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Abstract
There is a global unmet need for rapid and cost-effective prognostic and diagnostic tools that can be used at the
bedside or in the doctor’s office to reduce the impact of serious disease. Many cancers are diagnosed late, leading to
costly treatment and reduced life expectancy. With prostate cancer, the absence of a reliable test has inhibited the
adoption of screening programs. We report a microelectronic point-of-care metabolite biomarker measurement
platform and use it for prostate cancer detection. The platform, using an array of photodetectors configured to
operate with targeted, multiplexed, colorimetric assays confined in monolithically integrated passive microfluidic
channels, completes a combined assay of 4 metabolites in a drop of human plasma in under 2 min. A preliminary
clinical study using L-amino acids, glutamate, choline, and sarcosine was used to train a cross-validated random forest
algorithm. The system demonstrated sensitivity to prostate cancer of 94% with a specificity of 70% and an area under
the curve of 0.78. The technology can implement many similar assay panels and hence has the potential to
revolutionize low-cost, rapid, point-of-care testing.

Introduction
One in two people will develop cancer at some point in

their lifetime1. The World Health Organization estimates
that cancer is the second leading cause of death globally,
claiming 9.6 million lives in 2018 alone2. Cancer incidence
is expected to rise by more than 40% in the next 15 years
as the population ages3–5. With an estimated 1.3 million
cases and 0.4 million deaths worldwide in 2018, prostate
cancer (PCa) is the most commonly diagnosed cancer in
developed countries and the sixth leading cause of cancer
deaths in men5–7. Although the frequency and survival
rate vary considerably for PCa, there is consistent evi-
dence that patients diagnosed at an early stage are more
likely to survive2,3. Early diagnosis makes localized
treatments, including prostatectomy and radiotherapy,

possible; hence, the 5-year survival rate is nearly 100%3,8.
Nevertheless, the survival rate drops to 34% when a tumor
is diagnosed in a late metastatic stage8.
Despite this, a robust and effective PCa screening pro-

gram is not available today9,10. The widely used prostate-
specific antigen (PSA) test, which is the current standard
blood test for PCa diagnosis, has been found to be
unreliable; fewer than one in three men with an elevated
PSA will have PCa11, and the test misses ~15% of
tumors12. The high false-positive rate of the PSA test can
lead to unnecessary medical procedures such as digital
rectal examination, MRI, and biopsy. In addition to being
painful, invasive, and having the potential to cause com-
plications, PSA downstream tests can be expensive13,
accounting for more than 70% of the medical costs
associated with PCa screening. While the use of the PSA
test alone is problematic14, it has also been suggested that
PSA could still be a valuable complement to new and
emerging tests such as the one we propose15.
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While numerous microtechnologies have been pro-
posed to improve and miniaturize PSA tests16–18, an
independent alternative is sought. One such alternative is
to use a panel of metabolite markers that, when taken
together, can be analyzed to yield a sensitive and specific
test19–27. The creation of a panel-based test requires a
technological platform that is capable of making multiple
simultaneous measurements, ideally in a point-of-care
(POC) format that lends itself to regular screening and
monitoring that has been shown to be beneficial28. Here,
we propose the use of a microelectronic test platform
based on complementary metal-oxide silicon (CMOS)
that underpins all integrated circuit technology. CMOS
has the potential to revolutionize multimetabolite marker
panel measurements for many diseases, including PCa.
Chips with integrated sensors and readouts have been
successfully used for single measurements, such as glu-
cose29, targeted DNA sequences30 and intracellular
transmembrane potentials31; multiple identical measure-
ments, e.g., genome sequencing32; and multianalyte
measurements using partitions over a sensing area33.
Studies to make devices using micromachining34,

additive manufacturing35, and replica molding36,37 have
been carried out, but to date, none of these has proven
capable of meeting the multimetabolite measurement
challenge that must be addressed to build a POC marker
panel system. Current methods for CMOS/microfluidic
integration and packaging are complex and costly38. In
addition to building a physical device architecture, solu-
tions are also required for microchannel functionalization,
reagent stability39, and minimizing crosstalk40. Finally,
these systems should work with minimal sample
preprocessing39.
We have overcome these barriers by monolithically

integrating a passive microfluidic system onto a CMOS
sensor chip to measure multiple metabolites directly from

a single droplet of plasma. To do this, it was necessary to
control the material dimensions to ensure consistent
optical measurements were possible, to control the sur-
face chemistry, hence hydrophilicity, of the channels to
ensure passive sampling occurred, and to introduce
multiple channel biochemical functionalization on the
same chip. In this work, we focused on PCa to demon-
strate a new technology with the capability for wide-
ranging application and impact.
As described in the Supplementary Information, we

selected a panel of 4 metabolites made up of total L-amino
acids (LAA), glutamate, choline, and sarcosine. After
calibration, the platform was used in preliminary clinical
trials with human plasma from 10 healthy men and 16
men diagnosed with PCa. Metabolite profiles were used to
train a random forest classifier algorithm. The classifier
was shown to have a cross-validated sensitivity of 94% and
a specificity of 70% when discriminating between samples
from patients with and without PCa, improving upon the
current PSA-based clinical standard in the population that
we studied.

The platform
The POC platform is made up of three units (Fig. 1): the

disposable chip cartridge, the reader, and the GUI. The
apparatus performs colorimetric quantification of a cho-
sen metabolite panel.

Metabolite panel for PCa
Cancer cells experience rapid proliferation, and their

metabolism diverges from healthy cells, giving rise to
changes that can be reflected in global measures of the
human metabolome41–43. Cancer-related metabolites
accumulate in human body fluids, and their levels can act
as indicators or biomarkers to identify or monitor the
disease44,45. Many blood metabolites have been found to
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Fig. 1 Platform architecture and cartridge. a Schematic architecture of the platform showing the cartridge that needs only a drop of sample to
perform a measurement, the reader, and the computing device for use as a GUI. b A sketch of the multiple measurement cartridge device used in
this work with a CMOS chip, passive microfluidics, a chip package, and an optical assembly.
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be linked to PCa19–27,44–48. Among them, the progression
of cancer is associated with the modification of specific
transporters, namely, large amino acid transporters 1 and
3 (LAT1 and LAT3)19, which can yield an alteration of the
blood LAA profile20,23,24,46,47. Cancer cells have been
shown to have an upregulated glutamine-glutamate
energy cycle; hence, glutamate represents an excellent
candidate marker for PCa20,47,48. The modification of
choline levels, arising from alterations of the enzyme
choline kinase-α and the CHT1 choline transporter, has
been detected in connection with PCa21,22. Finally, sar-
cosine has also been linked, albeit variably, to PCa for
diagnosis24, malignancy assessment23–25, and sta-
ging23,24,26,27. While the evidence that sarcosine is a useful
marker for PCa is debated49,50, we elected to add it to the
present study. A more detailed review of metabolomics
for PCa and our panel selection is provided in the Sup-
plementary Information.

Detection strategy
The platform used in this study was developed to

quantify the aforementioned candidate metabolic bio-
markers using colorimetry. Biological reagents were
selected to produce a measurable light absorbance
change at a specific wavelength after the interaction with
the target metabolite. The initial rate of the reaction is
linked to the initial concentration of the metabolite by
the Michaelis–Menten model51. For the colorimetric
determination of LAA, glutamate, choline, and sarcosine,
a two-stage reaction process was used to conduct

measurements. In the first reaction step, a substrate-
specific enzyme was used to produce H2O2; we used LAA
oxidase (LAAOX E.C.−1.4.3.2), glutamate oxidase (GLOX
E.C.−1.4.3.11), choline oxidase (CHOX E.C.−1.1.3.17),
and sarcosine oxidase (SAOX E.C.−1.5.3.1). The H2O2

produced was in turn monitored by a colorimetric probe
that changed its absorbance properties depending on
the H2O2 concentration. Phenol and 4-aminoantipyrine
(4-AAP) were used in this work. In the presence of the
catalyzing enzyme peroxidase (HRP), phenol and 4-AAP
react with H2O2, producing quinone imine, which has
higher light absorbance in the range of 400–600 nm. The
absorbance is linked to the rate of the reaction by the
Beer–Lambert law52. Detection of an electronic signal was
performed using the platform’s array of photodiodes
(PDs) to measure the colorimetric reaction.

The cartridge
The cartridge was made using a ceramic 120 pin grid

array (PGA) chip package, a custom complementary
metal-oxide-semiconductor (CMOS) chip, a microfluidic
capillary network fabricated directly on the chip, and
biological reagents. A schematic representation of the
main components embedded in the cartridge is shown
in Fig. 2a.
The CMOS chip was fabricated using a commercially

available 350-nm high-voltage 4-metal process provided
by austriamicrosystems (AMS). The chip integrates a 16 ×
16 array, or frame, of multisensing elements. Each
multisensing element comprises a PD, an ISFET, and a
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Fig. 2 Cartridge and reader. a The cartridge (left) and schematic diagram of its main components (right). b Micrograph of the microfluidics
fabricated on the chip’s sensitive area. c Profile of the microstructure built on the sensitive area measured with a Bruker Contour GT-X 3D Optical
Profiler (d). The handheld reader removed from its enclosure.
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single-photon avalanche diode (SPAD)53,54. Only the PDs
were used in this work. Each multisensing element is
100 × 100 µm in size, leading to a total sensitive area of
1.6 × 1.6 mm. The size of the entire CMOS chip is 3.4 ×
3.6 mm. The CMOS chip was wire-bonded into the PGA.
On top of the sensing area, a passive microfluidic net-

work was monolithically integrated, providing physical
separation for parallel testing so that more than one
metabolite could be measured at the same time. The walls
of the microstructure were fabricated on top of the CMOS
chip using a biocompatible black epoxy resin (302-3M
1LB by Epoxy Technology Inc.) using a combination of
soft lithography and injection molding. A plain poly-
dimethylsiloxane (PDMS) slab coated with polyvinyl
alcohol (PVA)55 was bonded onto the epoxy-based
structure by plasma oxidation to enclose the channels
from the top. A detailed description of the microfluidic
integration is presented in the Materials and Methods
section of this paper. As shown in Fig. 2b, c, the micro-
channel height, width, and length were ~291.95 ±
6.44 µm, 300.87 ± 0.86 µm and 4.0 ± 0.1 mm, respectively.
A liquid sample (see “Materials and methods” section)
was introduced to the cartridge using a pipette (FinntipTM

F2 by ThermoFisher). Once on the cartridge, the sample
under test was divided into four identical microfluidic
channels that physically confined the reactions in each
channel.
Two types of experiments were conducted: a series to

measure each metabolite one-by-one to assess the validity
of the proposed panel and a second to make four mea-
surements in parallel and demonstrate the potential of the
platform. When testing a single metabolite, the sample
and the bioreagent were mixed in the liquid state imme-
diately before loading onto the chip to perform the test.
Thus, both the sample and bioreagents are introduced to
the system at the same time. When testing multiple
metabolites in parallel, the channels were individually
functionalized with the different bioreagents required to
detect each metabolite. Biological reagents were pre-
loaded into the microchannels by manual pipetting and
then dried. The procedure entrapped and isolated the
solid materials in their respective microchannels.

Reader and graphical user interface
The cartridge plugs into the reader using a zero-

insertion force (ZIF) socket. The reader is 8.5 × 7.5 ×
4.0 cm and weighs 150 g. The reader provides function-
ality for sensor multiplexing and addressing, data
digitization and transmission to a personal computing
device via a USB link. The reader is based around an
STM32F334R8T6 microcontroller on an ST Nucleo
F334R8 board (Fig. 2d) that is programmed before use
with custom firmware. Data are digitized using the
embedded 12-bit analog to digital converter with an

average rate of 36 frames per second. The reader is
powered by the USB link (5 V), which in turn powers the
cartridge (3.3 V). The reader also has an LED (λ= 490 nm,
FWHB= 20 nm). Using a lens (AC254-035-A-ML BBAR
Coated, f= 35mm lens from Thorlabs), the LED illumi-
nates the sensing area of the cartridge with collimated
light. The GUI, based on custom software and running on
a personal laptop (HP EliteBook i7-8650u 16 GB), inter-
faces with the reader (via USB) and performs data
acquisition, display, analysis, and storage. The results can
also be uploaded onto a cloud. The GUI also performs
offline signal processing. Additional details (Supplemen-
tary Fig. 4) of the GUI are reported in the Supplementary
Information.

Results
The platform was tested and characterized using human

plasma samples modified with known concentrations of
metabolites so that calibration curves could be generated.
Subsequently, a preliminary clinical study for PCa was
performed using ten samples from healthy men not
known to have PCa (non-PCa group) and sixteen samples
from men affected by PCa.

Calibration
Calibration curves for LAA, glutamate, choline, and

sarcosine in human plasma are shown in Fig. 3. The
complete characterization of the platform for the analytes
of interest is presented in Table 1. At least six data points
were used to obtain the calibration curves for each
metabolite. Each data point was obtained as the average
over three replicates (see “Materials and methods” sec-
tion). Kinetic constants were estimated by fitting data to
the Michaelis–Menten model. The Km results for all of
the metabolites were in line with the values reported in
the literature56. For all the metabolites, the goodness of fit
with the Michaelis–Menten model was satisfactory with
R2 values ≥0.97. For substrate concentrations lower than
Km, the data were also fitted using a linear model. For all
the metabolites, high linearity was observed in the con-
centration range of interest (R2 ≥ 0.93). The linear ranges
were in line with the physiological ranges. Typical stan-
dard deviations for the measurements in the linear range
were found to be 16–20%.

Limit of detection and limit of quantification
The limit of detection (LOD) and limit of quantification

(LOQ) were quantified using the “International Union of
Pure and Applied Chemistry” (IUPAC) definition57. The
average (µc) and standard deviation (δc) of the initial
reaction rate for negative controls (common to all the
assays) were found to be 5 and 2.7 µV s−1, respectively.
Consequently, the LOD (µc+ 3.3·δc) and LOQ (µc+
10·δc) were 0.014 and 0.032 mV s−1, respectively. LOD
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and LOQ expressed in mV s−1 were then converted to µM
by using the estimated Michaelis–Menten curve for each
metabolite. Thus, the LODs for LAA, glutamate, choline,
and sarcosine were 11.1, 1.4, 1.7, and 1.4 µM, respectively.
Similarly, the LOQ values for the metabolites in the same
order were 25.5, 3.3, 3.9, and 3.5 µM.

Clinical study
For each sample, the plasma concentrations of LAA,

glutamate, choline, and sarcosine were quantified using
the experimental platform. The procedures and methods
are described in the “Materials and methods” section of
this paper.
The average concentration of a metabolite for all sam-

ples, including the non-PCa and PCa subjects, is referred
to as the grand average. A grand average was calculated
for each of the four metabolites we measured. The grand
averages were 2421 ± 952 µM for LAA, 53.7 ± 26.4 µM for
glutamate, 11.7 ± 7.0 µM for choline, and 10.6 ± 6.0 µM
for sarcosine.
The average values measured for each metabolite for the

non-PCa and PCa groups were also calculated. For the
non-PCa samples, the average concentrations were
1984 ± 527 µM for LAA, 40.2 ± 11.2 µM for glutamate,
10.0 ± 4.1 µM for choline, and 11.5 ± 4.3 µM for sarcosine.
The average concentrations of LAA, glutamate, choline
and sarcosine in the PCa group were 2694 ± 1052 µM,
62.2 ± 29.5 µM, 13.4 ± 7.9 µM, and 10.0 ± 6.9 µM,
respectively.

LAA, glutamate, and choline levels were increased in
the PCa group compared with the non-PCa group. There
was no relevant cross-correlation between different
metabolites, and all cross-correlations were <0.3 (Sup-
plementary Information). These data are summarized in
Table 2 and presented in Fig. 4.

Multivariate analysis
To determine the validity of using LAA, glutamate and

choline as potential diagnostic markers, the data set was
used to train a random forest classification algorithm58.
The task of the classifier was to provide a binary “nega-
tive-or-positive” response to whether a sample was a
control (negative) or cancer (positive) sample, using the
concentrations of LAA, glutamate and choline as inputs.
Using the “randomForest” and “caret” functions in the R
software tool, the algorithm was set to use 500 trees and
try up to three metabolites at each split. The model was
validated using a repeated “tenfold” procedure that was
run 100 times59,60. In this way, we generated a cross-
validated receiver operator characteristic (ROC) curve
using the predictions over every iteration. For each
iteration, a bootstrap resampling procedure was used. The
metrics of the classifier were expressed as an average, and
a 95% confidence interval over the distribution was
obtained for the 100 independent training and validation
iterations. The area under the curve (AUC) was found to
be 0.78, with a 95% confidence interval of 0.55–0.99. The
ROC curve shows an operating point at a sensitivity of
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0.94, with a 95% confidence interval of 0.82–1.00, and a
specificity of 0.70, with a 95% confidence interval of
0.40–0.98, as shown in Fig. 5. The diagnostic capability of
the classifier can be compared with that of PSA. In clinical
practice, the PSA sensitivity and specificity are 0.32 and
0.87, respectively, for a PSA threshold of 3.1 ng mL−1 61.
PSA yields an AUC of 0.6861,62. Our results show that the
random forest model based on LAA, glutamate, and
choline could substantially reduce the number of false-
positive results.
These results show that the platform has the potential

to deliver higher diagnostic capability than PSA. We also
note that if both the PSA and metabolomic test were to be
used together, it would be independently possible to
secure both a high sensitivity of up to 94% (metabolites)
and high specificity of 87% (PSA) to yield a powerful and
highly discriminating diagnostic method.

Simultaneous measurements
To make a practically useful POC diagnostic tool using

the markers LAA, glutamate and choline, it is desirable to

perform simultaneous multimetabolite measurements.
Simultaneous measurements require reagents to be pre-
loaded into the microfluidic channels. Sarcosine was
excluded from these experiments since it was concluded
that it was not a useful biomarker for this population.
The performance of the platform with preloaded dried

reagents (see Materials and Methods section) was asses-
sed by obtaining calibration curves for plasma LAA, glu-
tamate, and choline in the microfluidic device. Each
metabolite was tested individually in undiluted human
plasma spiked with the metabolite to the desired test
concentration. The resulting calibration curves are shown
in Fig. 6a–c. The results were similar to the calibration
curves obtained from using off-chip mixing of the liquid
reagents. A comparison between the two test methods is
shown in Table 3. The linearity in the physiological range
was nearly the same, but a slight loss of sensitivity for
LAA and choline when using the dried reagents was
observed. The control channel, which contained dried dye
and peroxidase only, showed a measurable response when
compared to photodiodes with no dried assay material

Table 1 Platform characterization using human plasma.

LAA Glutamate Choline Sarcosine

Physiological range 2–3.5 mM68 40–150 µM47 7–20 µM69 0–20 µM50

Test range 0–5.4 mM 0–1500 µM 0–600 µM 0–600 µM

Model y ¼ Vmaxx
Kmþx þ c

Vmax (mV s−1) 3.63 ± 0.51 5.28 ± 0.93 11.34 ± 6.9 11.03 ± 2.1

c (mV s−1) −0.032 ± 0.126 −0.087 ± 0.265 0.082 ± 0.254 0.027 ± 0.04

Km (µM) 2866 ± 1008.2 529.7 ± 269.5 1382 ± 210.7 1209 ± 335.7

RMSE 0.086 0.266 0.169 0.062

R2 0.994 0.979 0.985 0.998

Linear model Y = S ⋅ x + C

Linear range (µM)a 0–1500 0–320 0–120 0–120

Sensitivity (S) (mV s−1 mM−1) 0.83 ± 0.002 6.06 ± 1.01 9.98 ± 1.79 7.84 ± 1.12

Baseline (mV s−1) 0.020 ± 15·10–4 0.003 ± 0.163 0.019 ± 0.1 0.050 ± 0.056

RMSE (linear) 8.6⋅10−04 0.159 0.116 0.070

R2 (linear) 0.999 0.969 0.939 0.961

Average relative std. dev. (linear)b 18.3% 17.2% 16.4% 19.2%

Negative control (µV s−1)c 5.0 ± 2.7

LOD (µM)d 11.1 1.4 1.7 1.4

LOQ (µM)d 25.5 3.3 3.9 3.5

Drift (dark/source on) (µV s−1) 1.4 ± 1.0/0.9 ± 1.0

Avg. steady state (dark/source on) (V) 0.486 ± 0.003/1.730 ± 0.031

aLinear range is here defined as the measurement range where the linear model had R2 > 0.9.
bAverage of the standard deviation of the measurements in the linear range.
cAverage over 24 measurements.
dConverted from mV s−1 to µM using the Michaelis–Menten model.

Annese et al. Microsystems & Nanoengineering            (2021) 7:21 Page 6 of 15



present. The observed control signal was still small
compared to the signals observed in the test channels and
gave rise to the increase in the calculated LOD and LOQ
for all the target metabolites. Under these conditions, the
LODs for plasma LAA, glutamate, and choline were 42.9,
6.4, and 3.2 µM, respectively. Similarly, the LOQ values
for the metabolites, in the same order, were 129.3, 19.5,
and 9.8 µM.
To evaluate channel-to-channel independence on the

same chip, the four channels in a set of 12 cartridges were
filled with dried reagents for LAA, glutamate, choline and
a negative control. Using one cartridge at a time, tripli-
cates of each of the following were measured by flowing
the sample into the channels: DI water; 250 µM choline in
DI water; 250 µM glutamate in DI water; and 2.5 mM
LAA in DI water. There was no response to DI water only,
and as expected, each functionalized channel only
responded to the metabolite for which it had been
prepared.
A further triplicate of cartridges was prepared with the

three functionalized channels and a control, and in each,
an unmodified human plasma sample was introduced to
the cartridge. The plasma sample yielded signal rates
above the LOQ for LAA, glutamate, and choline mea-
surements. No obvious crosstalk was observed in these
experiments, and the results are summarized in Fig. 6d.

A proof of principle clinical validation of the platform
for multimetabolite testing using dried reagents in a single
cartridge was then conducted using one individual each
from the non-PCa and PCa sample groups. Simultaneous
readings for different metabolites are shown in Fig. 7. For
both clinical samples, the reaction rates were found to be
similar to the respective wet assay. The rates obtained
with dried and liquid reagents were well correlated with
R2 > 0.91.
The rates obtained with dried reagents for non-PCa and

PCa samples were also compared; the rates were con-
sistently higher for the PCa sample, as was the case with
the wet assays. This provides a proof of principle that the
platform can provide clinically relevant information when
testing for the metabolites of interest simultaneously.

Discussion
We have shown that the method for acquiring data

using multiple metabolites can be integrated into a silicon
chip-based device capable of making all the measure-
ments simultaneously. Using the device, a preliminary
clinical study demonstrated that a model can be created
using multiple metabolites to discriminate patients with
PCa from normal controls. LAA, glutamate and choline
showed a significant correlation in our population, and
the data were used to train a random forest classification

Table 2 Clinical study results in the control and cancer groups.

LAA Glutamate Choline Sarcosine

Overall data set

Grand average ± std. dev. (µM) 2421 ± 952 53.7 ± 26.4 11.7 ± 7.0 10.6 ± 6.0

Grand median (µM) 2072 47.9 10.0 9.9

Range (µM) 1213–5421 6.3–149.5 2.3–36.9 1.7–27.2

Temperature (°C) 27.3 ± 1.0 26.4 ± 1.3 26.3 ± 0.9 25.9 ± 1.2

Humidity (%) 52.6 ± 5.0 49.5 ± 7.8 44.4 ± 9.0 42.2 ± 10.5

Non-PCa group

Non-PCa average ± std. dev. (µM) 1984 ± 527 40.2 ± 11.2 10.0 ± 4.1 11.5 ± 4.3

Non-PCa median (µM) 1966 39.8 9.0 12.3

Range (µM) 1213–3167 21.9–67.1 2.3–15.4 5.1–18.8

PCa group

PCa average ± std. dev. (µM) 2694 ± 1052 62.2 ± 29.5 13.4 ± 7.9 10.0 ± 6.9

PCa median (µM) 2386 61.0 10.4 9.7

Range (µM) 1503–5410 6.3–149.5 4.7–36.9 1.7–27.2

Univariate analysis

PCa/non-PCa (average) 1.36 1.55 1.34 0.87

PCa/non-PCa (median) 1.21 1.53 1.15 0.79

t-test (p-value) 0.03 0.02 0.06 0.27
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model. In our study, sarcosine did not show any relevant
correlation with PCa; therefore, the data were not used for
the classifier. The ROC curve for the new test was found

to have an AUC = 0.78 that compared favorably with an
AUC = 0.68 for the PSA test. The test ROC curve
intersects the PSA ROC curve near the standard threshold
with a specificity of ~87% and a sensitivity of 32%.
However, the new test’s ROC curve has a significantly
greater sensitivity of 94% when operated at a slightly lower
specificity of 70%.
The metabolic biomarker panel we present provides

a valuable proof-of-concept and can potentially be
improved by including additional metabolites. Table 3 in
the Supplementary Information presents additional PCa-
related blood metabolites that could be quantified using
the platform. The availability of data on a larger marker
panel will enable a comprehensive analysis of the pro-
posed diagnostic method. Further work with a larger
population of subjects leading to a full clinical trial using
the diagnostic method proposed in this paper will be
necessary to demonstrate that the platform can deliver an
effective POC diagnostic tool for PCa.
We envisage a potential scale-up to build a system

capable of measuring a whole-person metabolome in a
single measurement from a drop of blood. The proce-
dures and methods developed in this work can be opti-
mized to improve the LOD and LOQ and applied to a
larger CMOS sensor array to deliver increased multi-
plexing capabilities. Future work will include developing
methods for highly dense measurement multiplexing with
low crosstalk. The technology may also take advantage of
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the computation capabilities of CMOS to create a device
capable of not only collecting raw data but also integrat-
ing complete machine learning algorithms to yield a
highly sensitive general-purpose chip, or chip-family,
capable of extracting large amounts of highly specific and
individualized data.

Conclusion
Survival rates for many types of cancer are continuing to

improve63, but progress towards improving the outcome
for men with prostate cancer has been hindered by the
need for a reliable test. The lack of such a test has
inhibited the introduction of mass screening programs. As
a consequence, many instances of cancer are only detec-
ted very late, when the possibilities for effective treatment

are reduced. The CMOS point-of-care platform presented
in this paper has the potential to address this problem by
improving the accuracy of a diagnostic test to such an
extent that screening will become a more clear-cut choice.
Future tests may combine the merits of more than one
assay; hence, metabolite measurements could be used in
conjunction with a test for PSA. Indeed, progress is also
being made to develop POC tests for PSA16. We provide
proof-of-concept for a POC platform using a CMOS
sensor chip with monolithically integrated microfluidics
that is capable of performing multiple metabolite tests
pertinent to the diagnosis of prostate cancer simulta-
neously. The system was shown to be capable of detecting
diagnostically significant information in the population
under test and can be used to improve the current clinical
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standard. Furthermore, the platform has the potential to
be used in a domestic environment and is therefore cap-
able of detecting early changes in candidate biomarkers
when measured over a period of time. The technology
presented in this article has wide-reaching implications,
not only for cancer, as illustrated in Table 1 of the Sup-
plementary Information but for other diseases and per-
sonalized medicine. Metabolite marker panels are now
described for illnesses including sepsis64, acute kidney
injury65, and cardiovascular disease66. We anticipate a
future microelectronic platform to exploit the scalable
properties of CMOS that will become as commonplace in
medicine as the stethoscope and thermometer are today.

Materials and methods
Microfluidic design
Microfluidic channels were designed to provide laminar

and passive flow. The geometry of the design, composed
of straight microchannels with rectangular cross-sections,
was chosen to match the layout of the CMOS sensor
array. Custom MATLAB simulations were carried out to
identify the dimensions of the microchannels needed to
yield higher capillary pressure and lower filling time in the
laminar flow regime.

Microfluidics integration
Microfluidics was integrated with the CMOS chip by

replica and injection molding in five stages: (1) SU-8 mold
fabrication, (2) PDMS mold fabrication, (3) wire bonding,
(4) epoxy encapsulation, and (5) channel enclosure.
1. A silicon wafer (4″) was cleaned with IPA, acetone,

and DI water; sonicated; dehydrated (10 min, 90 °C);
and plasma-oxidized (2 min, 120W). A first SU-8
3050 layer was spin-coated onto the wafer (30 s,
1000 rpm) and baked (90 min, 90 °C). A second SU-8

3050 layer was similarly spin-coated and baked. The
substrate was exposed twice to UV light using a
mask aligner (70 s each time, 15 s wait time).
Afterward, the sample was baked (10 min, 90 °C),
developed using EC solvent (for 28 min), rinsed with
IPA, and baked (30 min, 180 °C).

2. The SU-8 mold was silanized by exposure to
trichlorosilane (30 min in an evacuated chamber)
and placed into a petri dish. PDMS (25 g, 1:14 ratio)
was poured onto the mold, degassed (1 h in a
vacuum chamber), and cured (2 h, 70 °C). Cured
PDMS was released from the SU-8 mold, placed on a
clean substrate, cut with a sharp knife, aligned, and
temporarily bonded to the CMOS chip using a flip-
chip bonder (model 850, Semiconductor Equipment
Corp.). The bond strength was increased by heating
the two respective part holders for the chip and
PDMS (90 °C, 10 min) under constant pressure
(5 psi).

3. The CMOS chip with the bonded PDMS mold was
glued into the 8.3 × 8.3 mm cavity at the center of a
120 pin ceramic chip pin grid array package using
EPO-TEK H74 epoxy (Epoxy Technology Inc.) and
wire-bonded (by Hesse and Knipps Bondjet 710).

4. A black epoxy resin (302-3M 1LB, Epoxy
Technology Inc.) was injected into the PDMS
microstructure and cured (48 h at room
temperature). After curing, the PDMS structure
was removed from the chip. Because there were no
wire bonds on the top and bottom edges of the chip,
microchannels were extended in these directions,
effectively planarizing the surface. Epoxy also
provided encapsulation of the wire bonds.

5. A planar slab of PDMS was cut with a sharp knife
(4 × 3mm), cleaned, exposed to oxygen plasma

Table 3 Comparison of the performance of the platform for the quantification of LAA, glutamate, and choline when
using off-chip mixed liquid reagents or preloaded dried reagents.

LAA Glutamate Choline

Physiological range: 2–3.5 mM68 40–150 µM47 7–20 µM69

Reagents: Liquid Dried Liquid Dried Liquid Dried

Sensitivity (mV s−1 mM−1) 0.83 ± 0.002 0.72 ± 0.07 6.06 ± 1.01 6.14 ± 0.87 9.98 ± 1.79 7.78 ± 1.13

Linearity (R2) 0.999 0.991 0.969 0.977 0.939 0.975

RMSE 0.086 0.076 0.266 0.145 0.169 0.115

Average std. dev. (%) 18.3% 15.7% 17.2% 18.0% 16.4% 17.7%

Negative control (µV s−1) 5.0 ± 2.7 23.0 ± 12.5 5.0 ± 2.7 23.0 ± 12.5 5.0 ± 2.7 23.0 ± 12.5

LOD (µM) 11.1 42.9 1.4 6.4 1.7 3.2

LOQ (µM) 25.5 129.3 3.3 19.5 3.9 9.8
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(1 min, 80W) and immersed in a PVA solution
(1 wt%)55. The PVA-modified PDMS slab was
permanently bonded to the epoxy microstructure
by plasma activation (45 s, 80W) and baking
(15 min, 90 °C).

The approach that was used encapsulated all the water-
sensitive electronic components on the cartridge in epoxy.
This enabled leakage-free aqueous experiments on the
cartridge. A graphical representation of the fabrication is
shown in Fig. 3 of the Supplementary Information.

Reagents
All chemicals required for the assays were purchased from

Sigma-Aldrich unless otherwise specified. A reagent solution
per target metabolite was prepared immediately before the
experiment. Assay formulations were optimized by experi-
mentation. All the reagents were prepared in DI water.

For LAA testing, 6.7 µL of LAAOX (10 UmL−1),
6.7 µL of HRP (150 U mL−1), 3.3 µL of phenol
(44.5 mM) and 3.3 µL of 4-aminoantipyrine (4-AAP,
10.5 mM) were mixed. The reagent solution for gluta-
mate was prepared by mixing 6.7 µL of GLOX (4 U
mL−1), 6.7 µL of HRP (150 U mL−1), 3.3 µL of phenol
(44.5 mM), and 3.3 µL of 4-AAP (10.5 mM). For choline
testing, 6.7 µL of CHOX (150 U mL−1), 6.7 µL of HRP
(300 U mL−1), 3.3 µL of phenol (44.5 mM), and 3.3 µL of
4-AAP (10.5 mM) were mixed. The reagent solution for
sarcosine was prepared by mixing 6.7 µL of SAOX
(200 U mL−1), 6.7 µL of HRP (300 U mL−1), 3.3 µL of
phenol (44.5 mM), and 3.3 µL of 4-AAP (10.5 mM).
The reagent solution for the negative control was pre-
pared by mixing 6.7 µL of DI water, 6.7 µL of HRP
(300 U mL−1), 3.3 µL of phenol (44.5 mM), and 3.3 µL of
4-AAP (10.5 mM).
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Experimental setup
To ensure consistent results, a rigid test setup was built.

All optomechanical components were purchased from
Thorlabs. The reader of the platform was secured to an
optical aluminum breadboard (15 cm × 10 cm × 1.2 cm)
with the ZIF socket facing up. Cartridges were inserted
into the ZIF socket. The sensitive area of the CMOS chip
was parallel to the optical breadboard and facing up.
Using optomechanics, a 3 mW LED (λ = 490 nm, FWHM
= 20 nm) powered using a power supply unit (HP
E3631A) was used to uniformly illuminate the sensing
area on the CMOS chip with a collimating lens (AC254-
035-A-ML BBAR coating f = 35mm). The height and
positioning of the LED and lens were adjusted so that the
sensitive area of the chip received perpendicular colli-
mated light. The equipment that was mounted onto the
optical breadboard was enclosed in a box and covered
with a nylon/polyurethane blackout cloth. The cloth was
essential to ensure that the experiments were performed
in a dark environment. A small opening was left for
connecting wires and allowed sample delivery to the chip.
The reader, enclosed in the dark environment, was con-
nected to an external laptop (HP EliteBook i7-8650u 16
GB) using a USB cable. The MATLAB-based user inter-
face, running on the laptop, was used to control data
acquisition. Data were recorded with an average frame
rate of 36.5 fps and a resolution of 12 bits. Typically, the
duration of a single experiment was 5 min (~10,950
frames). Environmental temperature and humidity were
also monitored during testing using a Texas Instrument
module (HDC 1080EVM).

Cartridge reusage
Although the cartridge could in principle be a single-use

disposable device, because of limited resources, in this
work, cartridges were cleaned and reused. A cleaning
procedure after every measurement was used to avoid
cross-contamination. The cleaning process involved a
sequential rinse in DI water, IPA, and then ethanol, and
nitrogen was used to blow it dry. For the clinical samples,
an additional first rinse step with a dilute piranha solution
was performed. The dilute piranha solution was prepared
using 10:3:1 DI water:18M sulfuric acid:30% hydrogen
peroxide. Cleaning the cartridge with dilute piranha was
kept to a minimum since the etchant attacked the epoxy
microchannels. Cross-contamination reduction was also
achieved by optimizing the testing sequence. In particular,
one or more negative controls were performed before any
measurements.

Calibration
For calibration with liquid reagents, one human plasma

sample was purchased from Sigma-Aldrich and recon-
stituted according to the manufacturer’s instructions.

Subsequently, it was modified by adding known quantities
of analytes of interest. Additional concentrations did not
take into account the unknown endogenous level of the
substrate of interest in the sample. The endogenous
concentration was estimated by using the method for
substrate measurement described in the signal processing
section. Twenty microliters of reagent solution was mixed
off-chip with 20 µL of sample and introduced into the
cartridge within a few seconds.
For calibration with dried reagents, human plasma was

purchased, reconstituted, and modified using the same
procedure described for calibration with liquid reagents.
The same reagents were preloaded in all four micro-
channels in a single cartridge. Thirty microliters of sample
was introduced to the cartridge without any further
dilution.
For both configurations, metabolites were tested indi-

vidually. Each cartridge had four microchannels; there-
fore, each measurement yielded four reaction rates. The
method employed for sample delivery was reliable and
repeatable; therefore, air bubbles or fluidic failures did not
pose a problem for the majority of the experiments.
However, in a small number of instances, unexpected
behavior was observed, and the data were excluded. The
four reaction rates were averaged67, and the small number
of anomalies that occurred was mitigated using triplicate
measurements from each cartridge. Each cartridge was
functionalized with dried reagents prior to each new
measurement. The errors were expressed using the stan-
dard deviation of these data.

Non-PCa samples
Ten samples of human plasma from healthy people,

herein referred to as “non-PCa”, were commercially
sourced from Cambridge Bioscience. The exclusively
adult male non-PCa donors were age 34 ± 10 years. The
ethnicity of the group was diversified. The samples were
tested for the most common infectious diseases, and all
gave negative results. Approximately 10 mL of fresh blood
samples were collected from subjects in various research
centers in England, mixed with 10 mg of K2EDTA antic-
oagulant and centrifuged. The resulting 4-mL plasma
samples were frozen at −80 °C and shipped under dry ice.
After collection, plasma samples were aliquoted and
stored at −80 °C. No additional freeze and thaw cycle was
performed.

PCa samples
Sixteen samples of human plasma from people diag-

nosed with PCa, herein referred to as the “PCa group”,
were sourced from the Beatson West of Scotland Cancer
Centre, Glasgow, UK, using an ethically approved sample
collection protocol. Donors were adults already diag-
nosed with PCa. All patients were under treatment.
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Approximately 10 mL of blood samples was collected at
the cancer center, mixed with 10 mg of K2EDTA antic-
oagulant, and centrifuged, and the resulting plasma
samples were frozen at −80 °C. Samples were trans-
ported in dry ice. Afterward, plasma samples were ali-
quoted and stored at −80 °C. No additional freeze and
thaw cycle was performed. A copy of the ethical approval
letter and consent forms from the donors are available
upon request.

Preliminary clinical study
The non-PCa and PCa groups were tested for the four

metabolites of interest for PCa diagnosis. Chronologically,
the non-PCa group was tested before the PCa group. For
convenience numbered sample IDs were assigned. Sam-
ples with IDs from 1 to 10 belong to the non-PCa group.
Samples with sample IDs from 11 to 26 belong to the
PCa group.
Within each group, metabolites were measured one-

by-one in the following order: LAA, glutamate, choline,
and sarcosine. Experiments were performed with wet
reagents. Twenty microliters of reagent solution was off-
chip mixed with 20 µL of clinical sample and introduced
onto the platform within a few seconds. For each sample
and metabolite, the negative control (background) was
first assessed. Then, the assay was performed. Finally,
positive controls A and B were tested. Additional con-
centrations of positive control A for LAA, glutamate,
choline, and sarcosine were [A] = 500 µM, 100 µM,
100 µM, and 100 µM, respectively. The additional con-
centration for positive control B was [B] = 2[A]. Con-
trols were obtained using single measurements. The
assay was repeated three times using the same cartridge.
Averages and standard deviations were obtained for the
three measurements.

Microchannel functionalization with dried reagents
To functionalize the microchannels with dried assay

material, reagent solutions for the control and for LAA,
glutamate, and choline assays were first prepared as
described above. One microliter of each reagent solution
was preloaded into the required microchannel by manual
pipetting. Ultralong microloader pipette tips (Eppendorf)
with an outer diameter of 100 µm were used under a
microscope. The pipette tips made it possible to dispense
the reagent directly into single microchannels. To avoid
contamination of the shared input fluidic region, reagent
solutions were inserted from the fluidic output-end of the
channels. After the deposition of the reagent solutions,
the cartridge was dried for 1 h at room temperature in a
vacuum chamber. The control channel was preloaded
with a reagent solution containing HRP, phenol, and 4-
AAP. The presence of dried reagents on the chip slightly
increased the light absorbance of the platform after

settling. To compensate, the intensity of the light from the
LED was increased to keep the PDs at the same operating
point with respect to the unfunctionalized microchannels.
Reagents were rehydrated when the sample was intro-

duced into the microchannels. Based on visual inspection
of the data from the single sensors, we found that the
reagents were distributed uniformly along the sensor
region of the channel and remained so after drying.

Simultaneous measurements with clinical samples
A cartridge with four microchannels was used. One

microchannel was functionalized as a negative control.
The remaining three channels were functionalized for
LAA, glutamate, and choline assays. Fifteen microliters
of clinically sourced human plasma samples were
introduced into the cartridge with the preloaded
reagents without any further dilution. Experiments were
repeated twice. Microchannels were functionalized with
dried reagents prior to each experiment. Experiments
were performed immediately after completing cartridge
functionalization.

Signal processing
Signal processing can be divided into initial reaction

rate determination followed by substrate concentration
estimation.
To determine the initial reaction rate in a single

microchannel, data were first visually inspected. Signals
from sensing elements inside the same microfluidic
channel were low pass filtered (normalized cutoff fre-
quency: 0.1; 8th order) and spatially averaged (48 different
sensors). Unresponsive sensors or sensors affected by
strong artifacts were excluded from the averaging process.
The resulting signal was then temporally averaged in 1-s
nonoverlapping windows and fitted using a double
exponential derived by the Michaelis–Menten model and
Beer–Lambert law. The initial rate of the reaction was
then calculated by differentiation of the measured signal.
The substrate concentration estimation was performed

using the initial reaction rate and sample-specific para-
meters. For each sample, a negative control reaction was
initiated between the sample, peroxidase, and color-
changing reagents with no substrate-specific enzyme
present to quantify nonspecific activity. The reaction rate
obtained from the negative control (rn) was used as a
background to adjust the reaction rate of the actual test
(rt), as follows:

r�t ¼ rt � rn

where rt* is the adjusted reaction rate of the test.
Subtraction of the background can affect the performance
of the assay, including the dynamic range, LOD and LOQ.
However, each plasma sample used in this work had a
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different background since they came from different
individuals. Cartridge to cartridge variations were also
expected. The background correction takes into account
these variations to yield comparable results.
The sensitivity was estimated using the two positive

controls A and B, where known substrate concentrations
[A] and [B], respectively, were added to the undiluted
sample. The controls with concentrations [A] and [B]
gave respective initial reaction rates ra and rb in the linear
operating range of the platform. The rates ra and rb pro-
vided the sample-specific sensitivity (S′) of the apparatus
according to the following formula:

S0 ¼ rb � ra
B½ � � ½A� where B½ �>½A� and rb>ra

By analogy, the sensitivity was also calculated using the
following variants:

S00 ¼ rb � rt
B½ � � ½T� ; S

000 ¼ ra � rt
B½ � � ½T�

where T is the test sample with an unknown metabolite
concentration [T]. Typically, we found that S′, S″, and S‴
had similar numerical values. Their average (S) was then
used for substrate quantification. Note that it was not
necessary to adjust ra and rb using rn since rn automatically
cancels when computing the difference. [T] was estimated
using linear regression to be:

½T� ¼ r�t
S

Additional details regarding signal processing can be
found in the Supplementary Information.
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