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Abstract

The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct
interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular
mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently
export Kaposi’s sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits
hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly
only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction
between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the
recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF
inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently
prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that
redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless
KSHV mRNAs.
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Introduction

Post-transcriptional events which regulate mRNA biogenesis are

fundamental to the control of gene expression [1]. A nascent

mRNA is therefore steered through multimeric RNA-protein

complexes that mediate its capping, splicing, polyadenylation,

nuclear export and ultimately its translation [2,3]. A key aspect of

these post-transcriptional events is that they are intrinsically linked

[4]. For example, the act of splicing is coupled to the deposition of

two distinct multiple protein complexes onto the mRNA which are

involved in further processing events, namely the human

transcription and export complex (hTREX) [5–7] and the exon-

exon junction complex (EJC) [8]. The hTREX complex associates

with the 59end of the first exon by virtue of interactions with the

cap-binding complex, and facilitates the nuclear export of the bulk

mRNA through the TAP-mediated pathway [6]. In contrast, the

EJC is deposited 20–24 nucleotides upstream of each exon-exon

boundary and plays a role in mRNA surveillance [9] and

translation enhancement [10–12].

The TREX complex is conserved from yeast to metazoans

[3,13,14]. The human TREX complex comprises several core

components: Aly (a NXF/TAP adaptor protein); UAP56

(a DEAD-box helicase); Tex1 (a protein of unknown function)

and the stable multi-protein hTHO complex (hHpr1, hTho2,

fSAP79, fSAP35 and fSAP24) [3]. Moreover, recent proteomic

analysis has identified CIP29/Tho1 as a hTREX component that

is conserved in both yeast and metazoans [15]. The precise

mechanism of how hTREX is assembled onto the mRNA is not

fully understood or characterised. UAP56 is thought to associate

with mRNA at an early stage during the assembly of the

spliceosome and functions to mediate the recruitment of Aly,

CIP and the THO complex in an ATP-dependent manner to form

hTREX [15,16]. This involvement of the spliceosome in hTREX

assembly reflects the splicing-dependent nature of mRNA nuclear

export [16–18]. In addition to splicing, a functional 7-methylgua-

nosine 59 cap is also essential for hTREX recruitment, due to an

interaction between Aly and the cap-binding complex protein,

CBP80 [6]. Such cap-dependent recruitment of the export

complex affords the mRNA polarity upon exiting the nuclear

pore. Once assembled onto the mRNA, hTREX then instigates

the recruitment of the nuclear export factor TAP, and its

heterodimeric partner, p15, at the nuclear periphery, via a direct

interaction with Aly [18–20]. TAP binding then elicits a RNA

handover mechanism which results in the remodelling of the
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protein-mRNA interactions within the ribonucleoprotein complex

[21]. Subsequently, TAP associates with the nucleoporins through

central and carboxy-terminal domains, directing the ribonucleo-

protein though the nuclear pore complex into the cytoplasm [22].

Surprisingly, considering the central role played by Aly in TAP

recruitment, gene knockdown experiments performed in Drosoph-

ila melanogaster and Caenorhabditis elegans have shown that only

UAP56, in contrast to Aly and THO-complex proteins, is

required for bulk mRNA nuclear export [23–25]. Moreover, a

genome-wide RNAi study in D. melanogaster reported that the

conserved THO-complex was only required by a subset of

transcripts for nuclear export [26,27]. This data indicates a

degree of redundancy is present in these pathways and suggests

the existence of additional export adaptor proteins which are

involved in bulk mRNA nuclear export. In support of this idea, a

novel mRNA export adaptor protein has recently been identified

that utilises the UAP56/TAP-mediated pathway. UAP56-inter-

acting factor (UIF) was initially identified in silica, by virtue of

sequence similarity to the characterised UAP56-binding domain

found in Aly [28]. Notably, cellular expression levels of UIF

appear to be linked in vivo to the relative expression of Aly, as

miRNA-mediated depletion of Aly led to a dramatic increase in

UIF expression. Importantly, simultaneous depletion of both Aly

and UIF leads to a dramatic nuclear accumulation of bulk

mRNA [28]. Therefore, it is believed that Aly and UIF bind

independently to the same mRNA providing multiple export

adaptor proteins to recruit multiple TAP molecules to ensure

efficient mRNA nuclear export. Moreover, the observation that

UIF expression increases in Aly-depleted cells is believed to be a

redundancy mechanism that ensures cellular survival should Aly

expression be compromised.

Given the importance of the formation of multimeric mRNA-

protein complexes in mRNA biogenesis, it is not surprising that

viruses manipulate and exploit these pathways. This is particularly

important for herpesviruses which replicate in the host-cell nucleus

and express numerous lytic intronless mRNAs. Due to the reliance

of herpesviruses on the host cell machinery for efficient processing

of their mRNAs, an immediate issue arises concerning the

mechanism by which the viral intronless mRNAs are efficiently

exported from the nucleus, given that the majority of cellular bulk

mRNA nuclear export is intimately linked, and dependent upon,

splicing [29]. We have investigated this potential roadblock to

herpesvirus gene expression and replication in the gamma-2

herpesvirus, Kaposi’s sarcoma-associated herpesvirus (KSHV)

[30], which is associated with the AIDS-related malignancies

Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL) and

multicentric Castleman’s disease [31–33]. To circumvent the

roadblock of efficient intronless viral mRNA nuclear export,

KSHV encodes a multi-functional protein termed ORF57/Mta.

KSHV ORF57 is a functionally conserved protein found in all

herpesviruses that plays a pivotal role in enhancing viral gene

expression at a post-transcriptional level [34,35]. ORF57 has been

implicated in multiple steps of RNA biogenesis, including

enhancing viral splicing, protecting viral RNAs from degradation

to enhancing viral mRNA nuclear export and translation [36–39].

We have demonstrated that KSHV ORF57 promotes the

nuclear export of intronless viral mRNAs via the TAP-mediated

pathway, by directly interacting with the hTREX export adaptor,

Aly [37]. Moreover, we investigated the composition and assembly

of these export-competent intronless KSHV ribonucleoprotein

particles (vRNP) and showed that ORF57 functions to recruit the

complete hTREX complex to intronless viral mRNA, an event

that is essential for viral intronless mRNA export and KSHV

replication [37]. Furthermore, these properties are also conserved

in other gamma-2 herpesvirus ORF57 homologues, such as the

Herpesvirus saimiri (HVS) ORF57 protein [40,41]. These data

suggest that Aly is essential for ORF57-mediated KSHV intronless

mRNA export, as well as playing an important role in mRNA

nuclear export in other herpesviruses. However, experiments

involving siRNA-mediated depletion of Aly report only a modest

effect on ORF57-mediated KSHV intronless mRNA export,

although only partial depletion of Aly was achieved [42]. This data

correlates with depletion-related studies on the role of Aly in

mRNA export in higher eukaryotes where, surprisingly, Aly has

been shown to be dispensable in mRNA export [23,24]. Similar

stories are also evident for other herpesviruses mRNA export

proteins. For example, an observed interaction between ICP27

(the HSV-1 ORF57 homologue) and Aly was initially reported as

important for HSV-1 mRNA export [43]. However, subsequent

functional studies using siRNA-mediated depletion of Aly led to

the authors suggesting that Aly is not essential for ICP27-mediated

HSV-1 mRNA export [44]. This suggests that additional cellular

mRNA export proteins play important roles in herpesvirus

intronless mRNA export. Indeed, recently it has been demon-

strated that the SR proteins, SRp20 and 9G8, can contribute to

efficient export of herpes simplex virus 1 mRNAs [45].

Herein we report a novel interaction between the KSHV

ORF57 protein and the recently identified mRNA export adaptor

protein, UIF. Moreover, we provide data to suggest that ORF57

may preferentially bind Aly compared to UIF. Furthermore, we

investigate whether the linked expression of UIF and Aly plays a

role in the apparent redundancy of Aly in herpesvirus intronless

mRNA nuclear export. We provide the first evidence that the

ORF57-UIF interaction enables the recruitment of the complete

hTREX and the nuclear export factor, TAP, to KSHV intronless

mRNA in Aly-depleted cells. Strikingly, we demonstrate that

depletion of both Aly and UIF inhibit the formation of an ORF57-

mediated nuclear export competent ribonucleoprotein particle and

consequently prevent ORF57-mediated nuclear export of intron-

less viral mRNAs and KSHV protein production. Importantly,

these findings highlight that redundancy exists in the eukaryotic

Author Summary

Herpesviruses hijack cellular components to enhance viral
gene expression. This is particularly important for the
efficient nuclear export of herpesvirus intronless mRNAs to
allow the production of viral proteins. We have previously
demonstrated that Kaposi’s sarcoma-associated herpesvi-
rus encodes a conserved protein, ORF57, which recruits
essential cellular mRNA export proteins onto the viral
intronless mRNAs to form an export competent viral
ribonucleoprotein particle. Specifically, we have shown
that ORF57 interacts directly with the cellular export
adaptor protein, Aly, to recruit other cellular mRNA export
proteins. Surprisingly however, depletion of Aly has a
limited effect on both cellular and viral mRNA nuclear
export levels, suggesting a degree of redundancy in the
export pathways and the existence of other export adaptor
proteins. Here we have identified a novel interaction
between ORF57 and a second export adaptor protein, UIF.
We show for the first time that the ORF57-UIF interaction
allows the recruitment of the essential cellular mRNA
export proteins onto viral intronless mRNA, in cells lacking
Aly. However, depletion of both Aly and UIF prevents the
formation of an export competent viral ribonucleoprotein
particle, suggesting that either Aly or UIF must be present
for efficient KSHV intronless mRNA nuclear export and
protein production.

KSHV ORF57 Interacts with UIF
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system for certain hTREX components involved in the mRNA

nuclear export of intronless KSHV mRNAs.

Results

KSHV ORF57 interacts with the UAP56 interacting
protein, UIF

KSHV ORF57 interacts directly with the cellular export

adaptor protein Aly to recruit cellular hTREX, comprising

UAP56 and the hTHO complex, onto a viral intronless mRNA

to form an export competent ribonucleoprotein particle [37].

However, ORF57 and homologues can mediate nuclear export of

an intronless viral mRNA in Aly-depleted cells [42], suggesting

that alternative export pathways may be targeted by the ORF57

protein. Therefore, to determine whether ORF57 interacts with

alternative export adaptor proteins, GST-pulldown and co-

immunoprecipitations assays were performed to assess if ORF57

interacted with the recently identified UAP56 interacting protein,

UIF. Initially, recombinant GST-, GST-UAP56 or GST-ORF57

fusion proteins were produced and used in GST-pulldown assays.

It must be noted however, that although full length GST-ORF57

is produced, a large proportion of the product is degraded as

previously observed [37]. GST-pulldown experiments were

therefore performed using equal amounts of total protein from

each GST construct immobilised to beads followed by incubation

with 293T cell lysates transfected with pUIF-Flag. Analysis showed

that UIF interacted with both UAP56 and KSHV ORF57

(Figure 1A). To confirm these results co-immunoprecipitation

experiments were also performed. 293T cells were transfected with

either pEGFP, pUAP56-myc or pORF57GFP in the presence of

pUIF-Flag and used in co-immunoprecipitation experiments with

GFP or UAP56-specific antibodies. Results confirmed the

interaction between UIF and KSHV ORF57 (Figure 1B).

We have previously identified an ORF57 mutant protein,

ORF57PmutGFP, which is unable to interact with Aly and

therefore recruit the remainder of the hTREX complex onto viral

intronless mRNAs [37]. Moreover, we demonstrated that this

mutant is unable to efficiently export viral intronless mRNA from

the nucleus suggesting that the recruitment of a complete hTREX

complex is required for ORF57-mediated nuclear export.

ORF57PmutGFP contains site-directed alterations of two proline

residues within a PxxP poly-proline motif, situated in the

previously identified minimal Aly-binding domain encompassing

residues 181–215. We have previously demonstrated that although

ORF57PmutGFP is unable to bind Aly, it still retains features of

the wild type ORF57 protein, namely localising to nuclear

speckles, the ability to homodimerise, bind KSHV RTA and bind

intronless viral mRNA [37]. To assess whether this mutant could

interact with UIF, GST-pulldown experiments and co-immuno-

precipitation experiments were performed as described above

using GST-ORF57Pmut and pORF57PmutGFP, respectively. In

both cases the mutant ORF57 protein, which fails to bind Aly, also

lacks the ability to interact with UIF (Figure 1A and 1B).

Importantly, this suggests that the failure of ORF57PmutGFP to

recruit hTREX and efficiently export intronless viral mRNAs

from the nucleus may be due to the inability to bind either Aly or

UIF.

To determine if the interaction between ORF57 and UIF

depended on RNA bridging, co-immunoprecipitation experiments

were repeated in the absence and presence of RNase. 293T cells

were transfected with either pEGFP or pORF57GFP in the

presence of pUIF-Flag and co-immunoprecipitation assays were

performed using a polyclonal Flag-specific antibody. In addition,

no antibody and a negative control antibody (a-SC-35) were also

used in the analysis. ORF57 was readily precipitated using the

Flag-specific antibody in contrast to negative controls. Moreover,

the observed interaction was still detected in the presence of

RNase suggesting the interactions are not due to RNA bridging

(Figure 1C). To ensure the RNase treatment was effective the

immunoprecipitations were also blotted with an Aly-specific

antibody. Results show that the UIF-Aly interaction is RNA

dependent as previously described [28,36].

In order to address potential overexpression artefacts of the

above co-immunoprecipitation experiments and also determine

whether ORF57 interacts with UIF during KSHV lytic replica-

tion, latently-infected BCBL-1 cells remained uninduced or

reactivated using the phorbol ester, TPA. Lytic expression was

confirmed by the detection of ORF57 using Western blot analysis

in the reactivated samples (Figure 2). Uninduced and reactivated

cell lysates were then incubated with no antibody control, ORF57-

or UIF-specific antibodies. Reciprocal western blot analysis using

the antibodies in reverse demonstrated that ORF57 interacts with

UIF during KSHV lytic replication (Figure 2). Therefore, these

data provide the first evidence of a viral protein associating with

UIF.

ORF57 is a nucleocytoplasmic protein that is predominately

observed in the nucleus, specifically colocalising with nuclear

speckle and nucleoli-associated proteins [42,46]. Therefore, we

were interested to determine whether ORF57 colocalises with UIF

in either of these subnuclear domains. To this end, 293T cells were

cultured on poly-L lysine coated coverslips and transfected with

either pORF57-mCherry or pUIF-GFP alone or in combination.

The subcellular localisation of ORF57 and UIF were observed via

direct fluorescence, in addition indirect-immunofluorescence was

performed to identify nuclear speckles and the nucleolus using

SC35- (Figure 3Bii) and B23- (Figure 3Dii) specific antibodies,

respectively. As previously observed ORF57 colocalises with both

subnuclear domain markers (Figure 3Bii and 3Dii). Moreover, UIF

was also found to localise with these subnuclear structures and also

colocalises with the ORF57 protein (Figure 3B and 3D). However,

results demonstrate that the majority of ORF57 and UIF

colocalise in the nucleolus whereas only a proportion of ORF57

and UIF colocalise with the nuclear speckle marker, SC35.

ORF57 facilitates the loading of UIF onto KSHV intronless
mRNAs

One major difference between the mRNA export adaptor

proteins Aly and UIF is the mechanism they utilise to be loaded

onto mRNA. Aly has been shown to associate with mRNA in a

UAP56 and splicing-dependent manner [47], in contrast UIF is

loaded onto mRNA via the histone chaperone FACT [28]. We

have previously demonstrated that ORF57 is required for the

recruitment of Aly and the remainder of the hTREX complex

onto viral intronless mRNAs, therefore we were intrigued to

determine if UIF could associate with intronless viral mRNAs in

an ORF57-independent manner using RNA-immunoprecipitation

(RNA-IP) assays. A vector expressing KSHV ORF47 (a late

structural intronless gene) was transfected into 293T cells with

either pEGFP or pORF57GFP. Total cell lysates were then used

in immunoprecipitations performed with either No, Y14- (negative

control), UIF- or GFP-specific antibodies and the amount of

ORF47 precipitated was measured by qRT-PCR. RNA-IPs

performed on cell extracts transfected with pORF47 and pEGFP

failed to show an interaction between UIF and the viral intronless

ORF47 mRNA (Figure 4). In contrast, extracts from cells

transfected with both pORF47 and pORF57GFP displayed a

clear interaction between UIF, ORF57GFP and the intronless

viral ORF47 mRNA (Figure 4). These data show that although

KSHV ORF57 Interacts with UIF
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UIF can associate with cellular spliced and unspliced single exon

cellular mRNAs, ORF57 is required for the recruitment of UIF

onto intronless viral mRNA.

UIF links ORF57 to the hTREX component, UAP56
We have previously demonstrated that the nuclear export

adaptor protein, Aly, is recruited to viral intronless mRNAs in a

splicing-independent manner by directly interacting with ORF57.

Once bound it then leads to the recruitment of the remaining

components of hTREX, in turn leading to efficient nuclear export

of these viral intronless mRNAs via a TAP-mediated pathway

[37]. We therefore next sought to determine if UIF can perform a

similar function by linking ORF57 to hTREX components such as

UAP56. Initially, we determined whether ORF57 interacted with

Figure 1. KSHV ORF57 interacts directly with UIF. (A) (i) Bacterially expressed GST-, GST-UAP56-, GST-ORF57- and GST-ORF57Pmut-bound to
glutathione agarose beads and separated by SDS-PAGE, proteins were visualised by coomassie staining. (ii) GST Pull-down assays were performed
using pUIF-FLAG transfected cell lysates. Precipitated UIF protein was detected by western blot analysis using a FLAG-specific antibody. UIF-FLAG
transfected cell lysate served as a loading control (Input). (B) Immunoprecipitations using GFP- or UAP56-specific antibodies were performed using
cell lysates cotransfected with UIF-FLAG in the presence of either pEGFP, pUAP56-Myc, pORF57GFP or pORF57PmutGFP. Precipitated UIF-FLAG,
UAP56-myc, GFP, ORF57GFP and ORF57PmutGFP were detected by western blot analysis using antibodies specific to FLAG, myc or GFP. Transfected
cell lysates served as a loading control (Inputs). (C) Immunoprecipitations were performed in the presence or absence of RNase, using a no antibody
control, (SC35)- or FLAG-specific antibodies on cell lysates cotransfected with pUIF-FLAG in the presence of either (i) pGFP and (ii) pORF57GFP.
Precipitated proteins were detected by western blotting using GFP- or FLAG-specific antibodies. (iii) ORF57-transfected co-immunoprecipitations
were also immunoblotted with an Aly-specific antibody to confirm the activity of the RNase digestion to abolish the RNA-dependent interaction
between Aly and UIF.
doi:10.1371/journal.ppat.1002138.g001
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UIF directly using GST-pulldown assays. Recombinant GST- and

GST-ORF57 proteins were immobilised to beads and incubated

with purified recombinant UIF-6xHis or a negative control

purified recombinant HVS ORF73-6xHis protein [48]. UIF-

6xHis was precipitated by GST-ORF57 but not the negative GST

control, moreover ORF73-6xHis failed to interact with either

GST or GST-ORF57 (Figure 5A). These data provide further

support for the direct interaction between ORF57 and UIF.

Given the fact that ORF57 and UIF interact directly, we next

determined whether UIF can bridge the interaction between

ORF57 and hTREX components, such as UAP56, which we

have previously shown fails to interact with ORF57 directly [37].

Reconstitutive GST-pulldowns were therefore performed using

recombinant GST- and GST-UAP56 proteins immobilised to

beads and incubating with either purified recombinant ORF57-

6xHis or purified recombinant UIF-6xHis alone or in combina-

tion. No interaction with GST or GST-UAP56 was observed in

the presence of ORF57-6xHis alone. In contrast, an interaction

between GST-UAP56 and ORF57 was observed in the presence

of purified UIF-6xHis protein (Figure 5B), suggesting that UIF

can facilitate the formation of the ORF57-hTREX complex. This

provides the first evidence to demonstrate that UIF could

function to assemble the hTREX complex on viral intronless

mRNAs.

ORF57 may preferentially bind Aly over UIF
The above data demonstrate that UIF interacts directly with

ORF57 and suggest that it can function to bridge an interaction

between ORF57 and the remaining hTREX components. This

mechanism is similar to our previous observations regarding the

functional significance of the Aly-ORF57 interaction, and

therefore leads to the intriguing question of whether ORF57 has

a preference for Aly binding over UIF or vice versa. To address

this question we performed competitive GST pulldown assays.

Recombinant GST-ORF57 protein was immobilised to beads and

incubated with a constant amount (1 mg) of purified recombinant

Aly-6xHis protein, in addition the pulldown was spiked with

increasing amounts of purified recombinant UIF-6xHis protein (0,

0.5, 1, 2, 3 mg). Western blot analysis was then performed using an

Aly-specific antibody. Results demonstrate that the binding of Aly

to GST-ORF57 is only slightly reduced in the presence of

increasing amount of UIF (Figure 6Ai), suggesting that UIF cannot

out-compete Aly for ORF57 binding. Similar spiked experiments

were performed using a constant amount of UIF and increasing

amounts of Aly. In contrast, results showed that even low

quantities of Aly led to a dramatic loss of UIF binding to the

ORF57 protein (Figure 6Aii). These results reveal that Aly can

out-compete UIF for ORF57 binding, suggesting that ORF57 may

preferentially bind Aly to form an export competent ribonucleo-

protein particle.

However as shown in Figure 1A, although bacterial expression

of full length GST-ORF57 results in a full length ORF57 protein,

a large proportion of degraded products are also produced.

Therefore, to further assess the possibility that ORF57 may

interact with Aly preferentially over UIF, dose-dependent

coimmunoprecipitation assays were performed. To this end,

293T cells were cotransfected with 0.5 ug of pORF57GFP and

0.5 ug of pAly-myc, in addition to increasing amounts of pUIF-

Flag (0, 0.1, 0.5, 0.8, 1.2 ug). After 24 hours, cell lysates were

incubated with GFP-TRAP-Affinity agarose beads and the

amount of precipitated Aly was identified by immunoblotting

with a Myc-specific antibody. Results again show that the binding

of Aly is only slightly reduced in the presence of increasing

amounts of UIF (Figure 6Bi). Moreover, reciprocal dose-

dependent coimmunoprecipitations were performed using 0.5 ug

of pORF57GFP and 0.5 ug of pUIF-Flag, in addition to

increasing amounts of pAly-myc (0, 0.1, 0.5, 0.8, 1.2 ug). In

contrast, results suggest that higher concentrations of Aly can

significantly reduce the amount of precipitated UIF (Figure 6Bii).

These results corroborate the above GST pulldown assays and

suggest that ORF57 may preferentially bind Aly over UIF to form

an export competent ribonucleoprotein particle.

Depletion of both Aly and UIF is required to inhibit
ORF57-mediated virus ribonucleoprotein particle
formation

Having established that both Aly and UIF can bridge an

interaction between ORF57 and hTREX components, such as

UAP56, we next sought to determine the effect of depleting Aly

and UIF either singularly, or in combination, on the ability of

ORF57 to form an export competent ribonucleoprotein particle

containing the complete hTREX complex and the nuclear export

factor TAP. To this end, we have utilised doxycycline inducible

293 cell lines expressing miRNAs targeting Aly, UIF or both Aly

Figure 2. ORF57 interacts directly with UIF during KSHV lytic replication. Immunoprecipitations were performed on unreactivated or
reactivated BCBL-1 cells using no antibody control, ORF57- or UIF-specific antibodies. Precipitated proteins were detected by western blot using UIF-
and ORF57-specific antibodies. BCBL-1 cells were reactivated by the addition of TPA (20 ng/ml).
doi:10.1371/journal.ppat.1002138.g002

KSHV ORF57 Interacts with UIF
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and UIF [28]. Effective depletion of Aly, UIF or both proteins can

be observed after 72 hours post doxycycline induction (Figure 7A).

However, a caveat of this type of experiment is that depletion of

multiple mRNA export factors in combination may firstly be toxic

to the host cell and second inhibit the expression of ORF57 itself

as recently reported [49]. Characterisation of the cell viability and

Figure 3. KSHV ORF57 colocalises with UIF in the nucleus and nucleolus. 293T cells were either mock (Ai, Ci), or transfected with pORF57-
mCherry (Aii, Cii) or pUIF-GFP (Bi, Di) and in combination (Bii, Dii), incubated for 24 h, fixed and immunofluoresence staining performed. ORF57 and
UIF were visualised by direct fluorescence of Cherry and GFP, respectively. Subcellular localisation within the nuclear speckles or nucleolus was
confirmed using antibodies specific to SC-35 (A, B) or B23 (C, D), respectively. A merge of the mCherry/GFP channels is also included for all images.
White arrows indicate nuclear speckles (Bii) or nucleolar localisation (Dii).
doi:10.1371/journal.ppat.1002138.g003

KSHV ORF57 Interacts with UIF
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growth of the cells depleted with both Aly and UIF has previously

been performed and results show they are viable and grow for 4

days post knockdown prior to cell death at day 6 [28]. Therefore

all experiments using these cell lines were performed in this 4 day

window. Moreover, to ensure ORF57 protein production, cells

were transfected at 48 hours prior to complete Aly or UIF

depletion at 72 hours.

To assess viral ribonucleoprotein particle formation, wild type

293 cells and each miRNA-targeted cell line were induced with

doxycycline to deplete the respective proteins and after

48 hours’ induction, each cell line was transfected with

pORF57GFP. After a further 24 hours when maximum Aly

and UIF depletion has occurred, cell lysates were used in co-

immunoprecipitation experiments using GFP-TRAP-Affinity

agarose beads. Western blot analysis was then performed using

UAP56-, FSAP79- (a hTHO complex component) and TAP-

specific antibodies. As a negative control, GFP was also

transfected into the wild type 293 cell line and co-immunopre-

cipitations performed using GFP-TRAP-Affinity agarose beads,

no interactions were observed with any of the hTREX

components or TAP. However, results showed that expression

of ORF57 in the wild type 293 cell line led to the precipitation of

UAP56, FSAP79 and TAP suggesting that ORF57 expression

leads to the formation of an export competent ribonucleoprotein

particle (Figure 7B). Similar complex formation was observed in

cell lines depleted singularly for Aly and UIF, where ORF57 can

precipitate UAP56, FSAP79 and TAP (Figure 7B). In contrast,

depletion of Aly and UIF in combination significantly reduced

the interaction between ORF57 and the hTREX components

and the nuclear export factor TAP. Importantly, these data

demonstrate that either Aly or UIF are required for the

formation of an ORF57-mediated nuclear export competent

ribonucleoprotein particle.

Either Aly or UIF is required for ORF57-mediated mRNA
nuclear export and KSHV protein production

The above data suggest that ORF57 must interact with either

export adaptor protein, Aly or UIF, to recruit hTREX and the

nuclear export protein TAP, to form an export competent

ribonucleoprotein particle. Therefore, we next determined

whether both UIF and Aly were required for efficient ORF57-

mediated nuclear export of viral intronless mRNAs. To this end,

we assessed the ability of ORF57 to enhance the nuclear export of

the KSHV intronless ORF47 mRNA, using a previously described

assay to compare the accumulation of ORF47 mRNA in the

cytoplasm [46]. Essentially, cells are transfected with a plasmid

expressing the intronless KSHV ORF47 gene in addition to either

GFP or wild type ORF57 constructs. After 24 hours, RNA is

extracted from total and cytoplasmic fractions and RNA levels

quantified using qRT-PCR. Total RNA levels are assessed to

ensure similar expression levels of the ORF47 mRNA in each

sample, where an increase in cytoplasmic levels of ORF47 mRNA

signifies an increase in ORF57-mediated mRNA export levels.

Therefore, to assess the ability of ORF57 to export ORF47

mRNA from the nucleus in the absence of either UIF or Aly or

both, wild type 293 cells and each miRNA-targeted cell line were

induced with doxycycline to deplete the respective proteins and

after 48 hours induction, each cell line was transfected with

pORF57GFP and pORF47. Again, this allowed sufficient time to

express ORF57 prior to optimal export adaptor protein depletion.

After a further 24 hours, RNA was extracted from total and

cytoplasmic fractions and ORF47 levels assessed by qRT-PCR.

Results demonstrated that ORF47 mRNA levels from total cell

fractions are similar in wild type and the depleted cell lines.

Moreover, in the control 293 cell line ORF47 mRNA accumulates

in the cytoplasm in the presence of ORF57 as previously described

[46]. Similarly, mRNA can accumulate in the cytoplasm of cells

Figure 4. ORF57 is required for the recruitment of UIF to a KSHV intronless mRNA. RNA immunoprecipitations were performed in 293T
cells cotransfected with KSHV pORF47 in the presence of either pEGFP or pORF57GFP. After UV crosslinking cell lysates were immunoprecipitated
using GFP- or UIF-specific antibodies. In addition, no antibody and a negative control Y14 antibody were also used as controls. Protein was then
digested, and immunoprecipitated RNA was analysed by qRT-PCR.
doi:10.1371/journal.ppat.1002138.g004
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depleted singularly for Aly and UIF, however, a reduction in

export efficiency was observed of approximately 40% and 23% of

wild type levels, respectively (Figure 8A). In contrast, depletion of

both Aly and UIF together led to a dramatic reduction of ORF47

mRNA accumulation in the cytoplasm with an 80% decrease

compared to wild type levels (Figure 8A).

We next tested whether the observed reduction in the ability of

ORF57 to export intronless mRNAs from the nucleus in cell lines

depleted for Aly and UIF had any effect on KSHV protein

production. To this end, the wild type 293 cells and each miRNA-

targeted cell line were induced with doxycycline to deplete the

respective proteins and after 48 hours induction, each cell line was

infected with recombinant KSHV at a MOI = 1. This time point

was used to allow sufficient time to express ORF57 prior to

optimal export adaptor protein depletion. After a further 48 hours,

the cell lysates were analysed by immunoblotting using KSHV

glycoprotein B- and ORF4-specific antibodies. Results showed

that gB protein expression in cell lines singularly depleted for

either Aly or UIF was reduced by ,42% and ,10%, respectively,

whereas little or no reduction was observed for ORF4 protein

levels in the singularly depleted cells. Strikingly, however depletion

of both Aly and UIF led to a dramatic reduction in both gB and

ORF4 expression levels of 78% and 79%, respectively (Figure 8B).

These results suggest that depletion of UIF has limited if any effect

of virus replication, however, depletion of UIF together with Aly

had a dramatic negative effect on KSHV protein production.

However, it must be noted that this reduction in protein levels may

also stem from altered levels of one or more key cellular proteins

involved in KSHV lytic protein production.

Taken together, our data suggest that either one of the cellular

nuclear export adaptor proteins, Aly or UIF, is required for the

formation of an ORF57-mediated nuclear export competent

ribonucleoprotein particle which is essential for KSHV protein

production.

Discussion

The nuclear export of bulk mRNA is mediated by the

conserved heterodimeric export receptor, TAP/p15 [3].

Cellular mRNAs gain access to TAP/p15 via interaction with

a group of RNA-binding proteins termed export adaptors. The

first mRNA export adaptor to be identified in higher systems

was Aly/REF, and subsequent work from a number of groups

led to the current model where Aly is recruited to the 59 cap of

spliced mRNA along with several other proteins to form a

multimeric protein complex termed hTREX [6]. The hTREX

complex facilitates the association of bound mRNAs with TAP/

p15 thus licensing nuclear export. In addition to Aly, several

other hTREX components have been identified including the

DEAD-box helicase UAP56, hTex1, the multi-protein THO

Figure 5. ORF57 is linked to the hTREX complex by UIF; however, ORF57 preferentially interacts with Aly over UIF. (A) Recombinant
GST, and GST-ORF57 were bound to glutathione agarose beads and GST Pull-down assays performed using purified recombinant UIF-His or control
ORF73-His proteins. Precipitated proteins and inputs were analysed by western blotting using a His-specific antibody. (B) Reconstitutive GST
pulldowns were performed using GST or GST-UAP56 bound to glutathione agarose beads and incubated with recombinant purified ORF57-His or Aly-
His alone or in combination. Precipitated proteins and inputs were analysed by western blotting using a His-specific antibody.
doi:10.1371/journal.ppat.1002138.g005
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complex and recently, CIP29 [15]. While the underlying

mechanism of hTREX-mediated mRNA export is loosely

understood, the individual functions of the hTREX compo-

nents remain elusive.

Perhaps the greatest enigma surrounding TAP/p15-mediated

mRNA export is the apparent redundancy that exists for certain

hTREX proteins. This is particularly true for Aly, where a number

of different studies have shown that the metazoan homologue,

REF1, is not required for the bulk export of mRNA [23,24]. These

studies suggest that additional mRNA export adaptors must exist

which can function to link nascent mRNA to the TAP/p15

heterodimer. Moreover, this raises the intriguing possibility that,

via the use of numerous different mRNA export adaptor proteins,

a further layer of control may exist to regulate gene expression.

Indeed, several recent reports have highlighted that differences

exist within component members of mRNA export complexes

associated with different classes of mRNAs. For example, HSP70

mRNA only requires Aly and the co-adaptor Thoc5 to mediate

TAP recruitment [50]. Moreover, an alternative mRNA export

(AREX) complex, distinct to hTREX has recently been identified

which comprises the related RNA helicase URH49, instead of

UAP56 [51]. Interestingly, each helicase regulates a specific set of

mRNAs associated with distinct subsets of key mitotic regulators.

In addition, members of the SPEN family of proteins, RBM15 and

OTT3 are functionally similar, in that they can bind RNA and

physically interact with TAP. However, the association of OTT3

with TAP is attenuated compared to RBM15, leading to

speculation that strong and weak variants exist that may function

during developmental or tissue specific mRNA processing events

[52]. These data galvanise the hypothesis that ultimately it is the

recruitment of TAP/p15 that is required for nuclear export, and

that one function of the export adaptor proteins is to provide

Figure 6. KSHV ORF57 may preferentially bind Aly over UIF. (A) Competition assays were performed using recombinant GST-ORF57 bound to
glutathione agarose beads and incubated with (i) a constant amount of purified Aly-His (1 mg) and increasing amounts of purified UIF-His (0, 0.5, 1, 2,
3 mg), (ii) a constant amount of purified UIF-His (1 mg) and increasing amounts of purified Aly-His (0, 0.5, 1, 2, 3 mg), Precipitated protein and inputs
were analysed by western blotting using a His-specific antibody. (B) Dose-dependent co-immunoprecipitations were performed using 293T cells
cotransfected with (i) 0.5 ug of pORF57GFP and 0.5 ug of pAly-myc, in addition to increasing amounts (0, 0.1, 0.5, 0.8, 1.2 ug) of pUIF-Flag or (ii)
0.5 ug of pORF57GFP and 0.5 ug of pUIF-Flag, in addition to increasing amounts (0, 0.1, 0.5, 0.8, 1.2 ug) of pAly-myc, empty vector was also added to
ensure a similar amount of DNA was transfected in each sample. After 24 hours, cell lysates were incubated with GFP-TRAP-Affinity agarose beads
and the amount of precipitated (i) Aly or (ii) UIF was identified by immunoblotting with Myc- or Flag-specific antibodies, respectively. Western blots
for input loading are also shown for ORF57, Aly and UIF constructs.
doi:10.1371/journal.ppat.1002138.g006

KSHV ORF57 Interacts with UIF

PLoS Pathogens | www.plospathogens.org 9 July 2011 | Volume 7 | Issue 7 | e1002138



selectivity to this system. Such a hypothesis is consistent with, and

offers an explanation to, conflicting data regarding the nuclear

export of KSHV intronless mRNAs.

Herpesviruses hijack the TAP/p15-mediated mRNA export

pathway in order to enhance the nuclear export of viral intronless

mRNA. We have previously shown that during KSHV replication

the virus-encoded ORF57 protein procures the hTREX complex

(and subsequently TAP/p15) via a direct interaction with Aly,

facilitating the efficient export of KSHV intronless mRNAs [37].

We proposed therefore, that as the ORF57-Aly interaction

provides the link between the virus mRNA and hTREX, it was

likely that Aly would be essential for KSHV mRNA export. This

hypothesis was supported by data showing that an ORF57 mutant,

ORF57PmutGFP, unable to bind Aly was no longer functional in

virus mRNA export. However, similarly to previous studies in D.

melanogaster and C. elegans, siRNA-mediated depletion of Aly did not

translate to a decrease in ORF57-mediated nuclear export of

KSHV intronless mRNA, although only partial knockdown of Aly

was observed [42]. Correspondingly, the HSV homologue of

ORF57, ICP27, was shown to directly interact with Aly.

Moreover, studies in Xenopus laevis oocytes showed ICP27

dramatically stimulated the export of intronless viral mRNAs,

and a mutant ICP27 protein that failed to interact with REF is

inactive in viral mRNA export [43]. Again however, siRNA-

mediated depletion of Aly has been shown not to affect HSV-1

mRNA export [44].

Figure 7. Knockdown of both Aly and UIF impairs the ability of ORF57 form an export competent viral ribonucleoprotein particle.
(A) 293, 293DAly, 293DUIF and 293DAlyDUIF cells were mock treated or treated with 2 mg/ml doxycyclin grown for 72 h. Cell lysates were analysed by
western blotting using Aly-, UIF- and UAP56-specific antibodies. (B) (i) 293 cells were transfected with pEGFP and grown for a further 24 h. Cell lysates
were incubated with GFP-TRAP-Affinity beads and after washing, the precipitated proteins were detected by western blotting using GFP-, UAP56-,
FSAP79- and TAP-specific antibodies. (ii) 293, 293DAly, 293DUIF and 293DAlyDUIF cells were treated with 2 mg/ml doxycyclin and grown for 48 h
before being transfected with pGFP-ORF57 and grown for a further 24 h. Cell lysates were incubated with GFP-TRAP-Affinity beads and after washing,
the precipitated proteins were detected by western blotting using GFP-, UAP56-, FSAP79- and TAP-specific antibodies. Transfected cell lysates were
used as an input control.
doi:10.1371/journal.ppat.1002138.g007
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Herein, we demonstrate that redundancy exists in the

eukaryotic system for certain hTREX components involved in

the mRNA nuclear export of intronless KSHV mRNAs. Evidence

for such redundancy in export adapter proteins was recently

provided by the identification of a second mRNA export adaptor

protein, UIF [28]. Importantly, cellular expression levels of UIF

appear to be linked in vivo to the relative expression of Aly, as

depletion of Aly leads to a dramatic increase in UIF expression.

This would therefore account for the modest reduction in mRNA

nuclear export in Aly-depleted cells. Indeed, as shown in Figure 1

and 5, ORF57 interacts directly with UIF and thus is able to

recruit hTREX/TAP/p15 allowing efficient intronless virus

mRNA nuclear export in Aly-depleted cells (Figure 8).

Recent analysis has also suggested that additional mechanisms

exist to ensure the nuclear export of viral transcripts in other

herpesviruses. For example, ICP27 can bind directly to TAP,

suggesting ICP27 can bypass nuclear export adapter proteins [53].

However, although analysis of ICP27 mutants unable to interact

with TAP export showed greatly reduced intronless viral mRNA

export, it was not completely abolished suggesting other cellular

proteins may have a role. Indeed, recent analysis has shown that

nuclear accumulation of HSV-1 mRNA is reduced when cells

were treated with siRNAs specific for the SR proteins, SRp20 and

9G8, confirming that other cellular export proteins, such as SR

proteins, can contribute to HSV-1 mRNA nuclear export [45].

Similarly, the EBV ORF57 homologue, SM/EB2, can interact

with SRp20, although to date, this interaction has been implicated

in alternative splicing mechanisms [54]. However, EBV SM/EB2

has been previously shown to interact with alternative cellular

export factors, such as CRM-1 [55]. An alternative approach may

be employed by the hCMV ORF57 homologue, UL69, which

interacts with other hTREX proteins required for bulk mRNA

nuclear export, such as UAP56 [56]. However, current work is

ongoing to determine if these homologues interact with UIF.

Moreover, the role of UIF may also have wider implications in the

field of virology. Influenza A virus produces capped and

polyadenylated mRNAs in the nucleus of infected cells that

resemble mature cellular mRNAs, which require export by the

TAP-mediated pathway [57]. Depletion of Aly had little effect on

viral mRNA export, but reduction of UAP56 levels strongly

inhibited trafficking and/or translation of influenza mRNAs [58].

It will now be interesting to determine whether UIF also

substitutes for Aly function in this viral system.

There are however, some important mechanistic differences

between Aly and UIF which have implications for KSHV

intronless mRNA nuclear export. The hTREX component,

CIP29, bridges the Aly-UAP56 interaction to form a trimeric

complex that is assembled in an ATP-dependent manner [15].

Importantly, the recruitment of Aly to the mRNA requires an

interaction with the 59 cap and is dependent on splicing [6].

However, UIF appears to be co-transcriptionally loaded onto

burgeoning mRNAs via an interaction with the histone chaperone,

FACT [28]. It appears therefore that Aly and UIF are deposited

onto the same mRNA separately and independently, a hypothesis

supported by ribonuclease-treated co-immunoprecipitation exper-

iments, which show that the interaction between Aly and UIF is

facilitated by RNA-bridging [28,36]. These data suggest that there

are two distinct cellular mechanisms that can each recruit TAP to

an mRNA. This raises a number of interesting questions with

regards to how ORF57 orchestrates the recruitment of hTREX

(and ultimately TAP/p15) via UIF. As seen in Figure 4, UIF is

recruited to KSHV intronless mRNA only in the presence of

ORF57, this is in stark contrast to the mechanism by which UIF is

loaded onto cellular mRNA. Why UIF is not loaded onto KSHV

intronless transcripts via FACT is unclear. One possible

explanation is that FACT does not interact with RNA polymerase

II during the transcription of ORF47 mRNA in this assay, possibly

due to incomplete chromatinisation of vector DNA. Alternatively,

recruitment of UIF to both spliced and unspliced mRNA maybe

partially dependent on UAP56 and we have previously shown that

UAP56 recruitment to KSHV mRNA is dependent on the ORF57

protein [37].

As mentioned above, Aly and UIF are loaded separately onto

the same cellular mRNA via different mechanisms and both

function to ultimately recruit TAP/p15 to the mRNA via

interactions with hTREX. Intriguingly, we show in Figure 6, that

ORF57 may preferentially bind to Aly over UIF, using both

competitive GST-pulldown and dose-dependent coimmunopreci-

pitation assays. Why KSHV ORF57 would evolve to preferentially

bind Aly over UIF is at present uncertain. One possibility is that

Aly is the major export adaptor protein and UIF forms a backup

or default pathway. This is not without precedent as proteins

expression levels suggest that Aly is more abundantly expressed

than UIF and UIF protein levels significantly increase in Aly-

depleted cells [28]. Alternatively, it is possible that ORF57 may

have a higher affinity for Aly due to important functional

differences in how the Aly export adaptor recruits the remaining

hTREX components to virus mRNA, compared with UIF.

Alternatively, Aly and UIF could recruit different components of

the hTREX complex to a KSHV mRNA, highlighted by the Aly-

specific recruitment of CIP29, and that the export of KSHV

intronless mRNA is more reliant on these Aly-recruited hTREX

proteins.

As discussed earlier, a number of siRNA-mediated studies have

proposed that Aly is not essential for KSHV intronless mRNA

export. However, we have previously described an ORF57 mutant

protein, ORF57Pmut, which is unable to interact with Aly and

failed to export viral intronless mRNAs [37]. The region mutated

in ORF57Pmut maps to a PxxP motif in the N-terminal region of

the protein. It is not known whether the PxxP motif mutated in

ORF57Pmut is a direct interaction site for Aly, or if this mutant

confers some structural change of ORF57 in the Aly binding

region. Importantly, herein we have shown that this mutant is also

unable to interact with UIF, suggesting that ORF57Pmut is ‘dead’

with regards to export adaptor interaction. This explains therefore

why this mutant is unable to export viral intronless mRNAs, as it is

unable to bind to either Aly or UIF (Figure 1). This result is also

confirmed by depletion of both these export adaptors which lead

Figure 8. Knockdown of both Aly and UIF impairs the ability of ORF57 to export KSHV intronless mRNA from the nucleus and
reduces KSHV late protein production. (A) 293, 293DAly, 293DUIF and 293DAlyDUIF cells were treated with 2 mg/ml doxycyclin and grown for
48 h before being transfected with pORF47 in the presence of either pEGFP or pGFP-ORF57. 24 h post-transfection RNA was isolated from total and
cytoplasmic fractions and relative levels were analysed by qRT-PCR using GAPDH as a reference. Fold increase was determined by DDcT and statistical
significance by a non-paired t-test. Data from 3 independent experiments is presented as fold increase versus pGFP-transfected controls. (B) 293,
293DAly, 293DUIF and 293DAlyDUIF cells were mock treated or treated with 2 mg/ml doxycyclin and grown for 48 h before infection with KSHV at a
MOI = 1. At 48 h post-infection cells lysates were analysed by western blot using antibodies specific to KSHV (i) gB and (ii) ORF4 proteins. Results are
shown of densitometry analysis of the western blots from 3 independent experiments carried out using the ImageJ software and is shown as
expression of gB or ORF4 between uninduced and induced cell lines relative to b-actin.
doi:10.1371/journal.ppat.1002138.g008
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to a block in KSHV mRNA nuclear export. Importantly, Aly

depletion in these and previous studies have shown that UIF

expression is increased and therefore UIF probably replaces Aly as

the dominant export adaptor protein. It is tempting to speculate

that the link between increased UIF expression in Aly-depleted

cells is a redundancy mechanism that ensures cellular survival

should Aly expression be compromised.

The fact that ORF57Pmut is unable to interact with both Aly

and UIF would suggest that the PxxP motif is either the complete

ORF57 interacting motif, or part of the interacting motif, for Aly

and UIF binding, and that the binding sites for the two proteins

are either identical or overlap to some degree. Alternatively, the

PxxP motif may cause a loss of interaction of both Aly and UIF by

altering the structure of each of the binding sites. Importantly, our

competition assays demonstrate that ORF57 may preferentially

bind to Aly over UIF. These observations suggest that Aly and

UIF may compete for a binding site on ORF57, and further

studies are now required to determine if this is the case.

Interestingly, we have recently identified the key residues that

interact directly with Aly in both HSV-1 ICP27 and herpesvirus

saimiri (HVS) ORF57 using solution-state NMR and mapped this

interaction to a WRV/A motif [59]. Due to the sequence

differences between ORF57 homologues this motif does not

appear in KSHV ORF57, although the region of KSHV ORF57

that interacts with Aly has been mapped to the N terminus (aa 1–

215). We are currently investigating the interacting residues for

both Aly and UIF within this N-terminal region of KSHV ORF57

using solution-state NMR.

In summary, our results demonstrate the first known interaction

between a viral protein and the newly described export adaptor

protein, UIF. Importantly, the ORF57-UIF interaction is sufficient

to recruit the hTREX complex onto viral intronless mRNAs and

highlights that redundancy exists in the eukaryotic system for

certain hTREX components involved in the mRNA nuclear

export of intronless KSHV mRNAs. It now seems clear that the

events which lead up to TAP/p15 recruitment to the mRNA are

not linear. Indeed, it appears that multiple pathways exist by

which an mRNA can bind TAP/p15 and be licensed for nuclear

export. The existence of numerous export adaptor proteins may

partly be explained in terms of redundancy but there is strong

evidence to suggest that this also generates specificity within the

system.

Materials and Methods

Plasmid and antibody details
Details of oligonucleotides used for qRT-PCR have been

described previously [37,46]. KSHV, hTREX and UIF-related

plasmid constructs have been described previously [6,28,37].

KSHV ORF57- and ORF4- specific antibodies were a kind gift

from Gary Hayward (Johns Hopkins, Baltimore) and Brad Spiller

(Cardiff University), respectively. Antibodies against SC-35, Flag,

Myc and Aly (Sigma), GFP and mCherry (Clontech), B23 (Santa

Cruz), KSHV gB (Abcam) and GAPDH (Abcam) were purchased

from their respective suppliers. Western blot analysis was carried

out using specific antibodies at 1:1000 dilution, except for UIF-

specific antibody (1:250) and GFP-specific antibody (1:5000).

Antibodies used for immunofluorescence studies were at a dilution

of 1:250.

Cell culture, viruses and transfection
293 inducible cells lines which specifically deplete Aly, UIF and

both Aly and UIF have been previously reported [28]. They were

produced using the FLP-In T-REX 293 cells (Invitrogen) system to

express miRNAs to each specific export adapter protein, miRNA

sequences are detailed in Hautbergue et al., 2009. HEK-293T

cells, HEK-293T BAC36 cells harbouring a recombinant KSHV

BAC36 genome and FLP-In T-REX 293 cells were cultured in

Dulbecco’s modified Eagle medium (DMEM, Invitrogen) supple-

mented with glutamine, 10% foetal calf serum (FCS, Invitrogen)

and penicillin-streptomycin. 293T BAC36 cells were reactivated

using TPA (20 ng/ml) for the designated time. miRNA expression

from FLP-IN T-REX 293 cells was induced with 2 mg/ml

doxycyclin (Sigma) for the designated time. Plasmid transfections

were carried out using Lipofectamine 2000 (Invitrogen) or

GeneJuice (Novagen) and were carried out as per the manufac-

turer’s instructions. rKSHV.219 (KSHV) was produced from the

latently infected Vero line [60]. This virus specifies red fluorescent

protein (RFP) from the KSHV lytic PAN promoter, green

fluorescent protein (GFP) from the EF-1a promoter, and encodes

a puromycin resistance gene. Vero cells stably infected with

rKSHV.219 were maintained in MEM Eagles medium, 2.2 g/L

NaHCO3, 10% fetal calf serum, puromycin (5 ug/ml) (Sigma-

Aldrich, Poole, UK) and penicillin and streptomycin (Invitrogen).

To induce KSHV lytic replication in these cells, they were infected

with BacK50, a baculovirus construct encoding the lytic switch

RTA protein, and treated with 1.25 mM sodium butyrate (Sigma).

48 h after KSHV reactivation, the supernatant was harvested,

centrifuged (500g, 15 mins) to remove cell debris, and the virions

concentrated by centrifugation (65,000g, 4 h). The virion pellet

was resuspended overnight in EBM2 medium (Lonza, Clonetics).

The rKSHV.219 titre was determined on 293 cells, quantifying

GFP-positive cells by fluorescence microscopy. 293 and 293

derived cells were infected with KSHV. To this end, cells were

plated at 1.256105 cells per well in 24-well plates for infection and

cultured overnight. The culture medium was then removed and

replaced with virus diluted in EBM2 basal media after 24 hrs.

Cells were then centrifuged for 30 min at 4206 g at room

temperature. Cells were transferred to a 37uC incubator (5% CO2,

humidified) for 90 min. Virus supernatant was removed and cells

were washed once in cell culture media and incubated for 48 hrs

before being harvested.

Expression and purification of recombinant proteins
Recombinant GST, GST-ORF57, GST-ORF57pmut, GST-

UAP56 and UIF-His, Aly-His and ORF73-His were expressed

and purified as previously described [36,37,61]. Purification of

Baculovirus recombinant ORF57-6xHis was as per the manufac-

turer’s instructions (Invitrogen) using the pFASTBac protocol.

In vitro pull-down assays and immunoprecipitation
assays

GST pull-down experiments and co-immunoprecipitations were

performed as described previously [62,63]. GFP-TRAP-Affinity

(Chromotek) experiments were performed as per the manufactur-

er’s instructions. RNA immunoprecipitation experiments were

carried out as follows: 16107 adherent 293T cells were transiently

transfected with appropriate GFP-containing plasmid DNA. After

the appropriate amount of time cells were washed in ice-cold PBS

and UV irradiated (900 mJ/cm2) using a Stratalinker 2400

(Stratagene) to crosslink protein and RNA. Cells were then

scraped, transferred to an RNA-free tube and pelleted at 3006 g

for 3 min. Cell pellets were then resuspended in 2 ml lysis buffer

[Dulbecco’s PBS, 1% Nonidet P-40 (v/v), 1 ml/ml RNaseOUT

(Invitrogen), 16 Complete EDTA-free Protease inhibitor

(Roche)]. Cells were left on ice for 30 min before being centrifuged

for 10 min at 15,0006g. The clear lysate was then transferred to a

clean RNA-free tube. 1 ml of the cleared lysate was added to 30 ml
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pre-washed GFP-TRAP-Affinity agarose beads (Chromotek) per

IP and immunoprecipitated at 4uC with end-over-end mixing for

4 hrs. Beads were washed 3 times in ice-cold PBS containing 16
Complete EDTA-free protease inhibitor (Roche) followed by a

further 2 times in PBS. Beads where then incubated in protease

buffer (Dulbecco’s PBS, 1% Nonidet P-40 (v/v), 0.1% SDS (w/v),

0.5 mg/ml Proteinase K) for 30 min at 50uC. RNA was extracted

using TRIzol reagent (Invitrogen) as per the manufacturer’s

directions. cDNA was then produced from 10 ml of RNA using

Superscript II RT (Invitrogen) and qPCR performed to analyse

the relative levels of cDNA. RT-ve samples were used as controls.

GST pull-down competition assays
Bacterially expressed GST-tagged ORF57 was immobilised to

GST beads and used for GST pulldown competition assays.

Recombinant His-tagged Aly or UIF was expressed and purified as

previously described [36,37]. Equal amounts of Aly-His (1 mg)

were used in the pull-downs with increasing amounts of UIF-His

(0, 0.5, 1, 2, 3 mg). The converse experiments were also performed

with equal amounts of UIF-His (1 mg) and increasing amounts of

Aly-His (0, 0.5, 1, 2, 3 mg).

Real-time qRT-PCR
To assess ORF57-mediated ORF47 mRNA export efficiency,

293T and inducible cells were cotransfected with ORF47 and

ORF57 expression constructs. After 24 hours RNA was extracted

from total and cytoplasmic fractions using TRIzol (Invitrogen) as

described by the manufacturer. Cytoplasmic fractions were pro-

duced by lysis of cells in 200 ml of PBS 1% Triton-X 100(v/v)

containing 40 U of RNaseOUT (Invitrogen), prior to TRIzol

purification. RNA was DNase treated using the Ambion DNase-

free kit, as per the manufacturer’s instructions, and RNA (1 mg)

from each fraction was reverse transcribed with SuperScript II

(Invitrogen), as per the manufacturer’s instructions, using oligo(dT)

primers (Promega). 10 ng of cDNA was used as template in

SensiMixPlus SYBR qPCR reactions (Quantace), as per manu-

facturer’s instructions, using a Rotor-Gene Q 5plex HRM

Platform (Qiagen), with a standard 3-step melt program (95uC
for 15 seconds, 60uC for 30 seconds, 72uC for 20 seconds). With

GAPDH as internal control mRNA, quantitative analysis was

performed using the comparative CT method as previously

described [46].

Immunofluorescence
Immunofluorescence staining and visualisation by microscopy

was carried out as previously described [64]. Visualisation was

performed on an LSM 510 Meta confocal microscope (Zeiss) and

images were analysed using the LSM imaging software (Zeiss).
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