

Kolomvatsos, K. and Anagnostopoulos, C. (2021) Proactive, uncertainty-

driven queries management at the edge. Future Generation Computer

Systems, 118, pp. 75-93. (doi: 10.1016/j.future.2020.12.028).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/227787/

Deposited on: 07 January 2021

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1016/j.future.2020.12.028
http://eprints.gla.ac.uk/227091/
http://eprints.gla.ac.uk/

Proactive, Uncertainty-Driven Queries Management at

the Edge

Kostas Kolomvatsos, Christos Anagnostopoulos

Department of Informatics and Telecommunications, University of Thessaly
Lamia, Greece

e-mail: kostasks@uth.gr

School of Computing Science, University of Glasgow
Glasgow, UK

e-mail: Christos.Anagnostopoulos@glasgow.ac.uk

Abstract

Research community has already revealed the challenges of data processing
when performed at the Cloud that may affect the performance of any desired
application. The main challenge is the increased latency observed when the
data should ‘travel’ to the Cloud from the location they are collected and the
waiting time for getting the final response. In an Internet of Things (IoT)
scenario, this time could be critical for supporting real time applications.
A solution to the discussed problem is the adoption of an Edge Computing
(EC) approach where data can be processed close to their collection point.
IoT devices could report data to a number of edge nodes that behave as
distributed data repositories having the capability of processing them and
producing analytics. Analytics should match the requirements of queries
defined by end users or applications with the collected data and the charac-
teristics of every edge node. However, when a query is defined, we should
identify the appropriate edge node(s) to process it. In this paper, we pro-
pose an uncertainty management model to efficiently allocate every incoming
query to the available edge nodes. Our scheme adopts the principles of Fuzzy
Logic (FL) theory and provides a decision making mechanism for the entity
having the responsibility of the envisioned allocations. We combine the pro-
posed uncertainty management scheme with a machine learning model based
on a Support Vector Machine (SVM) to enhance the FL reasoning. Our aim
is to manage all the hidden aspects of the problem combining two different
technologies with different orientations. We also propose a methodology for

Preprint submitted to Elsevier November 26, 2020

the automated generation of the Footprint of Uncertainty (FoU) of member-
ship functions involved in our interval Type-2 FL model. Our experimental
evaluation aims at revealing the pros and cons of our mechanism presenting
the results of extensive simulations adopting datasets found in the literature
and a comparative analysis with other efforts in the domain.

Keywords: Edge computing, Internet of Things, Query allocation, Fuzzy
Logic, Uncertainty Management, Interval Type-2 Fuzzy Sets, Automated
generation of fuzzy sets

1. Introduction

Nowadays, one can observe the advent of the Internet of Things (IoT)
that offers a huge infrastructure where autonomous devices can interact with
their environment and execute lightweight tasks. In this infrastructure, the
network provides the means for the exchange of data taking them from their
collection points towards the Cloud for long-term storage and further pro-
cessing. Processing activities have, usually, the form of queries asking for an-
alytics to create knowledge [52] and support the designed decision making.
Frequently, such a mechanism is incorporated into intelligent applications
trying to conclude efficient services for end users. However, when relying
on Cloud, we face a high average separation between IoT devices and Cloud
and increased network latency and jitter [58]. For alleviating the problem
of the increased latency, we can perform the processing of queries at the
edge infrastructure focusing on an Edge Computing (EC) model [56]. In EC,
numerous devices form the network edge like tablets, smart-phones, sensors,
gateways or nano data-centers [23]. EC aims at a distributed approach where
heterogeneous resources should be interconnected and controlled by various
means.

Our scenario involves the execution of queries at the edge of the network
where a set of distributed data repositories becomes the basis for the provision
of responses. Edge Nodes (ENs) maintain local repositories fed by data
collected by the IoT devices connected to them. Data may be replicated
for supporting fault tolerant applications. As data are distributed among
ENs, it is imperative to define a mechanism that allocates the incoming
queries to the appropriate nodes. Such a decision should be made not only
based on queries demand for data (query constraints/conditions) but also
on various characteristics of ENs themselves. In this paper, we extend our

2

previous efforts in the same problem [38], [42], [46] focusing on the behaviour
of entities that are responsible to allocate queries to the appropriate ENs. We
call such entities Query Controllers (QCs). We consider that multiple QCs
can be present in the Cloud and that a query processor is present to every
EN to execute the incoming queries. Every QC has a direct ‘connection’
with ENs being capable of allocating queries to get responses. Our aim is
to provide a decision making mechanism adopted by QCs that will result
the appropriate queries allocations in the minimum time. Any decision is
made over queries’ and ENs’ characteristics, thus, we support our decision
making mechanisms with methodologies for realizing them. Our modelling
process is incorporated into the proposed uncertainty-driven reasoning. We
start from the definition of queries constraints and their complexity trying
to match them against the status of ENs and their datasets. When the
‘annotation’ of queries is in place, we support QCs with our uncertainty
management scheme to derive the appropriate EN where every incoming
query will be allocated. To increase the performance, we incorporate in the
uncertainty management scheme, the ‘opinion’ of a machine learning model
for every potential allocation. The goal is to ‘aggregate’ the output of the
machine learning scheme with the remaining parameters to create a powerful
mechanism for deciding the desired allocations on the fly.

Motivating example . We assume the Smart Grid (SG) infrastructure
where numerous smart meters (IoT devices) can be adopted to record and
monitor the energy consumption of consumers. Smart meters can have a two
way interaction (through wide-area network protocols) with the energy dis-
tribution infrastructure that consists of edge devices (close to smart meters)
and the Cloud back end system. Smart meters are capable of collecting en-
ergy consumption data transferring them to the Cloud through edge nodes.
They report multivariate data (e.g., consumption values, timestamps) being
stored at the edge infrastructure to deliver spatio-temporal analytics in lim-
ited time. Edge nodes can enable energy utilities or distribution operators
with advanced real time monitoring and analytics capabilities over the dis-
tributed energy data. Operators, utilities administrators and energy policy
makers, at the back end system, may want to instruct queries for generating
analytics over the entire network or a part of it. Suppose that the operator
wants to get analytics related to energy consumption in a specific interval
for a specific area. The discussed interval and the area under consideration
will be part of a query that should be allocated only in edge devices that
exhibit data in the interval and their location is in the desired area. The

3

allocation of the query to the entire network is useless taking into consider-
ation that edge nodes with data out of the defined interval and the desired
area will spend resources to respond with an empty set. It is better to have
a view before hand for the appropriate edge nodes that should respond to
the specific query. Operators and administrators may instruct numerous
queries upon the collected data, thus, a mechanism that manages them in
the most efficient manner and deciding the optimal allocations is necessary.
In this scenario, the need of our mechanism is revealed, i.e., our model can
facilitate the allocation of the discussed queries to the appropriate node(s)
to be aligned with queries requirements and have the final response in the
minimum possible time. This motivating example makes us to discern the
uncertainty in the decision making incorporated in the mechanism that de-
livers the final allocations. Such an uncertainty is related to the design of the
decision model and the detection of the optimal allocation for each incoming
query especially when we consider a high number of conditions. For building
the knowledge base and the decision delivery model (i.e., variables to depict
inputs and outputs, thresholds for variables, rules, etc), we can rely on Fuzzy
Logic (FL) [73] that assists in the definition of the appropriate ‘combinations’
of multiple parameters (i.e., contextual information) characterizing queries
and edge devices while avoiding to adopt crisp thresholds. Additional uncer-
tainty is observed in the design/definition of the discussed model by experts.
Some critical questions should be answered during the design phase: What
is the appropriate interval where every variable is realized? When a variable
is considered that depicts a low/medium/high value? How variables can be
efficiently combined to deliver the optimal output (e.g., allocation)? To re-
spond to these questions, we can go a step forward and adopt an interval
Type-2 FL System (T2FLS) [49] that is capable of handling the uncertainty
present in the design phase. Interval fuzzy sets can be adopted when it is
difficult to determine the exact membership values (i.e., the intervals where
variables are realized) of the given elements (i.e., inputs and outputs). In
Type-2 fuzzy sets, we utilize intervals as membership values, thus, the exact
numerical membership degree is a value inside the considered interval [63],
[68]. Evidently, through this approach, we are able to cover two levels of
uncertainty defining a powerful model for serving numerous queries with the
best possible performance.

In our previous efforts, we mainly focus on the adoption of machine learn-
ing techniques to learn the appropriate EN for every query. Any decision is
made upon queries and ENs characteristics, e.g., we can rely on the ‘burden’

4

that a query adds to ENs, the data required by the query, the load and speed
of ENs and so on and so forth. We adopt the contextual information of queries
and ENs at the time when the decision should be concluded. Such a decision
making, involves uncertainty related to if every decision is the appropriate
one based on the current contextual information. The adoption of ‘crisp’
thresholds and rules based on simple conjunctions are already identified as
non efficient [51], making imperative the presence of an uncertainty-driven
model. As exposed by the above presented motivating example, for build-
ing an efficient uncertainty-driven mechanisms, we can adopt the principles
of FL and an interval T2FLS incorporating as inputs the aforementioned
characteristics of queries and ENs while resulting the, so called, Efficiency
of Allocation (EoA). EoA depicts the certainty (or uncertainty) of the op-
timality of every allocation upon the observed contextual information. The
adoption of the T2FLS targets to manage the uncertainty in the design phase,
i.e., the definition of memberships functions for input and output parameters.
Type-1 fuzzy sets adopt precise two-dimensional membership functions that
a user believes that can capture the uncertainty present in the domain of
discourse [14] while Type-2 fuzzy sets generalize Type-1 sets adopting three-
dimensional fuzzy membership functions [8]. The membership degree of a
Type-2 fuzzy set is a fuzzy set itself in the unity interval. The third dimen-
sion supports an additional degree of freedom to capture more information
about the represented term.

We enhance the proposed T2FLS with an additional input that represents
the opinion of an ‘expert’. The discussed ‘expert’ is a machine learning
model, i.e., a Support Vector Machine (SVM) model [30]. We combine two
different approaches, i.e., the FL with the principles of machine learning
(also adopted in our previous efforts) to build and provide a proactive and
efficient mechanism for the problem under consideration. FL systems and
the SVM models have already combined in the past in other application
domains [15]. It is also experimentally proved by the respective literature
that the combination of Type-2 based SVM fusion classifiers outperform
individual SVM classifiers in most cases [16]. Additionally, experiments show
that Type-2 FL controllers perform better than Type-1 based fusion models
in general. This motivates us to adopt the output of an SVM model as
an input to a Type-2 FL controller and fuse the opinion of the machine
learning scheme with the remaining parameters of the adopted scenario. The
interesting aspect of our approach is that through the combination of the FL
with the SVM model, we can have an FL classification system with good

5

generalization ability in a high dimensional feature space that is difficult
through a ‘simple’ FL controller. The SVM model is a powerful machine
learning approach known to have a good generalization ability. Another
significant aspect is that the SVM model can efficiently work on a high (or
even infinite) dimensional feature space; a scenario that cannot be covered
by a typical FL system.

Apart from that, we advance the state of the art in the FL management
and propose a novel methodology for the automated generation of interval
Type-2 membership functions. Hence, we are able to provide a data-aware
uncertainty management model, i.e., the generation of FL membership func-
tions for our fuzzy sets is aligned with the observed data. The following list
reports on the contributions of our work while depicting the differences with
previous efforts:

� we propose the combination of an uncertainty management technique
with a machine learning model for the efficient allocation of analytics
queries to a set of ENs;

� we propose a novel technique to conclude the interval Type-2 member-
ship functions for every input and output parameter of our decision
making model to provide a data-aware mechanism. We increase the
performance of the proposed model having the discussed knowledge
bases aligned with the underlying contextual data. We deliver an au-
tomated mechanism for realizing the Footprint of Uncertainty (FoU) of
Type-2 membership functions for each fuzzy set and the definition of
membership functions themselves (see Section 5 for more details). This
means that our approach does not require the presence of an expert to
conclude the FL knowledge base;

� we provide a model that assists QCs in taking allocation decisions
aligned with queries’ and ENs’ contextual information. We aim to de-
liver the best possible allocation having queries constraints ‘matched’
against similar data repositories while avoiding the overloading of ENs;

� we evaluate the proposed scheme adopting a large set of simulations
and provide numerical results to reveal its performance.

The paper is organized as follows. Section 2 reports on the prior work in
the field by presenting important activities related to our problem. Section 3

6

presents the problem under consideration and some introductory information.
Section 4 discusses how to model the incoming queries and the envisioned ENs
while Section 5 presents the proposed decision making scheme. In Section 6,
we proceed with our experimental evaluation and in Section 7, we conclude
our paper by presenting our future research plans.

2. Prior Work

The IoT creates new opportunities for providing novel services to end
users. Such services can be offered over numerous devices interacting each
other or with their environment. Such interactions aim at collecting data and
process them to produce knowledge. In addition, knowledge can be provided
through the processing of data that end users may also generate, e.g., tweets,
social networking interactions or photos [61]. Knowledge can be exchanged
between devices or transferred to upper layers, e.g., Fog or Cloud. Analytics
could be the outcome of every processing activity performed locally or at
Cloud trying to discover patterns upon data. Various tools for large scale
data analytics have been already proposed in the corresponding literature.
The majority of them concern batch oriented systems where data are firstly
collected, stored and, accordingly, processed [27]. The interested reader can
study the performance of batch oriented systems in a set of publications like
[2], [20], [33].

Apart from the batch processing, there is the opportunity for streams
processing when data are reported by their sources. Stream processing aims
to facilitate the online, (near) real time provision of responses in a set of
tqueries. As we envision to have the analytics processing in a distributed
manner (e.g., in ENs), an important decision is related to tasks/queries al-
location and scheduling. It is worth noticing that ENs, usually, have limited
computational capabilities, thus, streams processing might be the appropri-
ate approach for delivering analytics in real time. Smart gateways and micro-
data centers could be adopted to facilitate the task/query processing [1], [26].
A thorough study on task/query scheduling is performed for Wireless Sen-
sor Networks (WSNs). The main focus of all these efforts is on minimizing
the execution time, thus, to deliver the final response with limited latency.
To secure the efficient execution of tasks/queries, a number of efforts take
into consideration energy constraints [10], [64], a fair energy balance among
sensors [21] or a cooperative scheme for exchanging tasks [7]. Other, more
advanced, technologies are linear programming [71], swarm intelligence [55],

7

[70], genetic algorithms [32] or the intelligent management of graph-based
schemes [19].

Apart from the collected data, a significant part of the research performed
for the delivery of analytics deals with the efficient query management. Ac-
tually, we should focus on the management of continuous queries demanding
for immediate responses. Obtaining a response in (near) real-time could be
very difficult due to limitations defined by the amount of data and the un-
derlying hardware performance. Querying data samples and the provision of
progressive analytics is an efficient solution for the described problem [3]. In
addition, the parallel execution of queries can increase the performance of
applications. Any parallelization activity is realized on top of multiple data
partitions that can be the outcome of the distributed reporting of data or
a separation process. Separation algorithms can be applied directly on data
streams through the adoption of a sliding window approach [9], the definition
of sub-streams [72] or taking into consideration multiple types of properties
(e.g., balance, structural or adaptation properties) [25]. This way, query op-
erators can be executed in parallel, on the fly, taking into consideration the
query semantics or optimization actions (e.g., as presented in [12]).

Uncertainty-driven decision making for queries management has been
recently adopted for increasing the performance of the proposed systems.
Query optimization is a very difficult task especially in distributed environ-
ments. The integration of a query processing subsystem into a distributed
database management system enhanced by FL is used for analyzing query re-
sponse time across fragmentations of global relations [54]. Another research
effort, presented in [4], proposes the adoption of FL controllers for resource
allocation taking advantage of simple heuristic rules for efficient virtual ma-
chines allocation in a distributed setup. FL controllers adopt a knowledge
base having the form of a set of fuzzy rules that depict the uncertainty man-
agement processing of inputs. An evaluation of the performance of the FL
combined with rule-based systems can be found in [62]. The aim of such a
combination is to increase the performance, supporting the strength of the
FL ‘annotation’ with a rule-based scheme. The advantages of the FL can
be identified in scenarios where information ‘inexactness’ is present. The au-
thors of [47] try to have an FL model integrated within a database system.
The query processing model could be coupled with FL if combined with XML
annotations. Apart from the FL, machine learning has been also adopted in
queries management. In [69], the authors propose an edge matching tech-
nique for comparing the structural resemblances between XML documents.

8

The presented model builds on top of the edit distance scheme and conven-
tional edge matching based techniques. The final aim is to detect topological
edges and repeated substructures before a task/query is assigned to a node.
The data present in a node play a significant role in [13]. The authors intro-
duce a novel approach to rewrite queries that are in disjunctive normal form
and contain mixture of discrete and continuous attributes. The rewriting
process is based on a pre-processing step where data are studied to discover
implicit relationships between attributes. The learning model deals with the
functional dependencies of data, which are ranked to finally predict their
order and rewrite any failing query.

Our past research record involves a set of solutions for the problem of allo-
cating queries to a set of ENs. In [46], we propose a time-optimized scheme
for selecting the appropriate ENs through the use of the Odds algorithm.
The model mainly focuses on the minimization of the time required for con-
cluding every allocation. In [38], we present a Q-learning scheme to calculate
the reward retrieved for every allocation. Our model learns the most efficient
allocations mainly based on ‘static’ information, thus, it should be re-trained
at pre-defined intervals to be aligned with the dynamics of the environment.
In [43], we extend the work presented in [38] and incorporate into the learn-
ing process a load balancing approach comparing it with a clustering model
that creates groups of ENs with similar characteristics before it concludes
the final allocations. In [39], we propose a probabilistic model for match-
ing queries with datasets and provide a scheme for the conclusion of every
allocation upon the expected load of ENs and queries. Such a probabilistic
approach is combined with a rewarding mechanism in [41]. The target is to
detect the reward that we gain when allocating queries to specific ENs for
every pair of characteristics. We extend our previous efforts and focus on the
decision related to the offloading of the incoming queries to the appropriate
peer nodes. Initially, we adopt a k-Nearest Neighbors (kNN) classifier for
deciding the local execution and enhance it with the principles of the Utility
Theory for selecting the node to be the hist of the offloaded queries [40]. The
demand for each query may affect the decision of the local execution [36].
The strategy is to keep locally popular queries and re-use already delivered
outcomes while less popular queries may be offloaded to another peer node.
Finally, we propose a scheme for the management of uncertainty in decision
making adopting the principles of the FL [37] as an extension of [36]. Go-
ing our research a step forward, we try to keep the time required for each
allocation minimized, however, taking into consideration that any decision

9

is uncertain about its optimality. Our research presented in [37] is not ex-
haustive and does not incorporate a model for covering the uncertainty in
the design phase and the coverage of high dimensional feature spaces. The
missing contributions in our past research activities that we cover with the
current work are: (i) Our past efforts do not deal with a combination be-
tween FL and a machine learning model for delivering the final allocation;
(ii) In our previous models, we do not rely on an automated approach for
defining the knowledge base of the adopted schemes; (iii) Our past models
are mostly ‘static’ meaning that they are applied on top of static values for
the envisioned parameters without taking into consideration the continuous
update of ENs characteristics.

Comparing our model with other schemes in the respective literature,
we can note the following. Our model is based on interval Type-2 FL sets
while other efforts adopt Type-1 sets [4], [62], thus, they provide limited
uncertainty management. Additional efforts deal with the incorporation of
the FL upon databases [47]. Other approaches focus on the similarity of
XML documents [69] or a learning process over data dependencies to fa-
cilitate the re-formulation of queries when failing [13]. The aforementioned
approaches are ‘bounded’ by the specific characteristics of the underlying sys-
tem (e.g., database systems, XML management) without paying attention at
very dynamic environments like those present in edge computing and IoT.
In this paper, we depart from such efforts and go a step forward concerning
the management of the uncertainty present in very dynamic environments
where ‘actors’ should update their behavior frequently. We pursue efficiency
through the management of multiple parameters to cover all aspects of the
dynamics of the environment.

3. Preliminaries

In this section, we report on the envisioned scenario and the problem
under consideration providing details about the management of an ecosystem
where numerous edge nodes are present. In Table 1, we provide a short
description of the parameters adopted throughout the paper.

10

Table 1: Nomenclature

Parameter Short Description

N The set of edge nodes
ni The ith edge node
N The number of edge nodes
DSi The dataset available at the ith edge node
x A multivariate vector reported to edge nodes
DS The set of the available datasets in the network
C The set of edge nodes characteristics
l The load of an edge node
s The speed of an edge node
Q The stream of queries
qt A query reported at time instance t
CHq The characteristics of a query
o The computational complexity of a query
a The execution deadline of a query
w The constraints of a query
v The context vector defined by edge nodes status and query’s characteristics
ri The information relevance of a query with the ith dataset
Θ The set of query complexity classes
θi The ith complexity class
DSQ The training dataset for calculating the complexity class of a query
qs The vector depicting the membership of a query to the available complexity classes
E The set of similarity metrics adopted to calculate the complexity class of a query
ei The ith similarity metric
ω Our fuzzy operator adopted to ‘fuse’ similarity values
SLei The significance of a similarity result
Ω The operator adopted to ‘fuse’ ω results
µ The vector of means of a dataset
σ The vector of standard deviations of a dataset
fi The interval of each dimension as exposed by the corresponding mean and standard deviation
EoA The efficiency of allocation as delivered by the proposed T2FLS
EoASVM The efficiency of allocation as delivered by the adopted SVM model
DT The training dataset for the automated generation of fuzzy rules
H The number of inputs in our fuzzy system
OT The number of outputs in our fuzzy system
Ci The ith cluster provided over inputs and output values
c The centroid of a cluster
ρ The maximum distance from a cluster centroid
gL The lower membership function for a fuzzy set
gU The upper membership function for a fuzzy set
φ The Footprint of Uncertainty of a fuzzy set

3.1. The Envisioned Ecosystem

We consider a network setup as presented by Figure 1. We assume a set
of ENs, i.e., N = {n1, n2, . . . , nN} where every node collects contextual data
reported by various IoT devices, or generated through local processing. Local
data processing may involve statistical reasoning, inferential analytics, and
real-time data management, e.g., estimation of top-k lists over the incoming
data streams [45]. The dataset DSi is available at the ith EN and consists
of the basis for any local processing. DSi is continuously updated as ‘fresh’

11

multivariate vectors arrive through streams, i.e., x = [x1, x2, . . . , xL]> ∈ RL,
where L is the number of dimensions (contextual attributes). As multiple
end devices may report vectorial data to multiple ENs, replicates among
datasets DSi and DSj, with i 6= j may be present. The management of
potential replicas is beyond the scope of this paper. All datasets form the
set DS = {DS1, . . . , DSN}. At every EN, we assume that a query processor
is responsible to receive a stream of analytics queries (e.g., estimating the
regression plane among contextual variables within a time frame), allocated
at the EN, execute such queries over DSi and send the results back to the
requestor. A queue is present at each EN where queries are placed and wait
for execution. This queue can handle a maximum number of queries; with-
out loss of generality, we consider that queues adopted in ENs have the same
length. In addition, we assume the set Ci = {ci,1, ci,2, . . . , ci,m} depicting
ENs’ characteristics. For instance, Ci = {l, s} with l representing the current
load and s depicting the speed of the corresponding EN. l can be easily es-
timated through the current number of queries waiting in the corresponding
queue, while s indicates the throughput of an EN, i.e., the number of queries
responded in a given time unit. The discussed characteristics consist of a
finite set of contextual attributes of each node based on the requirements of
the application domain. These attributes can de defined in the application
design phase and depict information that can be easily retrieved during the
functioning of EC nodes. For instance, the load can be calculated as the
number of queries present in the corresponding queue compared to the max-
imum queue size, the speed of processing can be represented by the number
of queries executed in a time unit and so on and so forth. The final list is
concluded upon the strategy we want to adopt and the information we take
into consideration when deciding every allocation. Obviously, all ENs partic-
ipating in the proposed matching process should expose the same contextual
information to avoid problems related with their heterogeneity. At this point,
our model assumes homogeneity of EC nodes only in terms of the recorded
contextual information and not in terms of their resources, hardware, capa-
bilities, etc. It becomes obvious that the computational capabilities of EC
nodes affect the retrieved contextual attributes (e.g., the processing speed).

12

Figure 1: The connection of query controllers and edge nodes.

ENs have direct interactions with entities located at the Fog/Cloud; these
entities are QCs which are responsible to serve the incoming query streams.
QCs provide the necessary ‘interface’ for end users or applications where the
desired queries can be placed. The interaction between QCs and ENs is
concluded by the provision of responses corresponding to the desired query
based on the aggregated outcomes retrieved by the invoked ENs. These ENs
are decided based on our proposed scheme and could be an individual EN or
a sub-set of the available ENs. The selected ENs are those that, at the spe-
cific time when the query is issued, exhibit contextual information that will
facilitate its efficient execution and return the result in the minimum turn
around time. QCs, through their continuous interaction with the ENs, can
maintain historical performance data as well as statistics of data present in
each EN. Based on this context, QCs obtain a holistic overview on the current
status of ENs and data that they are stored locally in the ENs. We envi-
sion that QCs are software components (possibly part of a platform/module)
targeting to realize the proposed reasoning process for the management of
the incoming queries. Their capabilities are related to the adoption of the
appropriate interfaces to communicate with other components (e.g., a com-
ponent that receives the incoming queries or a component that sends a query
to the appropriate EC node through the use of the available network inter-
faces) and the appropriate data structures to collect, store and process all
the information related to the execution of queries and the performance of
the available EC nodes. The vision of having QCs as software components
assists in their extendibility by incorporating additional functionalities to

13

expand their capabilities while being aligned with the requirements of the
desired application.

We consider that the incoming queries are reported through a stream
Q = {q1, q2, . . . qj}. At time instance t ∈ T = {1, 2, . . .} a query qt arrives
to a QC and belongs to a specific query class, with specific characteristics,

i.e., CHq =
{
cq1, c

q
2, . . . , c

q
|Cq |

}
. For instance, CHq = {o, a} where o stands

for the computational complexity and a stands for the deadline for delivering
the final result.

3.2. Problem Definition

When qt arrives in a QC, we should take into consideration qt’s and ENs
current contextual information to take the appropriate decision and find the
best possible sub-set of ENs to perform the final allocation. Apart from
others, we are interested in qt’s data constraints, i.e., we focus on the WHERE
clause. Constraints represent the conditions that should be met when we
retrieve data corresponding to the final response. qt can be seen as a 2m-
multidimensional vector

w = [{min1,max1} , . . . , {minm,maxm}]> ∈ R2m (1)

such that {mini,maxi} are the minimum and the maximum values defined in
the constraints of the i-th dimension. These constraints should be matched
against the data vectors present in every EN where the query is directed
for execution. The QC creates N context vectors ; one for each EN. Context
vectors refer to the characteristics of qt and the current status of ENs having
the following form (i depicts the index of the corresponding EN):

vi = 〈o, ri, li〉 (2)

where o is the expected complexity of qt (elaborated later), ri is the infor-
mation relevance of qt with the dataset DSi and li is the load of the ith EN.
ri is a significant parameter as it depicts the ‘matching’ between qt and DSi
in terms of the set of potential results. Actually, the information relevance
depicts the ‘intersection’ between ‘what a query asks and what a dataset of-
fers’. When qt’s conditions/requirements do not match the statistics of DSi,
the final response will be an empty set. For instance, if qt asks for stock val-
ues in the interval [10,20] and DSi hosts stocks data in the interval [0,5], the
relevance between them is minimized and the final response will be empty. In

14

general, context vectors represent the minimum sufficient statistics for both
an incoming query and each EN based on which the QC should decide the
final allocation.

The aforementioned multivariate ‘matching’ process between qt and ENs
involves uncertainty i.e., we are not sure if any selection will be the optimal
as well as we are not sure about the values of the adopted parameters that
should define the optimality of the final allocation. In addition, one can also
observe uncertainty in the definition of the thresholds adopted to take any
decision related to the final allocation. Actually, we ‘fuse’ the envisioned
inputs feeding them into the proposed FL controller that is responsible to
derive the EoA. EoA is delivered for each EN and represents the ‘belief’ of
our system that the allocation of qt to a specific EN will be efficient. Such
a fusion is achieved through a finite set of Fuzzy Inference Rules (FIRs).
Under the principles of fuzzy inference via FIRs, we propose a T2FLS, which
defines the fuzzy knowledge base for an EN, e.g., a set of FIRs like: ‘when
the complexity of qt is low and the load of an EN is low then the EoA will
be high as well’. When the definition of a membership function involves
also uncertainty, experts cannot be certain about the discussed membership
degree. In such cases, uncertainty is observed not only on the environment of
the problem, e.g., how we classify a context value as ‘high’ or ‘low’, but also on
the description of the term (e.g., ‘high’) in a FIR. In an interval Type-2 FLS,
membership functions are themselves ‘fuzzy’, which leads to the definition of
FIRs incorporating this uncertainty [50]. This approach seems appropriate
in our case as FIRs cannot explicitly reflect the knowledge on whether any
allocation will be efficient or not as it is affected by the dynamic nature of
the problem. For instance, the QC could take a decision based on obsolete
information related to the load and data present in an EN. There is a trade
off between (i) the increased reporting period (recall that ENs should report
their load and data statistics to QCs) leading to decision making on top of
‘fresh’ information about the status of ENs; and (ii) the minimization of the
network overhead for messaging (in case that the reporting period is high).
In the following of this paper, we analytically describe how we handle the
trade off and the adopted FL controller.

4. Queries & Edge Nodes

As already mentioned, the first step in our process is to model queries and
ENs characteristics. We start from the description of the methodology that

15

delivers the complexity of a query and, then, we model the status of ENs and
their datasets. ENs are characterized by their ability to quickly process the
incoming queries as depicted by their speed and their current load. Over all
these parameters, we apply our T2FLS to derive the envisioned allocations
through the EoA that depicts the efficiency of any potential allocation.

4.1. Queries’ Characteristics

The delivery of o for any qt and its implication to l is the key element
for our uncertainty-driven decision making. Various research efforts study
the complexity of queries [5], [60], [66]. In this paper, for delivering o, we
rely on our previous work presented in [42]. It should be noticed that we
consider large datasets collected at the EC nodes being the outcome of the
data reporting of a high number of IoT devices. We do not focus on a scenario
where datasets are small, i.e., a low number of data vectors are available for
processing. In that case, the calculation of the complexity for each query
could be omitted as even a very complex query will not burden the selected
EC node if the dataset is limited. Figure 2 presents the overall process that
consists of two parts: (i) the ensemble similarity scheme; (ii) the fusion of
multiple aggregated similarity values. Every incoming query is ‘matched’
against a set of pre-defined queries classified into a number of complexity
classes. In this point, we reproduce a small part of our previous research to
have a complete view of our model. We consider that |Θ| complexity classes
are available and every θi ∈ Θ is aligned with the complexity performed by
the operations of qt required for producing the final response. For instance,
Θ could be a set like the following Θ ∈ {O(nlogn), O(n), O(n2)}. In any case,
the complexity classes can be defined beforehand to represent the ‘burden’
that queries will add to the selected EN. We assign qt to a complexity class
θi based on a classification task proposed for such purposes, i.e., a Fuzzy
Classification Process (FCP). We adopt a fuzzy approach as it is difficult to
find an analytical model to deliver the selection of an individual complexity
class. The FCP evaluates the membership of qt in each of the |Θ| classes. For
instance, qt could ‘belong’ to the 1st class by 0.2, to the 2nd by 0.5 and to
the 3rd class by 0.3. To train the FCP, we adopt a set of historical executed
queries along with their corresponding classes. A future extension of our work
is to incorporate into our model the historical performance values, i.e., the
past execution time for queries belonging to a specific complexity class. This
way, we will be able to combine the outcome of the proposed FCP evaluating
queries upon the complexity of the required process (we refer in this as the

16

theoretical complexity) with the real time requirements delivered upon past
executions for queries belonging to each complexity class.

We also adopt a set of similarity techniques for concluding the similarity
between qt and θi i.e., to detect their ‘matching’ depicted by a real number (as
discussed in the previous examples). Assume that the training dataset is de-
picted by DSQ and its tuples are in the form: 〈pk, θk〉, k ∈ {1, 2, . . . , |DSQ|}.
pk represents qt’s statement along with its complexity class θk ∈ Θ. An
example of training tuples is as follows: DSQ = { [‘Select * from tableA’,
O(logn)], [‘Select * from tableB where x=y and z=v’, O(n)], . . . }. We have
to notice that these examples are indicative and adopted to explain the use
of our model (complexities may vary based on the type of data structures
utilized to store and access the available data). We, then, adopt a function
f that delivers a complexity similarity vector encoding the similarity of qt
with every complexity class in Θ:

f(q;DQ)→ qs ∈ [0, 1]|Θ| (3)

qs’s components assume values in [0,1] demonstrating the degree of mem-
bership of qt to every θk ∈ Θ. For instance, a vector qs = [0.2, 0.5, 0.3]>

given Θ = {θ1 = O(n log n), θ2 = O(n), θ3 = O(n2)} shows that qt belongs
with 20% to θ1, 50% to θ2 and 30% to θ3.

For calculating qs, we rely on an ensemble similarity scheme. We eval-
uate the similarity of qt with every tuple 〈pk, θk〉 ∈ DSQ. The ensemble
scheme adopts a set E =

{
e1, e2, . . . , e|E|

}
of similarity metrics. Assume that

there are three (3) tuples in the training dataset belonging to the θi com-
plexity class. Additionally, we rely on two (2) similarity metrics. We get the
following similarities for each of the aforementioned tuples: < 0.10, 0.20 >
for tuple 1, < 0.20, 0.25 > for tuple 2 and < 0.30, 0.15 > for tuple 3. It
is noted that the first value in the example pairs are the outcome of the
first similarity metric and the second is the outcome of the second similar-
ity metric. Upon these outcomes, we have to conclude the final similarity
between qt and θi. Formally the ‘2D aggregation’ is calculated as follows:
qsk = Ω(ω {ei(qt, 〈sk, θk〉)} ,∀i, ∀ 〈pk, θk〉. ω realizes the envisioned ensemble
similarity scheme while the aggregation operator Ω produces the qsk through
multiple ω values. Actually, ω depicts the similarity outcomes as explained
in the above numerical example while Ω is applied upon all ω values to con-
clude the final similarity with θi. For ω, we consider that every single result
(i.e., ei(qt, 〈pk, θk〉) represents the membership of qt to a ‘virtual’ fuzzy set.

17

ω is a fuzzy aggregation operator, an |E|-place function ω : [0, 1]|E| → [0, 1])
that takes into consideration the membership to every fuzzy set and returns
the final value. In the proposed model, we adopt the Hamacher product [31]
producing the final ω as follows:

ω =
ė · ë

a+ (1− a)(ė+ ë− ė · ë)

where ė and ë are two individual similarity values. The use of the Hamacher
operator is motivated by the advantages it offers in fuzzy processing and
operations as studied in [22].

The second level of aggregation is performed taking into consideration
the top-n similarity values based on their Significance Level (SL), i.e., a
value depicting if a similarity outcome is ‘representative’ for many other
results. We propose the use of the radius γ and calculate the SL as follows:
SLei = 1

1+e−(δ1|d(ei,ek)≤γ|−δ2) ,∀i, where δ1 and δ2 are parameters adopted to

smooth the sigmoid function. The final results are sorted in a descending
order of the SL and the top-n of them are processed with the Hamacher
product to deliver the final ω. The Ω operator builds on top of the ω values
produced for each tuple in QD classified in θk. For their aggregation, we

rely on a Quasi-Arithmetic mean, i.e., qsk =
[

1
m

∑m
i=1 ω

α
i

] 1
α where α is a

parameter that ‘tunes’ the function. The adoption of the Quasi-Arithmetic
mean is motivated by: (i) its simplicity; (ii) it is less affected by fluctuations;
(iii) it does not require the arrangement of data like other measures (e.g.,
median, mode); and (iv) it is completely based on the observations. After
calculating the final values for each θk, we get qs =

〈
Ω1,Ω2, . . . ,Ω|Θ|

〉
.

Figure 2: The process for calculating queries complexity.

18

4.2. Processors Characteristics & Local Datasets
As noted, ENs maintain a queue where the incoming queries are placed

and wait for the final processing. The size of the queue and the speed of
processing affect the throughput of an EN depicted by the parameter li ∈
[0, 1] (a maximum queue size is adopted for such purposes). When li → 1, it
means that the EN experiences a high load.

We also propose a distance model to conclude ri, i.e., the similarity be-
tween w with the data present in ENs. At pre-defined intervals, ENs send
to QCs their statistical data represented by two vectors, i.e., the vector of
means µ = 〈µ1, µ2, . . . , µL〉 and the vector containing the standard devia-
tion for each dimension, i.e., σ = 〈σ1, σ2, . . . , σL〉. Our problem is to find
the overlapping between w and the intervals represented by the combina-
tion of µ and σ. We have µ ± z · σ

|DSi| for all the adopted dimensions with

|DSi| depicting the cardinality of the corresponding dataset. z represents
the z-value retrieved by the standard normal (Z-) distribution for our de-
sired confidence level. The area in the interval [−z, z] is, approximately, the
confidence percentage. For instance, for z = 1.28, the area in [−1.28, 1.28]
is, approximately, 0.80 (80%). Based on the above, we have to calculate the
similarity between w and N vectors, i.e.,

fi = 〈{µi1 − z · σi1, µi1 + z · σi1} , . . . , {µiL − z · σiL, µiL + z · σiL}〉 ,∀i

For deriving the final ri, we have to find the final similarity between L inter-
vals, i.e., w and fi. Legacy distance/similarity measures (e.g., the Euclidean
distance) cannot cope with incorporating cases where w can be completely
contained in fi. In [29], the interested reader can find a study for calculat-
ing the distance over interval data. Based on these metrics, we propose the
use of the overlapping metric ψk, thus, ri is defined as follows: ri (w, fi) =
h(ψik),∀k ∈ {1, 2, . . . , L}. In this equation, we propose the use of an aggre-
gation function h responsible to aggregate L distance results, i.e., ψik, calcu-
lated for each dimension as follows: ψik = 1− ‖w∩fi‖

min{‖mink,maxk‖,‖µik−σik,µik+σik‖}
where

wk ∩ fik =

{
(max {mink, µik − σik} ,min {maxk, µik + σik}) for max {mink, µik − σik} < min {maxk, µik + σik}
0 Otherwise

(4)

For h, we adopt the Quasi-arithmetic mean [11], i.e.,

ri =

(
1

L

L∑
k=1

(ψik)
α

)1−α

.

19

5. Uncertainty-Driven Queries Allocation

In this section, we describe our T2FLS and the automated process for
delivering the adopted fuzzy rules. We also provide details on the automated
definition of membership functions for each fuzzy set.

5.1. The FL Scheme

Our FL scheme decides upon the aforementioned set of FIRs that depict
our strategy for the allocation of queries. FIRs refer to a non-linear mapping
between four inputs: (i) o, (ii) ri, (iii) li, (iv) EoASVM and one output,
i.e., the EoAi. The EoASVM represents the result of the proposed SVM
model related to the EoA as seen by the adopted machine learning scheme.
In our FL controller, we do not rely on a and s as the uncertainty about
the matching them is limited. For instance, a simple comparison between
them can give us a view if a node can serve a query with a specific deadline
depicted by a. The uncertainty is mainly present in the ‘combination’ of
the complexity, the load and the information relevance that are delivered
by specific methods as already presented. In addition, there is uncertainty
in the combination of the contextual information with the ‘opinion’ of the
‘expert’ deciding based on the adopted machine learning model.

The antecedent part of FIRs is a (fuzzy) conjunction of inputs while the
consequent part of FIRs is the EoA indicating the belief that the specific
allocation will be efficient. The proposed FIRs have the following structure:
IF o is A1m AND ri is A2m AND li is A3m AND EoASVM is A4m

THEN EoAi is Bm, where A1m, A2m, A3m, A4m and Bm are membership
functions for the m-th FIR mapping o, ri, li, EoASVM and EoAi (values
into unity intervals). The structure of FIRs is the same as in a T1FLS. In a
T1FLS, if a linguistic term, e.g., ‘high’, was represented by one fuzzy set, we
would use one membership function g(x) ∈ [0, 1] mapping the real value (in-
put) x to a discrete set of pairs (xj, g(xj)), e.g., {(0, 0); (0.25, 0.1); (0.5, 0.75); (1, 1)},
where (0.25, 0.1) means that x = 0.25 has a membership degree g(x) = 0.1.
In a T2FLS, A1m, A2m, A3m, A4m and Bm are represented by two membership
functions corresponding to lower and upper bounds [49]. For instance, the
term ‘high’, unlike in a T1FLS, whose membership for x is a number g(x), is
represented by two membership functions. Hence, x is assigned to an interval
[gL(x), gU(x)] corresponding to a lower and an upper membership function
gL and gU , respectively. The interval areas [gL(xj), gU(xj)] for each xj re-
flect the uncertainty in defining the term, e.g., ‘high’, useful to determine

20

the exact membership function for each term. This is the above referred
FoU. Obviously, if gL(x) = gU(x),∀x, we obtain a fuzzy set in a T1FLS. The
interested reader could refer in [49] for more information on reasoning under
interval Type-2 FIRs. For inputs and the output, we consider an automated
membership functions generation model (see next section for more details).

FIRs incorporate the human knowledge on the inference process. The
QC, upon receiving qt, injects the contextual vector into the T2FLS and
adopts the following steps: (Step 1) calculation of the interval (based on
the membership functions) for each input; (Step 2) calculation of the active
interval of each FIR; (Step 3) performance of ‘type reduction’ to combine
the active interval of each FIR and the corresponding consequent. Step 3
produces the interval of the consequent, and accordingly, the defuzzification
phase1 determines a (crisp) value for the EoAi. The most common method
for ‘type reduction’ is the center of sets type reducer [50], which generates a
Type-1 fuzzy set as output, which is, then, converted in a scalar value for the
EoAi after defuzzification. The process is repeated for all the available ENs.
Finally, the QC performs the final allocation to the appropriate ENs. For
this, it sorts the retrieved results in a descending order of EoA and, then, it
allocates qt to the top-k ENs.

5.2. The SVM Model

In this work, we decide to incorporate the result of a machine learning
model into the reasoning process of the T2FLS. The aim is to ‘support’ the
FL reasoning with the ‘opinion’ of an ‘expert’ built in a completely different
scientific orientation. The machine learning model is separated from the FL
scheme providing a separated decision making. SVMs are a promising non-
parametric technology for performing binary classification. They model the
space by creating a feature space which is a finite-dimensional vector space.
Every dimension represents a feature of the particular object. In general, the
advantages of SVMs are as follows [6]: (i) though the adoption of a kernel,
SVMs can build on parameters that show a non-monotone relation to the
final score and the probability of default; (ii) the adopted kernel implicitly
contains a non-linear transformation of the parameters and no assumptions
about the functional form of the transformation; (iii) they provide an efficient

1Defuzzification is the process of producing a quantifiable result in FL, given fuzzy sets
and the corresponding membership degrees.

21

out-of-sample generalization; (iv) if the optimality problem is convex, SVMs
will return a unique solution; (v) through the selection of the appropriate
kernel (e.g., the Gaussian kernel), SVMs can be powerful in the classification
of a new sample on top of the training tuples. SVMs are effective in high
dimensional spaces as well as memory efficient. In our model, the SVM
scheme seems to be the appropriate technique for ‘injecting’ into the T2FLS
the output of a learning process upon a clear margin of separation between
classes (i.e., the optimality of the matching process - decision for allocation
or not). The ability of the SVM to handle high dimensional spaces gives the
opportunity to ‘transfer’ this aspect into the FL system. It may be difficult to
manage high dimensional spaces in an FL model by incorporating too many
inputs. Evidently, we are able to keep the proposed model simple, however,
efficient covering both, the learning requirements for multivariate decision
making and the uncertainty related to any allocation decision. Our model
can be easily expanded by incorporating additional parameters/dimensions
only in the SVM model keeping as simple as possible the FL part giving the
opportunity to cover more advanced/complex application scenarios.

SVMs create linear separating hyperplanes in high dimensional vector
spaces. Suppose data are organized in tuples with every tuple containing
the pair (〈x1, x2, . . .〉 , yi) where xj is the value of the jth dimension and yi
is the corresponding class. In our research, we consider that yi gets two val-
ues, i.e., +1 or -1. When yi = +1 means that the specific context vector
should result an ‘allocate’ action while the opposite stands when yi = −1.
The problem is to find the optimal separating hyperplane for the specific
training data, i.e., the Maximum Marginal Hyperplane (MMH) [28]. The
associated margin provides the highest possible separation between the en-
visioned classes. The separating hyperplane can be written as W ·X+ b = 0
where W = 〈w1, w2, . . .〉 is a weight vector, X is the data vector and b is a
bias. Weights can be adjusted to have the hyperplanes defining the sides of
the margin between the points of the first class and line separating the two
hyperplanes. When the training process is finished, the SVM is ready to be
adopted for classification purposes. Based on the Lagrangian formulations,
we get:

d(XT) =

p∑
i=1

yiαiXiX
T + b0 (5)

where XT is a test tuple, αi and b0 are numeric parameters delivered by the

22

optimization process and p is the number of support vectors. XT is fed into
the SVM and we check where it falls concerning the delivered hyperplanes
as identified by the sign of the outcome.

The proposed SVM model is automatically generated upon a training
dataset where inputs are o, a, ri, li, si and the output is EoA. In the SVM,
we adopt more input parameters, as we want to have the ‘expert’ adopting the
learning scheme to take decisions on top of the entire contextual information
about queries and nodes. This outcome is incorporated in the uncertainty
management mechanism as explained above. Instead of combining the re-
sults of the two approaches based on a specific mathematical formulation, we
choose to get the SVM result as input to the T2FLS. This means that we try
to avoid having the classification error affecting our calculations, i.e., there
is uncertainty about the final SVM value especially when noise is applied in
the dataset [35].

5.3. Automated Generation of Fuzzy Rules

In this work, we propose an automated generation of membership func-
tions for the adopted fuzzy sets to limit the uncertainty in the their defini-
tion. The interested reader can refer in [59] for more details related to the
automatic generation of Type-1 or interval Type-2 membership functions. In
general, the following techniques can be adopted for generating Type-2 mem-
bership functions: (i) heuristics; (ii) histograms; (iii) a clustering algorithm;
(iv) genetic approaches. A heuristic is to find the membership function and
then to produce the lower bound through a multiplication with a constant
in the unity interval. Histograms can be adopted to deliver the distribution
of the data and then these are then smoothed and normalized to obtain the
minimum degree polynomial function possible. The number of fuzzy sets
and their heights are determined by this polynomial function. A clustering
algorithm can utilize two equations to define the upper and lower member-
ship functions, rather than the single equation used in the standard method.
Genetic approaches try to, firstly, find out the FoU which is the same for
all inputs. Afterwards, each input could have a different FoU and, finally, is
tested with different FoU for its own sets.

For the automated generation of FIRs, we rely on the training dataset DT .
Suppose every tuple in the training dataset has H inputs and OT outputs,
i.e., 〈x1, x2, . . . , xH , y1, y2, . . . , yOT 〉. For each dimension xi and yj, we have
to generate the appropriate fuzzy set and its membership functions aligned
with the tuples present in DT . We propose the use of a novel methodology

23

that is based on machine learning and more specifically on clustering. Let
us focus on a specific dimension, e.g., xi; the same approach stands for the
remaining input and output variables. For xi, we apply a clustering process
upon |DT | tuples and deliver the calculated centroids. For having the same
number of fuzzy sets and membership functions for inputs and outputs, we
consider that k clusters are delivered. Let the delivered clusters be anno-
tated with C1, C2, . . . , Ck and their centroids be c1, c2, . . . , ck. Every fuzzy
set corresponds to a cluster, thus, the centroid (cj = 1

|Cj |
∑

xi∈Cjxi) will depict

the point where the fuzzy set’s membership function will approach the unity.
We adopt such an approach to have the membership functions ‘concentrated’
to the points where there is the minimum distance with the numerical data
belonging to the specific set/cluster. Afterwards, we have to generate gL
and gU which represent the lower and the upper membership functions of
the interval Type-2 fuzzy set. Values in Cj exhibit a specific standard devi-
ation σ adopted to derive gL. σ shows the average distance of points around
centroids, i.e., it quantifies the amount of dispersion of values present in a
cluster.

However, some values could be present close to the maximum radius of
the cluster which means that they heavily deviate from the remaining. One
can say that these observations lie on an abnormal distance from other val-
ues in the population, thus, can be characterized as outliers. In [48], the
authors refer in two principal approaches for outliers management: (i) out-
liers accommodation, i.e., developing of a variety of statistical estimations;
(ii) identifying outliers and deciding whether they should be retained or re-
jected. Various efforts regard outliers as ‘bad’ data and reject them from
further processing [17], [34], [44], [57], [67]. In our model, we consider that
values present at the maximum distance from centroids, should be incorpo-
rated in our calculations as they affect the uncertainty in the definition of
membership functions. This is because outliers negatively affect and increase
the deviation of the population, thus, this information shows how the data
are spread in the cluster and they should be taken into consideration. We
consider the radius of each cluster as the mean distance of the top-k values
located in the maximum distance from the centroid ρ. Hence, gU is defined
by ρ while gL is defined by σ. In Figure 3, we present two examples for two
widely adopted membership functions, i.e., the triangular and the Gaussian
(c is the centroid of a cluster). The grey area depicts the FoU as defined
through σ and ρ. FoU will be eliminated when all values in the cluster are

24

very close to the centroid. In that case, the uncertainty in the definition of
the membership function is minimized leading to a Type-1 fuzzy set (gU(·)
approaches gL(·)). When multiple values are located at distance equal to the
radius, i.e., we do not have a ‘compact’ cluster, the uncertainty is high, thus,
the FoU area is expanded. This depicts a high uncertainty in the definition
of the corresponding membership function as the data do not ‘conclude’ to a
‘compact’ statistical representation. The higher the distance of outliers from
the centroid is, the higher the uncertainty becomes. Focusing on Figure 3,
we can imagine the ‘movement’ of the outer functions expanded far way from
the gL representation.

We can easily quantify the FoU φ as a function of σ and ρ. Actually, FoU
covers an area that is defined by the following equation:

φ =

∫ +∞

−∞
gU(x)dx−

∫ +∞

−∞
gL(x)dx (6)

The equation depicting φ depends on the type of the adopted membership
function.

Proposition 1. When the Triangular membership function is adopted the
FoU is quantified by

φ = ρ− σ (7)

Proof. Recall that the Triangular membership function is based on three
parameters α, β, γ and is defined as follows:

f (x, α, β, γ) =

0 if x ≤ α
x−α
β−α if α ≤ x ≤ β
γ−x
γ−β if β ≤ x ≤ γ

0 if x ≥ γ

(8)

Both gU and gL are defined as the previous equation dictates with: α =
{c− ρ, c− σ}, β = c and γ = {c+ ρ, c+ σ} for gU and gL, respectively.
Applying gU and gL in Eq(6) and splitting the integral for being aligned with
the aforementioned ‘triangular’ representations we get: φ =

∫ c
c−ρ

x−c+ρ
ρ

dx −∫ c
c−σ

x−c+σ
σ

dx+
∫ c+ρ
c

c+ρ−x
ρ

dx−
∫ c+σ
c

c+σ−x
σ

dx. Actually, φ is the area covered

by two right (Pythagorean) triangles with sides 1.0 and {ρ, σ} for gU and gL,
respectively. We finally get that φ = 2ρ

2
− 2σ

2
= ρ− σ.

25

(a) The FoU in the triangular membership function. (b) The FoU in the Gaussian membership function.

Figure 3: Modelling the FoU in various membership functions.

Proposition 2. When the Gaussian membership function is adopted, the
FoU is quantified by

φ = −

√
π
((

erf
(
vmax−c√

2σ

)
+ erf

(
c√
2σ

))
σ −

(
erf
(
vmax−c√

2ρ

)
+ erf

(
c√
2ρ

))
ρ
)

√
2

(9)

Proof. The Gaussian membership function is based on two parameters µ, s,
i.e., the mean and the standard deviation of the sample. It is defined as

follows: f (x, µ, s) = e
−(x−µ)2

2s2 . Hence, for gU and gL, we get: gU (x, c, ρ) =

e
−(x−c)2

2ρ2 ; gU (x, c, σ) = e
−(x−c)2

2σ2 . We also consider that the variable x has
a maximum value equal to vmax. Applying both functions into Eq(6) and
solving the integrals, we get:

φ = −

√
π
((

erf
(
vmax−c√

2σ

)
+ erf

(
c√
2σ

))
σ −

(
erf
(
vmax−c√

2ρ

)
+ erf

(
c√
2ρ

))
ρ
)

√
2

where erf is the error function of the Gaussian.

It should be noted that similar calculations can be provided for other
types of membership functions to get the quantification of FoU and the un-
certainty as depicted by the data present in the training dataset. In the first
place of our future research plans is the study of the core parameters affecting
the uncertainty in membership functions not only for univariate but also for
multivariate data.

6. Experimental Evaluation

For revealing the performance of the proposed model, we present our
outcomes retrieved by a large set of simulations adopting multiple traces.

26

Moreover, we provide a comparative assessment with other efforts found in
the relevant literature.

6.1. Performance Metrics, Datasets and Simulation Setup

Our simulator is a custom software written in Java where the main ‘en-
tities’ of our model are represented by a set of classes (the simulator is pro-
vided in the Website of the Intelligent Pervasive Systems (iPRISM) research
group2). In this simulator, we perform the execution of 1,000 queries per
experiment and retrieve results for a number of performance metrics. The
adopted simulator is very simple and ‘produces’ queries and nodes character-
istics upon four (4) datasets. Two of them are found in an open repository
provided and adopted by other researchers in various applications domains.
All datasets are governed by a number of different data distributions covering
a wide set of experimental scenarios. For instance, the use of the Uniform
distribution (see below) simulates a very dynamic environment where data
dynamically change and cover the entire interval where our parameters are
realized. The reason behind the adoption of many and different datasets is
to avoid having the simulator being affected by biases that may negatively
impact all the model participating in our comparative analysis. We have
to notice that we compare the proposed model not only with our previous
efforts to expose the new advances upon our previous outcomes but also with
other models found in the respective literature. Our aim is, initially, to iden-
tify the time required for concluding the envisioned allocations as well as
the ‘optimality’ of each allocation. Starting from the required time for each
allocation, we define RT , i.e.,

RT =
|Q|∑|Q|
i=1 T

c
i

· 1, 000 (10)

In Eq(10), T ci is the conclusion time (in ms) for the ith query and |Q| is the
cardinality of the set of the incoming queries. We measure RT as the number
of queries allocated in a time unit, i.e., a second. RT is measured just after
the reception of a query and depicts the time required for getting the final
node where the query will be allocated. In our experiments, we consider that
a single EN is selected for the desired allocation and not a sub-set of nodes.
It becomes obvious that RT depicts the throughput of the QC, thus, we want

2https://iprism.eu/presentations and datasets.html

27

to have RT →∞. A value RT → 0 depicts the worst case performance, i.e.,
the time devoted to get a result from the model is high. For presenting the
‘optimality’ of the allocations, we rely on the load, speed and information
relevance of the selected node. Initially, we record l∗ (number of queries
waiting in the corresponding queue compared to the maximum queue size) , s∗

(number of processed queries per time unit, i.e., per second) and r∗ (similarity
level between queries and datasets) , where the ∗ indication represents the
specific characteristics of the selected node. Obviously, we want l∗ → 0,
s∗ → smax (where smax is a maximum speed for the discussed nodes) and
r
∗ → 1. In addition, we define the ‘optimal’ node nopt which represents

the ‘ideal’ node that it exhibits the lowest load, the highest speed and the
highest relevance among all nodes present in the group. nopt is adopted to
show the ‘optimality’ of the selected node nselected as delivered by our model.
We define the distance of nselected with nopt as follows: V = ‖nselected, nopt‖ =√

(lselected − lopt)2 + (sselected − sopt)2 + (rselected − ropt)2 For having the best

possible performance, we have to get V → 0. As V is calculated through
the use of the Euclidean distance, it represents if our model reaches the
characteristics of nopt. To achieve that, all the adopted characteristics should
be close to the optimal value (i.e., nopt). It is worth noticing that in case of
ties in the outcomes of the T2FLS, we pay attention on the load of each node
getting first the node with the minimum load. For comparison purposes, we
provide results for a scenario where in case of ties in the fuzzy outcome, we
adopt a random order of the available nodes.

We compare the proposed Fuzzy Logic Model FLM with our previous
work [43], [46], [42] (Model 1 - M1, Model 2 - M2, Model 3 - M3, respectively).
Moreover, we compare our model with the model proposed in [74] where the
authors describe a task allocation model (TAM) in heterogeneous parallel
and distributed computing systems (the grid computing environment). In
their work, they propose an algorithm for supporting the behaviour of the
Local Grid Manager (LGM) that allocates tasks to a number of Site Man-
agers (SMs). The LGM calculates the cost for each allocation based on the
following formula: Cost = OR+ TS

LS
where OR is the occupation ratio defined

by the total tasks placed at a specific SM compared to the total capacity of
the SM, TS is the size of the task and LS is the communication speed be-
tween the LGM and an SM. Tasks are allocated in the SM with the lowest
cost. The discussed formula is adapted to our case taking l as OR, o as
TS and the communication speed equal to a constant small number (in our

28

case, we consider that the communication speed between QCs and nodes is
negligible). We have to notice that in this model as in ours, in case of ties,
we rely on the minimum load among the nodes involved in each tie.

We evaluate our model for different realizations ofN gettingN ∈ {10, 100, 1000}.
For the type of the incoming queries and the delivery of their complexity
class, we rely on the dataset and the methodology presented in [42]. For
the remaining parameters, i.e., query vectors, l, s and the data reported in
nodes, we rely on a set of traces. Our data are retrieved by the following
traces: (i) Dataset 1. A synthetic trace based on the Uniform distribution
delivering values for query vectors, data present in each node, l and s. In this
dataset, all parameters are randomly produced in the interval [0,1] based on
the Uniform distribution. We produce a data vector at each simulation step
(1,000 in total) ; (ii) Dataset 2. A synthetic trace based on the Gaussian
distribution delivering values for query vectors, data present in every node, l
and s. In this dataset, all parameters are randomly produced in the interval
[0,1] based on the Gaussian distribution. We produce a data vector at each
simulation step (1,000 in total) ; (iii) Dataset 3. The trace reported by [18]
retrieved by the UCI Machine Learning Repository3. The dataset is created
by adopting an extensive set of simulations performed upon the OPNET
Modeler. The authors consider message passing between processors. Packets
arrive randomly based on a Poisson process and processors retrieve packets
from the First-Come-First-Served buffer at a specified rate. Processors ex-
tract a packet from the input queue, process it for a period of time and,
then, generate the output message. The dataset contains 641 data vectors
and ten (10) features. From this dataset, we adopt the processor utiliza-
tion dimension. The average processor utilization measures the percentage
of time that threads are running in a processor, thus, it can be ‘aligned’ with
the load of our edge nodes. We adopt these data to feed the load parameter l.
The remaining parameters take values as described for Datasets 1 & 2; (iv)
Dataset 4. The trace reported by [65] also retrieved by the UCI Machine
Learning Repository4 The dataset is created upon the energy analysis of
twelve (12) different building shapes. Buildings differ w.r.t. the glazing area,
its distribution and the orientation. The authors rely on 768 building shapes.
The final dataset consists of 768 samples and eight (8) features. From this

3https://archive.ics.uci.edu/ml/datasets/Optical+Interconnection+Network+
4http://archive.ics.uci.edu/ml/datasets/Energy+efficiency?ref=datanews.io

29

dataset, we borrow values for l and more specifically, we focus on the heating
and cooling loads as reported by the dataset. The remaining parameters
take values as described for Datasets 1 & 2. For each query, we pay atten-
tion on the constraints part and produce the minimum and maximum values
for each dimension as described above. In addition, we randomly select the
deadline for every query based on the Uniform distribution. The complexity
class is delivered as described in [42] and [66] based on TPC-DS and TPC-H
benchmarking datasets (http://www.tpc.org/). TPC-DS and TPC-H are de-
cision support benchmarks modelling several generally applicable aspects of
a decision support system including queries and data maintenance. TPC-DS
involves a set of queries adopted to measure the response time in a single
user mode, the throughput in a multi user mode and the data maintenance
performance given the characteristics of the underlying infrastructure (e.g.,
hardware, operating system, configuration). TPC-H consists of a number of
business oriented ad-hoc queries and concurrent data modifications selected
to depict a broad industry-wide relevance. The discussed queries are de-
fined to be executed upon huge volumes of data exhibiting a high degree of
complexity. In our experiments, we classify our evaluation queries in five
(5) classes (|Θ| = 5) with an increasing complexity from 1 to 5. Then, we
combine the randomly generated values for each dimension and the deadline
with a complexity class to proceed with the application of our model.

6.2. Performance Assessment

We report on the performance of our model concerning l∗. In Figure
4, we present the scatter plot of l∗ for the adopted datasets. It should be
mentioned that, in this plot, we present the sorted list of l∗ for each dataset.
We observe that for datasets 1 & 4, l∗ is very low especially when N →
1, 000. In datasets 2 & 3, l∗ is low when N → {10, 100}. In general, the
observed load of the selected node is below 0.5 except dataset 2 and N =
1, 000. The proposed model exhibits a good performance in the synthetic
dataset where data are produced randomly without following any pattern
(recall that this is represented through the use of the Uniform distribution).
In this experimental scenario, we cannot have a ‘view’ on the trend of the
parameters, i.e., at consecutive experimental rounds, values can cover the
entire interval where parameters are realized. This means that our scheme
can be aligned with the needs of a very dynamic environment where values for
each parameter and data present at ENs are continuously updated. Hence,
our model can react in unexpected scenarios related to the realized values.

30

Figure 4: The relationship of the outcomes related to l∗ for all datasets.

In Figure 5, we provide the histograms for each experimental scenario
and for every dataset. We observe that our mechanism, in the majority of
the experimental scenarios, is able to identify and select ENs with a low load
targeting to speed up the queries execution process. In any case, recall that
our fuzzy scheme tries to ‘match’ the complexity of a query with the load of
ENs. Hence, complex queries demanding increased resources will not burden
the selected ENs. In addition, the selection of ENs with a low load means that
we provide a ‘load balancing’ mechanism combined with other parameters
like the relevance of the query constraints with the datasets present in ENs.
Depending on the dataset, a high number of nodes, i.e., N , leads to better
performance especially when the Uniform distribution is adopted. In this
case, our scheme has multiple ‘choices’ to select the node that will host the
query, however, it manages to conclude the best possible outcome.

31

Figure 5: Histograms provided by l∗ for all datasets.

In Figures 6 & 7, we present our results related to s∗. We observe that our
results cover the entire interval (i.e., [0,10]) where the speed is realized. This
means that even if the speed is part of the decision making process of the
machine learning model (i.e., the SVM) for delivering the EoA, the limited
uncertainty in the speed evaluation makes the FL model to pay no attention
on s. However, the average s∗ is around 5.0 for all the adopted datasets.
Recall that s is a subject of the internal processes depending mainly on the
available hardware and the adopted query execution plans.

32

Figure 6: The relationship of the outcomes related to s∗ for all datasets.

33

Figure 7: Histograms provided by s∗ for all datasets.

The proposed model achieves the best possible performance when con-
sidering the information relevance between the queries constraints and the
statistics of the available datasets. This is depicted by Figures 8 & 9. Our
model is capable of resulting the r∗ very close to the maximum possible value
(i.e., unity). This means that query constraints are fully ‘matched’ against
the available data and the appropriate EN is selected. Based on this obser-
vation, we can conclude that the execution of the query to the specific nodes
will return the appropriate data without spending time and resources. His-
tograms show that r∗ is concentrated close to unity for all the experimental
scenarios and the adopted datasets. Hence, no matter the data distribution,
the proposed statistical similarity process manages to exhibit the best pos-

34

sible performance being not affected by the statistics of each specific trace.

Figure 8: The relationship of the outcomes related to r∗ for all datasets.

35

Figure 9: Histograms provided by r∗ for all datasets.

When we focus on the throughput of QCs, we get the outcomes presented
by Figure 10. Naturally evolved, RT is high when N → 10 and becomes low
when the number of ENs increases. In the latter case, every QC should
spend more time to conclude the final allocation, thus, the throughput is
minimized. The lowest number of queries served per second is around 17
while the highest number is around 660. These numbers indicate that the
proposed mechanism is not time consuming and the provision of the final
response for each query is mainly affected by the response time of each EN.
If our model is combined with a fast query execution scheme hosted in ENs
could limit the observed latency in the provision of responses to end users or
applications.

36

Figure 10: Our results concerning the throughput of the proposed model.

The distance of nselected from nopt is depicted by Figure 11. In these
results, we do not pay attention on s. We observe that the proposed model
manages to deliver outcomes close to the ideal node. The interesting is that
as N → 1, 000, our model exhibits the best possible performance no matter
the adopted dataset. Our results are affected by l∗ and r∗ which are close to
their optimal values as already discussed above, especially when we have to
do with an increased number of ENs. When s is also taken into consideration,
we get the outcomes provided by Figure 12. Now, our results are completely
affected by s∗ while observing an increment in the difference from nopt as
N → 1, 000. The ‘uniformity’ of the s∗ as delivered in our experimental
evaluation is that affecting most the optimality of the proposed solution.

37

Figure 11: The distance from nopt (results do not take into consideration the speed of
ENs).

Figure 12: The distance from nopt (results take into consideration the speed of ENs).

We perform an additional set of experiments to reveal the ‘behaviour’ of
the T2FLS for different complexity classes. We consider that all the incoming
queries belong to the same complexity class and report on the performance
of our model concerning l∗. Figure 13 presents our results for Datasets 1 &
2. We observe that the complexity class of a query does not ‘heavily’ affect

38

the performance in contract to the number of nodes. This is natural as our
model focuses on the load that a query will cause searching in the available
nodes to find the best possible solution. In the majority of the outcomes, l∗

is limited exhibiting the advantages of our T2FLS that is capable of finding
a node with limited load to host the incoming queries.

Figure 13: Performance outcomes for different complexity classes.

We proceed with a comparison of our model with our previous efforts and
other models found in the relevant literature. The comparison refers in the
throughput of QCs as well as the load of the selected node. Our model results
an RT varying from 17 to 660 queries per second for N ∈ {10, 100, 1000}
and an average l∗ ∈ [0.0009, 0.60] with the majority of values concentrated
close to the lowest limit as already discussed. The Model M1 presented in
[43] adopts a learning mechanism accompanied by a load balancing module.
The discussed scheme manages to allocate 58.48 queries for N = 100 (our
model serves 148.41 in average) to 454.55 queries for N = 20 (our model
serves 300.70 queries per second, in average, for all datasets and for the
same number of nodes). The average load of nselected (the learning scheme)
is around 0.10 for N ∈ {2, 5, 20, 50, 100}. The average load for the clustering
scheme is between 0.160 and 0.670. The model M2 discussed in [46] adopts
a ‘simple’ learning scheme for the decision making. The performance of M3
related to the throughput is 50-100 queries per time unit when N → 500 (our
model serves 49.85 queries per second, in average, for all datasets and for N =
500 - the worst performance is retrieved when adopting the fourth dataset).

39

Finally, the model M3, discussed in [42], presents an allocation scheme where
queries assignments are concluded by the assistance of an ensemble similarity
model responsible to deliver the complexity class. Afterwards, the complexity
class is be matched against the current load of every EN. M3 exhibits an RT

in the interval (approx.) [18, 125] for N ∈ {10, 100, 1000} while l∗ is in [0.28,
0.46] for all the adopted distributions.

We also compare our FLM with the scheme proposed in [74]. In Figures
14, 15 & 16, we present our comparative results for l∗, s∗ and r∗, respec-
tively. We observe that, concerning l∗, the FLM outperforms the TAM for
all the experimental scenarios and the adopted datasets. The difference is
high when we deal with an increased number of ENs. Related to s∗, the
two models exhibit a similar performance as presented by Figure 15. An
increased number of nodes will also increase the s∗. Finally, concerning r∗,
we observe that the FLM also outperforms the TAM exceptional to two cases
(i.e., dataset 1, N = 10 & dataset 4, N = 10).

40

Figure 14: Comparative assessment between FLM and TAM for l∗.

41

Figure 15: Comparative assessment between FLM and TAM for s∗.

42

Figure 16: Comparative assessment between FLM and TAM for r∗.

Our last comparative scenario involves the case where no action is adopted
when ties are identified in the FL outcomes as well as in evaluations delivered
by TAM. Table 2 presents our outcomes. Again, we observe that the FLM
outperforms the TAM and a high difference is realized in all the experimental
scenarios.

Table 2: Comparison outcomes for FLM vs TAM for l∗ (random selection in ties)

Dataset 2 Dataset 3 Dataset 4
N FLM TAM FLM TAM FLM TAM
10 0.078 0.780 0.140 0.270 0.090 0.740
100 0.200 0.970 0.220 0.400 0.110 0.980
1000 0.220 0.990 0.370 0.490 0.130 0.990

43

7. Conclusions & Future Work

The IoT infrastructure involves numerous autonomous devices that can
interact with their environment, collect data and transfer them to the Cloud
for further processing. Current advances propose the use of an additional
processing layer between the IoT devices and the Cloud, i.e., the edge in-
frastructure. Edge nodes can host a (sub-)set of data and perform simple
analytics queries/tasks as requested by end users or applications. This way,
the latency in the provision of responses will be minimized as the processing
activities are kept close to data sources. In this distributed infrastructure,
multiple nodes are available to host the incoming queries/tasks on top of
the local datasets. We propose a methodology for deciding the (sub-)set of
edge nodes that will host and execute every query/task. We provide a deci-
sion making model that takes into consideration the contextual information
related to queries and edge nodes (i.e., their characteristics). Any decision
is aligned with the discussed information trying to efficiently match queries
with edge nodes. We adopt the principles of Fuzzy Logic to support the
management of the uncertainty related to the efficiency of each allocation.
In addition, we also adopt a machine learning model to play the role of an
expert that provides its view on the efficiency of each allocation. The opinion
of the machine learning expert is, then, fed into the fuzzy model to deliver
the final outcome. Being aligned with the available data, we propose an
automated knowledge bases extraction scheme to support a data-aware de-
cision making. Our experimental results indicate the pros and cons of the
proposed approach and setups the basis for a comparative assessment. We
show that our model is capable of efficiently ‘matching’ queries with edge
nodes. In the first place of our future research plans is the incorporation of
more parameters in the fuzzy model and the study of the hidden aspects of
the fuzzy decision making. Hence, we will be able to offer a more complex,
however, efficient model for delivering the envisioned allocations.

Acknowledgment

This research received funding from the European’s Union Horizon 2020
research and innovation programme under the grant agreement No. 745829.

44

References

References

[1] Aazam, M., Hung, P. P., Huh, E. N., ’Smart Gateway based Communi-
cation for Cloud of Things’, 9th ICSSNIP, 2014.

[2] Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D. J., Rasin, A., Silber-
schatz, A., ’HadoopDB: An Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical Workloads’, PVLDB, 2(1), 2009.

[3] Agrawal, S., Milner, H., Kleiner, A., Talwalkar, A., Jordan, M., Madden,
S., Mozafari, B., Stoica, I., ’Knowing When You’re Wrong: Building Fast
and Reliable Approximate Query Processing Systems’, ACM SIGMOD,
USA, 2014.

[4] Adami, D., Gabbrielli, A., Giordano, S., Pagano, M., Portaluri, G., ’A
Fuzzy Logic Approach for Resources Allocation in Cloud Data Center’,
IEEE Globecom Workshops, 2015.

[5] Artail, H., El Amine, H., Sakkal, F., ’SQL query space and time com-
plexity estimation for multidimensional queries’, International Journal of
Intelligent Information and Database Systems, vol. 2(4), 2008, pp. 460—
480.

[6] Auria, L., Moro, R., ’Support Vector Machines (SVM) as a Technique for
Solvency Analysis’, Position Paper, DIW Berlin, 2008.

[7] Awadalla, M. H. A., ’Task Mapping and Scheduling in Wireless Sensor
Networks’, Int. Journal of Computer Science, 440(4), 2013.

[8] Azar, A. T., ’Overview of Type-2 Fuzzy Logic Systems’, International
Journal of Fuzzy Systems Applications, IGI Global, vol. 2(4), 2012, pp.
1-28.

[9] Balkensen, C., Tatbul, N., ’Scalable Data Partitioning Techniques for
Parallel Sliding Window Processing over Data Streams’, in Proc. of 8th
Int. Workshop on Data Management for Sensor Networks, 2011.

[10] Bharti, S., Pattanaik, K., ’Task Requirement Aware Pre-processing and
Scheduling for IoT Sensory Environments’, Ad Hoc Networks, 50, 2016,
pp. 102–114.

45

[11] Bullen, P., ’Quasi-Arithmetic Means’, Handbook of Means and Their
Inequalities’, vol. 560, 2003.

[12] Cao, L., Rundensteiner, E. A., ’High Performance Stream Query Pro-
cessing with Correlation-Aware Partitioning’, VLDB Endowment, 7(4),
2013, pp. 265–276.

[13] Caruccio, L., Deufemia, V., Polese, G., ’Learning Effective Query Man-
agement Strategies from Big Data’, in Proceedings of the 16th IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA),
2017.

[14] Castillo, O., Melin, P., ’Type-2 fuzzy logic theory and applications’,
Berlin, Germany: Springer-Verlag, 2008.

[15] Chen, Y., ’Support Vector Machines and Fuzzy Systems’, In: Mai-
mon O., Rokach L. (eds) Soft Computing for Knowledge Discovery and
Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-
69935-6-9.

[16] Chen, X., Li, Y., Harrison, R., Zhang, Y. Q., ’Type-2 Fuzzy Logic-based
Classifier Fusion for Support Vector Machines’, Applied Soft Computing,
vol. 8(3), 2008, pp. 1222-1231.

[17] Chen, W., Zhou, K., Yang, S., Wu, C., ’Data quality of electricity con-
sumption data in a smart grid environment’, Renew. Sustain. Energy
Rev., vol. 75, 2017, pp. 98-–105.

[18] Çiğdem İnan, A., Akay, M. F., ’A hybrid congestion control algorithm
for broadcast-based architectures with multiple input queues’, Journal of
Supercomputing, 2015, 71: 1907.

[19] Coltin, B., Veloso, N., ’Mobile Robot Task Allocation in Hybrid Wireless
Sensors Networks’, in 2010 Int. Conf. on Intelligent Robots and Systems,
2010.

[20] Dittrich, J., Quiane-Ruiz, J. A., Jindal, A., Kargin, Y., Setty, V.,
Schad, J., ’Hadoop++: Making a Yellow Elephant Run Like a Cheetah’,
PVLDB, 3(1), 2010.

46

[21] Edalat, N., Xiao, W., Tham, C.-K., Keikha, E., Ong, L.-L., ’A price-
based adaptive task allocation for Wireless Sensor Network’, 6th IC-
MASS, 2009.

[22] Gal, L., Lovassy, R., Rudas, I., Koczy, L., ’Learning the optimal param-
eter of the Hamacher t-norm applied for fuzzy-rule-based model extrac-
tion’, Neural Computing and Applications, 24, 2014, pp. 133–142.

[23] Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T.,
Iamnitchi, A., Barcellos, M., Felber, P., Riviere, E., ’Edge-centric Com-
puting: Vision and Challenges’, ACM SIGCOMM Computer Communi-
cation Review, 45(5), 2015.

[24] Gedik, B., ’Partitioning Functions for Stateful Data Parallelism in
Stream Processing’, VLDB Journal, vol. 23(4), 2014, pp. 517–539.

[25] Gedik, B., ’Partitioning Functions for Stateful Data Parallelism in
Stream Processing’, VLDB Journal, vol. 23(4), 2014, pp. 517–539.

[26] Greenberg, A., Hamilton, J., Maltz, D., Patel, ’The Cost of a Cloud:
Research Problems in Data Center Networks’, ACM SIGCOMM, 39(1),
2008, pp. 68–73.

[27] Gualtieri, M., Yuhanna, N., ’The Forrester Wave: Big Data Hadoop
Solutions’, Technical Report, 2014.

[28] Han, J., Kamber, M., Pei, J., ’Data Mining, Concepts and Techniques’,
3rd Edition, Morgan Kaufmann Publishers, Elsevier, 2012.

[29] Haßler, M. Jeschke, S. Meisen, T., ’Similarity Analysis of Time Interval
Data Sets Regarding Time Shifts and Rescaling’, In Proceedings Inter-
national work-conference on Time Series, 2017.

[30] Hearst, M. A., ‘Support Vector Machines’, IEEE Intelligent Systems,
vol. 13(4), 1998, pp. 18—28.

[31] Hossain, K., Raihan, Z., Hashem, M., ’On Appropriate Selection of
Fuzzy Aggregation Operators in Medical Decision Support System’, In
Proc. of the 8th Int. Conf. on Comp. and Inf. Technology, 2005.

[32] Hu, X., Xu, B., ’Task Allocation Mechanism Based on Genetic Algo-
rithm in Wireless Sensor Networks’, in ICAIC, 2011.

47

[33] Jiang, D., Ooi, D. C., Shi, L., Wu, S., ’The Performance of MapReduce:
An In-depth Study’, PVLDB, 3(1), 2010.

[34] Jiang, D. L., Wang, K. W., Wang, X. D., ’Clustering method of fuzzy
equivalence matrix to bad-data detection and identification’, Power Syst.
Protection Control, vol. 39(21), 2011, pp. 1—6.

[35] Kalapanidas, E., Avouris, N., Cracium, M., Neagu, D., ’Machine Learn-
ing Algorithms: a Study on Noise Sensitivity’, in Proc. of the 1st Balkan
COnference on Informatics, 2003.

[36] Karanika, A., Oikonomou, P., Kolomvatsos, K., Loukopoulos, T., ’A
Demand-driven, Proactive Tasks Management Model at the Edge’, in
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE
World Congress on Computational Intelligence (WCCI), Glasgow, UK,
2020.

[37] Karanika, A., Soula, M., Anagnostopoulos, C., Kolomvatsos, K., Sta-
moulis, G., ’Optimized Analytics Query Allocation at the Edge of the
Network’, in 12th International Conference on Internet and Distributed
Computing Systems, Naples, Italy, Oct. 10-12, 2019.

[38] Kolomvatsos, K., ’An Intelligent Scheme for Assigning Queries’, Springer
Applied Intelligence, https://doi.org/10.1007/s10489-017-1099-5, 2018.

[39] Kolomvatsos, K., Anagnostopoulos, C., ’A Probabilistic Model for As-
signing Queries at the Edge’, Computing, Springer, 102, pp. 865–892,
2020.

[40] Kolomvatsos, K., Anagnostopoulos, C., ’Multi-criteria Optimal Task Al-
location at the Edge’, Elsevier Future Generation Computer Systems, vol.
93, 2019, pp. 358-372.

[41] Kolomvatsos, K., Anagnostopoulos, C., ’In-Network Edge Intelligence
for Optimal Task Allocation’, 30th International Conference on Tools
with Artificial Intelligence, Nov. 5-7, Volos, Greece, 2018.

[42] Kolomvatsos, K., Anagnostopoulos, C., ’An Edge-Centric Ensemble
Scheme for Queries Assignment’, in 8th International Workshop on Com-
binations of Intelligent Methods and Applications in conjunction with the
30th International Conference on Tools with Artificial Intelligence, 2018.

48

[43] Kolomvatsos, K., Anagnostopoulos, C., ’Reinforcement Machine Learn-
ing for Predictive Analytics in Smart Cities’, Informatics, MDPI, 4, 16,
2017.

[44] Kolomvatsos, K., Anagnostopoulos, C., Hadjiefthymiades, S., ’Data Fu-
sion & Type-2 Fuzzy Inference in Contextual Data Stream Monitoring’,
IEEE Transactions on Systems, Man and Cybernetics: Systems, vol.
47(8), 2016, pp. 1–15.

[45] Kolomvatsos, K., Anagnostopoulos, C., Hadjiefthymiades, S., ’A Time
Optimized Scheme for Top-k List Maintenance over Incomplete Data
Streams’, Elsevier Information Sciences (INS), vol. 311, pp. 59-73, 2015.

[46] Kolomvatsos, K., Hadjiefthymiades, S., ’Learning the Engagement of
Query Processors for Intelligent Analytics’, Applied Intelligence, vol. 46,
2017, pp. 96–112.

[47] Kumar, K. N., Murthy, N. V., Reddy, C. S., ’An Effective Parallel XML
Fuzzy Query Processing’, International Journal of Computer Applica-
tions, vol. 86(9), 2014.

[48] Liu, X., Cheng, G., Wu, J., ’Analyzing Outliers Cautiously’, IEEE
Transactions on Knowledge and Data Engineering, vol. 14(2), 2002, pp.
432–437.

[49] Mendel, J. M., ’Type-2 Fuzzy Sets and Systems: An Overview’, IEEE
Computational Intelligence Magazine, 2(2), 2007.

[50] Mendel, J. M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions. Upper Saddle River, Prentice-Hall, 2001.

[51] Orfila, A., Carbo, J., Ribagorda, A., ’Fuzzy Logic on Decision Model for
IDS’, in proceedings of the 12th IEEE International Conference on Fuzzy
Systems, 2003.

[52] Pasteris, S., Wang, S., Makya, C., Chan, K., Herbster, M., ’Data Dis-
tribution and Scheduling for Distributed Analytics Tasks’, IEEE SWC
Conference, 2017.

[53] Raman, V., Raman, B., Hellerstein, J. M., ’Online dynamic reordering
for interactive data processing’, In VLDB, 1999.

49

[54] Raipurkar, A. R., Bamnote, G. R., ’Fuzzy Logic Based Query Opti-
mization in Distributed Database’, International Journal of Innovative
Research in Computer and Communication Engineering Vol. 1, Issue 2,
2013.

[55] Razavinegad, A., ’Task Allocation In Robot Mobile Wireless Sensor Net-
works’, Int. Journal of Scientific & Technology Research, 3(6), 2014.

[56] Roman, R., Lopez, J., Mambo, M., ’Mobile edge computing, Fog et
al.: A survey and analysis of security threats and challenges’, Future
Generation Systems, 78(2), 2018, pp. 680–698.

[57] Saleh, A. I., Rabie, A. H., Abo-Al-Ez, K. M., ’A data mining based load
forecasting strategy for smart electrical grids’, Adv. Eng. Inform., vol.
30(3), 2016, pp. 422-–448.

[58] Satyanarayanan, M., ’A brief history of cloud offload: A personal jour-
ney from Odyssey through cyber foraging to cloudlets’, Mobile Comput-
ing Communications, 18(4), 2015, pp. 19–23.

[59] Schwaab, A. A., Nassar, S. M., Filho, J., ’Automatic Methods for Gen-
eration of Type-1 and Interval Type-2 Fuzzy Membership Functions’,
Journal of Computer Sciences, vol. 11(9), 2015, pp. 976–987.

[60] Simon, M., Pataki, N., ’SQL Code Complexity Analysis’, In proceedings
of the 8th International Conference of Applied Informatics, 2010.

[61] Singh, S., Singh, N., ’Big Data Analytics’, In Proc. of the International
Conference on Communication, Information and Computing Technology,
2012.

[62] Singh, S. S., Sayal, R., Rao, V., ’Analysis and Usage of Fuzzy Logic
for Optimized Evaluation of Database Queries’, International Journal of
Computer Applications, vol. 16(3), 2011.

[63] Sola, H. B., Fernandez, J., Hagras, H., Herrera, F., Pagola, M., Bar-
renechea, E., ’Interval Type-2 Fuzzy Sets are Generalization of Interval-
Valued Fuzzy Sets: Toward a Wider View on Their Relationship’, IEEE
Transactions on Fuzzy Systems, vol. 23(5), 2015.

50

[64] Tian, Y., Ekici, E., Ozguner, F., ’Energy-Constrained Task Mapping
and Scheduling in Wireless Sensor Networks’, IEEE ICMASS, 2005.

[65] Tsanas, A., Xifara, A., ’Accurate quantitative estimation of energy per-
formance of residential buildings using statistical machine learning tools’,
Energy and Buildings, vol. 49, 2012, pp. 560–567.

[66] Vashistha, A., Jain, S., ’Measuring Query Complexity in SQLShare
Workload’, in proceedings of the International Conference on Manage-
ment of Data, 2016.

[67] Vigler, C., Goldenstein, S., Stolfi, J., Pavlovic, V., Metaxas, D., ’Out-
lier rejection in high-dimensional deformable models’, Image and Vision
Computing, vol. 25, 2007, pp. 274-–284.

[68] Walker, C. L., Walker, E. A., ’The algebra of fuzzy truth values’, Fuzzy
Sets Systems, 149, pp.309-347, 2005.

[69] Yang, T., Wei, J., Fan, B., Wang, X., Zhang, H., ’Structural Similarity
Computation Based On Extended Edge Matching Method’, International
Conference on Fuzzy Systems and Knowledge Discovery, 2012.

[70] Yang, J., Zhang, H., Ling, Y., Pan, C., Sun, W., ’Task Allocation for
Wireless Sensor Network Using Modified Binary Particle Swarm Opti-
mization’, IEEE Sensors Journal, 14(3), 2014, pp. 882–892.

[71] Yu, Y., Prasanna, V., ’Energy-Balanced Task Allocation for Collab-
orative Processing in Wireless Sensor Networks’, Mobile Networks and
Applications, 10(1-2), 2005, pp. 115–131.

[72] Zeitler, E., Risch, T., ’Scalable Splitting of Massive Data Streams’, in
DASFAA 2010, vol 5982, Springer, 2010.

[73] Zimmermann, H.-J., ‘Fuzzy Set Theory—and its Applications’, Kluwer
Academic Publishers, Boston, 2nd edition, 1991.

[74] Zoghdy, S., Nofal, M., Shohla, M., El-sawy, ’An Efficient Algorithm for
Resource Allocation in Parallel and Distributed Computing Systems’, in
International Journal of Advanced Computer Science and Applications,
vol. 4(2), 2013.

51

