
symmetryS S

Article

Breakout Group Allocation Schedules and the Social Golfer
Problem with Adjacent Group Sizes

Alice Miller * , Matthew Barr , William Kavanagh , Ivaylo Valkov and Helen C. Purchase

����������
�������

Citation: Miller, A.; Barr, M.;

Kavanagh, B.; Valkov, I.; Purchase, H.C.

Breakout Group Allocation Schedules

and the Social Golfer Problem with

Adjacent Group Sizes. Symmetry 2021,

13, 13. https://dx.doi.org/10.3390/

sym13010013

Received: 3 December 2020

Accepted: 15 December 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK;
matthew.barr@glasgow.ac.uk (M.B.); w.kavanagh.1@research.gla.ac.uk (W.K.);
ivaylo.valkov@glasgow.ac.uk (I.V.); helen.purchase@glasgow.ac.uk (H.C.P.)
* Correspondence: alice.miller@glasgow.ac.uk

Abstract: The current pandemic has led schools and universities to turn to online meeting software
solutions such as Zoom and Microsoft Teams. The teaching experience can be enhanced via the use
of breakout rooms for small group interaction. Over the course of a class (or over several classes), the
class will be allocated to breakout groups multiple times over several rounds. It is desirable to mix
the groups as much as possible, the ideal being that no two students appear in the same group in
more than one round. In this paper, we discuss how the problem of scheduling balanced allocations
of students to sequential breakout rooms directly corresponds to a novel variation of a well-known
problem in combinatorics (the social golfer problem), which we call the social golfer problem with
adjacent group sizes. We explain how solutions to this problem can be obtained using constructions
from combinatorial design theory and how they can be used to obtain good, balanced breakout room
allocation schedules. We present our solutions for up to 50 students and introduce an online resource
that educators can access to immediately generate suitable allocation schedules.

Keywords: online meeting software; breakout room; small group teaching; block design; scheduling;
combinatorics; social golfer problem

1. Introduction

Group work has long been a staple of computing science (CS) education, not least
because it reflects how software is developed in industry [1]. The pedagogical advantages
of group work are also well documented. Collaborative learning, whereby students work
in groups together towards a specified goal [2], has been shown to help students to develop
critical thinking skills [3] and a shared understanding of the studied material [4], and to
enhance students’ interpersonal, social, and teamwork skills [5]. The increasingly ubiq-
uitous flipped classroom approach [6] requires that students access learning materials in
advance of the class, so that the in-class time is spent on “interactive group-based learning
activities” [7]. With an essential requirement of group work, it has been shown to improve
learning performance [8], enhance students’ enjoyment [9], and to be effective for large
classes [10]. Furthermore, from a constructivist viewpoint, providing opportunities for
social interaction via group work is an important component of CS education [11]. Peer in-
struction, wherein students discuss problems with their peers to construct their conceptual
understanding, is also understood to be an effective instructional approach in CS educa-
tion [12,13]. Perhaps most often associated with introductory programming tuition [14–16],
peer instruction has also been shown to be an effective pedagogical technique with more
advanced CS cohorts [17].

Using online meeting software such as Zoom and Microsoft Teams to deliver teaching
has become the norm during the COVID-19 pandemic, with breakout rooms used to
facilitate small group activities, especially where class sizes are large. Where class sizes are
small enough, and the composition of the cohort is well understood in terms of students’
abilities, experience, and personalities, groups may be allocated manually. For example,

Symmetry 2021, 13, 13. https://dx.doi.org/10.3390/sym13010013 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0941-1717
https://orcid.org/0000-0002-5147-0673
https://orcid.org/0000-0003-0521-1643
https://orcid.org/0000-0003-1116-875X
https://orcid.org/0000-0001-6994-4446
https://www.mdpi.com/2073-8994/13/1/13?type=check_update&version=1
https://dx.doi.org/10.3390/sym13010013
https://dx.doi.org/10.3390/sym13010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/sym13010013
https://www.mdpi.com/journal/symmetry

Symmetry 2021, 13, 13 2 of 17

Ref. [18] describes how manually constructed breakout groups comprising five or six
students of mixed ability were used on a software engineering programme during the
COVID-19 pandemic. The carefully constructed composition of the groups in this case
could be fixed, with students remaining in the same groups for each round of group
activities. However, such an approach is not practicable with the larger cohorts that are
typical of CS university programmes. Furthermore, the repeated manual allocation of
students to new groups ensuring the desired properties is prohibitively time-consuming,
and not practical to administer in class, in real time.

Where manual allocation is not possible or practical, the facility to randomise
allocation—as offered by tools such as Zoom—is a tempting alternative. Random se-
lection works well once, for the first round, but subsequent random allocations are likely
to allocate participants to groups with people they have been in a group with in a previous
round. This is exacerbated as the number of rounds increases. Such an approach is not
ideal for at least two reasons: first, problems associated with personality clashes between
students will be amplified by repeated allocation to the same groups; second, any combina-
tions where the difference in students’ abilities proves problematic will persist from one
round to the next.

Thus, the ideal solution is to programmatically assign students to new groups for
each round, such that they are not allocated to groups with the same fellow students and,
ideally, no two students appear in the same group in more than one round. Furthermore,
prior literature suggests that having groups of four to six students is optimal [19–21], so
this is assumed here.

Zoom currently has two options for allocating participants to breakout sessions, either
random or set by the host (or co-host). If the latter option is chosen, individual rounds
can be imported in the form of CSV files consisting of lists of participants’ email addresses
which correspond to their Zoom login IDs. Microsoft Teams also features breakout rooms
(and has done since October 2020) and permits automated random allocation or manual as-
signment.

If random breakout rooms are used, it is difficult to maintain balance between rounds.
Consider, for example, a class of 16 students. The host wants to allocate the students
to 4 breakout rooms of size 4, and do this for 5 rounds. If we label the participants by
numbers 0, 1, . . . , 15 and allocate the groups randomly, an example of the successive rounds
generated is as follows:

round 1: (1, 2, 5, 10), (6, 7, 9, 12), (3, 4, 11, 15), (0, 8, 13, 14)
round 2: (1, 5, 8, 12), (2, 4, 6, 10), (0, 7, 14, 15), (3, 7, 9, 13)
round 3: (2, 3, 4, 6), (8, 11, 13, 14), (1, 7, 9, 10), (0, 5, 12, 15)
round 4: (5, 6, 9, 13), (3, 4, 7, 8), (2, 10, 11, 12), (0, 1, 14, 15)
round 5: (4, 5, 6, 12), (9, 11, 13, 14), (0, 2, 8, 15), (1, 3, 7, 10)

Note that, for example, students 0 and 15 are allocated to the same group 4 times (in
rounds 2, 3, 4 and 5). If the groups are allocated in a balanced way, this pair should be
allocated to the same group at most once.

Neither Zoom or Microsoft Teams has functionality for allocation over multiple rounds,
let alone for balanced allocation. However, scheduling the rounds in such a way as to be
balanced by hand is extremely difficult, even for a relatively small number of students
like 16.

Allocating items to groups in ways which have defined properties has been a subject
of mathematical study for many years, namely combinatorial design theory. Designs (or
block designs [22]—see Section 4.1) are mathematical structures in which points are allocated
to blocks. This problem can be directly mapped onto our breakout room allocation problem
(where points are participants and blocks are groups).

Symmetry 2021, 13, 13 3 of 17

To solve the example above, we need a particular type of mathematical structure
called a Kirkman system. Fortunately for us, such a structure exists for 16 points and gives
a solution to our round allocation as follows:

round 1: (0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (12, 13, 14, 15)
round 2: (0, 7, 10, 13), (3, 4, 9, 14), (2, 5, 8, 15), (1, 6, 11, 12)
round 3: (0, 5, 11, 14), (1, 4, 10, 15), (3, 6, 8, 13), (2, 7, 9, 12)
round 4: (0, 6, 9, 15), (2, 4, 11, 13), (1, 7, 8, 14), (3, 5, 10, 12)
round 5: (0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)

In this case, each participant is in a group with every other participant exactly once.
Our example is chosen to both illustrate the difficulty of scheduling sequential alloca-

tions and the existence of an ideal solution. If fewer than 5 rounds were required, the same
solution could be used, but some rounds ignored.

What if, for the number of participants, there is no suitable Kirkman System? Indeed,
what if the number of participants is prime, so it is not possible to allocate the same
number of participants to each block, even for a single round? In this paper, we consider
what makes a good, balanced allocation schedule for the given parameters (number of
participants, maximum number of rounds) and introduce a new combinatorial problem,
the social golfer problem with adjacent group sizes (SGA). With additional constraints,
solutions to SGA provide suitable good, balanced breakout room allocation schedules.

Social golfer-type problems are inherently linked to symmetry. Combinatorial search
for solutions is hard due to the number of equivalent partial solutions at each level of
search. Symmetry breaking [23–28] must be used to eliminate these equivalent structures
and reduce the search space to a tractable size. In addition, although we do not describe
them in this paper, the constructions we rely on in Section 4 to generate Kirkman systems,
nearly Kirkman systems and resolvable transversal designs, involve finite (Galois) groups
to create parallel classes of blocks from a set of base blocks. The nature of finite groups
prevents the repetition of pairs in different blocks by avoiding undesired periodicity due
to symmetry.

Using existing constructions from design theory, we show how solutions to SGA can
be obtained for up to 50 participants. We introduce an online tool which allows educators
to generate good, balanced allocation schedules—currently for up to 70 participants.

2. Good, Balanced Allocation Schedules

In this paper, we want to develop breakout room allocation schedules, that is, pre-
defined sequences of rounds of participants allocated to groups. We call such an alloca-
tion schedule balanced when no two participants are allocated to a group together more
than once.

The natural way to divide a set of participants into groups is to use equal group sizes.
However, this is not always possible (if the number of participants is prime, say). However
it makes sense to limit the number of group sizes to as small a number as possible, and to
keep the difference in group sizes to a minimum. We therefore allow at most two group
sizes and insist that the group sizes differ by at most one.

As previously mentioned, groups of four to six students are optimal [19–21]. However,
in some cases, this may be either impossible (when the number of participants is too small)
or overly restrictive (when the number of participants is perfectly divisible by a number p
greater than 2, but outside of this range, it might be preferable to have equal groups of size
p rather than unequal group sizes within the desired range). We therefore define a good,
balanced allocation schedule as follows:

Definition 1. For a set of v participants, a good balanced allocation schedule is a balanced allocation
schedule for which:

1. there are at most 2 group sizes,

Symmetry 2021, 13, 13 4 of 17

2. group sizes differ by at most 1,

3. every round has the same distribution of group sizes,

4. if v ≥ 12 all groups have a size of at least 3

5. If v ≥ 20 and there are two group sizes, then all groups have sizes between 4 and 6.

3. The Social Golfer Problem and a Variation

The problem of allocating a set of v participants to equal groups of size k in r rounds
in such a way that every participant appears in every round and all pairs of participants
appear in at most 1 group is a popular problem known as the social golfer problem (which
we will refer to as SGP(v, k, r)) [29,30]. It originated from the following question posed in
1998 to sci.op-research:

32 golfers play golf once a week, and always in groups of 4. For how many weeks
can they play such that no two players play together more than once in the same
group?

This problem and its generalisation to any number of players v and group size k
have attracted particular attention in the combinatorial optimisation community, due to its
highly combinatorial and symmetric nature. It has become a standard benchmark example
to evaluate modelling and symmetry breaking techniques [25,31]. Techniques for solving
the social golfer problem include heuristic approaches [32], Boolean satisfiability (SAT)
encoding [33,34] and constraint-based techniques [23,35,36]. We do not provide details
of these approaches here, but excellent surveys can be found in [29], and more recently
in [34,37].

The link between the social golfer problem and combinatorial designs, specifically
mutually orthogonal Latin squares [22,38], Kirkman systems [22,39,40] and resolvable
group divisible designs [22], is well known [29,31,41]. In this paper, we will refer to
published best-known solutions to the social golfer problem [42,43], both for allocation
schedules where there is only one group size, and to construct allocation schedules with two
different group sizes, by adding or removing points to/from existing social golfer solutions.

Generally, the social golfer problem refers to fixed values of v and k and finding
the largest r for which SGP(v, k, r) has a solution. In our context of allocation schedules,
we may not require a maximal solution (as often only a few rounds are required, or the
maximal solution would provide too many rounds to feasibly implement). However,
finding the maximal solution (or the largest known solution) will allow any number of
rounds r′ up to this value to be obtained by choosing only the first r′ rounds:

Lemma 1. If there is a solution for SG(v, k, r), then there is a solution for SG(v, k, r′), for any r′

less than r.

The Social Golfer Problem with Adjacent Group Sizes

Our problem, though, is broader. We want to find a (possibly maximal) set of rounds
in the same way, but we do not insist that all groups have the same size. Indeed, in many
cases, this would not be possible (if the number of participants is prime, for example). We
do insist however that, for v sufficiently large, all rounds have the same distribution of
group sizes, and there are at most 2 group sizes, which differ by at most 1.

We call this problem the social golfer problem with adjacent group sizes, which we
define as follows:

Definition 2. Let K be a set of positive integers of size at most 2 and, if |K| = 2, then K =
{k, k + 1} for some k. Then, for a given v and r, the social golfer problem with adjacent group sizes,
SGA(v, K, r), is to allocate v participants to groups with sizes from K in r rounds in such a way
that every participant appears in every round, all pairs of participants appear in at most 1 group,
and all rounds have the same set of group sizes.

Symmetry 2021, 13, 13 5 of 17

Note that, if |K| = 1, SGA(n, K, r) is simply SGP(v, k, r) for some k. As for the social
golfer problem, we can construct solutions for any number of rounds r′ less than the
maximal number (or a maximum known number) of rounds, by choosing only the first r′

rounds:

Lemma 2. If there is a solution for SGA(v, K, r), then there is a solution for SGA(v, K, r′), for any
r′ less than r.

Note that for a given v, there can be many possibilities for K and thus a large number
of ways to allocate participants to rounds. Our definition of a good balanced allocation
(Definition 1) allows us to impose additional constraints on the group sizes and so reduce
the available allocations. In the rest of this paper, we use SGP and SGA to refer to the
classes of social golfer problems and social golfer problem with adjacent group sizes (i.e.,
when we do not wish to specify a particular set of parameters).

In Section 4.1, we introduce some techniques that we use to construct solutions for the
SGA, which correspond to good balanced allocation schedules.

4. Finding Solutions to the SGA Using Results from Combinatorial Design Theory

The problem of finding solutions to the SGA is closely linked to the field of combina-
torial block designs [22]. In this case, a set of points V are placed into blocks in such a way
that no pair of points appear in more than one block together. In this section, we provide
some preliminary definitions and examples from the field of block designs and describe
how we can find solutions to SGA from existing block designs and solutions to the social
golfer problem.

4.1. Preliminary Definitions And Examples

Our requirement to schedule groups of participants into a set of rounds in which every
participant appears is equivalent to a parallel assignment of blocks in a design. Example 1
illustrates this equivalence.

Example 1. Suppose we have a set of 9 participants who we want to arrange into 4 rounds, each
containing groups of 3 students. In design theory terms, this is equivalent to saying that we have a
set V of 9 points, which we will label 0, 1, . . . , 8, that we want to arrange into 4 parallel sets of 3
blocks, where no pair appears in more than one block. A solution to this problem is given below:

round 1: (0, 1, 2), (3, 6, 7), (4, 5, 8)
round 2: (0, 3, 4), (1, 6, 8), (2, 5, 7)
round 3: (0, 5, 6), (1, 4, 7), (2, 3, 8)
round 4: (0, 7, 8), (1, 3, 5), (2, 4, 6)

In the rest of this section, we will refer to points and blocks rather than participants
or students and groups, as we will be referring to structures within the context of block
designs. Additionally (as can be seen below), the term group has a different meaning
within this context.

In Example 1, every block has the same size, every point is in exactly one block with
every other point, and the blocks can be arranged into rounds with every point appearing
once per round. Designs with these properties are known as Kirkman systems [22] and,
in particular, when the blocks all have size 3, as Kirkman triple systems [39,40]. This type of
design will be useful for us, particularly because various constructions exist in the literature
to construct them for certain parameters (number of points and size of blocks). However,
they only exist for some parameters.

We refer to a Kirkman system on v points with blocks of size k as a KS(v, k) and a
Kirkman triple system on v points as a KTS(v).

The following lemma shows the values of v and k, for v ≤ and 3 ≤ k ≤ 7, for which a
KS(v, k) exists. These values can be calculated from results in [22] and references therein:

Symmetry 2021, 13, 13 6 of 17

A closely related type of design of which we make use, is a resolvable group divisible
design [44]. In this case, the blocks can again be placed into parallel classes, but not
all possible pairs are contained in the blocks; instead, some of the pairs are contained
within another set of non-intersecting subsets of V known as groups. If the groups all
have the same size g (which we shall assume hereafter), we refer to a RGDD(v, k, g) [45].
An RGDD(v, 3, 2) is known as a nearly Kirkman triple system (NKTS(v)).

Example 2. Suppose we want to create a solution to SGA(20, {4}, r) for r as large as possible.
There is no KS(20, 4), so we cannot achieve a set of rounds in which every pair occurs exactly once.
However, we can achieve 5 rounds of blocks, and the unused pairs can be arranged into a set of 4
groups of size 5. This is an example of an RGDD(20, 4, 5):

round 1: (0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11),
(12, 13, 14, 15), (16, 17, 18, 19)

round 2: (0, 5, 10, 15), (4, 9, 14, 19), (3, 8, 13, 18),
(2, 7, 12, 17), (1, 6, 11, 16)

round 3: (0, 7, 9, 18), (2, 4, 11, 13), (6, 8, 15, 17),
(1, 10, 12, 19), (3, 5, 14, 16)

round 4: (0, 6, 13, 19), (3, 4, 10, 17), (1, 7, 8, 14),
(5, 11, 12, 18), (2, 9, 15, 16)

round 5: (0, 11, 14, 17), (1, 4, 15, 18), (2, 5, 8, 19),
(3, 6, 9, 12), (7, 10, 13, 16)

groups: (0, 4, 8, 12, 16), (1, 5, 9, 13, 17), (2, 6, 10, 14, 18),
(3, 7, 11, 15, 19)

The blocks of this design give a SGA(20, {4}, 5). There is no SGA(20, {4}, 6) (see Lemma 3).

An RGDD(v, k, 1) is a KS(v, k) as all pairs will appear in the blocks. Similarly,
an RGDD(v, k, k) can be viewed as a KS(v, k) by treating the groups as additional blocks.

A particular type of resolvable group divisible design that we employ in this paper is
one for which the number of groups is equal to the block size. In this case, every group
contains a single point from every block (and vice versa) and the design is known as a
resolvable transversal design. If the block size is k and the number of groups is n, we
refer to an RTD(k, n). The number of points in this case is k ∗ n and the number of parallel
rounds of blocks is n. This type of design is very useful because they can be generated
easily using an existing construction technique (if they exist for the given parameters) [22].
Notice that Example 2 is an RTD(4, 5).

4.2. Constructing Solutions for Sga

In many cases, when our parameters allow, we use existing Kirkman systems and
resolvable group divisible designs and solutions to SGP to find solutions to SGA. In other
cases, we add or remove points to/from blocks and groups of existing structures.

In order to produce our solutions, we need to access existing designs. We use the
following resources:

1. Constructions for Kirkman triple systems [40],

2. Resolvable transversal design construction using mutually orthogonal Latin squares [22],

3. Online current best solutions to examples of the social golfer problem [43],

4. Published small Kirkman systems [46] and nearly Kirkman triple systems [47,48].

We do not go into detail here about the constructions and solutions listed above.
We use the solutions and our own implementation of the constructions to create the designs
on which our SGA solutions are built. Some useful results are given in Lemma 3.

Lemma 3. The following results hold:

Symmetry 2021, 13, 13 7 of 17

1. If a KS(v, k) exists then k divides v and k− 1 divides v− 1.

2. A KTS(v, k) exists if and only if v ≡ 3(mod 6) and v ≥ 9. An NKTS(v) exists if and only
if v ≡ 0(mod 6) and v ≥ 18 [40,49].

3. If there is a solution to SGA(v, K, r) where K = {k, k + 1} and where, for every round, there
are m1 > 0 blocks of size k and m2 ≥ 0 blocks of size k + 1, then r is at most R(v, k, m1, m2)),
the largest integer less than or equal to v(v− 1)/(k(m1(k− 1) + m2(k + 1)).

4. If k = 4 and v = 20 there is no solution to SGP(20, 4, r) with r = R(20, 4, 5, 0) [50].

5. There is no solution to SGP(36, 6, r) for r > 3 (a consequence of [51]).

In the following example, we show how a solution to SGA(13, {3, 4}, 4) can be ob-
tained by using an existing KS and removing points and blocks. We will use similar
constructions for many of our SGA solutions. Note that we continue to use terms from
block design theory throughout (points and blocks) to avoid confusion.

Example 3. Suppose we want to create a solution to SGA(13, {3, 4}, r). The only way to do this
is for every round to have 3 blocks of size 3 and one of size 4. In order to construct such a set of
blocks, we can start with a KS(16, 4) thus:

round 1: (0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)
round 2: (0, 7, 10, 13), (1, 6, 11, 12), (2, 5, 8, 15), (3, 4, 9, 14)
round 3: (0, 5, 11, 14), (1, 4, 10, 15), (2, 7, 9, 12), (3, 6, 8, 13)
round 4: (0, 6, 9, 15), (1, 7, 8, 14), (2, 4, 11, 13), (3, 5, 10, 12)
round 5: (0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (12, 13, 14, 15)

In order to construct rounds on 13 points only, we remove 3 points from the last block (i.e.,
the points in bold). This destroys the last block, so we will disregard the last round of blocks in our
allocation schedule. These 3 points will not appear together in any other block, so we can be assured
that no other block will be reduced to size less than 3. Removing these points and the final round of
blocks, we obtain the following solution to SGA(13, {3, 4}, 4):

round 1: (0, 4, 8, 12)(1, 5, 9)(2, 6, 10)(3, 7, 11)

round 2: (0, 7, 10)(1, 6, 11, 12)(2, 5, 8)(3, 4, 9)

round 3: (0, 5, 11)(1, 4, 10)(2, 7, 9, 12)(3, 6, 8)

round 4: (0, 6, 9)(1, 7, 8)(2, 4, 11)(3, 5, 10, 12)

We can use this technique to remove up to k + 1 points from any existing KS(v, k + 1)
and obtain solutions to SG(v′, {k, k + 1}, r) for v− k− 1 ≤ v′ ≤ v− 1 and appropriate val-
ues of r. We always remove points from the last block in the final round of the KS(v, k + 1).
If more than 1 point is to be removed, then the blocks from the final round of the KS(v, k+ 1)
should not be included in the solution. If the points removed do not happen to be the
largest points (as they were in Example 3), then after every point is removed, the remaining
points should be appropriately renumbered. It is also possible to remove more than k + 1
points when the number of blocks per round is equal to k + 1. We only see one example of
this (the first case where v = 11 in Section 5.1), so we do not go into any detail about this
possibility here. We can use a similar approach to obtain solutions to SG(v′, {k, k + 1}, r)
for v− n ≤ v′ ≤ v− 1 and appropriate values of r from any RTD(k + 1, n). In this case,
we can remove up to n points from the final group. As the groups are never used in our
solutions (only the blocks), the maximum value of r in our solutions is the same as the
number of rounds for the original RTD(k + 1, n) (i.e., n).

In some cases we can obtain solutions to SGA by adding points to existing structures.

Symmetry 2021, 13, 13 8 of 17

Example 4. Suppose we want to create a solution to SGA(19, {3, 4}, 6). One way to do this is for
every round to have 5 blocks of size 3 and one of size 4. In order to construct a suitable set of blocks,
we can start with an NKTS(18). This is a set of parallel blocks of size 3, where every point is in a
block with all but one of the other points:

round 1: (0, 2, 3)(1, 15, 17)(5, 6, 11)(4, 7, 13)(8, 12, 14)(9, 10, 16)

round 2: (1, 4, 16)(0, 4, 5)(3, 8, 10)(2, 9, 12)(6, 13, 15)(7, 11, 17)

round 3: (0, 6, 7)(1, 11, 13)(4, 12, 16)(5, 10, 14)(3, 9, 17)(2, 8, 15)

round 4: (1, 10, 12)(0, 8, 9)(2, 13, 17)(3, 11, 15)(5, 7, 16)(4, 6, 14)

round 5: (4, 9, 15)(2, 7, 14)(6, 12, 17)(8, 13, 16)(0, 10, 11)(1, 3, 5)

round 6: (5, 8, 17)(3, 6, 16)(7, 10, 15)(9, 11, 14)(1, 2, 4)(0, 12, 13)

round 7: (2, 11, 16)(4, 10, 17)(5, 9, 13)(3, 7, 12)(0, 14, 15)(1, 6, 8)

round 8: (3, 13, 14)(5, 12, 15)(4, 8, 11)(2, 6, 10)(1, 7, 9)(0, 16, 17)

Observe that the blocks in boldface are all from different rounds and do not intersect. We can
therefore add a new point to these blocks and, including only those rounds for which the new point
has been added, obtain a solution to SGA(19, {3, 4}, 6)

round 1: (0, 2, 3, 18)(1, 15, 17)(5, 6, 11)(4, 7, 13)(8, 12, 14)(9, 10, 16)

round 2: (1, 4, 16, 18)(0, 4, 5)(3, 8, 10)(2, 9, 12)(6, 13, 15)(7, 11, 17)

round 3: (4, 9, 15)(2, 7, 14)(6, 12, 17, 18)(8, 13, 16)(0, 10, 11)(1, 3, 5)

round 4: (5, 8, 17)(3, 6, 16)(7, 10, 15, 18)(9, 11, 14)(1, 2, 4)(0, 12, 13)

round 5: (2, 11, 16)(4, 10, 17)(5, 9, 13, 18)(3, 7, 12)(0, 14, 15)(1, 6, 8)

round 6: (3, 13, 14)(5, 12, 15)(4, 8, 11, 18)(2, 6, 10)(1, 7, 9)(0, 16, 17)

Our final example involves combining two SGA solutions for sets of v1 and v2 points
respectively, each with block sizes k and k + 1, to create solutions for SGA(v, {k, k + 1}, r)
for v = v1 + v2 for suitable values of r. We only suggest using this approach for large
values of v (see Section 5.4) but use a smaller example to demonstrate the approach.

Example 5. We can construct a solution for SGA(38, {3, 4}, 6) by combining two copies of the so-
lution for SGA(19, {3, 4}, 6) constructed in Example 4. Consider the sets V1 = {0, 1, 2, . . . , 17, 18}
and V2 = {0′, 1′, 2′, . . . , 18′} and combine the allocations on V1 ∪V2 as follows:

round 1: (0, 2, 3, 18)(1, 15, 17)(5, 6, 11)(4, 7, 13)(8, 12, 14)(9, 10, 16)

(0′, 2′, 3′, 18′)(1′, 15′, 17′)(5′, 6′, 11′)(4′, 7′, 13′)(8′, 12′, 14′)(9′, 10′, 16′)

round 2: (1, 4, 16, 18)(0, 4, 5)(3, 8, 10)(2, 9, 12)(6, 13, 15)(7, 11, 17)

(1′, 4′, 16′, 18′)(0′, 4′, 5′)(3′, 8′, 10′)(2′, 9′, 12′)(6′, 13′, 15′)(7′, 11′, 17′)

round 3: (4, 9, 15)(2, 7, 14)(6, 12, 17, 18)(8, 13, 16)(0, 10, 11)(1, 3, 5)

(4′, 9′, 15′)(2′, 7′, 14′)(6′, 12′, 17′, 18′)(8′, 13′, 16′)(0′, 10′, 11′)(1′, 3′, 5′)

round 4: (5, 8, 17)(3, 6, 16)(7, 10, 15, 18)(9, 11, 14)(1, 2, 4)(0, 12, 13)

(5′, 8′, 17′)(3′, 6′, 16′)(7′, 10′, 15′, 18′)(9′, 11′, 14′)(1′, 2′, 4′)(0′, 12′, 13′)

round 5: (2, 11, 16)(4, 10, 17)(5, 9, 13, 18)(3, 7, 12)(0, 14, 15)(1, 6, 8)

(2′, 11′, 16′)(4′, 10′, 17′)(5′, 9′, 13′, 18′)(3′, 7′, 12′)(0′, 14′, 15′)(1′, 6′, 8′)

round 6: (3, 13, 14)(5, 12, 15)(4, 8, 11, 18)(2, 6, 10)(1, 7, 9)(0, 16, 17)

(3′, 13′, 14′)(5′, 12′, 15′)(4′, 8′, 11′, 18′)(2′, 6′, 10′)(1′, 7′, 9′)(0′, 16′, 17′)

A solution for the set V = {0, 1, 2, . . . , 33, 34, 37} can then be obtained by renaming 0′ as 19,
1′ as 20, 2′ as 21 and so on:

Symmetry 2021, 13, 13 9 of 17

round 1: (0, 2, 3, 18)(1, 15, 17)(5, 6, 11)(4, 7, 13)(8, 12, 14)(9, 10, 16)

(19, 21, 22, 37)(20, 34, 36)(24, 25, 30)(23, 26, 32)(27, 31, 33)(28, 29, 35)

round 2: (1, 4, 16, 18)(0, 4, 5)(3, 8, 10)(2, 9, 12)(6, 13, 15)(7, 11, 17)

(20, 23, 35, 37)(19, 23, 24)(22, 27, 29)(21, 28, 31)(25, 32, 34)(26, 30, 36)

round 3: (4, 9, 15)(2, 7, 14)(6, 12, 17, 18)(8, 13, 16)(0, 10, 11)(1, 3, 5)

(23, 28, 34)(21, 26, 33)(25, 31, 36, 37)(27, 32, 35)(19, 29, 30)(20, 22, 24)

round 4: (5, 8, 17)(3, 6, 16)(7, 10, 15, 18)(9, 11, 14)(1, 2, 4)(0, 12, 13)

(24, 27, 36)(22, 25, 35)(26, 29, 34, 37)(28, 30, 33)(20, 21, 23)(19, 31, 32)

round 5: (2, 11, 16)(4, 10, 17)(5, 9, 13, 18)(3, 7, 12)(0, 14, 15)(1, 6, 8)

(21, 30, 35)(23, 29, 36)(24, 28, 32, 37)(22, 26, 31)(19, 33, 34)(20, 25, 27)

round 6: (3, 13, 14)(5, 12, 15)(4, 8, 11, 18)(2, 6, 10)(1, 7, 9)(0, 16, 17)

(22, 32, 33)(24, 31, 34)(23, 27, 30, 37)(21, 25, 29)(20, 26, 28)(19, 35, 36)

In the above example, the two smaller sets had equal size—this need not be the case.
If we were trying to find an allocation where v is odd, we would choose smaller sets of
sizes (v− 1)/2 and (v + 1)/2 and use allocations for the smaller sets for which the blocks
have similar sizes.

In the remainder of this section, we will examine SGA(v, K, r) solutions, for which the
following conditions hold:

1. 12 ≤ v ≤ 50,

2. there are at most 2 block sizes,

3. block sizes differ by at most 1,

4. every round has the same distribution of block sizes, i.e., either all rounds have blocks
of the same size (k) or they have m1 blocks of size k and m2 blocks of size k + 1, where
m1 and m2 are the same for all rounds

5. If v ≥ 20 and there are two block sizes then all blocks have size between 4 and 6.

6. r is the largest for which a solution has been found.

The reason for our focus on this constrained set of solutions to SGA(v, K, r) is that
they correspond to good, balanced allocation schedules (see Definition 1).

We let K be the set of block sizes, where K = {k} (a set containing a single value k) or
K = {k, k + 1} (a set containing values k and k + 1). If K = {k} then, in order for there to be
at least two rounds, we must have v ≥ k2. Similarly if K = {k, k + 1}, then v ≥ k2 + k + 1.

In this paper, we present solutions to SGA(v, K, r) for all v ≤ 50, where K satisfies the
conditions above, and where there are m1 blocks of size k and m2 blocks of size k + 1. We
will use the notation described in Table 1. Note that the best available solution for SG(v, k)
is a published solution for SG(v, k, r), for which r is largest.

Symmetry 2021, 13, 13 10 of 17

Table 1. Notation used in Tables.

Notation Description

KS(v, k) use a KS(v, k)

KS(v, k)− p use a KS(v, k) with p points removed from a single block in the final round

KS(v, k)− p, B use a KS(v, k) with p points removed from a single block in the final round
and the final round of blocks removed

NKTS(v) use a NKTS(v)

RTD(k, n) use the blocks of an RTD(k, n)

RTD(k, n)− p use the blocks of an RTD(k, n) with p points removed from a single group

SG(v, k) use the best available solution to the social golfer problem for v players
in groups of size k

SG(v, k)− p use the best available solution to the social golfer problem for v players
in groups of size k, with p points removed, no pair of which appear in a
block of the SG(v, k)

SG(v, k)− p, B as above, but remove the points from final block and remove the final
round of blocks

D + p use an existing design D (a Kirkman system or resolvable transversal
design, say), with p points added, each to a single block in each round, where
these blocks don’t intersect, for as many rounds as possible

All of our solutions are presented in Tables 2–4. For brevity, we denote sets {k} and
{k, k + 1} as k and k, k + 1, respectively, and for any empty cell, refer to the values in the
cell above. We show the theoretical maximum number of rounds (MAX), where MAX
is determined from the results of Lemma 3. We indicate cases where Lemma 3 implies
that MAX < R(v, k, m1, m2) with an asterisk. This maximum is not necessarily achievable.
In the last two columns, we indicate how a set of parallel rounds for these parameters can
be obtained, using existing results and techniques similar to those used in Examples 3 and
4 and show the actual number of rounds achieved (r).

For any set of parameters v, k, m1 and m2, many solutions may exist—we only provide
one solution, as that is all we need for our purposes. Listing all solutions and classifying
them would be a different problem and out of the scope of this paper. For similar reasons,
although r may be the best possible number of rounds in some instances, we do not claim
this to be true in all cases, or attempt to prove it when it is. We simply include the largest
solution that we have found so far.
Table 2. Solutions to SGA(v, K, r) where r ≥ 3, 12 ≤ v ≤ 19, and K = {3}, {4} or {3, 4}.

v K m1, m2 MAX Solution r

12 3 4, 0 4∗ KS(16, 4)− 4, B 4

13 3, 4 3, 1 5 KS(16, 4)− 3, B 4

14 3, 4 2, 2 5 KS(16, 4)− 2, B 4

15 3 5, 0 7 KS(15, 3) 7
3, 4 1, 3 5 KS(16, 4)− 1 5

16 4 4, 0 5 KS(16, 4) 5
3, 4 4, 1 6 RTD(4, 5)− 4 5

17 3, 4 3, 2 6 RTD(4, 5)− 3 5

18 3 6, 0 8 NKTS(18, 3) 8
3, 4 2, 3 6 RTD(4, 5)− 2 5

19 3, 4 1, 4 6 RTD(4, 5)− 1 5
5, 1 8 NKTS(18) + 1 6

Symmetry 2021, 13, 13 11 of 17

Table 3. Solutions to SGA(v, K, r) where r ≥ 3, 20 ≤ v ≤ 40, and K = {3}, {4}, {5}, {4, 5} or {5, 6}.

v K m1, m2 MAX Solution r

20 4 5, 0 5∗ RTD(4, 5) 5

21 3 7, 0 10 KS(21, 3) 10
4, 5 4, 1 6 KS(25, 5)− 4, B 5

22 4, 5 3, 2 6 KS(25, 5)− 3, B 5

23 4, 5 2, 3 6 KS(25, 5)− 2, B 5

24 3 8, 0 11 NKTS(24, 3) 11
4 6, 0 7 KS(24, 4) 7

4, 5 1, 4 6 KS(25, 5)− 1 6

25 5 5, 0 6 KS(25, 5) 6
4, 5 5, 1 7 SG(30, 5)− 5, B 5

26 4, 5 4, 2 7 SG(30, 5)− 4, B 5

27 3 9, 0 13 KS(27, 3) 13
4, 5 3, 3 7 SG(30, 5)− 3, B 5

28 4 7, 0 9 KS(28, 4) 9
4, 5 2, 4 7 SG(30, 5)− 2 6

29 4, 5 1, 5 7 SG(30, 5)− 1 6
6, 1 8 RTD(5, 7)− 6 7

30 3 10, 0 14 NKTS(30, 3) 14
5 6, 0 7 SG(30, 5) 6

4, 5 5, 2 8 RTD(5, 7)− 5 7

31 4, 5 4, 3 8 RTD(5, 7)− 4 7
5, 6 5, 1 7 SG(36, 6)− 5 3

32 4 8, 0 10 SG(32, 4) 10
4, 5 3, 4 8 RTD(5, 7)− 3 7
5, 6 4, 2 7 SG(36, 6)− 4 3

33 3 11, 0 16 KS(33, 3) 16
4, 5 2, 5 8 RTD(5, 7)− 2 7

7, 1 10 RTD(5, 8)− 7 8
5, 6 3, 3 7 SG(36, 6)− 3 3

34 4, 5 1, 6 8 RTD(5, 7)− 1 7
6, 2 10 RTD(5, 8)− 6 8

5, 6 2, 4 7 SG(36, 6)− 2 3

35 5 7, 0 8 RTD(5, 7) 7
4, 5 5, 3 9 RTD(5, 8)− 5 8
5, 6 1, 5 7 SG(36, 6)− 1 3

36 3 12, 0 17 NKTS(36, 3) 17
4 9, 0 11 SG(36, 4) 8
6 6, 0 3∗ SG(36, 6) 3

4, 5 4, 4 9 RTD(5, 8)− 4 8
5, 6 6, 1 8 RTD(6, 7)− 6 7

37 4, 5 3, 5 9 RTD(5, 8)− 3 8
8, 1 11 RTD(5, 9)− 8 9

5, 6 5, 2 8 RTD(6, 7)− 5 7

38 4, 5 2, 6 9 RTD(5, 8)− 2 8
7, 2 11 RTD(5, 9)− 7 9

5, 6 4, 3 8 RTD(6, 7)− 4 7

39 3 13, 0 19 KS(39, 3) 19
4, 5 1, 7 9 RTD(5, 8)− 1 8

6, 3 11 RTD(5, 9)− 6 9
5, 6 3, 4 8 RTD(6, 7)− 3 7

40 4 10, 0 13 KS(40, 4) 13
5 8, 0 9 RTD(5, 8) 8

4, 5 5, 4 11 RTD(5, 9)− 5 9
5, 6 2, 5 8 RTD(6, 7)− 2 7

Symmetry 2021, 13, 13 12 of 17

Table 4. Solutions to SGA(v, K, r) where r ≥ 3, 41 ≤ v ≤ 50 and K = {3}, {4}, {5}, {6}, {7}, {4, 5}
or {5, 6}.

v K m1, m2 MAX Solution r

41 4, 5 4, 5 11 RTD(5, 9)− 4 9
9, 1 12 KS(40, 4) + 1 9

5, 6 1, 6 8 RTD(6, 7)− 1 7
7, 1 9 RTD(6, 8)− 7 8

42 3 14, 0 20 NKTS(42, 3) 20
6 7, 0 8 RTD(6, 7) 7

4, 5 3, 6 11 RTD(5, 9)− 3 9
8, 2 12 KS(40, 4) + 2 6

5, 6 6, 2 9 RTD(6, 8)− 6 8

43 4, 5 2, 7 11 RTD(5, 9)− 2 9
7, 3 12 KS(40, 4) + 3 5

5, 6 5, 3 9 RTD(6, 8)− 5 8

44 4 11, 0 14 RTD(5, 11)− 11 11
4, 5 1, 8 11 RTD(5, 9)− 1 9

6, 4 12 SG(50, 5)− 6 7
5, 6 4, 4 9 RTD(6, 8)− 4 8

45 3 15, 0 22 KS(45, 3) 22
5 9, 0 11 RTD(5, 9) 9

4, 5 5, 5 12 SG(50, 5)− 5 7
10, 1 14 RTD(5, 11)− 10 11

5, 6 3, 5 9 RTD(6, 8)− 3 8

46 4, 5 4, 6 12 SG(50, 5)− 4 7
9, 2 13 RTD(5, 11)− 9 11

5, 6 2, 6 9 RTD(6, 8)− 2 8
8, 1 10 RTD(6, 9)− 8 9

47 4, 5 3, 7 12 SG(50, 5)− 3 7
8, 3 13 RTD(5, 11)− 8 11

5, 6 1, 7 9 RTD(6, 8)− 1 8
7, 2 10 RTD(6, 9)− 7 9

48 3 16, 0 23 NKTS(48, 3) 23
4 12, 0 15 RTD(4, 12) 12
6 8, 0 9 RTD(6, 8) 8

4, 5 2, 8 12 SG(50, 5)− 2 7
7, 4 13 RTD(5, 11)− 7 11

5, 6 6, 3 10 RTD(6, 9)− 6 9

49 7 7, 0 8 KS(49, 7) 8
4, 5 1, 9 12 SG(50, 5)− 1 7

6, 5 13 RTD(5, 11)− 6 11
11, 1 15 RTD(5, 12)− 11 12

5, 6 5, 4 10 RTD(6, 9)− 5 9

50 5 10, 0 12 SG(50, 5) 7
4, 5 5, 6 13 RTD(5, 11)− 5 11

10, 2 15 RTD(5, 12)− 10 12
5, 6 4, 5 10 RTD(6, 9)− 4 9

5. Good, Balanced Allocation Schedules

In this section, we return to our original question: how to create good, balanced
allocation schedules. Specifically, we want to create allocation schedules that satisfy the
conditions of Definition 1. All of the allocation schedules can be obtained from our website
(see Section 6) for as many rounds as required, up to the maximum number considered.

Symmetry 2021, 13, 13 13 of 17

5.1. At Most Eleven Participants

When the number of participants v is smaller than 12, then, unless v = 9, we cannot
create allocations without allowing groups of size 2. If v is 3 or 5, there is no solution
unless some groups have size 1, which contradicts the point of using groups, so we ignore
those cases. The case v = 4, with 2 groups of size 2 for 3 rounds, is trivial. A solution
for each of the cases 6 ≤ v ≤ 12 is obtained by considering SGA(v, K, r) solutions, using
the techniques described in Section 4.1 (but in this case, relaxing the constraints on group
(block) sizes). For each value of v, we consult Table 5 below. For example, for v = 6, we
can only have 3 groups of size 2 in each round of our allocation schedule, because any
allocation schedule must match up to a design listed in the table. From the table we see
that such an allocation is available, how it is constructed (using a solution available for
SG(6, 2)) and that the solution provides an allocation schedule consisting of 5 rounds.

Allocation schedules for other values of v ≤ 11 are obtained in a similar way.

Table 5. Solutions to SGA(v, K, r) where r ≥ 3, 6 ≤ v < 12 and K = {2}, {3} or {2, 3}.

v K m1, m2 MAX Solution r

6 2 3, 0 5 SG(6, 2) 5

7 2, 3 2, 1 4 KS(9, 3)− 2, B 3

8 2 4, 0 7 SG(8, 2) 7
2, 3 1, 2 4 KS(9, 3)− 1 4

9 3 3, 0 4 KS(9, 3) 4
2, 3 3, 1 6 SG(8, 2) + 1 4

10 2 5 9 SG(10, 2) 9
2, 3 2, 2 5 SG(8, 2) + 2 4

11 2, 3 1, 3 5 KS(16, 4)− 5, B 4
4, 1 7 SG(10, 2) + 1 5

5.2. Between Twelve and Nineteen Participants

Now, we can insist that groups have a size of at least 3. In all cases, groups must
have size 3 or 4 and we can obtain solutions up to r rounds by considering the solutions to
SGA(v, K, r) indicated in Table 2.

5.3. Between Twenty and Fifty Participants

For all values of v ≥ 20, there is at least one allocation schedule for which all groups
have a size of at least 4. For this reason, we no longer consider groups of size 3 unless 3
divides the number of participants, and there is an allocation schedule for which all blocks
have size 3. Good, balanced allocation schedules can be obtained from the SGA(v, K, r)
solutions listed in Tables 3 and 4.

5.4. More than Fifty Participants

It would be tempting to continue constructing tables of solutions for larger and larger
numbers of participants. Indeed, we use solutions constructed in this way for allocation
schedules provided by our web-based tool (see Section 6). These currently include all good
balanced allocations for up to 70 participants and some for larger numbers of participants.
However, generating solutions in this way for large numbers of participants is not necessary.
We do not, after all, require a best possible solution (in terms of number of rounds), rather,
we need a single solution for which a reasonable number of rounds is possible. A simpler
solution is to divide the participants into two roughly equal sized cohorts. We can then glue
together allocations for the two smaller numbers of participants to achieve an allocation
for all participants. We cannot guarantee that there will be only two block sizes in this case,
but we can try to minimise the number of different block sizes.

Example 5 in Section 4.1 illustrates this approach.

Symmetry 2021, 13, 13 14 of 17

6. Obtaining Solutions from Our Website

Over 270 balanced allocations for between 6 and 85 participants are currently indexed
on our website www.dcs.gla.ac.uk/ alice. This includes all good, balanced allocation
schedules for up to 70 participants and some additional schedules for larger numbers of
participants. We will continue to add solutions as they are generated. Visitors can specify
the number of participants and the number of rounds and all corresponding allocation
schedules are shown. The allocations will have varying group sizes. They are displayed
as comma-separated lists which can be exported as plain-text. Alternatively, users can
provide a list of email addresses to translate the allocations for their participants. In Zoom,
when setting the breakout room assignments, hosts can import a list of email addresses to
automatically assign participants. When a list of usernames is imported to our website,
a file suitably formatted for assignment on Zoom is provided.

7. Discussion

We have identified a topical problem of allocating participants to breakout rooms when
using online meeting software solutions such as Zoom and Microsoft Teams. Specifically,
we have investigated how to schedule sequences of rounds in a balanced way, whereby no
two participants appear in a group together more than once. By additionally imposing the
constraints that group sizes should differ by at most one and each round should have the
same distribution of group sizes, we have defined a new combinatorial structure, namely a
variant of the social golfer problem (SGP), which we have called the social golfer problem
with adjacent group sizes (SGA).

In the context of breakout rooms, groups of sizes 4–6 are preferable, so we have
imposed additional constraints in this instance, and generated solutions for as many rounds
as we can, using either available solutions for SGP, known constructions for Kirkman
systems, nearly Kirkman systems and resolvable transversal designs, or by adding or
removing points from such structures. We have provided an online resource so that our
solutions can be available to all.

There is plenty of scope for additional contribution to the investigation of SGA.
Outside of the particular application of breakout rooms, there is no restriction on the
particular sizes of the groups (as long as the other properties are satisfied). For example,
for v = 43, there are SGA solutions for group sizes 6 and 7 (where each round has 6 groups
of size 6 and one of size 7), which we do not consider here. In addition, our methods can
be extended for increasing numbers of participants, and for any SGA instance, the upper
bound on the number of rounds possible could be refined, often by using simple counting
methods. Solutions with a number of rounds closer to the upper bound could be found
using more specific constructions or instances from combinatorial design theory (e.g.,
constructions for class-uniformly resolvable pairwise balanced designs with two block
sizes, and pairwise balanced designs [52,53]). Alternatively, constraint programming or
SAT solving techniques, such as those used to find maximal solutions to SGP could be
used to find solutions with more rounds.

The SGP has many practical applications, such as encoding, encryption and covering
problems, as well as a wide range of scheduling problems. Our novel concept of SGA
will allow these applications to be extended to situations in which unequal group sizes
are required.

Our allocation schedules treat all participants equally—i.e., we do not consider ability
or roles within a classroom (we cannot insist, for example, that an A-grade student is
present in every group, or that no two struggling students appear in a group together).
The composition of groups is important [54] and there is evidence to suggest that mixed
ability groups are associated with positive educational and developmental outcomes [55,56],
but we acknowledge that the opposite may also be the case [57], and that it may be
advantageous to assign a student with particular learning needs to a particular group. It
would be possible to modify our approach to accommodate these additional constraints,
but this is left as future work.

Symmetry 2021, 13, 13 15 of 17

Author Contributions: Writing—original draft preparation, A.M., M.B., W.K.; writing—review and
editing, A.M., M.B., W.K., I.V. and H.C.P.; Methodology, A.M., M.B.; software, A.M., W.K., I.V.; Data
curation, I.V., Investigation, A.M., M.B., W.K., I.V., H.C.P. All authors have read and agreed to the
published version of the manuscript.

Funding: William Kavanagh and Ivaylo Valkov were supported by the EPSRC Doctoral Training
Partnership award EP/M508056/1 and EPSRC grant EP/N007565/1 respectively.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chase, J.D.; Okie, E.G. Combining cooperative learning and peer instruction in introductory Computer Science. In Proceedings

of the Thirty-First SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’00), Austin, TX, USA, 8–12 March
2000; ACM: New York, NY, USA, 2000; pp. 372–376.

2. Laal, M.; Ghodsi, S.M. Benefits of collaborative learning. Procedia Soc. Behav. Sci. 2012, 31, 486–490. [CrossRef]
3. Gokhale, A.A. Collaborative learning enhances critical thinking. J. Technol. Educ. 1995. . [CrossRef]
4. Kreijns, K.; Kirschner, P.A.; Jochems, W. Identifying the pitfalls for social interaction in computer-supported collaborative learning

environments: A review of the research. Comput. Hum. Behav. 2003, 19, 335–353. [CrossRef]
5. Mendo-Lázaro, S.; León-del Barco, B.; Felipe-Castaño, E.; Polo-del Río, M.; Iglesias-Gallego, D. Cooperative Team Learning and

the Development of Social Skills in Higher Education: The Variables Involved. Front. Psychol. 2018, 9, 1536. [CrossRef] [PubMed]
6. Akçayir, G.; Akçayir, M. The flipped classroom: A review of its advantages and challenges. Comput. Educ. 2018, 126, 334–345.

[CrossRef]
7. Bishop, J.L.; Verleger, M.A. The flipped classroom: A survey of the research. In Proceedings of the ASEE National Conference

Proceedings, Atlanta, GA, USA, 23–26 June 2013; Volume 30, pp. 1–18.
8. Bhagat, K.K.; Chang, C.N.; Chang, C.Y. The impact of the flipped classroom on mathematics concept learning in high school.

J. Educ. Technol. Soc. 2016, 19, 134–142.
9. Wanner, T.; Palmer, E. Personalising learning: Exploring student and teacher perceptions about flexible learning and assessment

in a flipped university course. Comput. Educ. 2015, 88, 354–369. [CrossRef]
10. Eichler, J.F.; Peeples, J. Flipped classroom modules for large enrollment general chemistry courses: A low barrier approach to

increase active learning and improve student grades. Chem. Educ. Res. Pract. 2016, 17, 197–208. [CrossRef]
11. Ben-Ari, M. Constructivism in Computer Science Education. J. Comput. Math. Sci. Teach. 2001, 20, 45–73.
12. Porter, L.; Bailey Lee, C.; Simon, B.; Zingaro, D. Peer instruction: Do students really learn from peer discussion in computing?

In Proceedings of the Seventh International Workshop on Computing Education Research (ICER ’11), Providence, RI, USA,
8–9 August 2011; ACM: New York, NY, USA, 2011; pp. 45–52.

13. Porter, L.; Bailey, L.; Simon, B. Halving fail rates using peer instruction: A study of four Computer Science courses. In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE’13), Denver, CO, USA, 6–9 March 2013;
ACM: New York, NY, USA, 2013; pp. 177–182.

14. Simon, B.; Kohanfars, M.; Lee, J.; Tamayo, K.; Cutts, Q. Experience report: Peer instruction in introductory computing.
In Proceedings of the 41st ACM Technical Symposium on Computer Science Education (SIGCSE’10), Milwaukee, WI, USA,
10–13 March 2010; ACM: New York, NY, USA, 2010; pp. 341–345.

15. Simon, B.; Parris, J.; Spacco, J. How we teach impacts student learning: Peer instruction vs. lecture in CS0. In Proceedings
of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE’13), Denver, CO, USA, 6–9 March 2013;
ACM: New York, NY, USA, 2013; pp. 41–46.

16. Porter, L.; Bouvier, D.; Cutts, Q.; Grissom, S.; Lee, C.; McCartney, R.; Zingaro, D.; Simon, B. A Multi-institutional Study of Peer
Instruction in Introductory Computing. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(SIGCSE’16), Memphis, TN, USA, 2–5 March 2016; ACM: New York, NY, USA, 2016; pp. 358–363.

17. Lee, C.B.; Garcia, S.; Porter, L. Can peer instruction be effective in upper-division Computer Science courses? ACM Trans.
Comput. Educ. 2013, 13, 12:1–12:22. [CrossRef]

18. Barr, M.; Nabi, S.W.; Somerville, D. Online Delivery of Intensive Software Engineering Education During the COVID-19 Pandemic.
In Proceedings of the 2020 IEEE 32nd Conference on Software Engineering Education and Training (CSEE&T), Munich, Germany,
9–12 November 2020.

19. Keller, R.T. Predictors of the Performance of Project Groups in R & D Organizations. Acad. Manag. J. 1986, 29, 715–726.
20. Gibbs, G. The Assessment of Group Work: Lessons from the Literature; Assessment Standards Knowledge Exchange; Oxford Brookes

University: Oxford, UK, 2009; pp. 1–17.
21. Kooloos, J.; Klaassen, T.; Vereijken, M.; Van Kuppeveld, S.; Bolhuis, S.; Vorstenbosch, M. Collaborative group work: Effects

of group size and assignment structure on learning gain, student satisfaction and perceived participation. Med Teach. 2011,
33, 983–988. [CrossRef] [PubMed]

22. Colbourn, C.; Dinitz, J. (Eds.) Handbook of Combinatorial Designs, 2nd ed.; CRC Press: New York, NY, USA, 2007.

http://dx.doi.org/10.1016/j.sbspro.2011.12.091
http://dx.doi.org/10.21061/jte.v7i1.a.2
http://dx.doi.org/10.1016/S0747-5632(02)00057-2
http://dx.doi.org/10.3389/fpsyg.2018.01536
http://www.ncbi.nlm.nih.gov/pubmed/30186208
http://dx.doi.org/10.1016/j.compedu.2018.07.021
http://dx.doi.org/10.1016/j.compedu.2015.07.008
http://dx.doi.org/10.1039/C5RP00159E
http://dx.doi.org/10.1145/2499947.2499949
http://dx.doi.org/10.3109/0142159X.2011.588733
http://www.ncbi.nlm.nih.gov/pubmed/22225436

Symmetry 2021, 13, 13 16 of 17

23. Smith, B. Reducing Symmetry in a Combinatorial Design problem. In Proceedings of the Third International Workshop on
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR’01), Kent,
UK, 8–10 April 2001; pp. 351–359.

24. Focacci, F.; Milano, M. Global Cut Frame-work for Removing Symmetries. In Proceedings of the International Conference on
Principles and Practice of Constraint Programming (CP 2001), Paphos, Cyprus, 26 November–1 December 2001; pp. 75–92.

25. Petrie, K.; Smith, B.; Yorke-Smith, N. Dynamic symmetry breaking in constraint programming and linear programming hybrids.
In Proceedings of the European Starting AI Researcher Symposium, Valencia, Spain, 23–24 August 2004.

26. Donaldson, A.F.; Miller, A.; Calder, M. Comparing the use of symmetry in constraint processing and model checking. In Proceed-
ings of the 4th International Workshop on Symmetry and Constraint Satisfaction Problems, Toronto, ON, Canada, 27 September
2004; pp. 18–25.

27. Gent, I.; Kelsey, T.; Linton, S.; McDonald, I.; Miguel, I.; Smith, B. Conditional Symmetry Breaking. In Proceedings of the
International Conference on Principles and Practice of Constraint Programming (CP 2005), Sitges, Spain, 1–5 October 2005;
pp. 256–270.

28. Gent, I.P.; Petrie, K.; Puget, J.F. Handbook of Constraint Programming, Chapter Symmetry in Constraint Programming; Elsevier: Oxford,
UK, 2006.

29. Triska, M. Solution Methods for the Social Golfer Problem. Master’s Thesis, Technische Universität Vienna, Vienna, Austria, 2008.
30. Harvey, W. CSPLib Problem 010: Social Golfers Problem. Available online: http://www.csplib.org/Problems/prob010 (accessed

on 12 December 2020).
31. Barnier, N.; Brisset, P. Solving the Kirkman’s Schoolgirl Problem in a Few Seconds. In Proceedings of the 8th International

Conference on Principles and Practice of Constraint Programming (CP 2002), Ithaca, NY, USA, 9–13 September 2002; pp. 477–491.
32. Dotú, I.; Van Hentenryck, P. Scheduling social golfers locally. In Lecture Notes in Computing Science, Proceedings of the 2nd

International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
Prague, Czech Republic, 31 May–1 June 2005; Springer Berlin, Germany, 2005; Volume 3524, pp. 155–167.

33. Gent, I.; Lynce, I. A SAT encoding for the social golfer problem. In Proceedings of the IJCAI’05 Workshop on Modelling and
Solving Problems with Constraints, Edinburgh, Scotland, 30 July–5 August 2005.

34. Triska, M.; Musliu, N. An improved SAT formulation for the social golfer problem. Ann. Oper. Res. 2010, 194, 427–438. [CrossRef]
35. Law, Y.C.; Lee, J.H. Global Constraints for Integer and Set Value Precedence. In Proceedings of the International Conference on

Principles and Practice of Constraint Programming (CP 2004), Toronto, ON, Canada, 27 September–1 October 2004; pp. 362–376.
36. Liu, K.; Löffler.; Hofstedt, P. Solving the Social Golfers Problems by Constraint Programming in Sequential and Parallel.

In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), Prague, Czech Republic,
19–21 February 2019; Volume 2, pp. 29–39.

37. Triska, M.; Musliu, N. An effective greedy heuristic for the Social Golfer Problem. Ann. Oper. Res. 2012, 194, 413–425. [CrossRef]
38. Higazy, M.; El-Mesady, A.; Mohammed, M.S. On Graph-Orthogonal Arrays by Mutually Orthogonal Graph Squares. Symmetry

2020, 12, 1895. [CrossRef]
39. Kirkman, T. On a problem in combinatorics. Camb. Dublin Math. J. 1847, 2, 191–204.
40. Ray-Chaudhuri, D.; Wilson, R. Solution of Kirkman’s school girl problem. Proc. Symp. Pure Math. 1971, 19, 187–203.
41. Harvey, W.; Winterer, T. Solving the MOLR and Social Golfers Problems. In Lecture Notes in Computing Science, Proceedings of

Constraints Programming (CP 2005), Sitges, Spain, 1–5 October 2005; Springer: Berlin, Germany, 2005; Volume 3709, pp. 286–300.
42. Pegg, E. Math Games: Social Golfer Problem. Available online: http://www.mathpuzzle.com/MAA/54-Golf%20Tournaments/

mathgames_08_14_07.html (accessed on 14 December 2020).
43. Harvey, W. CSPLib Problem 010: Social Golfers Problem, Results. Available online: http://www.csplib.org/Problems/prob010

/results/ (accessed on 14 December 2020).
44. Zhu, L. Some recent developments on BIBDs and related designs. Discret. Math. 1993, 123, 189–214. [CrossRef]
45. Furino, S.; Miao, Y.; Yin, J. Frames and Resolvable Designs; CRC Press: Boca Raton, FL, USA, 1996.
46. Kageyama, S. A Survey of Reolvable Solutions of Balanced Incomplete Block Designs. Int. Stat. Rev. 1972, 40, 269–273. [CrossRef]
47. Colbourn, C.; Kaskib, P.; Östergård.; Pike, D.; Pottonen, O. Nearly Kirkman triple systems of order 18 and Hanani triple systems

of order 19. Discret. Math. 2011, 311, 827–834. [CrossRef]
48. Abel, R.; Chan, N.; Colbourn, C.; Lamken, E.; Wang, C.; Wang, J. Doubly Resolvable Nearly Kirkman Triple Systems. J. Comb. Des.

2013, 21, 342–358. [CrossRef]
49. Baker, R.; Wilson, R. Nearly Kirkman Triple Systems. Util. Math. 1977, 11, 289–296.
50. Kreher, D.; Ling, A.; Rees, R.; Lam, C. A note on {4}-GDDs of type 210. Discret. Math. 2003, 261, 373–376. [CrossRef]
51. Bose, R.; Shrikhande, S.S.; Parker, E. Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of

Euler’s Conjecture. Can. J. Math. 1960, 12, 189–203. [CrossRef]
52. Lamken, E.; Rees, R.; Vanstone, S. Class-uniformly resolvable pairwise balanced designs with block sizes two and three.

Discret. Math. 1991, 92, 197–209. [CrossRef]
53. Dukes, P.; Lamken, E. Constructions and uses of incomplete pairwise balanced designs. Des. Codes Cryptogr. 2019, 87, 2729–2751.

[CrossRef]
54. Burini, D.; De Lillo, S. On the Complex Interaction between Collective Learning and Social Dynamics. Symmetry 2019, 11, 967.

[CrossRef]

http://www.csplib.org/Problems/prob010
http://dx.doi.org/10.1007/s10479-010-0702-5
http://dx.doi.org/10.1007/s10479-011-0866-7
http://dx.doi.org/10.3390/sym12111895
http://www.mathpuzzle.com/MAA/54-Golf%20Tournaments/mathgames_08_14_07.html
http://www.mathpuzzle.com/MAA/54-Golf%20Tournaments/mathgames_08_14_07.html
http://www.csplib.org/Problems/prob010/results/
http://www.csplib.org/Problems/prob010/results/
http://dx.doi.org/10.1016/0012-365X(93)90016-M
http://dx.doi.org/10.2307/1402466
http://dx.doi.org/10.1016/j.disc.2011.02.005
http://dx.doi.org/10.1002/jcd.21342
http://dx.doi.org/10.1016/S0012-365X(02)00482-X
http://dx.doi.org/10.4153/CJM-1960-016-5
http://dx.doi.org/10.1016/0012-365X(91)90281-6
http://dx.doi.org/10.1007/s10623-019-00645-6
http://dx.doi.org/10.3390/sym11080967

Symmetry 2021, 13, 13 17 of 17

55. Burris, C.C.; Wiley, E.; Welner, K.; Murphy, J. Accountability, rigor, and detracking: Achievement effects of embracing a
challenging curriculum as a universal good for all students. Teach. Coll. Rec. 2008, 110, 571–607.

56. Ireson, J.; Hallam, S. Ability Grouping in Education; Sage: London, UK, 2001
57. Steenbergen-Hu, S.; Makel, M.C.; Olszewski-Kubilius, P. What one hundred years of research says about the effects of ability

grouping and acceleration on K–12 students’ academic achievement: Findings of two second-order meta-analyses. Rev. Educ. Res.
2016, 86, 849–899. [CrossRef]

http://dx.doi.org/10.3102/0034654316675417

	Introduction
	Good, Balanced Allocation Schedules
	The Social Golfer Problem and a Variation
	Finding Solutions to the SGA Using Results from Combinatorial Design Theory
	Preliminary Definitions And Examples
	Constructing Solutions for Sga

	Good, Balanced Allocation Schedules
	At Most Eleven Participants
	Between Twelve and Nineteen Participants
	Between Twenty and Fifty Participants
	More than Fifty Participants

	Obtaining Solutions from Our Website
	Discussion
	References

