Eγn+ρn [c | x] = Eγn [c | x] = rn(x),∀x ∈ W n

By assumption γn(x) > 0 for all x ∈ W n hence this is well defined. Hence, since cost of

behavioral types is 0,

Eρn+γn+πn [c | x] = Eγn [c | x] = rn(x),∀x∈W n

Furthermore, πn(x) = 0 if x ∈ W n and rn(x) < c0, since no types in Θ\Θn purchases

in the domain rn < c0, i.e., ρn({(θ, x) | rn(x) < c0}) = 0. We contend that πn(W n) → 0, as

required of behavioral types. Indeed, by definition,

[ρn(x) + γn(x)] · Eρn+γn [c | x] = γn(x) · Eγn [c | x] + [πn(x) + ρn(x)] · rn(x), ∀x ∈ W n
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Therefore,

∫
c · d(γn + ρn) =

∫
c · dγn +

∑
x∈W n

[πn(x) + ρn(x)] · rn(x) =
∫
c · dγn +

∫
rn · dρn +

∫
rndπn

i.e.,

c0 · πn(W n) ≤
∫
rndπn =

∫
(c− rn) · dρn → 0

where the second term vanishes due to our integrability requirement, and since ρn is

supported on Θ\Θn. Hence, denoting δn = γn + ρn + πn (where πn naturally induces

a measure on the diagonal of W n × W n ⊆ (Θ ∪ W n) × W n) shows that the sequences

of subspace (W n)n∈N, behavioral types (πn)n∈N, and weak equilibrium (rn, δn)n∈N witness

(p, α) being an equilibrium.

K.2 Completion of Proof of Proposition 4

We complete the proof of Proposition 4 which began in Section F.

Proof. Let f : [0, 1] × R+be any continuous and bounded function. Let Pn be the mass

of the n-th type, and Qn
j = Pj∑

j≤n
Pj

be the conditional mass in the n-th economy. The

conditional distributions on types converges in norm to the distribution on the infinite

type space. f is continuous, so for each k, f(xn
k) → f(xk). Hence, by the bounded con-

vergence theorem,

∫
Θ×[0,1]

fdαn =
n∑

k=1
f(xn

k) ·Qk →
∞∑

k=1
f(xk) · Pk =

∫
Θ×[0,1]

fdα

and hence αn → α weakly.

To show pn → p uniformly on compact subsets of [0, 1), it suffices to show that for

each interval of the form Ik = [xk, xk+1], pn → p uniformly in Ik. The (pn) are uniformly

Lipschitz in Ik, with Lipschitz constant L = µk+1 + νk+1 · sup[0,1] g
′, as xn

k+1 ≥ xk+1. Fur-

thermore, since gn
k+1 (as the indifference curve of type k + 1 through xn

k+1) converges

point-wise to gk+1 (as the indifference curve of type k through xn
k), p coincides with gk+1

in Ik, and pn coincides with gn
k+1 in [xn

k , x
n
k+1], we have pn → p point-wise. Then, point-

wise convergence and uniform Lipschitz implies uniform convergence.

K.3 Proof of Proposition 6

Before describing the proof, we present a useful generalization of the Arzela-Ascoli the-

orem. This generalization is found, for instance, in Kelley [2017, Thm 17, Ch 7]. The key

generalization in this version is the requirement that X be only locally compact (rather
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than compact), and the requirement that the functions f to be point-wise bounded

(rather than uniformly bounded).

Theorem 3. Let X be a locally compact metric space. Given a sequence (fn)∞
n=1 of real-

valued functions on X, equicontinuous and point-wise bounded, there is a continuous

function f : X → R and a subsequence of (fn)∞
n=1 converging to f uniformly on compact

sets.

We now prove Proposition 6:

Proof. The existence of the limit function p(·) with the required first property of p(·)
in Proposition 1 follows from Theorem 3. Furthermore, (αn)∞

n=1 (or any of its subse-

quences) is tight (since αn(Θk ×X) = P (Θk) for all n, k ∈ N) and hence it w.l.o.g. (passing

to a subsequence) converges weakly to some measure α on Θ ×X.

We now need to show thatα(Θ×
(
X\X

)
) = 0. Suppose not, setB := α(Θ×X\X) > 0.

Fix some y0 ∈ X, and fix some D > supn pn(yo). (By assumption, such D < ∞ exists.) We

note that, by assumption, for each θ ∈ Θ, and each alternative y ∈ X, there is q ≥ 0 s.t.

u(y0,θ,D) > u(y, θ, q); by possibly decreasing D slightly, the continuity of utility in X ×
Θ × R+ shows that this statement is true for all y ∈ X; and finally a standard continuity

argument shows that q may be chosen independent of y ∈ X (only dependent on θ); i.e.,

∩M>0{θ | ∃y ∈ X s.t u(y0, θ,D) ≤ u(y, θ,M)} = ∅. Fix M s.t.

P (
{
θ | ∃y ∈ X s.t u(y0, θ,D) ≤ u(y, θ,M)

}
) < 1

2
B

By assumption, there is a neighborhood V of X\X such that for all n large enough and

all y ∈ V , pn(y) > M . Therefore, αn(Θ × V ) ≤ 1
2B for all n large enough. By Portmanteau

theorem, however, since V is open

1
2
B ≥ lim inf αn(Θ × V ) ≥ α(Θ × V ) ≥ α(Θ ×X\X) = B > 0,

a contradiction.

K.4 Proof of Proposition 7

Proof. That Assumption 6 implies single crossing is immediate. Conversely, suppose

single crossing holds. First, fix types θ1,θ2 ∈ Θ with µ(θ2) ≥ µ(θ1) but by way of con-

tradiction, there were some x0, p0 ∈ [0, 1] × R+ at which wθ2(x0, p0) < wθ1(x0, p0). We

may assume µ(θ2) > µ(θ1), as we may alter slightly θ2, θ1 (by our regularity proper-

ties). Let g : [x0, 1] → R+ be s.t. uθ2(x0, p0) = uθ2(x, g(x)) for all x ∈ [x0, 1], and for

each x ∈ [x0, 1], let h(x) denote the price p s.t. uθ1(1, p) = uθ1(x, g(x)); both g, h are well-

defined and continuous by the implicit function theorem. Sincewθ2(x0, p0) < wθ1(x0, p0),
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uθ1(x0, p0) < uθ1(x, g(x)) in a right-neighborhood of x0. By single-crossing and continu-

ity of h, h > g(1). However, wθ1 ≈ µ1 < wθ2 ≈ µ2 in a neighborhood of (1, g(1)), h < g(1)
in a punctured neighborhood of 1, a contradiction. Conversely, if for some θ1,θ2 ∈ Θ,

x0, p0 ∈ [0, 1] × R+ we had wθ2(x0, p0) ≥ wθ1(x0, p0) but µ(θ2) < µ(θ1) , we could (again,

by the regularity properties) alter slightly θ2, θ1 so that wθ2(x0, p0) > wθ1(x0, p0), and we

would get a contradiction by what we’ve already shown.

K.5 Proof of Lemma 8

Proof. First we show that for each ε > 0 for large enough n, under αn a positive measure

of types with riskiness ≥ µ∗ purchase in Iε := (x∗ − ε, x∗ + ε). If there were such an ε > 0
for which this did not hold, then for all n large enough, pn(x) ≤ µ∗ · x for x ∈ Iε; and

hence p(x) ≤ µ∗ · x for x ∈ Iε, leading to a contradiction as in Lemma 6. Now, fix δ > 0.

Any type with riskiness µ ≥ µ∗ +δ strictly prefers (σ(µ∗), p(σ(µ∗)) to (x∗, p(x∗)), and hence

by Proposition 12 for n large enough will not purchase in Iε under αn; hence, for n large

enough, we can find a αn-positive mass of types with riskiness in [µ∗, µ∗ + δ) purchasing

in Iε.

K.6 Proposition Used For Section E

Proposition 15. Suppose Pµ, conditional on some interval I = (µ, µ), has full support

with a.e. strictly positive density w.r.t. the Lebesgue measure, and (p, α) is an equilibrium

with associated coverage function σ (µ). Suppose σ(µ) > 0 (i.e., a.e. type with riskiness in

I purchases positive coverage). Then, denoting J = (σ(µ), σ(µ)) and letting αJ be the pro-

jection of α to alternatives and conditional on J , αJ is equivalent to the Lebesgue measure

on J , i.e., αJ and the Lebesgue measure on J are absolutely continuous w.r.t. each other.

In other words, αJ and the Lebesgue measure on J have the same null sets or, equivalently,

αJ has Lebesgue-a.e. positive density.

Proof. Note that σ : I → J is a strictly increasing bijection (and in particular, continu-

ous), and αJ = Pµ(· | J) ◦ σ−1. Hence, it suffices to show that both σ and τ = σ−1 : J → I

are locally Lipschitz in the interior of I, J respectively. By Theorem 2, p is L-Lipschitz in

J for some L > 0. Now, p(σ(µ)) = µ · σ(µ), Pµ − a.s. Since σ is continuous and Pµ has full

support in I, this implies p(σ(µ)) = µ · σ(µ), ∀µ ∈ I and hence τ(x) = p(x)
x
, ∀x ∈ J .

Since p is Lipschitz in J and σ(µ) > 0, τ is Lipschitz. Observe that for fixed z, the

mapping wτ(x)(z) = τ(x) + g′(z) · ν(τ(x)) is well-defined αJ a.e.. Note that supp(αJ) = J ,

as σ is continuous. So, for αJ a.e. every x1 ∈ J and every x2 ∈ J ,

p(x2) − p(x1)
x2 − x1

≥
∫ x2

x1
wτ(x1)(x)dx
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Full Insurance in Support of Equilibrium
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price of purchased contracts
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Figure 7: We consider, by way of contradiction, a hypothetical equilibrium where the
supremum of contracts purchased is x1 < 1. This implies, we show, that µ must be
bounded by some µ, so the price of contracts x > x1 is p (x) = µx. Consider any x2 ∈
(x1, 1). We then show that those agents who purchase x close to x1 would prefer x2 (at
the price p (x2) = µx2), a contradiction.

and hence p′(x) ≥ wτ(x) Lebesgue a.e.. Therefore, Lebesgue-a.s.,

τ ′(x) = 1
x

[p′(x) − p(x)
x

] ≥ 1
x

[wτ(x)(x) − τ(x)] = 1
x
g′(x) · ν(τ(x)) ≥ g′(x) · ν(µ)

Hence, in each sub-interval of J which is bounded away from full insurance, τ ′ > 0 is

bounded away from 0 and hence σ = τ−1 is locally Lipschitz in the interior of τ(J).

K.7 Proof of Proposition 12

Proof. Suppose uµ0(p0, x0) > uµ0(q0, y0). Suppose by way of contradiction there are se-

quences µn → µ0, (pn, xn) → (p0, x0), (qn, yn) → (q0, y0) s.t. µn weakly prefers (qn, yn) over

(pn, xn). Let θn ∈ Ω s.t. µ(θn) = µn; since by Assumption 7 {θ | µ(θ) ≤ µ0 + 1} is compact,

w.l.o.g. and by passing to a subsequence, we may assume θn → θ0 for some θ0 ∈ Θ. Since

µ is continuous, µ(θ0) = µ0. Since u(θn, xn, pn) ≤ u(θn, yn, qn),taking the limit given by the

continuity of utility implies u(θ0, x0, p0) ≤ u(θ0, y0, q0), a contradiction.

K.8 Figure Complementing Lemma 7

See Figure 7.
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K.9 Completing Proof of Lemma 10

Proof. We need to show the second and third inequalities. To show the third inequality,

notice that for each x1 ∈ [0, 1], utility maximization implies

α({u(θ, p(x), x) ≥ u(θ, p(x1), x1)}) = 1

In particular, by the definition of ψ−, there is a sequence yn → x2 in supp(αX) and types

(θn) with µ(θn) → ψ−(x2) (if x2 is an atom of αX , take yn ≡ x2), such that for all n,

u(θn, p(yn), yn) ≥ u(θn, p1, x1). Recall that ρδ(·) is monotonically increasing and right-

continuous. Hence also (ρδ(θn)) satisfies lim supn→∞ νδ(θn) ≤ ρδ(ψ−(x2)). An application

of Lemma 9, the fact that liminfy→x2ψ
−(y) = ψ−(x2) if x2 is not an atom of αX , the right-

continuity of ρδ and the continuity of p on supp(αX) completes the proof. The second

inequality follows similarly, by using the fact that that νδ(θn) ≥ 0.

K.10 Proof of Lemma 11

Proof. Since p (·) is part of an equilibrium, there are finite subsets X
n ⊆ X, prices pn :

X
n → R+ and associated distributions αn on (Θ ∪ X

n) × X
n

as described in Section 2

which witness that (p, α) is an equilibrium. Let yn → x1 and zn → x2 with yn, zn ∈ X
n

.

Since each (pn, αn) is a weak equilibrium whose projection to X is finitely supported, it

follows from Lemma 10 that, at each n,

pn(yn)
yn

≤ pn(zn) − p(yn)
zn − yn

≤ pn(zn)
zn

+
(

1 − yn + zn

2

)
ρδ

(
p(zn)
zn

)

Taking n → ∞, and recalling that ρδ is monotonically increasing and right-continuous,

completes the proof.

K.11 Proof for Section C.6 for Continuous Case

Assume P is continuous, but assume by way of contradiction that for some µ∗ > µ =
inf supp(Pµ), σ(µ∗) = 0, and in particular 0 is an atom of αX , the projection of α to alter-

natives.

First we contend supp(αX) = [0, 1]; by the previous properties, supp(αX) = {0} ∪ [x, 1]
for some x ≥ 0; if x > 0, an imitation of the argument used to prove the upper-envelope

property of price would give a contradiction, as the indifference curve of any type pur-

chasing near x would lie below (0, 0). Denote τ(x) = p(x)
x

. Following an argument sim-

ilar to the proof of Proposition 13, with appropriate modifications, it follows that for
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Lebesgue a.e. x ∈ (0, δ) for 1 > δ > 0,

p′(x) = wτ(x)(x, p(x)) = τ(x)+wτ(x)(x, p(x))−τ(x) ≥ p(x)
x

+inf
x∈J

(wτ(x)(x, p(x))−τ(x)) = p(x)
x

+W

for some W > 0. (This equation encompasses that the insurance surplus is bounded

away from 0 in the interval (0, δ) uniformly over all types with riskiness at least µ∗.)

Hence(
p(x)
x

)′

= p′(x)
x

− p(x)
x2 ≥ W

x
−→ p(δ)

δ
≥ p(δ)

δ
− lim inf

y→0

p(y)
y

≥ W · lim
y→0

ln
(
δ

y

)
= ∞
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