The interactive sum choice number of graphs

Bonamy, M. and Meeks, K. (2021) The interactive sum choice number of graphs. Discrete Applied Mathematics, 292, pp. 72-84. (doi: 10.1016/j.dam.2021.01.003)

[img] Text
227824.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.



We introduce a variant of the well-studied sum choice number of graphs, which we call the interactive sum choice number. In this variant, we request colours to be added to the vertices’ colour-lists one at a time, and so we are able to make use of information about the colours assigned so far to determine our future choices. The interactive sum choice number cannot exceed the sum choice number and we conjecture that, except in the case of complete graphs, the interactive sum choice number is always strictly smaller than the sum choice number. In this paper we provide evidence in support of this conjecture, demonstrating that it holds for a number of graph classes, and indeed that in many cases the difference between the two quantities grows as a linear function of the number of vertices.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Meeks, Dr Kitty
Creator Roles:
Meeks, K.Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review and editing
Authors: Bonamy, M., and Meeks, K.
College/School:College of Science and Engineering > School of Computing Science
Journal Name:Discrete Applied Mathematics
ISSN (Online):1872-6771
Published Online:16 January 2021
Copyright Holders:Copyright © 2021 Elsevier B.V.
First Published:First published in Discrete Applied Mathematics 292:72-84
Publisher Policy:Reproduced in accordance with the publisher copyright policy

University Staff: Request a correction | Enlighten Editors: Update this record