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Summary

Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of
liver disease worldwide. This term encompasses a spectrum of pathologies, from
benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date,
been challenging to model in the laboratory setting. Here, we present a human
pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which over-
comes inherent challenges of current models and provides insights into the meta-
bolic rewiring associated with steatosis. Following induction of macrovesicular
steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO),
respirometry and transcriptomic analyses revealed compromised electron trans-
port chain activity. 13C isotopic tracing studies revealed enhanced TCA cycle ana-
plerosis, with concomitant development of a compensatory purine nucleotide
cycle shunt leading to excess generation of fumarate. This model of hepatic stea-
tosis is reproducible, scalable, and overcomes the challenges of studying mito-
chondrial metabolism in currently available models.

Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common form of hepatic disease and is strongly asso-

ciated with obesity and type 2 diabetes (WHO, 2006). In the earliest stage of NAFLD, triglyceride (TG)

accumulation in hepatocytes leads to the development of hepatic steatosis (Valenti et al., 2016). This is

characterized by the development of macrovesicular steatosis, with TG storage in large lipid droplets

(Wang and Yu, 2016). Although steatosis is largely benign, it can progress to nonalcoholic steatohepatitis

(NASH), which, in turn, increases the risk of developing cirrhosis and hepatocellular carcinoma (Asrih and

Jornayvaz, 2015). However, the mechanism(s) underlying this progression have yet to be determined. At

present, there are no specific therapeutics available to reverse or treat NAFLD, and the only effective inter-

vention is through the reduction of obesity through diet and exercise or following bariatric surgery

(Laursen et al., 2019).

In order to understand the pathophysiology of the NAFLD disease spectrum, studies have been under-

taken in rodent models, in vitro culture systems, and human liver biopsy samples. Dietary intervention or

genetic manipulation leading to the development of obesity and/or hepatic steatosis in rodents often fails

to fully recapitulate the NAFLD phenotype. For example, although the leptin-deficient Ob/Ob mouse de-

velops extreme obesity andmetabolic abnormalities, the profound abnormalities in circulating leptin mean

that this model is not representative of human disease in the general population (Anstee and Goldin, 2006;

Rotundo et al., 2018). Likewise, dietary interventions mimic specific stages of NAFLD, such as steatosis or

inflammation, but do not reflect the disease progression that occurs in humans (Oligschlaeger and Shiri-

Sverdlov, 2020). A common dietary intervention is the methyl-donor-deficient (MDD) diet, which recapitu-

lates the inflammatory responses associated with NASH but not the other elements of the metabolic

syndrome (Lyall et al., 2017; Rinella and Green, 2004). In vitro approaches commonly utilize immortalized

cell lines derived from hepatocellular carcinoma; however, malignant transformation is known to induce

profound changes in metabolic phenotype (Huang et al., 2013; Pavlova and Thompson, 2016), limiting their

utility for modeling NAFLD metabolism. Using whole liver tissue from rodent models or humans to study
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metabolism in distinct cell populations necessitates disaggregation and sorting, a process that induces

oxidative stress, potentially confounding analyses (Llufrio et al., 2018). Analysis of primary cells may also

be confounded by the cell sorting process (Llufrio et al., 2018).

In terms of mechanisms, studies in animal models and humans have shown that NAFLD is associated with

mitochondrial dysfunction including altered electron transport chain (ETC) activity (Koliaki et al., 2015;

Rector et al., 2010), altered tricarboxylic acid (TCA) cycle activity and anaplerosis (Satapati et al., 2012;

Sunny et al., 2011), induced oxidative metabolism, with a proportional increase in oxidative stress (Satapati

et al., 2015) and changes in mitochondrial respiration (Koliaki et al., 2015). In these studies, the presence of

multiple cell types in tissue samples may confound the results, and this is further complicated by the

changes in cell proportions that may occur in disease states.

Here, we present a human-relevant model of hepatic steatosis that can be used for high-resolution analysis

of metabolic function and that may provide novel insights into human NAFLD. We hypothesized that

nutrient excess in NAFLD leads to increases in ETC activity due to increased availability of respiratory sub-

strates. We aimed to determine the impact of lipid accumulation on mitochondrial respiration specifically

in hepatocytes, to avoid the confounding effects associated with bulk tissue analysis.

Results

Lactate, pyruvate, and octanoate treatment induces macrovesicular steatosis in hepatocyte-

like cells

We and others have previously reported that the high-energy substrate cocktail LPO promotes intracellular

lipid accumulation in pluripotent stem-cell-derived hepatocyte-like cells (HLCs) (Lyall et al., 2018) (sche-

matic of this process is shown in Figure 1A) and human hepatocyte or hepatoblastoma cell lines (Gilchrist

et al., 2010; Lockman et al., 2012, 2016). However, it was not known whether LPO promotes lipid droplet

biogenesis or increased accumulation of lipids within existing droplets. Stem-cell-derived HLCs were

differentiated and characterized by measuring mRNA levels of a marker of pluripotency (NANOG) and

markers of hepatocytes (Albumin; ALB and hepatocyte nuclear factor-4-alpha; HNF4A) (Wang et al.,

2017) (Figure 1B). CYP3A4 activity was present in control HLCs and those challenged with LPO, demon-

strating that they retained hepatocyte function (Figure 1C). Analysis of gene expression using RT-qPCR

showed increased expression of transcripts that are typically associated with intracellular lipid droplet

membranes: perilipin 2 (PLIN2), PLIN4, and PLIN5, suggesting an increase in lipid droplet size (Figures

1D and 1F). This was supported by analysis of lipid accumulation using high content imaging, which

demonstrated that 48 h of LPO exposure was not associated with a change in the number of intracellular

lipid droplets (Figure 1G) but led to a ~2-fold increase in their size (Figure 1H), consistent with the devel-

opment of macrovesicular steatosis.

LPO treatment induces intracellular lipid accumulation and transcriptomic alterations in key

mitochondrial respiratory pathways

Induction of steatosis in HLCs was associated with widespread transcriptomic changes (Figure 2A). Differ-

ential gene expression analysis identified 853 downregulated and 826 upregulated genes (log2 fold change

cut-off >1.5) in LPO exposed cells compared with controls. A selection of candidate genes was validated by

RT-qPCR (Figure S1), based on genes that we previously found to be dysregulated in association with stea-

tosis (Lyall et al., 2018). RNA-seq analysis revealed altered expression of a number of genes previously

described as having functional roles in the progression of NAFLD, including PLIN2, PPARGC1A,

CYP7A1, and HMGCS2 (Figure 2B). Mapping genes with a log2 fold change >1.5 to the KEGG pathway

database identified a number of enriched pathways (Figures 2C and 1D), including those related to steroid

hormone biosynthesis (18 genes) and ascorbate and aldarate metabolism (7 genes) (Table S4). There was

extensive downregulation of the histone structural units H1, H2A/B, H3, and H4 and UDP-glucuronosyl-

transferases, which were enriched in multiple pathways. Specifically comparing transcriptomic data with

the KEGG terms ‘‘TCA cycle’’ and ‘‘oxidative phosphorylation’’ revealed marked gene expression changes

within these pathways (Figures 2E and 2F) including in the majority of genes encoding enzymes that cata-

lyze metabolite interconversion (Table S5). Analysis of the oxidative phosphorylation pathway revealed an

overall downregulation of transcription of genes encoding components of respiratory complexes I (ND1,

ND2, ND4L, NDUFS2, NDUFV1, NDUFA10, NDUFB2 NDUFA2, NDUFB10) and IV (COX1, COX4I1,

COX8A, COX6B1), as well as ATP synthase (ATP6V1A, ATP5MF, ATP6V0D1, ATP6V1E1, ATP6, APT5MC2,

ATP5MC1) (Table S6).
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Figure 1. LPO treatment induces development of macrovesicular lipid droplets, similar to benign steatosis in

humans

(A) Schematic overview showing differentiation process and induction of lipid accumulation.

(B) H9 hPSCs differentiate to HLCs, losing pluripotency as shown by diminished expression of the pluripotency marker

NANOG during the differentiation process. Concomitantly, these cells begin expressing the hepatocyte markers albumin

(ALB) and hepatocyte nuclear factor-4-alpha (HNF4A) (n = 3 biological replicates/group).

(C) Differentiated HLCs display robust CYP3A4 activity, which is not diminished following challenge with LPO.

(D–F) Perilipin 2 (PLIN2), PLIN4, and PLIN5 expression increases in response to LPO treatment (n = 3 biological replicates

per group).

(G) Number of lipid droplets do not increase,

(H) But intracellular lipid droplets increase in size (n = 32 biological replicates/group). Data were analyzed using two-

tailed Student t test and expressed as mean G SD, *p < 0.05, ****p < 0.0001.
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Figure 2. Steatosis in hepatocytes is associated with transcriptional rewiring reflecting human NAFLD

(A) Heatmap analysis of transcriptional changes associated with macrovesicular steatosis.

(B) Expression of key NAFLD-associated genes is disrupted in steatotic HLCs.

(C–D) Pathway enrichment analysis reveals a number of disrupted pathways associated with macrovesicular steatosis.
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Macrovesicular steatosis in hepatocytes is associated with electron transport chain

dysfunction

It has been suggested that NAFLD-associated macrovesicular steatosis results in impairment of mitochon-

drial respiration (Koliaki et al., 2015), and we therefore proceeded to analyze this in steatotic HLCs

(Figure 3A). Basal oxygen consumption rate (OCR), representing combined mitochondrial and non-mito-

chondrial oxygen consumption, was unchanged following LPO exposure (Figure 3B). In addition, oligomy-

cin A, a complex V inhibitor decreased OCR equally effectively in control and treatment group. Firstly, this

indicated that there were no changes in ATP-linked respiration in response to macrovesicular steatosis

(Figure 3C). Secondly, when comparing oligomycin-A-induced alterations in OCR with those following

addition of rotenone/antimycin A, we could detect no changes in proton leak between groups (Figure 3D).

The addition of the ETC uncoupler FCCP revealed a decrease in maximal respiration in the steatotic HLCs,

suggesting mild ETC dysfunction (Figure 3E). Using OCR measurements following FCCP treatment, and

comparing with the basal OCR, we calculated that there was a decrease in reserve capacity in the LPO-

treated cells, compared with controls (Figure 3F). Subsequently, complex I and III were targeted with rote-

none/antimycin A, to completely inhibit oxidative phosphorylation, which reduced OCR to a similar level in

both groups, suggesting no difference in non-mitochondrial sources of OCR between the control and stea-

totic HLCs.

Induction of macrovesicular steatosis is not associated with altered mitochondrial number or

mitochondrial integrity

We wanted to analyze whether changes in ETC function, as demonstrated by decreased cellular maximal

respiration and reserve capacity, were due to altered numbers of mitochondria. Because these were the

only respiratory measurements to change, we hypothesized that this was not the case. To test this, we

used a high-content microscopy-based approach to measure intracellular mitochondrial fluorescence

and observed no changes following exposure to LPO (Figure 3G), indicating no change in quantity. We

then measured protein levels of succinate dehydrogenase subunit A (SDHA) and pyruvate dehydrogenase

(PDH) a1 and a2 subunits (Figure 3H; representative blot Figure S2), which localize to the mitochondria.

Protein levels of SDHA and PDH did not change in response to intracellular lipid accumulation. Further-

more, there were no changes in mitochondrial or nuclear DNA (Figure S3) and no change in the ratio of

nuclear to mitochondrial DNA (Figure 3I), suggesting that mitochondrial number is not altered by LPO-

inducedmacrovesicular steatosis. To analyze whether the observed changes in OCR could be due to dimin-

ished mitochondrial integrity rather than ETC dysfunction, we measured citrate synthase (CS) activity. This

has previously been described as a measure of mitochondrial integrity (Boutagy et al., 2015; Short et al.,

2005). Our findings suggest that LPO treatment has nomarked impact on CS activity (Figure 3J), suggesting

that mitochondria remain intact following intracellular lipid accumulation. Taken together, these data

demonstrate that mitochondrial number was not altered in response to macrovesicular steatosis. This sug-

gests that the altered respiratory complex activity may arise due to reactive oxygen species (ROS)-medi-

ated dysfunction, rather than changes in protein content, although this requires further investigation.

Induction of an NAFLD-like phenotype in HLCs is associated with increased pyruvate

carboxylase activity

To investigate TCA cycle dynamics in HLCs, lactate in the LPO cocktail was replaced with 13C3-lactate.

Lactate can enter the TCA cycle via mitochondrial pyruvate metabolism, through either pyruvate carbox-

ylase (PC) or pyruvate dehydrogenase (PDH). Alternatively, pyruvate can be transported into the cytosol

and used in gluconeogenesis (Figure 4A). LPO exposure was associated with increases in steady state levels

of pyruvate, aspartate, and citrate, but there were no changes in metabolites associated with the gluconeo-

genesis pathway (Figure 4B). Although pyruvate was added as part of the LPO cocktail, increased pyruvate

generation also occurred as a result of increased lactate dehydrogenase activity (Figure 4C). Although we

were unable to directly measure oxaloacetate levels, we used aspartate as a surrogate and found increased

m+3 labeling, demonstrating direct synthesis of aspartate from pyruvate (Figure 4D). Furthermore, iso-

topomer labeling of citrate indicated increased incorporation from pyruvate-derived oxaloacetate and

decreased conversion of labeled acetyl-CoA by PDH (Figure 4E). An alternative pathway for pyruvate is

Figure 2. Continued

(E–F) Analysis of KEGG TCA cycle and oxidative phosphorylation pathways reveals extensive disruption of expression of key genes. Data in (A) were analyzed

using a two-tailed Student’s t test. Data in (B) were analyzed by two-way ANOVA with Sidak post-hoc testing. n = 3 biological replicates per group. Data are

expressed as mean G SD.
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Figure 3. LPO treatment results in decreased mitochondrial maximal respiration and reserve capacity, suggestive of respiratory complex

impairment.

HLCs were injected sequentially from ports A–C with 4 mM oligomycin, 0.5–1 mM FCCP, and 1 mM antimycin combined with 200 nM rotenone.

(A) Raw trace of OCR comparing cells with or without LPO treatment; (B) basal respiration (C) ATP-linked respiration and (D) proton leak were unchanged in

LPO-treated HLCs. In contrast, maximal respiration (E) and reserve capacity (F) were both diminished following LPO treatment (n = 18 and 16 biological

replicates in the control and treatment group, respectively, from two plates). (G) High-content microscopy revealed no changes in fluorescence of

mitochondrial in response to treatment (n = 4 and 6 biological replicates in the control and treatment group, respectively). Representative images of

mitochondrial content in control and LPO-treated groups 10xmagnification. Blue staining =NucBlue, red staining =MitoTracker Deep Red. Scale bar: 25 mm

(H). There were no changes in abundance of the mitochondrial proteins succinate dehydrogenase subunit (SDHA) or pyruvate dehydrogenase a1 and a2

subunits (PDH) (n = 6 biological replicates/group). (I) There were no significant changes in the ratio of mitochondrial to genomic DNA, when comparing

mitochondrial region 2 (MT2); mitochondrial region 3 (MT3); or genomic region beta-globin (HBB), indicating no alterations in the quantity of mitochondria

in response to treatment (n = 4 biological replicates/group). Levels of citrate synthase activity appears unaltered by LPO treatment (n = 3 biological

replicates/group). Data were analyzed using two-tailed Student t test for parametric data, or Mann-Whitney U test (D, I) for non-parametric data, and

expressed as mean G SD.
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conversion to alanine, and although there were no changes in steady state alanine levels, there were mod-

erate, but significant, changes in the incorporation of 13C (Figure 4F), indicating overall transamination of

pyruvate toward alanine. Despite there being no increase in steady state levels of gluconeogenesis-asso-

ciated metabolites, the increased m+2 labeling of 3-PG (Figure 4G), serine (Figure 4H), and glycine (Fig-

ure 4I) suggests increased flux through the gluconeogenesis pathway.

Steatosis in HLCs is associated with increased TCA cycle anaplerosis

Isotopic labeling of TCA metabolites can produce a number of different isotopomers, depending on the

directionality of metabolite synthesis (Figure 5A). In steatotic HLCs, we observed increases in steady state

Figure 4. Macrovesicular steatosis is associated with increased PC activity, leading to preferential anaplerosis of pyruvate into the TCA cycle

(A) Schematic outlining conversion of lactate to pyruvate and routes by which this can be converted. Black circles denote carbon atoms.

(B) Steady state measurements of pyruvate and metabolites that pyruvate can be converted into. Isotopomer labeling patterns of pyruvate (C), aspartate (D),

and citrate (E) show anaplerosis into the TCA cycle. There is minimal conversion of pyruvate to alanine (F–G), but increased flux of the m+2 isotopomer

throughmetabolites related to gluconeogenesis, with sustained conversion to 3-PG, serine, and glycine (H–K). For NMR data, labels are: 1 = 13C labeling; 0 =

no 13C labeling. All GC-MS data consisted of 10 biological replicates and 2 technical replicates. Isotopomer data were calculated by multiplying MID

(multiple ion detection) by normalized total ion count. For NMR data (G and K) n = 4 biological replicates/group. Data were analyzed by two-way ANOVA

with Sidak post-hoc testing, or (I–J) two-tailed Student’s t test. Data are expressed as mean G SD.
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levels of the TCA cycle metabolites aKG, fumarate, and malate (Figure 5B). In contrast, there were no

changes in the steady state levels of succinate and no evidence for increased metabolism of glutamate.

To further analyze alterations in TCA cycle dynamics we measured 13C incorporation into metabolites.

Although there was increased 13C incorporation into PC-derived citrate (Figure 4E), this was not the

case for aKG (Figure 5C). The decreased levels of 13C incorporation into glutamate suggests that this

does not result from increased cataplerosis through glutamate (Figure 5D). The increased expression of

OGDHL and decreased expression of SUCG1 (Table S5) suggest that steatosis may be associated with

Figure 5. Macrovesicular steatosis in HLCs results in truncation of the TCA cycle, inhibiting conversion of succinate to fumarate.

Paradoxically, this is associated with increased accumulation of fumarate.

(A) Schematic outlining the TCA cycle and possible 13C labeled isotopomers from a single cycle.

(B) Steady state measurements of TCA cycle-associated metabolites that could be measured by GC-MS.

(C) PC-derived aKG is unchanged in the presence of steatosis, and PDH-derived aKG is reduced.

(D–E) Labeling patterns of aKG are not due to increased cataplerosis through glutamate, as both PC- and PDH-derived glutamate are reduced in response to

steatosis.

(F) Furthermore, reduced 13C labeling of succinate indicates inefficient conversion from aKG.

(G–H) Despite reduced labeling of succinate, both fumarate and malate show increased PC-derived label incorporation.

(I) Proposed model of preferential anaplerosis of pyruvate into the TCA cycle, with concomitant truncation, preventing conversion of succinate to fumarate.

For NMR data, labels are: 1 = 13C labeling; 0 = no 13C labeling. All GC-MS data consisted of 10 biological replicates and 2 technical replicates. Isotopomer

data were calculated by multiplying MID (multiple ion detection) by normalized total ion count. For NMR data (E) n = 4 biological replicates/group. Data

were analyzed by two-way ANOVA with Sidak post-hoc testing and are expressed as mean G SD.
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metabolic reprogramming within the mitochondrial matrix supported by altered protein synthesis.

Although decreased incorporation of 13C into succinate was observed (Figure 5E), a parallel increase in
13C incorporation into fumarate, malate, and aspartate was also apparent (Figures 5F and 5G). Because

the overall directionality of the malate dehydrogenase and fumarate hydratase reactions can vary depend-

ing on the metabolic environment (Dasika et al., 2015; Tyrakis et al., 2017), increased incorporation of 13C

into both malate and fumarate indicate increased overall flux of carbons into these metabolites from the

oxaloacetate pool. Taken together, this suggests dysregulated TCA cycle flux in steatotic cells, which

may be associated with changes in SDH activity (Figure 5H). The increased incorporation of 13C into oxalo-

acetate (using aspartate as a surrogate) demonstrates increased PC activity, driving the conversion of py-

ruvate to oxaloacetate and suggests possible disruption of associated metabolic cycles, including the

malate-aspartate shuttle (MAS) and the purine nucleotide cycle (PNC).

Increased PNC and MAS activity drives NAFLD-associated fumarate accumulation

Next, we wanted to determine the source of fumarate accumulation in steatotic HLCs. Transcriptomic anal-

ysis identified dysregulation of multiple genes associated with the MAS (Figure 6A) and PNC (Figure 6B),

indicating that these pathways may be involved in fumarate accumulation. To investigate this further, HLCs

incubated with 13C3-lactate-labeled LPOwere co-incubated with either 5-Aminoimidazole-4-carboxamide-

1-b-D-ribofuranosyl 50-monophosphate (AICAR) or O-(Carboxymethyl)hydroxylamine hemihydrochloride

(AOA) to inhibit the PNC or MAS, respectively. Addition of AICAR increased only the steady state levels

of aKG, and neither AICAR nor AOA had a significant impact on the synthesis of pyruvate, citrate, succinate,

or malate (Figure 6C). However, both inhibitors significantly reduced steady state levels of fumarate and

aspartate. Although addition of AICAR did not impact on the synthesis of PDH-derived citrate (Figure 6D),

it did result in increased accumulation of PDH-derived 13C in aKG (Figure 6E), suggesting impaired conver-

sion to succinyl-CoA or increased anaplerosis from glutamate. AICAR was also able to partially restore the

effects of steatosis on succinate levels (Figure 6F), resulting in small but significant increases in PC- and

PDH-derived isotopomers. The most profound effect of AICAR was on fumarate, with each isotopomer

reduced to levels below those observed in the control group (Figure 6G), suggesting that in steatotic

HLCs, fumarate accumulation is primarily driven by the PNC. Following AOA treatment, we observed a

moderate decrease in PC-derived 13C incorporation into fumarate, demonstrating a small contribution

from the MAS. AICAR had a moderate impact on incorporation of PC-derived incorporation of 13C into

malate, whereas AOA impacted on both PC- and PDH-derived 13C incorporation, suggesting limited

contribution of theMAS and PNC tomalate accumulation (Figure 6H). Both AICAR and AOA reduced incor-

poration of 13C into aspartate (Figure 6I). These data show that the metabolic consequences of LPO treat-

ment, likely driven by increased TCA cycle anaplerosis through OAA, include an increase in both MAS and

PNC activity (Figure 6J).

Inhibition of fumarate accumulation inhibits lipid droplet hypertrophy in LPO-treated HLCs

To determine whether manipulation of fumarate levels affected the development of macrovesicular stea-

tosis, we performed HCA microscopy on HLCs. Cells were treated with LPO in the presence or absence of

AICAR. Cells that received AICAR did not develop macrovesicular steatosis (Figure 6K). These results were

corroborated by the addition of exogenous fumarate to steatotic HLCs treated with AICAR, which resulted

in the development of larger lipid droplets.

Fumarate accumulation is not associated with widescale alterations of 5hmC in protein-

coding regions in steatotic HLCs

One potential consequence of fumarate accumulation in steatotic HLCs is inhibition of aKG-dependent di-

oxygenase enzyme activity. Given our previous data showing altered 5hmC in a mouse model of NAFLD

and the potential importance of the TET enzymes in hepatocellular carcinoma (Lyall et al., 2020; Thomson

et al., 2016), we used a DIP-seq approach to measure changes in 5hmC across the genome. Within each

group, samples were highly correlated, suggesting that the 5hmC patterns are stable between replicate

samples (Figure 7A). We identified 3,294 differentially hydroxymethylated regions (DHRs) between LPO

exposed and control cells (>2-fold change, seemethods), with themajority of changes located in intragenic

or intronic regions (Figure 7B). 5hmC in gene body regions may functionally relate to mRNA transcription

(Thomson et al., 2016), and we therefore generated heatmaps representing mean changes across the gene

body, with cluster 1 showing subtle increases in 5hmC within the TSS region (Figure 7C). Analysis of genic

5hmC patterns revealed that a number of promoter regions displayed changes in 5hmC levels following

LPO exposure (Figure 7D). Integration of DHR and RNA-seq data for promoter regions upstream of the
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Figure 6. In the presence of TCA cycle truncation, the purine nucleotide cycle and malate-aspartate shuttle fuel

fumarate accumulation

(A and B) Transcriptomic analysis showed increased expression of malate-aspartate shuttle (MAS) and purine nucleotide

cycle (PNC) transcripts, indicating perturbed activity.

(C) Inhibition of the PNC and MAS reversed steatosis-induced accumulation of fumarate and aspartate but not malate.

(D–G) (D) PNC inhibition moderately impacted PC-derived citrate 13C labeling but not (E) aKG or (F) succinate. (G) In

contrast, PNC inhibition profoundly reduced incorporation of 13C into fumarate. MAS inhibition also limited PC-derived

fumarate accumulation, but to a lesser extent.

(H) PNC and MAS expression also inhibited generation of PC-derived malate but to a much smaller extent than fumarate.
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transcriptional start site revealed 12 promoter regions with differential enrichment of 5hmC (>2-fold) and

where mRNA expression was altered >0.5-fold. Linear regression of these regions identified a moderate

but significant negative relationship between 5hmC enrichment and mRNA expression (Figure S4; Table

S7). Of these genes 7 (EPHX3, ERO1B, CSGALNACT1, DOC2A, COL6A1, CASP1 and TMEM88) were pre-

viously shown to be dysregulated in the pathogenesis of NAFLD or progression to cirrhosis (Atanasovska

et al., 2017; Cazanave et al., 2017; Parafati et al., 2018; Revill et al., 2013; Wilson and Kumar, 2018).

Conversely, to our knowledge, there are no described associations between NAFLD and the remaining

genes in this list (DDN, OGFRL1, OCIAD2, ABAT, CCDC150). Our findings may indicate a role for 5hmC

in the regulation of these genes in NAFLD pathogenesis.

Discussion

NAFLD is a challenging disease to study in humans. This is due to the difficulty of obtaining tissues that are

not compromised by confounding conditions, making high-resolution analysis of transcriptional and meta-

bolic rewiring challenging. In this study we sought to explore the utility of a human-HLC-based model for

the study of transcriptomic, epigenomic, and metabolomic dysfunction associated with hepatic steatosis.

Using a combination of high content microscopy and gene expression analyses, we showed that treatment

of HLCs with LPO induces intracellular lipid accumulation, recapitulating the macrovesicular steatosis

observed in NAFLD (Figure 1G). This was in parallel with changes in the expression of genes associated

with lipid droplet size (Figures 1D–1F) and is in agreement with findings from human studies (Fujii et al.,

2009; Sahini and Borlak, 2016).

The disruption of the expression of genes in multiple pathways related to metabolism confirms the findings

of a number of previous studies in humans and mice (Collison et al., 2009; Hardwick et al., 2013; Kolwankar

et al., 2007; Liu et al., 2016; Nikolaou et al., 2019; Schiöth et al., 2016; Suppli et al., 2019; Yamaguchi and

Murata, 2013). Consistent with the altered expression of multiple subunits of respiratory complexes I, IV,

and ATPase, respirometry-based analyses revealed decreased maximal mitochondrial respiration and

spare capacity (Figures 3E and 3F). Previous data suggest that NALFD associates with inhibition of respi-

ratory activity in complexes I–III in hepatocytes (Koliaki et al., 2015). Our transcriptomic and metabolomic

data suggest that this inhibition most likely occurs in complexes I and II. In terms of mechanisms, octanoic

acid inhibits complex I–III in rat liver (Scaini et al., 2012) and excess fumarate may also inhibit complex II

activity, although manipulation of fumarate did not alter activity of this complex, suggesting that this is

not the case.

We then questioned whether changes in maximal respiration arose from increased biogenesis or from changes

in mitochondrial integrity. Our findings suggest that mitochondrial biogenesis was not affected by LPO treat-

ment (Figure 3), because maximal respiration was the only parameter of respiration that changed, and the ratio

of nuclear tomitochondrial DNA, as well as HCAmicroscopy analysis of mitochondrial mass were not altered. In

addition, the finding that CS activity was not adversely affected suggests that mitochondrial integrity was not

compromised, although this requires further study. These findings are consistent with human studies of NAFLD

that show no changes in mitochondrial mass in steatotic liver tissue (Koliaki et al., 2015). In contrast, liver tissue

frompatients with NASH contains greater numbers of mitochondria and a decrease inmaximal respiration, indi-

cating that a transition in mitochondrial function occurs between these two disease states (Koliaki et al., 2015).

The reasons for this are unclear; differences in maximal respiration between NAFLD and NASH could reflect

impairment of the ETC and/or changes in baseline mitochondrial respiration. In NASH, the decrease in maximal

respiration may be a consequence of increased mitochondrial fragmentation and concurrent decreases in

Figure 6. Continued

(I) PNC and MAS inhibition also resulted in a significant reduction in the generation of PC-derived aspartate.

(J) Schematic outlining of the proposed pathways by which fumarate accumulation occurs in response to steatosis.

(K) Inhibition of fumarate through the PNC reduced LPO-induced macrovesicular steatosis, which was partially restored

through addition of exogenous monomethyl fumarate. For NMR data, labels are: 1 = 13C labeling; 0 = no 13C labeling.

AICAR = PNC inhibitor; AOA = MAS inhibitor. All control and LPO group GC-MS data consisted of 10 biological

replicates and 2 technical replicates, as shown in Figure 3. GC-MS LPO + AICAR and LPO + AOA groups consisted of six

biological replicates/group. Isotopomer data were calculated by multiplying MID by normalized total ion count. For lipid

droplet analysis (K), the LPO group is as shown in Figure 1. For the LPO + AICAR and the LPO + AICAR + Fumarate group,

n = 31 and 28 biological replicates/group, respectively. Data were analyzed by two-way ANOVA with Sidak post-hoc

testing and are expressed as mean G SD.
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mitophagy (Knott et al., 2008; Koliaki et al., 2015). The differences between studies may also reflect the isolation

of mitochondria from themultiple cell types present in whole tissues, which may be altered as a consequence of

the disease process. We suggest that the model of hepatic steatosis presented here may mirror the transition

betweenNAFLD andNASH, with respiratory dysfunction in the absence of mitochondrial biogenesis. Future ex-

periments, with longer exposure to LPO and/or the incorporation of non-parenchymal cells into themodel, may

shed light on this.

In agreement with studies in mouse models, and indirect studies in humans, NAFLD was associated with

increased hepatic TCA cycle activity (Figure 5B) (Satapati et al., 2012; Sunny et al., 2011). We identified

Figure 7. Macrovesicular steatosis in HLCs does not correlate with wide-scale changes in 5hmC enrichment

(A) Correlation heatmap of control versus LPO groups, following hmeDIP sequencing, clustered by Euclidean distance.

(B) Proportion of DHRs associated with different regions of the genome, showing the majority located in intragenic and

intronic regions.

(C) Heatmap of DHRs, with an FDR of <0.05 and k-means clustering.

(D) Sliding window analysis of the transcriptional start site (TSS), gene body, and transcriptional end site (TES) shows

minimal changes between control and LPO groups. For both control and LPO, n = 3 biological replicates/group.

ll
OPEN ACCESS

12 iScience 24, 101931, January 22, 2021

iScience
Article



substantial disruption of TCA cycle and oxidative phosphorylation pathways indicating compromised en-

ergymetabolism in steatotic HLCs. As TCA cycle flux generates NADH and FADH2, which transfer electrons

to the electron transport chain (ETC), alterations in TCA cyclingmay have a direct impact on respiration and

oxidative stress. In order to delineate detailed information on TCA cycle flux dynamics we utilized stable

isotopic tracing with 13C3-lactate, which provides greater metabolite labeling than other substrates (Hui

et al., 2017). In the liver, flux of substrates into the TCA cycle predominantly occurs via PC (Lardy et al.,

1965), and there is evidence suggesting that PC activity increases in NAFLD (Sunny et al., 2011) and con-

tributes to increased rates of gluconeogenesis through conversion of oxaloacetate to phosphoenolpyr-

uvate (Satapati et al., 2012). Our data support the assertion that PC activity increases in steatotic HLCs

and that pyruvate is predominantly utilized to sustain TCA cycle activity. Although we observed sustained

synthesis of gluconeogenesis-associatedmetabolites in steatotic HLCs, there was no increase in gluconeo-

genesis detected (Figure 4). Increased incorporation of only two 13C atoms into each of these gluconeo-

genesis-associated metabolites may suggest that pyruvate-derived acetyl-CoA is being oxidized to

OAA via citrate as a means to enter the gluconeogenic pathway.

Although increased flux of substrates into the TCA cycle leads to higher levels of TCA cycle activity (Sunny

et al., 2011), our data suggest that changes in the TCA cycle are more nuanced than was previously sug-

gested, with enhanced anaplerosis from pyruvate/lactate into the TCA cycle and inhibition of the conver-

sion of succinate to fumarate in steatotic cells. This raised the question of what leads to the diminished

incorporation of 13C into succinate. The decreased cataplerosis through glutamate suggests that this could

be due to perturbation of TCA cycle equilibrium, leading to altered interconversion of succinyl-CoA and

succinate, whichmay, in turn, lead to the generation of an increased pool of succinyl-CoA. This is supported

by the observation of decreases in PC-derived glutamate and succinate, despite no changes in PC-derived

aKG. Because interconversion between succinyl-CoA and succinate is in near equilibrium and readily

reversible (Lynn and Guynn, 1978), we propose that this effect could be a result of an alteration in the equi-

librium of this reaction, with enhanced succinyl-CoA synthesis, which could be elicited through branched-

chain amino acid catabolism.

Despite truncation of the TCA cycle, steatotic HLCs rewire their metabolic circuitry to compensate for this,

generating increased levels of fumarate through the PNC, and to a lesser extent the MAS. A similar meta-

bolic bypass has been reported in cardiac ischemia (Chouchani et al., 2014), as well as in human and mouse

in vitromodels of tumorigenesis (Tyrakis et al., 2017). In ischemic reperfusion injury, increased PNC activity

results in fumarate overflow, driving reversal of succinate dehydrogenase activity and accumulation of suc-

cinate (Chouchani et al., 2014). We did not observe the same phenomenon here, but rather found evidence

for inhibition of succinate dehydrogenase activity in steatotic HLCs. Although fumarate can be generated

from reversal of fumarate hydratase (FH) activity (Chouchani et al., 2014), we were unable to directly manip-

ulate the activity of this enzyme in order to assess its contribution to the fumarate pool in steatotic HLCs.

However, as FH operates at equilibrium (Ajalla Aleixo et al., 2019) it is possible that PNC-fueled fumarate

accumulation prevents reverse catalytic activity. Defects in complex I can lead to a reduction in the levels of

NAD+ (Porcelli et al., 2010) and regeneration of fumarate via the PNCmay be one mechanism of increasing

the NADH pool and maintaining the hydrogen ion gradient of the ETC. Our data suggest that fumarate is

important for the development of macrovesicular steatosis; inhibition of the PNC prevented development

of macrovesicular lipid droplets, and this was partially restored following the addition of exogenous fuma-

rate (Figure 6K). This correlates with findings in oligodendrocytes and CD8+ T cells, in which exposure to

exogenous fumarate resulted in perturbed lipid metabolism (Bhargava et al., 2019; Huang et al., 2015),

although the mechanism by which this occurs is unknown.

Fumarate accumulation can impact the activity of the aKG-dependent dioxygenase enzyme family,

including the ten-eleven translocation (TET) enzymes, which are involved in the conversion of 5-methylcy-

tosine (5mC) into 5-hydroxymethylcytosine (5hmC) and subsequent steps in the DNA demethylation

pathway (Tahiliani et al., 2009). We have previously shown that the TET enzymes play an important role

in the development of hepatocellular carcinoma and that 5hmC enrichment is reversibly altered at specific

loci in response to hepatic fat accumulation (Lyall et al., 2020; Thomson et al., 2016). 5hmC is a stable epige-

netic modification and studies suggest that 5hmC enrichment at transcriptional start sites (TSSs) associates

with transcriptional repression (Wu et al., 2011). We did not observe wide-scale changes in 5hmC enrich-

ment, and 5hmC changes at specific loci did not, in general, correlate with transcriptional changes in stea-

totic cells, except at a limited number of promoter regions.
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This human-cell-basedmodel displays many of the transcriptional andmetabolic characteristics associated

with human hepatic steatosis, and we propose it as a useful addition to the field. Although there are a num-

ber of current in vitro approaches for the study of steatosis, these often use HCC cell lines, which have per-

turbed metabolic function arising from the process of malignant transformation and immortalization

(Huang et al., 2013; Pavlova and Thompson, 2016). This may limit their utility for studying steatosis-associ-

ated metabolic changes in non-malignant cells. Furthermore, culturing of HCC cell lines is associated with

loss of 5hmC, making them unsuitable for studying the interplay between mitochondrial metabolism and

TET-mediated modulation of the epigenome (Chen et al., 2013; Hernandez-Vargas et al., 2010; Liu et al.,

2013; Thomson et al., 2016; Xu et al., 2011). As an alternative, primary mouse and human hepatocytes

can be used to model hepatic steatosis, but these cells have a limited lifespan, cannot be passaged or

expanded in vitro, and human cells are often isolated from fundamentally abnormal, e.g. fatty livers

(Hirsova et al., 2016; Lyall et al., 2018). The process of cell sorting may also confound metabolomic, tran-

scriptomic, and epigenomic analyses in cell lines (Llufrio et al., 2018), and the necessity for both tissue

disaggregation and cell sorting, which are needed to enable the study downstream effects in individual

cell types from whole tissue biopsies, can make the interpretation of results even more challenging (Llufrio

et al., 2018). The model system presented here overcomes many of these challenges, as HLCs display a

similar metabolic phenotype to human hepatocytes and cell sorting is not required (Wang et al., 2017).

Furthermore, these cells retain 5hmC in patterns similar to those observed in humans (Ivanov et al.,

2013), making them well suited to studying the interplay between mitochondrial metabolism and the

epigenome.

The system, allowing the study of transcriptomic, epigenomic, metabolomic, and proteomic effects in a sin-

gle cell type, can be adapted for the analysis of effects induced by a variety of alternative agents that may

induce steatosis. In addition, this model system can be scaled up to model liver injury (Lucendo-Villarin

et al., 2020a; Szkolnicka et al., 2014), genetically modified to study gene function (Wang et al., 2019),

and moved into 3D culture for longer-term experimentation (Lucendo-Villarin et al., 2020b). These ap-

proaches will be valuable to further determine which genes link metabolic disruption and steatosis and

for high-throughput drug screening to identify targets for preclinical analysis.

In conclusion, we propose that steatotic HLCs represent a new and attractive tool to develop a deeper un-

derstanding of steatosis-associated biology and for the development of new therapeutics.

Limitations of the study

One limitation of this study is the use of AICAR to block PNC activity and limit fumarate accumulation

(Chouchani et al., 2014). AICAR is also an AMP-activated protein kinase (AMPK) agonist (Zhao and Saltiel,

2020). AMPK is a regulator of cellular energy homeostasis, and its activation by Metformin, a commonly

used treatment for type 2 diabetes, inhibits gluconeogenesis in the liver (Zhou et al., 2001), which may

explain why we did not observe increased activity in this pathway. AICAR may have a number of addi-

tional effects, notably through downstream pathways, which make the interpretation of its effects prob-

lematic, and further studies exploring the effects of overexpression and/or silencing of metabolic en-

zymes using siRNA on lipid accumulation and the metabolome will be useful to delineate the precise

pathways involved. Similarly, there is some evidence that AOA may exert effects upstream of the

MAS, leading to inhibition of gluconeogenesis (Subramanian et al., 2007), supporting the need for addi-

tional experiments to dissect the precise effect of this inhibitor in the model presented here. Octanoic

acid increases oxidative stress through ROS production (Scaini et al., 2012), so future studies should

additionally measure oxidative stress and ROS levels in steatotic HLCs. Further studies are required to

determine if the mitochondrial dysfunction is due to defects in individual respiratory complexes or

changes in a combination of complexes and whether other aspects of mitochondrial respiration may

become compromised with longer LPO exposure. Finally, LPO may induce ER stress (Lockman et al.,

2016), which may influence mitochondrial oxygen consumption and contribute to the development of

NAFLD (Liu and Green, 2019; Wang et al., 2011).
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Materials availability

This study did not generate new unique reagents.

Data and code availability

The accession number for transcriptomic sequencing data reported in this paper is GEO: GSE138052. The

accession number for 5hmC sequencing data reported in this paper is GEO: GSE144955. Original raw GC-

MS data have been deposited to Mendeley Data: https://data.mendeley.com/datasets/gd5k5psvf4/1;

https://doi.org/10.17632/gd5k5psvf4.1.

Methods

All methods can be found in the accompanying Transparent methods supplemental file.
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Acknowledgments

MCS was supported by a British Heart Foundation PhD studentship (FS/16/54/32730) and the British Heart

Foundation Centre of Research Excellence. SW-Z was funded by the Deutsche Forschungsgemeinschaft

(SFB960). This work was supported in part by the Wellcome Trust [grant number 208400/Z/17/Z], and we

thank HWB-NMR at the University of Birmingham for providing open access to their Wellcome Trust-

funded NMR equipment. RNC and NMM were supported by a Wellcome Trust New Investigator Award

to NMM (100981/Z/13/Z). MJL was supported by aWellcome Trust PhD Fellowship as part of the Edinburgh

Clinical Academic Track scheme (102839/Z/13/Z). RRM is supported by the Medical Research Council and

by grants from the BBSRC. Research in RRM’s lab leading to these results is partly funded by the Innovative

Medicine Initiative Joint Undertaking (IMI JU) under grant agreement number 115001 (MARCAR project:

URL: http://www.imi-marcar.eu/). DCH, JMR, and BLV were supported with awards from the MRC Doctoral

Training Partnership (MR/K501293/1) and the Chief Scientist Office (TCS/16/37). AJD was funded by the

British Heart Foundation Centre of Research Excellence, University of Edinburgh. Our thanks go to the

Wellcome Trust Clinical Research Facility Genetics Core, Western General Hospital, Edinburgh, UK. We

thank Will Cawthorn for discussions about mitochondrial quantification. Graphical abstract and Figure 1A

were created using the BioRender platform.

Author contributions

MCS was involved in conceptualization, methodology, validation, formal analysis, investigation, data cura-

tion, writing (original draft preparation, reviewing, and editing) and visualization. BLV, JMR, MJL, PDW, and

AT were involved in methodology, validation, formal analysis, investigation, and writing (reviewing and ed-

iting). SW-Z and JPT were involved in software, formal analyses, data curation, and writing (reviewing and

editing). RRM, CL, and DAT were involved in conceptualization, methodology, validation, formal analysis,

investigation, data curation, provision of resources, writing (reviewing and editing), project administration,

funding acquisition, and supervision. DCH and AJD were involved in conceptualization, methodology, vali-

dation, formal analysis, provision of resources, writing (reviewing and editing), project administration, fund-

ing acquisition, and supervision.

Declaration of interests

Professor David Hay is a founder, shareholder, and director in Stemnovate Limited. All other authors

declare that they have no competing interests.

Received: August 20, 2020

Revised: November 20, 2020

Accepted: December 8, 2020

Published: January 22, 2021

ll
OPEN ACCESS

iScience 24, 101931, January 22, 2021 15

iScience
Article

https://data.mendeley.com/datasets/gd5k5psvf4/1
https://doi.org/10.17632/gd5k5psvf4.1
https://doi.org/10.1016/j.isci.2020.101931
http://www.imi-marcar.eu/


References
Ajalla Aleixo, M.A., Rangel, V.L., Rustiguel, J.K.,
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 1 

 1 

 2 

Figure S1. Validation of mRNA sequencing analysis by RT-qPCR. Data were analysed using 3 
two-tailed Student t-test and expressed as mean ± SD, *p<0.05, ****p<0.0001. Related to 4 
Figure 2.  5 
 6 

 7 

Figure S2. Representative blot of succinate dehydrogenase subunit A (SDHA) and pyruvate 8 
dehydrogenase (PDH) 1 and 2 subunits, with total protein staining. Molecular weight band 9 
of SDHA = 70 kDa. Molecular weight band of PDh = 38 kDa. Related to Figure 3.  10 
 11 



 2 

 12 

Figure S3. Measurement of mitochondrial (mitochondrial region 2 (MT2); mitochondrial region 13 
3 (MT3)) and nuclear (beta-globin (HBB)) DNA. Data are expressed as mean ± SD. Related 14 
to Figure 3.  15 
 16 

 17 

Figure S4. Steatotic HLCs show a moderate negative correlation between promoter 5hmC 18 
enrichment and mRNA expression, Related to Figure 7.  19 
  20 

A



 3 

Gene Forward sequence Reverse sequence Probe 

TBP GAACATCATGGATCAGAACAACA ATAGGGATTCCGGGAGTCAT 87 

NANOG ATGCCTCACACGGAGACTGT CAGGGCTGTCCTGAATAAGC 69 

ALB GTGAGGTTGCTCATCGGTTT GAGCAAAGGCAATCAACACC 7 

HNF4A AGCAACGGACAGATGTGTGA TCAGACCCTGAGCCACCT 27 

PLIN2 TCAGCTCCATTCTACTGTTCACC CCTGAATTTTCTGATTGGCACT 72 

PLIN4 AGTTCCAAGCCAGGGACAC TGCTGGGCCTTTTCAATC 1 

PLIN5 TACAGTGCAGCCAAGGACAG CGCACACGCAGTTCTCAG 3 

PCK2 CGAAAGCTCCCCAAGTACAA GCTCTCTACTCGTGCCACATC 20 

G6PD AACAGAGTGAGCCCTTCTTCA GGAGGCTGCATCATCGTACT 5 

PLIN2 TCAGCTCCATTCTACTGTTCACC CCTGAATTTTCTGATTGGCACT 72 

HK1 GACCAAGTTTCTCTCTCAGATCG CCTAGCTGCTGGAGGATAGC 1 

HIF1A GATAGCAAGACTTTCCTCAGTCG TGGCTCATATCCCATCAATTC 64 

Table S1. Primer pairs and probes used to quantify mRNA expression, Related to Figure 1 21 

and Figure 2. 22 

 23 

Gene Forward Primer Reverse Primer 

MT1 CTCACTCTCACTGCCCAAGA TGAGAATGAGTGTGAGGCGT 

MT2 ACCCACCAATCACATGCCTA GTGTTACATCGCGCCATCAT 

HBB TGGTGCATCTGACTCCTGAG TCTCCACATGCCCAGTTTCT 

Table S2. Primer pairs used to quantify mitochondrial and nuclear DNA, Related to Figure 3. 24 

  25 



 4 

Gene Forward sequence Reverse sequence 

GAPDH promoter – 

negative control 

CGGCTACTAGCGGTTTTACG AAGAAGATGCGGCTGACTGT  
 

H19 genic – 

positive control 

GATCTCGGCCCTAGTGTGAA GTGATGTGTGAGCCTGCACT   

UBIAD1 genic – 

positive control 

CTCTTCCTCCTCCTCGTCCT CATCCAGGAACCACAGTCCT 

Table S3. Primer sequences for validation of DNA immunoprecipitation protocol, Related to 26 

Figure 7.  27 



 5 

Pathways with upregulated genes 

Pathway Benjamini Genes 

hsa04713: Circadian 
entrainment 

4.20 ADCY4, ADCY2, CACNA1I, GRIN1, GRIA3, 
PRKG1, PRKCB, KCNJ5, PLCB4, GRIN2D, 
CACNA1G, RYR1, GNG2, PER3, GNG4, 
MTNR1A 

hsa04724: Glutamatergic 
synapse 

4.15 ADCY4, DLGAP1, ADCY2, GRIK2, GRIN1, 
GRIK5, GRIN3B, GRIA3, SHANK1, PRKCB, 
SLC17A7, GLS2, GRM4, PLCB4, GRIN2D, 
PLA2G4F, GNG2, GNG4, PLA2G4D 

hsa04725: Cholinergic 
synapse 

3.59 ADCY4, ACHE, ADCY2, KCNJ12, KCNJ14, 
PRKCB, KCNJ4, KCNQ4, KCNQ3, CHRM4, 
PLCB4, GNG2, PIK3R5, GNG4, KCNQ1, 
CHRNA3 

hsa04750: Inflammatory 
mediator regulation of TRP 
channels 

3.31 ADCY4, ADCY2, TRPM8, TRPV2, ASIC3, 
ASIC1, PRKCB, PLCB4, PLA2G4F, PIK3R5, 
ALOX12, NGF, PLA2G4D 

hsa05414: Dilated 
cardiomyopathy 

3.26 ADCY4, ADCY2, ADRB1, SGCG, CACNG8, 
ITGA8, ITGA7, CACNB1, CACNB4, TNNI3, 
ITGA2B 

hsa04911: Insulin secretion 3.23 TRPM4, ADCY4, ADCY2, PLCB4, KCNN1, 
KCNN3, ATP1A3, RIMS2, PCLO, KCNJ11, 
PRKCB 

hsa04726: Serotonergic 
synapse 

3.14 GABRB2, PRKCB, KCNJ5, PLCB4, ALOX15B, 
HTR7, SLC18A2, PLA2G4F, GNG2, HTR1D, 
HTR3A, GNG4, ALOX12, PLA2G4D 

hsa04514: Cell adhesion 
molecules (CAMs) 

2.81 ICAM1, NTNG1, NTNG2, CLDN10, CD40, HLA-
DMB, CDH4, HLA-G, NCAM2, ITGA8, NLGN4X, 
PECAM1, CNTN1, HLA-DOA, CD6, ICOSLG 

hsa04921: Oxytocin signalling 
pathway 

2.66 ADCY4, ADCY2, CACNG8, CACNB1, CACNB4, 
KCNJ12, TRPM2, KCNJ14, PRKCB, KCNJ5, 
KCNJ4, PLCB4, RYR1, PLA2G4F, NFATC1, 
PLA2G4D 

hsa04080: Neuroactive ligand-
receptor interaction 

2.43 F2RL2, C5AR1, GABRB2, GRIK2, GRIN1, 
GABBR1, GRIK5, LPAR3, GRIA3, GRIN3B, 
P2RX5, GRM4, SSTR2, ADRB1, S1PR1, 
CHRM4, CHRNA9, SSTR1, GRIN2D, HTR7, 
CHRNA5, ADRA1A, CALCRL, HTR1D, 
CHRNA3, GRID1, MTNR1A 

hsa04024: cAMP signalling 
pathway 

2.39 ADCY4, HCN2, ADCY2, GRIN1, GABBR1, 
ATP1A3, GRIN3B, GRIA3, TNNI3, GLI1, 
SSTR2, ADRB1, SSTR1, PDE4A, GRIN2D, 
PIK3R5, HTR1D, HCAR2, NFATC1 

hsa04020: Calcium signalling 
pathway 

2.37 SLC8A3, ADCY4, SLC8A2, ADCY2, CACNA1I, 
GRIN1, PRKCB, P2RX5, PLCB4, ADRB1, 
ATP2A3, GRIN2D, HTR7, CACNA1G, RYR1, 
ADRA1A, PLCD1 

hsa04014: Ras signalling 
pathway 

2.32 FGF19, FGF5, FLT4, FGF17, EFNA3, GRIN1, 
FGF11, PRKCB, RASAL1, HTR7, RASGRP2, 
PLA2G4F, PLA1A, GNG2, PIK3R5, NGFR, 
SYNGAP1, GNG4, RASA4, PLA2G4D, NGF 

Pathways with downregulated genes 

Pathway Benjamini Genes 

hsa05322: Systemic lupus 
erythematosus 

6.65 HIST1H2AB, C7, HIST1H4L, HIST1H2AG, C6, 
HIST1H2AE, HIST1H2BO, HIST2H2AB, 
HIST1H2BM, HIST1H4A, HIST1H2BL, 
HIST1H2BI, HIST2H2AC, HIST1H2BJ, H2AFX, 
HIST3H2BB, HIST1H4I, HIST1H4J, HIST2H3A, 
HIST1H3J, HIST1H2BB, HIST1H2BC, 
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HIST1H2BE, HIST1H2BF, HIST1H2BG, 
HIST1H2BH, ACTN2, HIST2H3C, HIST2H3D, 
HIST2H2BF, HIST1H3A, HIST1H3B, 
HIST1H2AI, HIST1H2AH, HIST1H3C, 
HIST1H3E, HIST1H2AJ, HIST1H3F, 
HIST1H2AM, HIST1H3G, HIST1H2AL, 
HIST1H3H, HIST1H3I 

hsa00140: Steroid hormone 
biosynthesis 

6.43 HSD3B2, CYP3A4, CYP3A5, CYP3A7, 
HSD3B1, CYP11A1, HSD17B1, UGT1A9, 
CYP7A1, UGT2B11, UGT2B4, HSD17B6, 
UGT2B10, UGT2A3, SULT1E1, UGT2B15, 
AKR1D1, CYP19A1 

hsa00053: Ascorbate and 
aldarate metabolism 

5.37 UGT1A9, UGT2B11, RGN, UGT2B4, UGT2B10, 
UGT2A3, UGT2B15 

hsa04610: Complement and 
coagulation cascades 

5.10 KNG1, F11, PLAT, MBL2, C7, MASP2, F13A1, 
C6, F9, C4BPB, C4BPA, F13B, F3, KLKB1, 
SERPINA5, SERPIND1, CPB2 

hsa00040: Pentose and 
glucuronate interconversions 

5.02 UGT1A9, KL, AKR1B10, UGT2B11, UGT2B4, 
UGT2B10, UGT2A3, UGT2B15 

hsa05034: Alcoholism 4.92 HIST1H2AB, HIST1H4L, HIST1H2AG, 
HIST1H2AE, HIST1H2BO, HIST2H2AB, 
HIST1H2BM, HIST1H4A, HIST1H2BL, 
HIST1H2BI, HIST2H2AC, HIST1H2BJ, H2AFX, 
HIST3H2BB, HIST1H4I, HIST1H4J, HIST2H3A, 
HIST1H3J, HIST1H2BB, HIST1H2BC, 
HIST1H2BE, HIST1H2BF, HIST1H2BG, 
HIST1H2BH, FOSB, HIST2H3C, HIST2H3D, 
HIST2H2BF, NTRK2, HIST1H3A, HIST1H3B, 
HIST1H2AI, HIST1H2AH, HIST1H3C, 
HIST1H3E, HIST1H2AJ, HIST1H3F, 
HIST1H2AM, HIST1H3G, HIST1H2AL, 
HIST1H3H, HIST1H3I 

hsa00982: Drug metabolism - 
cytochrome P450 

4.88 GSTA1, CYP3A4, GSTA2, CYP3A5, ALDH3B2, 
ADH1B, ADH1A, FMO5, UGT1A9, FMO1, 
ADH4, UGT2B11, UGT2B4, UGT2A3, 
UGT2B10, UGT2B15 

hsa00830: Retinol metabolism 4.86 CYP3A4, CYP3A5, UGT1A9, CYP3A7, ADH4, 
UGT2B11, ADH1B, UGT2B4, CYP26A1, 
HSD17B6, ADH1A, UGT2B10, UGT2A3, 
UGT2B15, RDH5 

hsa05204: Chemical 
carcinogenesis 

4.40 GSTA1, CYP3A4, GSTA2, CYP3A5, CYP3A7, 
NAT2, ADH1B, ALDH3B2, ADH1A, CYP3A43, 
UGT1A9, ADH4, UGT2B11, UGT2B4, UGT2A3, 
UGT2B10, UGT2B15 

hsa00983: Drug metabolism - 
other enzymes 

4.05 CYP3A4, UGT1A9, NAT2, UGT2B11, UGT2B4, 
UGT2B10, UGT2A3, UGT2B15, TK1 

hsa00980: Metabolism of 
xenobiotics by cytochrome 
P450 

3.92 GSTA1, CYP3A4, CYP3A5, GSTA2, ALDH3B2, 
ADH1B, ADH1A, UGT1A9, ADH4, UGT2B11, 
UGT2B4, UGT2A3, UGT2B10, UGT2B15 

hsa04110: Cell cycle 3.01 CDC6, CDK1, PKMYT1, TTK, CDC20, ESPL1, 
PTTG1, MCM2, CDC25C, CCNB1, CDKN1C, 
MAD2L1, CCNB2, PLK1, CDKN2C, BUB1, 
BUB1B, CCNA2 

hsa04114: Oocyte meiosis 2.61 CCNB1, CDK1, MAD2L1, CCNB2, PLK1, 
SGO1, BUB1, FBXO43, PKMYT1, AURKA, 
ESPL1, CDC20, PTTG1, CDC25C 

hsa05202: Transcriptional 
misregulation in cancer 

2.36 PLAT, HIST2H3A, NFKBIZ, HIST1H3J, MMP9, 
MMP3, HIST2H3C, HIST2H3D, HHEX, EYA1, 
CDKN2C, HIST1H3A, HIST1H3B, HIST1H3C, 



 7 

HIST1H3E, HIST1H3F, HIST1H3G, HIST1H3H, 
HIST1H3I 

Table S4. Upregulated and downregulated KEGG pathways, Related to Figure 2. 28 

  29 
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Ensembl ID Gene Log2FC padj 

ENSG00000197444 OGDHL 1.08547769 3.29E-30 

ENSG00000166411 IDH3A 0.74709247 7.70E-20 

ENSG00000204370 SDHD 0.3777972 0.0003 

ENSG00000100412 ACO2 0.26021698 0.002 

ENSG00000146701 MDH2 0.23945724 0.0009 

ENSG00000073578 SDHA -0.1593416 0.03 

ENSG00000138413 IDH1 -0.1812103 0.03 

ENSG00000168291 PDHB -0.2026402 0.02 

ENSG00000131828 PDHA1 -0.2107741 0.01 

ENSG00000163541 SUCLG1 -0.2111892 0.006 

ENSG00000143252 SDHC -0.2414483 0.02 

ENSG00000150768 DLAT -0.2619025 0.0003 

ENSG00000091483 FH -0.4936542 1.01E-12 

ENSG00000014641 MDH1 -0.5085681 3.36E-13 

ENSG00000101365 IDH3B -0.5405112 5.07E-13 

ENSG00000067829 IDH3G -0.5829934 1.14E-09 

ENSG00000100889 PCK2 -0.5852916 3.07E-18 

ENSG00000131473 ACLY -0.6074454 9.80E-24 

ENSG00000173599 PC -0.9409933 3.13E-37 

ENSG00000182054 IDH2 -1.0677314 8.52E-45 

Table S5. [Dysregulated genes in the TCA Cycle KEGG pathway], Related to Figure 2. 30 

  31 
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Ensembl ID Gene Log2FC padj 

ENSG00000147614 ATP6V0D2 3.973933876 9.35E-140 

ENSG00000198763 ND2 1.473526224 2.53E-06 

ENSG00000198888 ND1 1.363322749 6.19E-05 

ENSG00000198840 ND3 1.217622162 2.54E-33 

ENSG00000212907 ND4L 1.095495883 0.0001 

ENSG00000198886 ND4 0.866690501 0.002 

ENSG00000114573 ATP6V1A 0.803262336 2.80E-32 

ENSG00000198804 COX1 0.656245362 1.17E-09 

ENSG00000198899 ATP6 0.634543196 0.009 

ENSG00000198938 COX3 0.632275024 2.80E-10 

ENSG00000171130 ATP6V0E2 0.589272395 2.52E-11 

ENSG00000198727 CYTB 0.557687429 0.02 

ENSG00000047249 ATP6V1H 0.506014583 5.94E-13 

ENSG00000117410 ATP6V0B 0.479535962 2.58E-11 

ENSG00000147416 ATP6V1B2 0.437789019 5.51E-09 

ENSG00000128609 NDUFA5 0.381648881 0.0008 

ENSG00000204370 SDHD 0.377797199 0.0003 

ENSG00000198712 COX2 0.322901415 0.005 

ENSG00000073578   SDHA -0.159341647 0.04 

ENSG00000023228 NDUFS1 -0.210017339 0.002 

ENSG00000112695 COX7A2 -0.211631763 0.02 

ENSG00000156467 UQCRB -0.2162753 0.03 

ENSG00000167792 NDUFV1 -0.222597617 0.007 

ENSG00000135390 ATP5MC2 -0.222831627 0.002 

ENSG00000143252 SDHC -0.24144827 0.02 

ENSG00000160194 NDUFV3 -0.242343108 0.004 

ENSG00000131100 ATP6V1E1 -0.274149444 2.61E-05 

ENSG00000189043 NDUFA4 -0.277227615 0.0001 

ENSG00000176340 COX8A -0.278696825 0.001 

ENSG00000165264 NDUFB6 -0.28300413 0.005 

ENSG00000213619 NDUFS3 -0.29075047 0.001 

ENSG00000178741 COX5A -0.297956503 9.27E-05 

ENSG00000110719 TCIRG1 -0.300385483 0.002 

ENSG00000090266 NDUFB2 -0.301527793 0.001 

ENSG00000174886 NDUFA11 -0.318594422 0.001 

ENSG00000169021 UQCRFS1 -0.319382279 2.33E-05 

ENSG00000130414 NDUFA10 -0.320916351 3.89E-05 

ENSG00000131143 COX4I1 -0.336149045 2.75E-07 

ENSG00000158864 NDUFS2 -0.343567449 4.23E-06 

ENSG00000139180 NDUFA9 -0.357605693 0.0006 

ENSG00000004779 NDUFAB1 -0.360587197 2.52E-05 

ENSG00000184076 UQCR10 -0.375287362 3.00E-06 

ENSG00000116459 ATP5PB -0.379803823 9.50E-08 

ENSG00000126267 COX6B1 -0.388197692 3.84E-08 

ENSG00000100554 ATP6V1D -0.405728961 7.75E-08 

ENSG00000131495 NDUFA2 -0.419069805 1.65E-06 

ENSG00000115286 NDUFS7 -0.422028053 0.0002 

ENSG00000136888 ATP6V1G1 -0.428892928 2.02E-09 

ENSG00000183648 NDUFB1 -0.432392964 0.0003 

ENSG00000154518 ATP5MC3 -0.445435152 1.00E-08 

ENSG00000125356 NDUFA1 -0.459056555 2.84E-07 

ENSG00000179091 CYC1 -0.468189203 1.54E-09 
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ENSG00000127540 UQCR11 -0.475454692 4.04E-09 

ENSG00000110955 ATP5F1B -0.49393262 1.83E-16 

ENSG00000099795 NDUFB7 -0.509075592 1.10E-09 

ENSG00000168653 NDUFS5 -0.520875625 8.23E-11 

ENSG00000159720 ATP6V0D1 -0.540902137 6.67E-12 

ENSG00000147123 NDUFB11 -0.542107011 1.51E-08 

ENSG00000178127 NDUFV2 -0.542969651 0.006 

ENSG00000124172 ATP5F1E -0.574462256 1.96E-13 

ENSG00000152234 ATP5F1A -0.606022757 1.10E-17 

ENSG00000140990 NDUFB10 -0.613088113 6.15E-12 

ENSG00000119013 NDUFB3 -0.65837698 2.66E-11 

ENSG00000169020 ATP5ME -0.663226048 5.18E-18 

ENSG00000159199 ATP5MC1 -0.712677613 1.05E-19 

ENSG00000241468 ATP5MF -0.735984185 1.21E-15 

ENSG00000099624 ATP5F1D -0.737422752 3.56E-17 

ENSG00000169429 CXCL8 -0.820462236 3.09E-17 

ENSG00000164405 UQCRQ -0.860634282 1.66E-38 

ENSG00000198695 ND6 -0.979723775 1.42E-08 

ENSG00000143882 ATP6V1C2 -1.543440061 0.005 

Table S6. [Dysregulated genes in the Oxidative Phosphorylation KEGG pathway], Related to 32 

Figure 2 33 

  34 
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Ensembl ID Gene symbol mRNA expression 
fold change 

5hmC fold change 

ENSG00000181418 DDN 3.57 -2.84 

ENSG00000105131 EPHX3 2.38 -3.82 

ENSG00000086619 ERO1B 1.65 4.05 

ENSG00000147408 CSGALNACT1 1.33 3.09 

ENSG00000149927 DOC2A 1.26 -2.49 

ENSG00000142156 COL6A1 1.24 3.13 

ENSG00000137752 CASP1 0.98 2.44 

ENSG00000119900 OGFRL1 0.71 2.21 

ENSG00000145247 OCIAD2 0.71 3.02 

ENSG00000183044 ABAT -1.26 3.04 

ENSG00000144395 CCDC150 -1.50 3.36 

ENSG00000167874 TMEM88 -2.02 3.60 

Table S7. [Promoter regions of genes with both altered mRNA expression and enrichment of 35 
5hmC], Related to Figure 7. 36 
 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

Transparent methods 55 
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Differentiation of pluripotent human stem cells to hepatocyte-like cells and induction 56 

of intracellular lipid accumulation 57 

Human female H9 pluripotent stem cells (PSCs) were differentiated to hepatocyte-like cells 58 

(HLCs) as previously described (Wang et al., 2017). Unless otherwise stated, compounds for 59 

this protocol were purchased from Thermo Fisher. Briefly, H9 cells were cultured on Laminin 60 

521 coated plates, with mTeSR1 media, which contained 10 M ROCK inhibitor. H9s were 61 

initially differentiated to an endoderm phenotype in RPMI 1640 media containing 100 ng/mL 62 

Activin A (R & D Systems), and 50 ng/mL Wnt3A (Peprotech). Endodermal cells were then 63 

differentiated to a hepatoblast phenotype by culturing in Knockout DMEM, containing 20% 64 

Knockout Serum Replacement. Finally, cells were differentiated to a HLC phenotype by 65 

culturing in HepatoZYME media containing 10 ng/mL hepatocyte growth factor (Peprotech), 66 

20 ng/mL oncostatin M (Peprotech), and 10 M hydrocortisone 21-hemisuccinate (Sigma 67 

Aldrich), until day 17, at which point the cells were used for the assays described in this 68 

manuscript.  69 

 70 

HLCs were cultured in a 96-well format for measurements of lipid accumulation and in a 6-71 

well format for all other analyses. Each well is a separate differentiation event and represents 72 

a biological replicate. Intracellular lipid accumulation was induced in HLCs, as previously 73 

described (Lyall et al., 2018). Briefly, at day 17, HLCs were incubated in HepatoZYME media 74 

only (controls) or HepatoZYME media containing a cocktail of sodium l-lactate (L; 10mM), 75 

sodium pyruvate (P; 1 mM) and octanoic acid (O; 2 mM) (Sigma, Gillingham, UK) (LPO) for a 76 

period of 48 hours. For isotopic tracing studies, lactate was replaced with 13C3-lactate (CK 77 

Isotopes, CLM-1579-05). For mechanistic studies, HLCs were exposed to either 5-78 

Aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5′-monophosphate (AICAR; 1mM; 79 

Sigma-Aldrich, A1393-50MG), O-(Carboxymethyl)hydroxylamine hemihydrochloride (AOA; 80 

100 M ; Sigma-Aldrich, C13408-1G) or AICAR combined with monomethyl fumarate (50 M; 81 

Sigma-Aldrich, 651419-1G) for the same duration as LPO.  82 
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 83 

Cell mitochondrial stress test assay 84 

The oxygen consumption rate (OCR) of LPO-exposed HLCs was measured using the Agilent 85 

Seahorse XF Cell Mito Stress Test Kit (Agilent, 103015-100) on a Seahorse XF Analyser 86 

(Agilent, California, USA). Data were collected from two separate plates, with each well 87 

representing a biological replicate and each plate representing a technical replicate. Analyses 88 

were performed under basal conditions and following treatment with oligomycin A (an ATPase 89 

inhibitor), carbonyl-cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP; an ETC uncoupler), 90 

and combined rotenone and antimycin A (inhibitors of complex I and III, respectively). Two 91 

concentrations of FCCP (0.5 μM and 1.0 μM) were used for optimisation. Since replicates 92 

within each group responded similarly to each other, results were combined. OCR was 93 

normalised to total protein for each well, using the sulforhodamine B (SRB) assay, as 94 

previously described (Orellana and Kasinski, 2016), but with spectrophotometric 95 

measurements read at 540 nm.  96 

 97 

Citrate synthase assay 98 

Citrate synthase activity was assessed as a readout of mitochondrial integrity (Boutagy et al., 99 

2015; Short et al., 2005). Mitochondria were isolated using the Mitochondria Isolation Kit for 100 

Cultured Cells (Thermo Scientific, 89874), as per the manufacturer’s instructions, selecting 101 

option A for isolation. Citrate synthase activity, a marker of mitochondrial integrity, was then 102 

measured using the Citrate Synthase Activity Colorimetric Assay Kit (BioVision, K318), as per 103 

the manufacturer’s instructions.  104 

 105 

 106 

 107 

Protein Extraction 108 

Adherent HLCs were washed once with ice-cold PBS, before incubating in ice-cold RIPA Lysis 109 

and Extraction Buffer (Thermo Scientific, 89900) supplemented with cOmplete Protease 110 
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Inhibitor Cocktail tablets (1/10 mL buffer; Roche, 11697498001). The suspended HLCs were 111 

placed on ice for 30 minutes, vortexing every 3 minutes, before centrifuging for 20 min at 4 112 

°C, 12,000 rpm. The supernatant was collected and stored at -80 °C until needed.  113 

 114 

Western blot analysis 115 

Protein quantification was performed using the Qubit Protein Assay Kit (Invitrogen, Q33211), 116 

as per the manufacturer’s instructions. Protein concentration was measured using a Qubit 117 

Fluorometer (Invitrogen, Massachusetts, USA). Equal concentrations (50 μg) of HLC protein 118 

extract in 4 x Sample Loading Buffer (Li-Cor, 928-40004) were loaded onto NuPAGE 4-12% 119 

Bis-Tris Protein Gels (Invitrogen, NP0326BOX). Following resolution, protein was transferred 120 

to a methanol-activated polyvinylidene difluoride (PVDF) membrane. Protein transfer was 121 

measured using Revert 700 Total Protein Stain Kit (Li-Cor, 926-11010) as per the 122 

manufacturer’s instructions.  To enable probing with different antibodies, membranes were 123 

then sliced (images shown in Figure S1), blocked with Tris-buffered saline containing Tween 124 

20 (TBST) and 5% skimmed milk powder, and incubated with either Pyruvate Dehydrogenase 125 

(staining total 1 and 2 subunits) (C54G1) Rabbit mAb (Cell Signaling Technology, 3205) or 126 

SDHA (D6J9M) XP Rabbit mAb (Cell Signaling Technology, 11998), both a 1:1000 dilution. 127 

The membranes were washed in TBST before incubating with the secondary antibody, IRDye 128 

680RD Donkey anti-Mouse IgG (Li-Cor, 926-68072) at a 1:10,000 dilution, for 1 h at room 129 

temperature, in the dark, with shaking. Blots were visualised on a Li-Cor Odyssey CLx (Li-Cor, 130 

Nebraska, USA), and bands normalised to the Revert 700 Total Protein Stain, as per the 131 

manufacturer’s instructions.  132 

 133 

RNA-seq analysis 134 

Total RNA was extracted from HLCs using the Monarch® Total RNA Miniprep Kit (New 135 

England BioLabs, T2010). RNA integrity was assessed using a Bioanalyzer (Agilent) with the 136 

RNA 6000 Nano kit. All samples had a RIN value >7.0. mRNA sequencing was performed on 137 

3 biological replicates per group by the Beijing Genomics Institute (BGI) (Shenzhen, China). 138 
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Library preparation was performed with the TruSeq Stranded mRNA Library Preparation kit 139 

(Illumina, RS-122-2101), with additional use of the Ribo-Zero Gold rRNA Removal Kit 140 

(Illumina, MRZG12324). Paired-end sequencing was performed on an Illumina HiSeq 4000, 141 

with each sample sequenced to a depth >60 million reads. The generated FASTQ files were 142 

trimmed to remove adapters, using Trimmomatic (version 0.36) (Bolger et al., 2014), before 143 

performing quality control with FastQC (version 0.11.4) (Andrews). Alignment was performed 144 

against the Homo sapiens GRCh19 assembly. The assembly was first indexed using STAR 145 

(version 2.5.1b) before mapping trimmed reads, using STAR (version 2.5.1b) in paired-end 146 

mode with default behaviour (Dobin and Gingeras, 2015). Duplicate reads were removed 147 

using Picard (version 2.7.11) (2018), before using featureCounts to generate raw read counts 148 

for each gene. Differential gene expression (DEG) analysis was performed using DESeq2 149 

(Love et al., 2014). Heatmaps were generated with Heatmapper (Babicki et al., 2016). 150 

Pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and 151 

Genomes (KEGG) function (Kanehisa, 2019; Kanehisa and Goto, 2000; Kanehisa et al., 2019) 152 

of the Database for Annotation, Visualization, and Integrated Discovery (DAVID) (Huang et 153 

al., 2009a, 2009b).  154 

 155 

Real-time quantitative PCR  156 

RNA was taken from that prepared for RNA-sequencing. cDNA was generated using the High 157 

Capacity cDNA Reverse Transcriptase Kit (Applied Biosystems, 4368814). A master mix was 158 

prepared using PerfeCTa FastMix II (Quanta Biosciences, Inc., 95118-250). cDNA was 159 

amplified and quantified using the Universal Probe Library (Roche, Burgess Hill, UK) system 160 

on a Roche LightCycler 480 (Roche Diagnostics Ltd, Switzerland). Primer sequences and 161 

Universal Probe Library probes are detailed in Table S1.  162 

 163 

For quantifying mitochondrial and nuclear DNA, we purified DNA using the Monarch® 164 

Genomic DNA Purification Kit (NEB, USA), as per the manufacturer’s instructions. DNA was 165 

quantified by using the Luna® Universal qPCR Master Mix (NEB, USA) on a Roche 166 
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LightCycler 480 (Roche Diagnostics Ltd, Switzerland). Primer sequences and Universal Probe 167 

Library probes are detailed in Table S2.  168 

 169 

NMR Spectroscopy 170 

This protocol was previously described by Hollinshead et al (Hollinshead et al., 2018). At the 171 

conclusion of tracer experiments, cells were washed with 2 mL ice-cold 0.9% saline solution 172 

and quenched with 0.3 mL pre-chilled methanol (-20 C). After adding an equal volume of ice-173 

cold HPLC-grade water containing 1 µg/mL D6-glutaric acid (C/D/N Isotopes Inc), cells were 174 

collected with a cell scraper and transferred to tubes containing 0.3 mL of chloroform (-20 C). 175 

The extracts were shaken at 1400 rpm for 20 min at 4 C and centrifuged at 16,000 x g for 5 176 

min at 4 C. Then, 0.3 mL of the upper aqueous phase was collected and evaporated in 177 

eppendorfs, under a vacuum using a Savant SpeedVac Concentrator (ThermoFisher). 178 

These samples were used either for NMR spectroscopy of for GC-MS. For NMR, dried 179 

samples were re-suspended in 60 µL of 100 mM sodium phosphate buffer (pH 7.0) containing 180 

500 µM DSS and 2 mM Imidazole, 10% D20, pH 7.0. Samples were vortexed, sonicated (5-181 

15 min) and centrifuged briefly, before transferred to 1.7 mm NMR tubes using an automated 182 

Gilson. One-dimensional (1D)-1H NMR spectra and two-dimensional (2D)-1H,13C 183 

Heteronuclear Single Quantum Coherence Spectroscopy (HSQC) NMR spectra were 184 

acquired using a 600 MHz Bruker Avance III spectrometer (Bruker Biospin) with an inverse 185 

cryogenic probe for 1.7 mm NMR sample tubes, fitted with a z-axis pulsed field gradient, at 186 

300 K. Spectral widths were set to 13 and 160 ppm for the 1H and 13C dimensions, respectively. 187 

For the indirect (13C) dimension of the 2D-1H,13C HSQC NMR spectra, 1228 out of 4096 (30%) 188 

data points were acquired using a non-uniform sampling scheme. 13C-13C splittings were 189 

enhanced 4-fold in the 13C dimension. Each sample was automatically tuned, matched and 190 

then shimmed (1D-TopShim) to a DSS line width of <1 Hz before acquisition of the first 191 

spectrum. Total experiment time was ~15 min per sample for 1D-1H NMR spectra and 1 h per 192 

sample for 2D-1H,13C HSQC NMR spectra. 1D-1H NMR spectra were processed using the 193 



 17 

MATLAB-based MetaboLab software (Ludwig and Günther, 2011). All 1D data sets were 194 

apodized using a 0.3 Hz exponential window function and zero-filled to 131,072 data points 195 

before Fourier Transformation. The chemical shift was calibrated by referencing the DSS 196 

signal to 0 ppm. 1D-1H NMR spectra were manually phase corrected. Baseline correction was 197 

achieved using a spline function (Ludwig and Günther, 2011). 1D-1H-NMR spectra were 198 

exported into Bruker format for metabolite identification and concentration determination using 199 

Chenomx 7.0 (Chenomx INC). 2D-1H,13C HSQC NMR spectra were reconstructed using 200 

compressed sensing in the MDDNMR and NMRpipe software (Delaglio et al., 1995; 201 

Kazimierczuk and Orekhov, 2011; Orekhov and Jaravine, 2011). The final spectrum size was 202 

922 real data points for the 1H dimension and 16,384 real data points for the 13C dimension. 203 

Analysis was performed using MetaboLab and pyGamma software was used in multiplet 204 

simulations (Smith et al., 1994). The methyl group of lactate was used to calibrate the chemical 205 

shift based on its assignment in the human metabolome database (Wishart et al., 2013). 206 

 207 

GC-MS 208 

Dried polar metabolites were purified as described for NMR spectroscopy. These were 209 

derivatised by incubating with 40 µL 2% methoxyamine hydrochloride (Sigma Aldrich, 226904) 210 

in pyridine (Thermo Fisher Scientific, 25104) at 60 C for 1 h, followed by incubation with 60 211 

µL N-methyl-N-tert-butyldimethylsilyltrifluoroacetamide with 1% tert-butyldimethylchlorosilane 212 

(MTBSTFA with 1% t-BDMCS) at 60 C for 1 h.  213 

 214 

GC-MS analysis was performed using an Agilent 6890GC in combination with an Agilent 215 

5975C MS. The MS was operated under electron impact ionization at 70 eV with the source 216 

held at 230 °C and the quadrupole at 150 C. Helium was used as the carrier gas and 217 

maintained at a flow rate of 1 mL/min. 1 µL of derivatised sample was injected (splitless) with 218 

an inlet temperature of 280 °C on to a Rxi-5MS column (Restek) The oven temperature was 219 

held at 100 °C for 1 min then increased at a rate of 5 °C/min up to a maximum temperature of 220 
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330 °C. Ions were detected using selected ion monitoring (SIM) mode as previously described 221 

(Battello et al., 2016). MetaboliteDetector software was used to correct for the natural isotope 222 

distribution and to determine the mass isotopomer distribution (MID) (Hiller et al., 2009).  223 

 224 

DNA hydroxymethylation immunoprecipitation and sequencing (hmeDIP-sequencing) 225 

DNA was purified using the Monarch® Genomic DNA Purification kit (New England BioLabs, 226 

T3010S). DNA immunoprecipitation and sequencing was performed as previously described, 227 

using the Ion Proton platform (Thomson et al., 2015), with the addition of an IgG control 228 

(Merck, 12-370). We validated the DNA immunoprecipitation protocol on Roche LightCycler 229 

480 (Roche Diagnostics Ltd, Switzerland), using the primer sets described in Table S3. We 230 

sequenced three biological replicates per group. A mean read length of 137-147 base pairs 231 

and 21,130,039 - 31,693,844 reads per sample was achieved. Reads were aligned to the hg19 232 

genome using Torrent Suite v5.2.0. Aligned reads were sorted using SAMtools, before calling 233 

peaks using MACS2 (v. 2.1.1) -f BAM --broad --broad-cutoff 0.05 -B -g hs, over corresponding 234 

inputs (Zhang et al., 2008). To detect differentially hydroxymethylated regions (DHRs), we 235 

used Diffbind with DESeq2 (Stark and Brown). For Diffbind analysis, data were normalised to 236 

a pooled input for each group and an IgG control. DHMRs were assigned to genes and other 237 

genomic features using the HOMER (v. 4.8; hg19) annotatePeaks tools (Heinz et al., 2010). 238 

For candidate hmeDIP analysis, the concentration of each sample was extrapolated from a 239 

standard curve of arbitrary concentrations and normalised to 10% input. Regions of interest 240 

were identified from the hmeDIP-sequencing dataset. Primers were designed using the NCBI 241 

primer-BLAST software (Table S2). Data are available through the Gene Expression Omnibus 242 

(GSE144955). Sliding window profiles and heatmaps were generated using deepTools 243 

(Ramírez et al., 2014), using the plotProfile and plotHeatmap functions, respectively, with 244 

blacklisted regions subtracted. 245 

 246 

High content analysis microscopy 247 
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Cells were stained with a cell painter assay, adapted from Lyall et al and Bray et al (Bray et 248 

al., 2016; Lyall et al., 2018). Cells were fixed with 50 μL/well 4% (wt/vol) paraformaldehyde 249 

(Electron Microscopy Sciences, 15710-S) for 15 minutes at room temperature. For 250 

permeabilisation, cells were incubated in 0.1% Triton X-100 (Sigma-Aldrich, T8787) in PBS 251 

for 15 minutes at room temperature. For lipid droplet analysis, cells were then stained with a 252 

combination of NucBlue Live ReadyProbes® Reagent (2 drops/mL) (Molecular Probes, 253 

R37605), HCS CellMask™ Red (2 μL/10 mL) (Invitrogen, H32712), and BODIPY™ 493/503 254 

(1:1000) (Life Sciences, D3922), as per the manufacturer’s instructions. Following staining, 255 

images were acquired using an Operetta High Content Analysis microscope (Perkin Elmer, 256 

Buckinghamshire, UK). Lipid droplet morphology was analysed as previously described (Lyall 257 

et al., 2018).  258 

 259 

Statistical analysis 260 

All statistical analyses were performed using Graph Prism Version 8.0 for Windows or macOS, 261 

GraphPad Software, La Jolla California USA, www.graphpad.com. Normality of data 262 

distribution was measured using the Shapiro-Wilks test. Where indicated, data were analysed 263 

by unpaired Student’s t-test, Mann-Whitney test, one-way analysis of variance (ANOVA) or 264 

two-way ANOVA. Data were considered to be significant where p <0.05.  265 

 266 

  267 
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