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Abstract

We introduce a variant of the well-studied sum choice number of graphs, which we call the
interactive sum choice number. In this variant, we request colours to be added to the vertices’
colour-lists one at a time, and so we are able to make use of information about the colours
assigned so far to determine our future choices. The interactive sum choice number cannot
exceed the sum choice number and we conjecture that, except in the case of complete graphs,
the interactive sum choice number is always strictly smaller than the sum choice number.
In this paper we provide evidence in support of this conjecture, demonstrating that it holds
for a number of graph classes, and indeed that in many cases the difference between the two
quantities grows as a linear function of the number of vertices.

Keywords: Graph coloring, list coloring, choice number, sum list coloring, sum choice
number, sc-greedy

1. Introduction

The choice number of a graph G is the minimum length of colour-list that must be
assigned to each vertex of G so that, regardless of the choice of colours in these lists, there
is certain to be a proper colouring of G in which every vertex is coloured with a colour from
its list. A small subgraph of G which is, in some sense, “hard” to colour, can therefore force
the choice number for G to be large, even if most of the graph is “easy” to colour. The
sum choice number of G (written χSC(G)), introduced by Isaak [8], captures the “average
difficulty” of colouring a graph: each vertex can now be assigned a different length of colour-
list, and the aim is to minimise the sum of the list lengths (while still guaranteeing that
there will be a proper list colouring for any choice of lists). A long odd cycle is an example
of a graph where most of the graph is “easier” to colour than the choice number indicates.

For any graph G = (V,E), we have χSC(G) ≤ |V | + |E|: we can order the vertices
arbitrarily and assign to each vertex d−(v)+1 colors, where d−(v) is the number of neighbours
of v that are before it in the order, and colour greedily in this order. Graphs for which this
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so-called greedy bound is in fact equal to the sum choice number are said to be sc-greedy, and
one of the main topics for research into the sum choice number has been the identification
of families of graphs which are (or are not) sc-greedy; we discuss known results about the
sum choice number in more detail in Section 1.2.

In this paper we introduce a variation of the sum choice number, called the interactive
sum choice number of G, in which we do not have to determine in advance all of the lengths
of the colour lists: at each step we ask for a new colour to be added to the colour list for
some vertex of our choosing and, depending on what colours have been added to lists so far,
we can adapt our strategy. Formally, we define this quantity in terms of a game played by
Alice and Bob, which takes a graph G as input. Initially, each vertex in G has an empty
colour-list; at each round, Alice chooses a vertex v and Bob must add a colour (that does
not already appear in the list) to the list at v. The game terminates when G admits a proper
list colouring; Alice seeks to minimise the number of rounds, while Bob aims to maximise
this quantity. The interactive sum choice number of G, written χISC(G), is the number of
rounds when both Alice and Bob play optimally on G.

It is clear that χISC(G) ≤ χSC(G) for any graph G, as Alice can simply ask for the
appropriate number of colours to be added to the list for each vertex without paying any
attention to the colours that have been added so far. The natural question is then whether we
are in fact able to improve on the sum choice number of G by exploiting partial information
about the colour lists. A simple example where we can improve on the sum choice number
is the three-vertex path P3, whose sum choice number is known to be 5. In the interactive
setting, Alice can start by requesting one colour for each vertex, and then adapt her strategy
based on these initial colours: if the two endpoints are given the same first colour, she can
obtain a proper colouring by requesting just one more colour for the middle vertex; otherwise,
at most one of the endpoints, say v, has the same colour as the middle vertex, and so she
obtains a proper colouring by requesting an additional colour for v. Thus she can always
obtain a proper colouring with at most four requests, a strict improvement on the sum choice
number.

However, interactivity does not always allow us to improve on the sum choice number.
For a counterexample, let G = (V,E) be a complete graph, and suppose that for every
vertex v ∈ V , the first time Alice asks to add a colour to the colour list for v it will be given
colour 1, the second time it will be given colour 2, and so on. Then, whatever order she
requests to add colours, we know that there can then be at most one vertex for which we
never request a second colour (otherwise two adjacent vertices would have to be assigned
colour 1), at most one vertex for which we request exactly two colours, and more generally
for each 1 ≤ i ≤ n = |V | there can be at most 1 vertex for which we request exactly i colours
in total. Thus we see that

χISC(G) ≥
n∑

i=1

i = |V |+ |E| ≥ χSC(G).

The same argument can easily be extended to graphs that are the disjoint union of complete
graphs.
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However, we believe that this may be the only case in which there is equality:

Conjecture 1.1. If any connected component of G is not a complete graph, then χISC(G) <
χSC(G).

The main purpose of this paper is to give evidence for Conjecture 1.1. We confirm it
for sc-greedy graphs, and prove more strongly that the gap between χISC(G) and χSC(G)
is an increasing function of the number of vertices for various graph classes including trees,
unbalanced complete bipartite graphs and grids (the latter two being classes which are known
not to be sc-greedy).

Two other variants of sum-choosability have also been introduced recently. In the sum-
paintability variant [3, 14], the painter decides a budget for each vertex in advance (as in sum
list colouring), then in each round the lister reveals a subset of vertices which have colour c in
the list and the painter must decide immediately which of these vertices to paint with colour
c. Thus, there is less information available than in the standard setting of sum-choosability
since painter must fix the colour of some vertices before knowing the entire contents of the
colour lists. The relationship between the interactive sum choice number and the second of
these variants, the slow-colouring game [13, 15] is less clear. In this variant, at each round,
lister reveals a nonempty subset M of the remaining vertices (scoring |M | points), from
which painter chooses an stable set to delete; painter seeks to maximise the total score when
all vertices have been deleted, while lister seeks to minimise this quantity. Compared with
our setting, lister has the advantage of discovering at the same time all vertices which are
permitted to use colour c, but on the other hand he must decide immediately which of these
to colour with c. In the special case of trees, however, Puleo and West have demonstrated
that the same number of rounds are required in both games [15].

In the remainder of this section, we first give formal definitions of both the sum choice
number and interactive sum choice number in Section 1.1, then provide some background
and useful results about the sum choice number in Section 1.2. In Section 2 we derive some
basic properties of the interactive sum choice number, before providing upper bounds on the
interactive sum choice number (and showing that these bounds improve on the sum choice
number) for various families of graphs in Sections 3, 4 and 5.

1.1. Definitions and notation

For general graph notation we refer the reader to [4]. Throughout this paper, we only
consider connected graphs.

A proper colouring of a graph G = (V,E) is a function c : V → N such that for every
uv ∈ E we have c(u) 6= c(v). Given a list assignment L : V (G) → P(N), an L-colouring
is a proper colouring c such that c(v) ∈ L(v) for every v ∈ V . The choice number of a
graph G = (V,E) is the smallest natural number k such that G is L-colourable for any list
assignment L with |L(v)| ≥ k for all v ∈ V . A graph is said to be k-choosable if its choice
number is at most k.
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Sum choice number

A function f : V (G) → N is a choice function for G if G is L-colourable for any list
assignment L : V (G)→ P(N) such that |L(v)| ≥ f(v) for every vertex v ∈ V (G). The sum
choice number of G, written χSC(G), is the minimum sum of values of a choice function,
namely:

χSC(G) = min
{∑

v∈V

f(v) | f choice function for G
}
.

Interactive sum choice number

Recall that the interactive sum choice number is defined formally as a game, whose input
is a graph G = (V,E). Initially, every vertex v ∈ V has an empty colour-list, Lv. We set
L : v 7→ Lv.

At each round, Alice chooses a vertex v, and Bob must add to Lv a colour that does not
already belong to Lv. The game terminates when G is L-colourable. Alice seeks to minimise
the number of rounds, while Bob seeks to maximise this.

The interactive sum choice number of G is defined to be the number of rounds before the
game terminates, when both players play optimally. We write χISC(G) for the interactive
sum choice number of G.

We say a graph G admits a strategy of length k if Alice can play in a certain way so that
she can always provide a proper L-colouring of the graph at the end of round k or before.
The trace of a strategy on a given graph is the sequence of vertices on which Alice requested
a new colour. Note that a trace does not characterize the strategy used, as a strategy can
produce many different traces depending on how Bob plays.

1.2. Background on the sum choice number

A lot of work has been done on the sum choice number of graphs, and in particular on
determining which graphs are sc-greedy, but relatively little is known. A particular challenge
in proving special cases of our conjecture is that, for many graphs G, χSC(G) is only lower
and upper bounded, not fully determined. We do not attempt to describe the state of the
art in research into the sum choice number, but in the remainder of this section we list facts
about the sum choice number which we will use in the rest of the paper.

Most of the graphs for which the sum choice number is known exactly are those which
have been shown to be sc-greedy. These include complete graphs [9], trees [9], cycles [2],
cycles with pendant paths [6], the Petersen graph [6], P2�Pn [6], generalised theta-graphs
Θk1,k2,k3 (unless k1 = k2 = 1 and k3 is odd), certain wheels [10], and trees of cycles [12, 6].

The smallest graph which is not sc-greedy is K2,3: the greedy bound tells us that
χSC(K2,3) is at most 11, but in fact K2,3 is 2-choosable, implying that χSC(K2,3) ≤ 10
(and it is straightforward to check that in fact χSC(K2,3) = 10). Another graph which is
not sc-greedy but whose sum choice number has been determined exactly is the 3× n grid,
P3�Pn:

Theorem 1.2 ([7]). χSC(P3�Pn) = 8n− 3− bn
3
c
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While the sum choice number is not known exactly for most complete bipartite graphs,
new bounds have recently been derived for the sum choice number of Kp,q in the case that
p is much smaller than q.

Theorem 1.3 ([5]). There exist positive constants c1 and c2 such that, for all p ≥ 2 and
q ≥ 4p2 log p,

2q + c1p
√
q log p ≤ χSC(Kp,q) ≤ 2q + c2p

√
q log p.

We finish this section by noting two simple facts about the sum choice number of graphs.
First of all, if H is a subgraph of G, then χSC(H) ≤ χSC(G). Secondly, if G is the disjoint
union of two graphs G1 and G2 then χSC(G) = χSC(G1) + χSC(G2).

2. Basic facts about interactive sum list colouring

In this section we will discuss a number of simple facts about interactive sum list colouring
which we will exploit throughout the rest of the paper. These include assumptions we can
make about Alice’s strategy, ways to modify Alice’s strategy, and bounds on the interactive
sum choice number of graphs with specific properties.

The first and surprisingly useful observation is that Alice will necessarily need to request
a colour for each vertex at some point along the strategy, and thus can make these requests
consecutively at the start of the game without increasing the number of moves required.

Observation 2.1. Given a graph G on n vertices v1, . . . , vn, Alice has a strategy of length k
for G iff she has a strategy of length k for G such that any trace starts with (v1, v2, . . . , vn).

Therefore, we introduce the notion of α-strategy, for α : V (G) → N. An α-strategy is a
strategy assuming L starts as (v 7→ [α(v)])v∈V (G) instead of (v 7→ [ ])v∈V (G).

Observation 2.2. Given a graph G on n vertices, Alice has a strategy of length k for G iff
for every function α : V (G)→ N she has an α-strategy of length k − n.

We can also combine strategies, as follows.

Observation 2.3. Given a graph G on n vertices, and α : V (G)→ N, if within k1 requests,
there is a function β : V (G) → N such that β(v) ∈ L(v) for every v ∈ V (G), and Alice has
a β-strategy of length k2, then Alice has an α-strategy of length k1 + k2.

Observation 2.3 is particularly helpful when dealing with graphs which admit a small
vertex or edge cut.

We now describe how Alice can modify her strategy to ensure that a particular colour is
not used to colour a given vertex.

Lemma 2.4. Given a graph G on n vertices, a vertex u and a colour c, if Alice has a
strategy of length k for G then Alice has a strategy of length k+ 1 for G such that G admits
an L-colouring β where β(u) 6= c.
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Proof. We let Alice unfold her strategy on G. Whenever she requests a colour for u, we check
whether Bob gives her colour c. When he doesn’t, we keep going. If he does, we request
another colour for u, and ask Alice to pretend that was the colour Bob gave her in the first
place. Alice’s strategy terminates in at most k rounds regardless of which colours Bob gives
to her, and Bob can only offer c for u once, so the whole strategy terminates in at most k+1
rounds.

Applying this result repeatedly gives the following immediate corollary.

Corollary 2.5. Given a graph G = (V,E), a set U ⊆ V and a function f : U → P(N), if
Alice has a strategy of length k for G then Alice has a strategy of length k+

∑
u∈U |f(u)| for

G such that G admits an L-colouring β where, for every u ∈ U , β(u) /∈ f(u).

In the remainder of this section we give upper bounds on χISC(G) that depend on prop-
erties of G. We begin by considering the size of the largest stable set in G.

Lemma 2.6. If α is the number of vertices in the largest stable set in G, then χISC(G) ≥
2|V (G)| − α.

Proof. Suppose, for a contradiction, that Alice has a strategy that will guarantee a proper
colouring after only 2|V (G)| −α− 1 rounds. This must work whatever colours Bob chooses,
so we may assume that every vertex receives colour 1 as its first colour. Once every vertex
has been given its first colour, we have |V (G)| − α− 1 moves remaining. There is therefore
a set W of size at least α+ 1 vertices in which none is given a second colour; however, since
the largest stable set in G contains α vertices, there exist two adjacent vertices in W . These
vertices must both end up with colour 1, contradicting the assumption that Alice can find a
proper colouring.

In the next two lemmas, we consider the relationship between the interactive sum choice
number of a graph and that of its subgraphs.

Lemma 2.7. Let G be a graph and H a subgraph of G. Then χISC(H) ≤ χISC(G)− |V (G) \
V (H)|.

Proof. Suppose Alice has a strategy which will guarantee a proper colouring of G after k
moves. She can play this same strategy on H, simply omitting any rounds in which she would
request a colour for a vertex in V (G) \ V (H). This will certainly give a proper colouring
of H. Moreover, Alice’s strategy to colour G must include at least one round in which she
requests a colour for each vertex in V (G) \ V (H), so in her new strategy she omits at least
|V (G) \ V (H)| rounds. Thus she is guaranteed to obtain a proper colouring of H after at
most k − |V (G) \ V (H)| rounds.

Lemma 2.8. Let G be a graph, and let H be an induced subgraph of G. Then

χISC(G) ≤ χISC(H) + χISC(G[V (G) \ V (H)]) + |E(V (H), V (G) \ V (H)|.

6



Proof. Alice begins by applying a strategy of length χISC(G[V (G)\V (H)]) to obtain a proper
colouring β of G[V (G) \V (H)]. The goal is now to obtain a proper colouring γ of H so that
combining β and γ gives a proper colouring of G. Note that γ can be any proper colouring
of H that satisfies the following additional condition: for any edge uv with u ∈ V (H) and
v /∈ V (H), γ(u) 6= β(v). But we know from Corollary 2.5 that Alice has a strategy to
obtain such a colouring γ for H in at most χISC(H) + |E(V (H), V (G) \ V (H)| rounds. She
can therefore now apply this strategy (after obtaining her initial proper colouring β) to
obtain a proper colouring of G after a total of at most χISC(H) + χISC(G[V (G) \ V (H)]) +
|E(V (H), V (G) \ V (H)| rounds, as required.

We now make a simple observation about the disjoint union of two graphs.

Remark 2.9. Let G be the disjoint union of two graphs G1 and G2. Then

χISC(G) = χISC(G1) + χISC(G2).

Proof. Alice first applies her strategy to obtain a proper colouring of G1, and then applies
her strategy to obtain a proper colouring of G2.

Surprisingly, removing a single edge can make a relatively big difference. Recall that
χISC(Kp) =

∑p
i=1 i = p·(p+1)

2
.

Theorem 2.10. For every p ≥ 2, if e is any edge of the complete graph Kp, we have

χISC(Kp − e) ≤ p·(p+1)
2
− p−2

3
.

Proof. Let G be a graph isomorphic to Kp − e, and let u and v be the only non-adjacent
vertices in G. Fix a function α : V (Kp − e) → N. Alice requests p−2

3
extra colours on each

of u and v. We consider two cases depending on whether L(u) ∩ L(v) = ∅. All along this,
when we deal with a vertex x, it means Alice requests as many extra colours as needed until
there is a colour c available for x that does not appear on any coloured neighbour of x; Alice
then colours x with c.

• Assume that L(u) ∩ L(v) 6= ∅. Alice colours u and v with the same colour c, and we
deal with all the other vertices in an arbitrary order. In total, this α-strategy involves
at most (p−2)·(p−1)

2
+ 2p−2

3
requests.

• Assume now that L(u) ∩ L(v) = ∅. Note that together, u and v have at least |L(u) ∪
L(v)| = 2p−2

3
+ 2 colours available.

We deal with uncoloured vertices other than u and v until one of u and v, say u, has
only one colour available left (or all other vertices are coloured). Then we deal with u,
and note that this does not require any extra request. We keep dealing with uncoloured
vertices other than v until v has only one colour available left (or all other vertices are
coloured): we deal with v and keep going until every vertex is coloured. Consider the
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order O with which we dealt with vertices. We note that dealing with a vertex requires
fewer than its rank in O extra requests, except for u and v which required no extra
request.

Since |L(u)| = |L(v)| = p−2
3

+ 1 and we only deal with u and v when they only have
one colour available left or all other vertices are coloured, we have that the rank of
each of u and v in O is at least p−2

3
+ 1. Additionally, since |L(u) ∪ L(v)| = 2p−2

3
+ 2,

the last vertex of u and v that is dealt with is only considered after at least 2p−2
3

other
vertices in G. Therefore, the sum of orders of u and v in O is at least p. In total, this
α-strategy involved at most

∑p
i=1(i− 1)− (p− 2) + 2 · p−2

3
= (p−2)(p−1)

2
− (p− 2) + 2p−2

3

requests.

This gives us a strategy of length at most max(p + (p−2)·(p−1)
2

+ 2p−2
3
, p +

∑p
i=1(i− 1)−

(p− 2) + 2 · p−2
3

) = p(p+1)
2
− p−2

3
, hence the conclusion.

3. Graphs that are sc-greedy

In this section we consider the interactive sum choice number for classes of graphs that
are known to be sc-greedy. We begin by showing that our conjecture holds for all sc-greedy
graphs, before obtaining better bounds on the interactive sum choice number for trees and
cycles.

3.1. The general case of sc-greedy graphs that are not complete

In this section we show that Conjecture 1.1 holds for all graphs that are sc-greedy. We
begin by determining the interactive sum choice number of the path on 3 vertices.

Lemma 3.1. Let P3 denote the path on 3 vertices. Then χISC(P3) = 4.

Proof. It follows immediately from Lemma 2.6 that χISC(P3) ≥ 4, so it remains to prove
that the reverse inequality holds. By Observation 2.2 it suffices to demonstrate that for any
α : V (P3)→ N there exists an α-strategy of length at most 1 for P3.

We may assume without loss of generality that α is not a proper colouring of P3. Let
us denote by x, y, z the vertices of P3, where x and z are the endpoints. There are now two
cases to consider. If α(x) = α(z) then Alice can obtain a proper colouring by requesting one
more colour for y, and we are done. If not, then without loss of generality we may assume
that α(x) = α(y) 6= α(z); in this case Alice can obtain a proper colouring by requesting one
more colour for x. Thus we have shown that Alice has an α-strategy of length 1 in either
case, completing the proof.

We can apply the same ideas to obtain an upper bound on the interactive sum choice
number of any graph that contains many vertex-disjoint induced copies of P3.

Lemma 3.2. Let G be a graph which contains at least t vertex-disjoint induced copies of P3.
Then χISC(G) ≤ |V (G)|+ |E(G)| − t.
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Proof. By Observation 2.2 it suffices to demonstrate that for every α : V (G) → N, there
exists an α-strategy of length at most |E(G)| − t for G. We proceed by induction on t. If
t = 0, the result follows directly from the fact that χISC(G) ≤ χSC(G) ≤ |V (G)| + |E(G)|.
Assume now that t > 0 and that, for any graph H which contains at least t−1 vertex-disjoint
copies of P3, we have χISC(H) ≤ |V (H)|+ |E(H)| − (t− 1).

Let α : V (G)→ N. Fix a set P of t vertex-disjoint induced copies of P3 in G, and choose
an arbitrary element P ∈ P . We will denote the vertices of P by x, y and z, where x and
z are not adjacent. It suffices to demonstrate that G has an α-strategy of length at most
|E(G)| − t. We consider two cases depending on whether α(x) = α(y) = α(z).

• Assume that α(x) 6= α(y) or α(z) 6= α(y). By symmetry, we can assume α(x) 6= α(y).
Note that G′ = G \ {x, y} contains at least t− 1 vertex-disjoint copies of P3 so, by the
inductive hypothesis,

χISC(G′) ≤ |E(G′)|+ |V (G′)| − (t− 1)

= |E(G)| − |E({x, y}, V (G′))| − 1 + |V (G)| − 2− (t− 1)

= |E(G)| − |E({x, y}, V (G′))|+ |V (G)| − 2− t.

Thus, for any β : V (G) → N, G′ admits a β-strategy of length at most |E(G)| −
|E({x, y}, V (G′))| − t. By Lemma 2.4, we obtain that G′ has an α-strategy of length
at most

|E(G)| − |E({x, y}, V (G′))| − t+ |E({x, y}, V (G′))| = |E(G)| − t

such that no neighbour of x (resp. y) receives the colour α(x) (resp. α(y)). It follows
that G has an α-strategy of length at most |E(G)| − t, as required.

• Assume now that α(x) = α(y) = α(z). Note that G′ = G \ {x, z} contains at least
t− 1 vertex-disjoint copies of P3 so, by the inductive hypothesis,

χISC(G′) ≤ |E(G′)|+ |V (G′)| − (t− 1)

= |E(G)| − |E({x, z}, V (G′))|+ |V (G)| − 2− (t− 1).

Thus, for any β : V (G) → N, G′ admits a β-strategy of length at most |E(G)| −
|E({x, z}, V (G′))| − (t − 1). Applying Lemma 2.4 again, we obtain that G′ has an
α-strategy of length at most

|E(G)| − |E({x, z}, V (G′))| − (t− 1) + |E({x, z}, V (G′))| − |N(x) ∩N(z)|

such that no neighbour of x or z receives the colour α(x). Note that |N(x)∩N(z)| ≥ 1,
as y is a common neighbour of x and z, so we see once again that G has an α-strategy
of length at most |E(G)| − t, as required.

It is now straightforward to show that our conjecture holds for all sc-greedy graphs.
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Corollary 3.3. Let G be a graph which is not a disjoint union of complete graphs. If G is
sc-greedy, then χISC(G) < χSC(G).

Proof. By assumption, some connected component C of G is not a complete graph; therefore
C contains at least one copy of P3 as an induced subgraph. It then follows immediately from
Lemma 3.2 that χISC(G) ≤ |V (G)|+ |E(G)| − 1 = χSC(G)− 1.

3.2. Trees

In this section we discuss the interactive sum choice number of trees, which differs from
the sum choice number by approximately half the number of vertices.

Theorem 3.4. Let T be a tree on n ≥ 3 vertices. Then χISC(T ) ≤ b3n
2
c.

Proof. By contradiction. Take a minimal counter-example T , and consider n its number of
vertices. By Observation 2.2, let α : V (G)→ N such that T has no α-strategy of length bn

2
c.

Assume there is in T a vertex u adjacent to two leaves v1 and v2. Let T ′ be T \ {v1, v2}.
Note that by minimality of T , the tree T ′ admits a strategy of length b3n

2
c − 3. If α(v1) =

α(v2), by Lemma 2.4, T ′ admits a strategy of length b3n
2
c− 3 + 1 so that u is coloured at the

end with a colour other than α(v1). It follows that T ′ admits an α-strategy of length bn
2
c so

that u is coloured at the end with a colour other than α(v1). We apply this strategy on T ′,
which results in a proper colouring of T with an α-strategy of length bn

2
c, a contradiction.

If α(v1) 6= α(v2), we apply an α-strategy of length bn
2
c − 1 on T ′ and consider the resulting

colour β of u. Assume w.l.o.g. that β 6= α(v1). We request a new colour on v2 if needed:
this yields an α-strategy for T of length bn

2
c, a contradiction.

Therefore, no vertex in T is adjacent to two leaves. Consequently, if T contains more
than 2 vertices, there is a vertex v with N(v) = {u,w} where w is a leaf. First assume
that α(v) 6= α(w). Then we apply an α-strategy on T \ {v, w} such that u is coloured in
the end with a colour other than α(v). By Lemma 2.4 and minimality of T , there is such a
strategy of length bn

2
c. This yields a proper colouring of T with a strategy of length bn

2
c, a

contradiction. Therefore α(v) = α(w). We apply an α-strategy of length n
2
−1 on T \{v, w},

and consider the final colour β of u. If β = α(v), we request a new colour for v, and note
that by colouring v with it, we obtain a proper colouring of T , hence we have a strategy of
length bn

2
c. If β 6= α(v), we request a new colour for w, and note that by colouring w with

it, we obtain a proper colouring of T , hence the conclusion.
Thus T has at most 2 vertices, a contradiction.

This bound is tight for paths: since the largest stable set in a path P on n vertices has
size exactly dn

2
e, it follows from Lemma 2.6 that χISC(P ) ≥ 2n− dn

2
e = b3n

2
c. However, the

following result shows that we can make a significant improvement on Theorem 3.4 in the
case of stars.

Lemma 3.5. χISC(K1,p) = p+ q + 1, where q = max{q ∈ N| q∗(q+1)
2
≤ p}.

Proof. We first prove the upper-bound, i.e. K1,p admits a strategy of length p + q + 1. Let
α be an assignment of a colour to each vertex. We will describe an α-strategy of length q.
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Let u be the vertex of degree p, and v1, . . . , vp be the vertices of degree 1 (note that if p = 1
then χISC(K1,1) = χISC(P2), which we know to be 3).

Let c1 = α(u). Consider the set S1 of vertices w in {v1, . . . , vp} satisfying α(w) = c1. If
|S1| ≤ q, then we request a new colour for each vertex in S1, and obtain a proper colouring
in at most p+ q + 1 rounds. Therefore we can assume |S1| ≥ q + 1.

We request a new colour for u, let c2 be the colour Bob gives. Consider the set S2 of
vertices w in { v1, . . . , vp} satisfying α(w) = c2. If |S2| ≤ q−1, then we request a new colour
for each vertex in S2, and obtain a proper colouring in at most p+ q + 1 rounds. Therefore
we can assume |S2| ≥ q.

We can iterate until we find an L-colouring or reach the end of the qth round. Assume
for contradiction that the strategy fails, i.e. we request q new colours for u but none of
them allows us to obtain an L-colouring. Then we have for every i from 1 to q + 1 that
|Si| ≥ q + 2 − i. Note that the Si’s are pairwise disjoint, as they correspond to different

values taken by α. In particular, we have p ≥
∑q+1

i=1 (q+ 2− i), thus p ≥
∑q+1

i=1 i = (q+1)·(q+2)
2

,
a contradiction to the choice of q. Consequently, the strategy does not fail, and we have an
α-strategy of length q, for every α, hence χISC(K1,p) ≤ p+ q + 1.

Let us now argue that there is no strategy of length p + q. To do so, we will exhibit an
assignment α of first choices and a strategy for Bob that will not allow for less than q extra
requests from Alice. Assign colour 1 to u and order the vi’s arbitrarily: assign colour 1 to
the first q vertices vi’s, colour 2 to the following q − 1 vertices, colour 3 to the next q − 2
vertices, etc, colour q to the next vertex, and colour the rest arbitrarily (note that there
remains between 0 and q vertices). Alice has to obtain an L-colouring in q − 1 rounds.

Bob’s strategy is to offer the colours (2, . . . , q) for u (in that order), and arbitrary colours
for other vertices. Assume Alice has a strategy in q− 1 rounds, and let 0 ≤ k ≤ q− 1 be the
number of new colours for u that strategy requires. Alice has to finish in q − k − 1 rounds.
Note that for every colour i in 1, . . . , k + 1, there are at least q − i + 1 ≥ q − k neighbours
of colour i. Therefore, Alice’s only hope of obtaining a proper colouring is to request new
colours for at least q − k neighbours of u: a contradiction.

It is therefore tempting to think that we can use Lemma 3.5 to obtain a more refined
bound in the case of trees that are not paths. However, we note that any tree T that admits
a perfect matching will satisfy χISC(T ) ≥ 3n

2
, as it suffices to see that there is no α-strategy

of length less than n
2

if α assigns the same colour to all the vertices in T . Note that a star
K1,p+1 where p edges are subdivided is very far from being a path, yet admits a perfect
matching. We can further note that even if the tree does not admit a perfect matching, the
same argument shows that there is no strategy of length less than n+ k where k is the size
of a smallest vertex cover of T (that is, of a subset S of vertices such that T − S induces
a stable set). Nevertheless, this is still not the right bound for all trees, as stars admit a
vertex cover of size 1 and yet require much more than n + 1 rounds in general. Since the
dissemination of an earlier version of this paper, the case of trees has been fully resolved by
Puleo and West [15].
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3.3. Cycles

In this section we determine exactly the interactive sum choice number of cycles.

Theorem 3.6. Let Cn be the cycle on n ≥ 3 vertices. Then χISC(Cn) = b3(n+1)
2
c.

Proof. We first argue that χISC(Cn) ≤ b3(n+1)
2
c for every n. Let v be an arbitrary vertex of

Cn, and note that Cn \ {v} is a path on n− 1 vertices. Thus, by Theorem 3.4 we know that

χISC(Cn \ {v}) ≤ b3(n−1)2
c. It then follows from Lemma 2.8 that

χISC(Cn) ≤ χISC(Cn \ {v}) + 1 + 2 ≤
⌊

3(n− 1)

2

⌋
+ 3 =

⌊
3(n+ 1)

2

⌋
.

To see the reverse inequality, we consider separately the cases for even and odd n. Suppose
first that n is odd, and suppose for a contradiction that Alice has a strategy of length at
most b3(n+1)

2
c− 1 = b3n+1

2
c. Since Alice’s strategy must work whatever colours Bob chooses,

we may assume that the first time Alice requests a colour for any vertex she will be given
colour 1, and the second time she requests a colour for any vertex she will be given colour
2. Note that, following the reasoning of Lemma 2.6, any strategy must request a second
colour for every vertex in some set U such that V (Cn) \ U is a stable set, implying that
|U | ≥ n − n−1

2
= n+1

2
. Thus our strategy can have length at most b3n+1

2
c if and only if

|U | = n+1
2

, and we request exactly one colour for every vertex not in U and two colours for
every vertex in U , so every vertex outside U ends up with colour list {1} and every vertex
in U with colour list {1, 2}. Any proper colouring of Cn respecting these colour lists would
give a proper 2-colouring of Cn, giving contradiction since n is odd.

Now suppose that n is even, and denote the vertices of Cn as v1, . . . , vn (where vivj is
an edge if and only if j − i ≡ 1 mod n), and that we have an initial colouring α such that
α(v2i−1) = α(v2i) = i for each 1 ≤ i ≤ n/2. Any α-strategy must then request an additional
colour for at least one vertex in {v2i−1, v2i} for each i, so every α-strategy has length at

least n/2; we can only obtain a strategy of length strictly shorter than b3(n+1)
2
c if there is an

α-strategy that involves requesting precisely one extra colour for exactly one vertex in each
set {v2i−1, v2i}. Suppose, therefore, that there exists such an α-strategy; denote by U the set
of vertices for which Alice requests an extra colour, and notice that every vertex in U must
ultimately be coloured with its second colour in order to obtain a proper colouring.

For each n+1 ≤ i ≤ b3n+1
2
c, let U ′ be the set of vertices on which Alice requests a second

colour before round b3n+1
2
c. Suppose that Alice selects vertex v at round i; we define the

following response for Bob:

• if i < b3n+1
2
c, add colour n

2
+1 to Lv (note that colour n

2
+1 6= α(w) for any w ∈ V (Cn));

• if i = b3n+1
2
c and v has a neighbour in U ′, add n

2
+ 1 to Lv;

• if i = b3n+1
2
c and N(v) = {x, y} with x, y /∈ U ′, add the unique colour in {α(x), α(y)}\

{α(v)} to Lv.

12



We claim that, if Bob always responds in this way, there is no proper L-colouring at the
end of round b3n+1

2
, giving the required contradiction. To see this, let w be the vertex Alice

chooses at round b3n+1
2
c, and recall that every vertex in U , including w, must ultimately be

coloured with its second colour in any proper colouring. If w had a neighbour in U ′ then
there are two adjacent vertices in U which are both assigned colour n

2
+ 1 as their second

colour, giving a contradiction. On the other hand, if w had no neighbour in U ′, then its
neighbours will ultimately be coloured with α(x) and α(y) respectively (as each has a colour
list of length one), but Lw = {α(x), α(y)}, again giving a contradiction.

Therefore Bob can always prevent Alice from obtaining a proper colouring after only
n+ n

2
rounds, and it follows that, when n is even, χISC(Cn) ≥ n+ n

2
+ 1 = b3(n+1)

2
c.

4. Graphs that are not sc-greedy

In this section, we extend our earlier results to show that Conjecture 1.1 also holds for
certain classes of graphs that are not sc-greedy. We consider two families of bipartite graphs:
complete (unbalanced) bipartite graphs, and grids.

4.1. Complete bipartite graphs, the unbalanced case

In this section we generalise Lemma 3.5 to show that Conjecture 1.1 holds for any com-
plete bipartite graph in which the sizes of the two vertex classes are very different. We will
make use of the following result, proved by Kemnitz, Marangio and Voigt, regarding graphs
containing a cycle; we will later show that the interactive version can beat this bound.

Lemma 4.1 ([11]). Let G be a connected graph on n vertices. If G is not a tree, then
χSC(G) ≥ 2n.

We now derive an upper bound on the interactive sum choice number for complete bi-
partite graphs.

Theorem 4.2. For any integers p and q, we have χISC(Kp,q) ≤ p+ q + p2
√

2q.

Proof. We will generalize the proof of Lemma 3.5 to the case where, roughly, there are p
centers instead of just one. Let r = max{r ∈ N| r∗(r+1)

2
≤ q}. Note that r ≤

√
2q. Let α be

an assignment of a colour to each vertex. We will describe an α-strategy of length p2 · r. Let
u1, . . . , up be the vertices of degree q, and v1, . . . , vq be the vertices of degree p.

We proceed by induction on p+ q. Let V1 be a largest subset of {v1, . . . , vq} that has the
same image c by α. If |V1| ≤ r, there are no r+1 vertices in {v1, . . . , vq} with the same image
by α. Alice colours every ui with α(ui), and requests an extra p colours on every vertex vj
with α(vj) ∈ {α(ui)|1 ≤ i ≤ p}. This sums up to at most p2 · r requests, as required.

If |V1| ≥ r+ 1, Alice colours every vertex in V1 with c, and uses Lemma 2.4 to guarantee
that no vertex in {u1, . . . , up} ever receives the colour c as an option, making p extra requests.
This ensures that if there is β-strategy on the remaining vertices of length at most ` for
every β, then there is an α-strategy on the initial graph of length at most `+ p. Note that if
V1 = {v1, . . . , vq} then we are already done, so we may assume that this is not the case and
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hence that r+ 1 < q. Applying the inductive hypothesis to G′ := G \V1, we see that for any
β : V (G′)→ N, Alice has a β-strategy on G′ of length p2

√
2(q − (r + 1)). We are therefore

done if
√

2(q − (r + 1)) ≤
√

2q − 1, which holds if and only if 2
√

2q ≤ 2r + 3 ⇐⇒ 8q ≤
4r2 + 12r + 9. We know by definition of r that 8q ≤ 8

(
(r+1)(r+2)

2
− 1
)

= 4r2 + 12r, giving

the required bound.

This gives the following immediate corollary.

Corollary 4.3. If p� q then χISC(Kp,q) < χSC(G).

It remains to understand how the interactive sum choice number behaves in the balanced
case: we leave this is as an open question. Theorem 4.2 can be marginally generalized, as
follows.

Theorem 4.4. Let G = (A ∪ B,E) be a graph such that every vertex in A is adjacent to
every vertex in B. Then χISC(G) ≤ |A|+ |B|+ (max(∆(G[A]),∆(G[B])) + 1) · |A|2

√
2|B|.

Proof. We merely apply the same strategy as for Theorem 4.2. We simply replace ev-
ery request for a new colour on some ui (which correspond here to vertices in A) with
∆(G[A]) + 1 requests, so as to guarantee that no matter the colouring of the rest of G
there is always one out of the (∆(G[A]) + 1) that is not used on a neighbour of ui in
G[A]. We proceed symmetrically on B. This yields an α-strategy for G of length at most
(max(∆(G[A]),∆(G[B]) + 1) · (|A|2

√
2|B|) for every α, hence the conclusion.

By Lemma 4.1 and Lemma 2.7, we obtain in particular the following corollary.

Corollary 4.5. Let G = (A∪B,E) be a graph. If (max(∆(G[A]),∆(G[B]))+1)·|A|2
√

2|B| <
|A|+ |B|, then χISC(G) < χSC(G).

Corollary 4.5 also implies that fans on at least 19 vertices satisfy Conjecture 1.1, by
Lemma 4.1.

4.2. Grids

In this section we demonstrate that the interactive sum choice number is strictly smaller
than the sum choice number of the k × ` grid Gk,` for any positive integers k and `; in fact
we prove the following result.

Theorem 4.6. Let Gk,` denote the k × ` grid, where k ≤ `, and suppose that ` ≥ 3. Then

χSC(Gk,`)− χISC(Gk,`) ≥
1

18
k`.
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Note first that the result follows immediately from Theorem 3.4 in the case that k = 1,
as in this case Gk,` is in fact a path on ` vertices.

If k = 2, then Gk,` is a tree of cycles and so is known to be sc-greedy [6, 12]; thus
χSC(Gk,`) = 5` − 2. On the other hand, by regarding Gk,` as two paths of length ` with a
total of ` cross-edges between the two paths, we can apply Lemma 2.8 to see that χISC(Gk,`) ≤
2b3`

2
c+ ` ≤ 4`, so χSC(Gk,`)−χISC(Gk,`) = `−2 > 1

18
k` since ` ≥ 3. Thus the theorem holds

when k = 2.
The next two lemmas complete the proof of Theorem 4.6. We begin by giving a lower

bound on the sum choice number of grids.

Lemma 4.7. Let Gk,` denote the k× ` grid, and suppose that ` ≥ k ≥ 3. Then χSC(Gk,`) ≥
23
9
k`− 2

9
k`− k.

Proof. For any pair of non-negative integers r and s, we define Hr,s to be the graph consisting
of the disjoint union of r copies of P2�P` and s copies of P3�P`. Now observe that for any
positive integer k ≥ 3, there exists r ∈ {0, 1, 2} and a non-negative integer s such that
Gk,` contains Hr,s as a spanning subgraph. Thus we know that χSC(Gk,`) ≥ χSC(Hr,s), so it
suffices to prove that the lower bound holds for χSC(Hr,s) whenever r ∈ {0, 1, 2} and s ∈ Z+

0

satisfy 2r + 3s = k.
Recall (Theorem 1.2) that χSC(P3�P`) = 8`− 3− b `

3
c ≥ 8`− 3− `

3
, and that (as P2�P`

is sc-greedy) χSC(P2�P`) = 5`− 2. Thus we see that

χSC(Hr,s) = r (χSC(P2�P`)) + s (χSC(P3�P`))

≥ r(5`− 2) + s

(
8`− 3− `

3

)
= 5r`− 2r + 8`s− 3s− 1

3
`s

=
23

3
`s+ 5`r − 3s− 2r.

There are now three cases to consider, depending on the value of r.
If r = 0 then s = k

3
, and we have

χSC(Hr,s) =
23

3
`
k

3
− 3

k

3

=
23

9
k`− k

>
23

9
k`− 2

9
k`− k,

as required.
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Next suppose that r = 1, so s = k−2
3

. In this case we have

χSC(Hr,s) =
23

3
`
k − 2

3
+ 5`− 3

k − 2

3
− 2

=
23

9
k`− 46

9
`+ 5`− k + 2− 2

=
23

9
k`− 1

9
`− k

>
23

9
k`− 2

9
k`− k,

as required.
Finally, suppose that r = 2 and hence s = k−4

3
. In this case,

χSC(Hr,s) =
23

3
`
k − 4

3
+ 10`− 3

k − 4

3
− 4

=
23

9
k`− 92

9
`+ 10`− k + 4− 4

=
23

9
k`− 2

9
`− k,

completing the proof.

To complete the proof of Theorem 4.6, we now derive an upper bound on the interactive
sum choice number of grids by applying our knowledge about the interactive sum choice
number of paths inductively.

Lemma 4.8. Let Gk,` denote the k× ` grid, and assume that ` ≥ k ≥ 3. Then χISC(Gk,`) ≤
5
2
`k − `

2
− k.

Proof. There are three different cases to consider, depending on the parities of ` and k; in
each case we will decompose Gk,` into a number of paths and apply Lemma 2.8 together
with the fact that χISC(Pn) =

⌊
3n
2

⌋
.

For the first case, suppose that ` is odd. In this case we consider decomposing Gk,` into
k paths of length ` (each corresponding to one row of the grid), with ` edges between each
pair of consecutive paths. Applying Lemma 2.8 repeatedly, we see that

χISC(Gk,`) ≤ kb3`
2
c+ (k − 1)`

= k

(
`+

`− 1

2

)
+ (k − 1)`

since ` is odd

=
5

2
k`− k

2
− `

≤ 5

2
k`− `

2
− k,
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Figure 1: Decomposing Gk,` into k paths of odd length when k and ` are both even.

since ` ≥ k.
For the second case, suppose that k is odd. In this case we consider decomposing Gk,`

into ` paths of length k, then by the same reasoning as in the first case we have once again
that

χISC(Gk,`) ≤
5

2
k`− `

2
− k.

For the third and final case, suppose that k and ` are both even. In this case we decompose
the graph into k “L-shaped” paths, as illustrated in Figure 1. The longest of these paths
has length k + `− 1 and the shortest has length `− k + 1, with consecutive paths differing
in length by 2.

As before, we apply Lemma 2.8 repeatedly to see that

χISC(Gk,`) ≤
k∑

i=1

χISC(P`−k+2i−1) + a,

where a is the number of edges of Gk,` not covered by our collection of paths. Since the
collection of paths forms a spanning forest for Gk,` with k components, it follows that the
number of edges not covered by this collection is exactly

|E(Gk,`)| − (k`− k) = k(`− 1) + `(k − 1)− k`+ k = k`− `.
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Thus

χISC(Gk,`) ≤
k∑

i=1

⌊
3(`− k + 2i− 1)

2

⌋
+ k`− `

=
k∑

i=1

(
3

2
`− 3

2
k + 3i− 2

)
+ k`− `

since k, ` even

=
3

2
k`− 3

2
k2 − 2k + k`− `+ 3

k∑
i=1

i

=
5

2
k`− 3

2
k2 − 2k − `+

3

2
k(k + 1)

=
5

2
k`− `− k

2

≤ 5

2
k`− `

2
− k,

as required.

5. Graphs that may or may not be sc-greedy

In this section we see that we can prove Conjecture 1.1 for certain graph classes where
very little is known about the sum choice number, in particular when it is not even known
whether the graphs in question are sc-greedy.

A good 2-degenerate graph is a graph that admits an ordering O = (v1, . . . , vn) of the
vertices so that each vertex has at most 2 neighbours later in the order and only has two if
it belongs to a cycle whose vertices lie later in the order. Let q(G) be the number of vertices
that belong to a cycle whose vertices lie later in the order. Cacti (graphs in which no two
cycles share an edge) are examples of good 2-degenerate graphs.

Theorem 5.1. Any good 2-degenerate graph G on n vertices satisfies χISC(G) ≤ 3(n+q(G))
2

.

Proof. By contradiction. Take a minimal counter-example G, consider n its number of
vertices and let q = q(G). By Theorem 3.4, we have q(G) ≥ 1. Consider an ordering
O = (v1, . . . , vn) of the vertices so that each vertex has at most 2 neighbours later in the
order and only has two if it belongs to a cycle whose vertices lie later in the order. For every
i, let Gi be the subgraph induced in G by the vertices (vi, vi+1, . . . , vn). Let α be a function
of first choices such that G has no α-strategy of length q + n+q

2
. Re-using the arguments

for trees, every vertex in G is adjacent to at most one leaf, and no vertex of degree 2 is
adjacent to a leaf. In particular, every cut-edge e is either adjacent to a vertex of degree 1
or separates G in two parts each of which contains at least one cycle. Let i be the smallest
integer such that vi belongs to a cycle in Gi. By choice of our ordering, the integer i is also
the smallest such that vi is of degree 2 in Gi. Let u and w be the two neighbours of vi in
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Gi. Note that since no vertex not in Gi belongs to a cycle, every edge incident to vi that is
not uvi nor wvi is a cut-edge, and is therefore incident to a leaf. Remember that no vertex
is adjacent to more than one leaf, and let x be the possible leaf vi is adjacent to. We have
N(vi) ⊆ {u,w, x}.

We first assume that x exists. We note that G′ = G−{vi, x} admits a strategy of length
3((n−2)+(q(G)−1))

2
= 3(n+q(G))

2
− 9

2
, by minimality of G. If α(vi) 6= α(x), we run the strategy

on G′ using Lemma 2.4 to enforce that u and w should receive a colour distinct from α(vi):

this costs only 2 extra requests. In total, the strategy ran in at most 3(n+q(G))
2

− 9
2

+ 2 + 2
rounds, a contradiction with the choice of G. If α(vi) = α(x), we run the strategy on G′,
and consider two cases depending on whether one of u and w is coloured with α(vi): if so,
we request two new colours for vi. If not, we request one new colour for x. All in all, the
strategy ran in at most 3(n+q(G))

2
− 9

2
+ 2 + 2 rounds, a contradiction with the choice of G.

Let us now deal with the case where x does not exist. We note that G′ = G−{vi} admits

a strategy of length 3((n−1)+(q(G)−1))
2

= 3(n+q(G))
2

−3, by minimality of G. We run the strategy
on G′, then request two new colours on vi: since d(vi) = 2 this is enough to guarantee the

proper colouring of G′ can be extended to G. the strategy ran in at most 3(n+q(G))
2

−3+1+2
rounds, a contradiction with the choice of G.

Combining this result with Lemma 4.1, we obtain the following immediate corollary.

Corollary 5.2. If G is a good 2-degenerate graph with q(G) < n
3
, then χISC(G) < χSC(G).

6. Conclusions and open problems

We have introduced the interactive sum choice number of graphs, a variation of the sum
choice number in which we are able to exploit partial information about the contents of colour
lists in order to inform our strategy. We demonstrated that in many cases this additional
information allows us to guarantee a proper list colouring when the sum of list lengths over
all the vertices is strictly smaller than the sum choice number of the graph, and for several
families of graphs we were in fact able to prove the existence of a large gap between the sum
choice number and the interactive sum choice number.

As is often the case when a new problem is introduced, this paper raises more questions
than it solves. The key open question arising from this work is to prove Conjecture 1.1,
namely that if G is not a complete graph then χISC(G) < χSC(G); a first step would be to
attempt to prove the conjecture for further graph classes, for example k-degenerate graphs,
chordal graphs, planar graphs, cographs or graphs of bounded treewidth. Since graphs with
high degeneracy are known to have high choice number [1] with a proof that only really uses
arguments around one arbitrary vertex, it might be worth trying to prove similarly that they
have (very) high sum choice number. In turn, that would be a step towards Conjecture 1.1
for graphs with high degeneracy.

It would also be interesting to investigate further just how much these two quantities
can differ; in particular, the upper bounds on the interactive sum choice number that we
have obtained for unbalanced bipartite graphs and grids are unlikely to be tight, so it seems
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natural to seek better bounds for these graph classes. A natural next step is to attempt to
find further classes of graphs for which the difference between the sum choice number and
the interactive sum choice number is a growing function of the number of vertices. On the
other hand, what can we say about the structure of graphs for which the difference between
the sum choice number and interactive sum choice number is bounded by some constant
independent of the number of vertices?

In addressing any of these questions, it would be extremely helpful to understand how
to use cut-edges, cut-vertices, modules, joins, and similar decompositions of graphs. Also,
tools to prove lower bounds on the interactive sum choice number are sorely missing.
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