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Joerg Kalcsics(1), David Manlove(2), William Pettersson(2)

(1) School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

(2) School of Computing Science, University of Glasgow, Glasgow G12 8QQ, United Kingdom

Corresponding author m.delorme@tilburguniversity.edu

Abstract

In the well-known Hospitals/Residents problem (HR), the objective is to find a stable

matching of doctors (or residents) to hospitals based on their preference lists. In this paper,

we study HRCT, the extension of HR in which doctors are allowed to apply in couples, and

in which doctors and hospitals can include ties in their preference lists. We first review

three stability definitions that have been proposed in the literature for HRC (the restriction

of HRCT where ties are not allowed) and we extend them to HRCT. We show that such

extensions may bring undesirable behaviour and we introduce a new stability definition

specifically designed for HRCT. We then introduce unified Integer Linear Programming

(ILP) models, where only minor changes are required to switch from one definition to the

other. We propose three improvements to decrease the average solution time of each ILP

model based on preprocessing, dummy variables, and valid inequalities. We show that

our models can be solved more than a hundred times faster when these improvements are

used. In addition, we also show that the stability definition chosen has a minor impact on

the solution quality (average matching size) and time required to obtain the solution, but

for a specific set of instances, stable matchings are significantly less likely to exist for one

particular definition compared to the other definitions. We also provide insights relating to

how certain parameters such as the tie density, the number of couples, and the difference

between the number of positions available in the hospitals and the number of doctors, might

affect the average matching size.

Keywords: Hospitals / Residents problem with Couples, Ties and incomplete lists, Stable

matching, Exact algorithms.

1 Introduction

1.1 Background

In the Hospitals / Residents problem (HR), we are given a set of intending junior doctors

(residents) and a list of hospitals where the doctors can complete their foundation training (see,
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e.g., the UK Foundation Programme [33] or the National Resident Matching Program (NRMP)

in the United States [31]). Each doctor has a preference list that consists of a subset of hospitals

ranked in strict order of preference to which the doctor wishes to apply. Each hospital has also

a preference list, consisting of all its applicants ranked in strict order of preference, and a

capacity, which is the maximum number of doctors it can accommodate. The objective is to

find a matching that does not contain any blocking pair, which is a doctor and a hospital that

are not currently matched together, but would prefer to be matched to each other rather than

to remain with their current assignee/s (if any). If a matching does not admit any blocking pair,

it is called a stable matching. Stability has been shown to be a key condition for the successful

operation of real-world centralised matching systems [31].

Many countries used to model the assignment of their junior doctors to hospitals via HR

(e.g., in the United States [31]) and used tailored techniques such as the well-known Gale and

Shapley algorithm [11] to find a stable matching. However by 1984 the solutions obtained were

not considered satisfactory anymore due to “contemporary issues” [31]. In particular, it was

mentioned that (i) “participants submit rank orders (i.e., strict preferences) even when they may

be indifferent between some potential matches”, and (ii) “increasing numbers of medical students

marry other medical students and seek to be assigned positions in the same community”. Three

extensions of HR were introduced in the literature to deal with these issues: the Hospitals /

Residents problem with Ties (HRT), the Hospitals / Residents problem with Couples (HRC),

and the Hospitals / Residents problem with Couples and Ties (HRCT) (see Manlove [24]).

While the concept of a blocking pair is straightforward in HR, it is more complex when ties

are taken into account. Indeed, no fewer than three stability definitions (each of them with

its own definition of a blocking pair) were introduced in the literature for HRT: weak stability,

strong stability, and super-stability [13, 23, 15, 17]. It is worth mentioning that weak stability,

in which both the doctor and the hospital involved in a blocking pair must strictly prefer one

another to their current assignees, is the most commonly used stability definition in recent

papers and real-world HRT applications. When couples are taken into account and we are

given an instance of HRC, a matching is called stable if it contains neither a blocking pair nor a

blocking coalition (the adaptation of a blocking pair for couples). If the couples are not allowed

to choose the same hospital, or if the hospitals have unitary capacity, there exists only one

kind of blocking coalition, and thus, only one natural extension of stability [12, Section 1.6.6].

When couples are allowed to apply to the same hospital however, there is no consensus in the

literature on the definition of a blocking coalition between a couple and the same hospital. As

a result, three stability definitions were proposed in the literature: MM-stability by McDermid

and Manlove [28], BIS-stability by Biró, Irving, and Schlotter [5], and KPR-stability by Kojima,

Pathak, and Roth [20].

1.2 Our contribution

In this paper, we study these three stability definitions and we extend each of these to HRCT.

We show that such extension might bring about unexpected behaviour in practical applications

(i.e., giving rise to a blocking pair that should not in fact be considered as blocking in reality, or

vice versa). We also introduce KPR+-stability, a modified version of KPR-stability specifically

designed to handle ties in the preference lists. We then introduce unified Integer Linear Pro-
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gramming (ILP) models, where only minor changes are required to switch from one definition

to the other. We then propose three significant improvements to decrease the average running

times of each ILP model and we measure their effectiveness through extensive computational

experiments. In addition, we show that the stability definition chosen has only a very minor

impact on the solution quality (average matching size) and the time required to obtain the

solution, but we outline specific cases in which there are BIS-stable and KPR-stable matchings

but no MM-stable matchings. We also provide insights about how certain parameters might

affect the average matching size. In particular, we show that the average matching size grows

as the tie density increases and that the number of unfilled positions reaches its peak when the

difference between the number of positions available in the hospitals and the number of doctors

is zero. While the proportion of doctors in couples does not have a significant impact on the

matching size, we observe that the time required to solve an instance grows as the proportion

of doctors in couples increases.

1.3 Related work

To the best of our knowledge, the HR problem model was first defined by Gale and Shapley [11].

The authors studied the equivalent problem of assigning students to capacitated colleges. They

proposed a polynomial-time algorithm to solve the problem and proved that a stable matching

always exists. As our work focuses on HRC and HRCT, we do not provide a thorough literature

review on HR and HRT. Instead, we refer the reader to the book of Manlove [24] that has a

dedicated section on each problem, and the recent paper of Delorme et al. [9] that focuses on

HRT.

Regarding important theoretical results on HRC, Roth [31] showed that an instance of HRC

might not have any stable matching. Ronn [30] proved that the problem of deciding whether

a stable matching exists is NP-complete. These results hold even if each hospital has unitary

capacity and there are no single doctors. Aldershof and Carducci [1] showed that if the preference

lists are not complete, stable matchings may have different sizes. These results hold for MM-,

BIS-, and KPR-stability.

Regarding practical applications, Roth and Peranson [32] reported on the design of the

clearinghouse adopted by the NRMP in the United States, for which the HRC problem model

applies. The NRMP is the largest known programme to match doctors to hospitals, with 40 084

doctors applying to 37 256 positions across 5859 distinct hospital programmes in 2020 [29].

Aldershof and Carducci [2] and Veskioja and Võhandu [35] proposed the use of genetic al-

gorithms for HRC in the special case where hospitals have unitary capacity. Bianco, Hartke,

and Larimer [4] also studied HRC with unitary capacity and used acceptability graphs to char-

acterise the existence of stable matchings. Klaus and Klijn [18] showed that, for instances of

HRC with so-called weakly responsive preferences, a stable matching always exists and can be

found in polynomial time. They also showed that, for preferences satisfying this property, one

can always arrive at a stable matching, starting from an arbitrary matching, by satisfying a

sequence of blocking pairs [19]. Cantala [8] suggested a special case of HRC involving tiered

preferences that arise from geographical constraints.

In a dedicated section of their book, Gusfield and Irving [12, Section 1.6.6] discussed HRC

and introduced the first definition of a stable matching as well as an example instance of
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HRC that does not admit a stable matching. McDermid and Manlove [28] remarked that this

definition did not explicitly indicate how to define a blocking coalition involving a hospital h

and a couple, each of whom wish to move to h; their definition of HRC stability, called MM-

stability, covered this particular case. They also showed that determining whether an MM-stable

matching exists is NP-complete, even in the restricted case where each single doctor ranks at

most 3 hospitals, each couple ranks at most 2 pairs of hospitals, each hospital ranks at most

4 doctors, and each hospital has a capacity of 1 or 2. Marx and Schlotter [26] studied the

applicability of a local search procedure to find large stable matchings under MM-stability,

and Biró, Manlove, and McBride [7] gave an ILP model for finding a largest size MM-stable

matching in an instance of HRC.

Biró, Irving, and Schlotter [5] introduced the concept of BIS-stability for HRC (which is dis-

tinct to MM-stability) and proposed various heuristic algorithms to find BIS-stable matchings.

They also showed that finding a BIS-stable matching becomes more difficult as the number of

couples increases.

Kojima, Pathak, and Roth [20] introduced the notion of KPR-stability for HRC, and gave

theoretical results and a thorough analysis of data from the matching market for psychologists

in the United States. Ashlagi, Braverman, and Hassidim [3] presented an algorithm for finding

a KPR-stable matching. They also gave results regarding the likelihood of finding a KPR-stable

matching using their algorithm depending on the size of the market and the number of couples.

Drummond, Perrault, and Bacchus [10] used a SAT approach to solve HRC under KPR-stability.

Biró and Klijn [6] surveyed the different stability definitions proposed in the literature and

discussed various contributions on the topic from different perspectives (computer science, econ-

omy, and game theory). However, they did not tackle the model implementation aspect nor the

computational behaviours of each definition.

1.4 Layout of the paper

The rest of the paper is organised as follows. Section 2 defines HRT while Section 3 defines

HRCT and contains our new stability definitions. In Section 4, we introduce our new ILP mod-

els. In Section 5 we detail three model improvements, and we provide extensive computational

experiments in Section 6. Finally, conclusions are given in Section 7.

2 The Hospitals / Residents problem with Ties

2.1 Problem definition

An instance I of HRT comprises a set D of nD doctors (or residents) and a set H of nH

hospitals, where each doctor (respectively hospital) ranks a subset of the hospitals (respectively

doctors) in order of preference, possibly with ties. In addition, each hospital h ∈ H has a finite

capacity ch. We will assume that ties may occur in the hospitals’ preference lists only and that

doctors’ preference lists are strictly ordered. This is reasonable from a practical point of view

since typically doctors’ preference lists are short and it is plausible to expect the doctors to rank

their acceptable hospitals in strict order. On the other hand, the hospitals’ preference lists are

typically much longer and it is impractical to expect a large hospital to rank all of its applicants
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in strict order.

We say that a doctor d ∈ D finds a hospital h ∈ H acceptable if h belongs to d’s preference

list, and we define acceptability for a hospital in a similar way. If d and h find each other

acceptable, then we call (d, h) an acceptable pair. We assume that preference lists are consistent,

that is, d finds h acceptable if and only if h finds d acceptable.

A matching M in I is a set of acceptable pairs such that each doctor appears in at most

one pair of M and each hospital h appears in at most ch pairs of M . If doctor d appears in a

pair of M , we say that d is matched, otherwise d is unmatched. If hospital h appears in strictly

fewer than ch pairs in M , we say that h is undersubscribed, otherwise h is fully subscribed.

We denote by M(d) the hospital to which doctor d is matched (M(d) = ∅ if the doctor is

unmatched). Similarly, we use M(h) to denote the set of doctors assigned to hospital h. In

particular, we observe that if M(d) = h, then d ∈M(h), and vice-versa.

Definition 1. Let I be an instance of HRT and let M be a matching in I. A doctor–hospital

pair (d, h) ∈ (D ×H) \M is a blocking pair of M if

DH1- (d, h) is an acceptable pair; and

DH2- d is either unmatched, or it strictly prefers h to M(d); and

DH3- h is either undersubscribed or it strictly prefers d to some member of M(h).

M is said to be stable if it admits no blocking pair.

Example 1. Let us consider an HRT instance with three hospitals and three doctors with the

following preference lists (ties are denoted by square brackets) and capacity information:

d1 : h1 h2 h3 h1 (c1 = 1) : d2 d1 d3

d2 : h1 h3 h2 (c2 = 1) : [d1 d3]

d3 : h2 h1 h3 (c3 = 2) : [d1 d2]

Doctor d1 prefers h1 to h2 to h3. Hospital h1 has unitary capacity and prefers d2 to d1 to d3.

Hospital h2 is indifferent between d1 and d3. The matching M = {(d1, h1), (d2, h3), (d3, h2)}
of size 3 is not stable. Indeed, (d2, h1) is a blocking pair since h1 strictly prefers d2 to its

current assignee d1, and d2 prefers h1 to its current assigned hospital h3. The matching M =

{(d1, h2), (d2, h1)} of size 2 is stable: h1 and h2 have their first choice, and even though h3 is

undersubscribed, both its applicants (d1 and d2) are assigned to hospitals they prefer to h3. A

larger stable matching of size 3 exists: M = {(d1, h3), (d2, h1), (d3, h2)}.

In theory, the HRT definition allows an arbitrary number of preferences to be expressed by

any doctor. However in practice, this number is usually short: 10 on average for example for

the 2020 matching run of the NRMP [29]. It is well-known that, given an instance of HRT

with incomplete lists, stable matchings of different sizes may exist [25]. The size of a matching

is equal to the number of doctors assigned to any hospital of their preference list. Obviously,

larger stable matchings are favoured as they reduce the number of unassigned doctors, thus

reducing the overall level of unhappiness from the participants. We let MAX-HRT denote the

problem of finding a stable matching of maximum size in a given instance of HRT.
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2.2 ILP model for MAX-HRT

The first ILP models for HR with unitary capacity and complete preference lists (also known as

the stable marriage problem) were proposed in the late 1980s by Gusfield and Irving [12] and

by Vande Vate [34]. These models can easily be extended to MAX-HRT (see Kwanashie and

Manlove [21] and Delorme et al. [9]). In the following, we introduce the notation used in our

model (taken from [9]).

When reasoning about models, we will use i and j to represent a doctor and hospital,

rather than d and h, respectively, as i and j are by convention more typically used as subscript

variables. Let us consider the following notation:

• H(i) is the set of hospitals acceptable for doctor i (i = 1, . . . , nD).

• D(j) is the set of doctors acceptable for hospital j (j = 1, . . . , nH).

• cj is the capacity of hospital j (j = 1, . . . , nH).

• rDj (i) is the rank of hospital j for doctor i, defined as the integer k such that j belongs

to the kth most-preferred tie group in i’s list (i = 1, . . . , nD, j ∈ H(i)). Note that a tie

group is composed of one hospital. The smaller the value of rDj (i), the better hospital j

is ranked for doctor i.

• rHi (j) is the rank of doctor i for hospital j, defined as the integer k such that i belongs

to the kth most-preferred tie group in j’s list (j = 1, . . . , nH , i ∈ D(j)). Note that a tie

group is composed of one or several doctors. The smaller the value of rHi (j), the better

doctor i is ranked for hospital j.

• H≤j (i) is the set of hospitals that doctor i ranks at the same level or better than hospital j,

that is, H≤j (i) = {j′ ∈ H(i) : rDj′(i) ≤ rDj (i)} (i = 1, . . . , nD, j ∈ H(i)).

• D≤i (j) is the set of doctors that hospital j ranks at the same level or better than doctor i,

that is, D≤i (j) = {i′ ∈ D(j) : rHi′ (j) ≤ rHi (j)} (j = 1, . . . , nH , i ∈ D(j)).

By introducing binary decision variables xij that take value 1 if doctor i is matched with

hospital j, and 0 otherwise (i = 1, . . . , nD, j ∈ H(i)), MAX-HRT can be modelled as follows:

max

nD∑
i=1

∑
j∈H(i)

xij (1)

s.t.
∑

j∈H(i)

xij ≤ 1, i = 1, . . . , nD, (2)

∑
i∈D(j)

xij ≤ cj , j = 1, . . . , nH , (3)

cj

1−
∑

q∈H≤j (i)

xiq

 ≤ ∑
p∈D≤i (j)

xpj , i = 1, . . . , nD, j ∈ H(i), (4)

xij ∈ {0, 1}, i = 1, . . . , nD, j ∈ H(i). (5)
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The objective function (1) maximises the number of doctors assigned while constraints

(2) ensure that each doctor is matched with at most one hospital. Capacity constraints (3)

impose that each hospital is matched with at most cj doctors. Stability constraints (4) rule out

the existence of any blocking pair. More specifically, the latter ensure that if doctor i is not

matched with hospital j or any other hospital they rank at the same level or better than j (i.e.,∑
q∈H≤j (i)

xiq = 0), then hospital j is fully subscribed with doctors it ranks at the same level or

higher than i (i.e.,
∑

p∈D≤i (j)
xpj ≥ cj).

3 Hospitals / Residents problem with Couples and Ties

3.1 Problem definition

An instance I of HRCT comprises a set S of nS single doctors, a set C comprising nC pairs of

doctors (couples), and a set H of nH hospitals. A doctor cannot be in more than one couple,

and similarly a doctor cannot be both single and a member of a couple. We denote by D

the set containing all the nS + 2nC doctors, single or in a couple. Each single doctor ranks a

subset of hospitals, each couple ranks a subset of pairs of hospitals, and each hospital ranks a

subset of doctors (each member of a couple is ranked individually). This definition of HRCT

allows for ties in the preference list of any agent (single doctor, couple, or hospital). Real-world

applications often restrict some set of agents to not allow ties. We refer to two specific such

specialisations in this work that commonly arise as HRC-TCH (Ties in Couples’ and Hospitals’

lists) and HRC-TC (Ties in Couples’ lists only). These arise as single doctors are often limited

to only a small number of strict preferences (as in the case of the NRMP [29]), while couples’

preference lists may in general be much longer than single doctors’ preference lists as we will

see in Section 6, and hospitals may have to rank a significant number of applicants, hence it

may be too restrictive to force either hospitals or couples to strictly order their preference lists.

As before, each hospital has a limited capacity, and the definition of an acceptable pair

between a single doctor and a hospital is the same for HRCT as it is for HRT. We say that

a couple c ∈ C finds a pair of hospitals (h1, h2) ∈ H × H acceptable if (h1, h2) belongs to

the preference list of c. We then define an acceptable pair for the couple as {(d1, h1), (d2, h2)}.
Partial choices {(d1, h1), (d2, ∅)} and {(d1, ∅), (d2, h2)} may be allowed and represent the cases in

which one member of the couple is not assigned. The empty set can be considered as a hospital

which has capacity equal to the number of doctors in couples plus one (so that it is always

undersubscribed) and finds acceptable all doctors belonging to couples who list the empty set

as an option.

A matching M in I is a subset of acceptable pairs such that each individual doctor (single

or in a couple) appears in at most one pair of M and each hospital appears in at most ch pairs

of M . We remark that {(d1, h), (d2, h)} counts as two pairs for hospital h, one pair for doctor

d1, and one pair for doctor d2. The definitions of matched and unmatched for individual doctors

(single or in couple), and undersubscribed and fully subscribed for hospitals remain the same as

they were for HRT. A couple is unmatched if none of its members is matched. Thus, if d1 and

d2 form a couple and M contains {(d1, h1), (d2, ∅)}, couple (d1, d2) is considered matched.

We still use M(d) to denote the hospital in which individual doctor d (single or in couple)
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is matched and M(h) for the set of doctors assigned to hospital h. If necessary, we use M(c)

to denote the pair of hospitals in which couple c is matched (one of which could be the empty

set).

3.2 Stability definitions for HRCT

To the best of our knowledge, three stability definitions for HRC have been proposed in the

literature: MM-stability by McDermid and Manlove [28], BIS-stability by Biró, Irving, and

Schlotter [5], and KPR-stability by Khojima, Pathak, and Roth [20]. Since they studied the

problem without ties, the preferences were always strict: hospital h strictly prefers doctor d

over doctor d′ if rHd (h) < rHd′(h). In HRCT, we also have non-strict preferences: hospital h

weakly prefers doctor d over doctor d′ if rHd (h) ≤ rHd′(h). An intuitive extension of MM-, BIS-,

and KPR-stability for HRCT is made by changing any notion of “preferences” in the definition

into the notion of “strict preferences”.

The three definitions consider a matching as stable if it does not have any blocking pair or

blocking coalition. Three different types of blocking pairs/coalitions were identified:

• SH, a blocking pair between a single doctor and a hospital,

• CHH, a blocking coalition between a couple of doctors and two distinct hospitals,

• CH, a blocking coalition between a couple of doctors and one hospital.

While the three definitions agree on SH and CHH, they differ for CH. In the following, we

provide a formal definition for CHH and the three versions of CH, and we let SHi = DHi for

1 ≤ i ≤ 3 as per Definition 1.

3.2.1 CHH definition

Definition 2. Let I be an instance of HRCT and let M be a matching in I. A couple (d1, d2)

and two distinct hospitals (h1, h2) form a blocking coalition CHH of M if

CHH1- {(d1, h1), (d2, h2)} is an acceptable pair;

CHH2- (d1, d2) either is unmatched or strictly prefers (h1, h2) to (M(d1),M(d2)); and

CHH3- either h1 is undersubscribed, or h1 strictly prefers d1 to some member of M(h1), or d1 ∈
M(h1); and

CHH4- either h2 is undersubscribed, or h2 strictly prefers d2 to some member of M(h2), or d2 ∈
M(h2).

Example 2. Let us consider an HRCT instance with two hospitals, one couple, and one single

doctor with the following preference lists and capacity information:

d1 : h1 h2 h1 (c1 = 1) : d2 d1

(d2, d3) : (h1, h2) [(h1, ∅) (∅, h2)] h2 (c2 = 1) : d1 d3.
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Doctor d1 prefers hospital h1 over hospital h2. Couple (d2, d3) prefers to be assigned to hospitals

(h1, h2), and if not possible, the couple is indifferent between the partial assignments (h1, ∅) and

(∅, h2).

If M(d2, d3)=(h1, h2), the matching is not stable as (d1, h2) forms a blocking pair of type

SH. If M(d1) = h1 and M(d2, d3) = (∅, h2), the matching is not stable as couple (d2, d3) and

hospitals (h1, h2) form a blocking coalition of type CHH. Indeed, (d2, d3) strictly prefers to be

assigned to (h1, h2) over its current assignment, h1 strictly prefers d2 to d1, and d3 ∈M(h2). If

M(d1) = h2 and M(d2, d3) = (h1, ∅), the matching is now stable as h2 is not undersubscribed,

it does not strictly prefer d3 over d1, and d3 /∈M(h2).

3.2.2 CH definition for KPR-, BIS-, and MM-stability

Before introducing the definition of blocking coalition CH for each of the three stability defini-

tions, we start with some observations about KPR-stability and choice functions (see Kojima,

Pathak, and Roth [20]). KPR-stability and choice functions were also used by Ashlagi, Braver-

man, and Hassidim [3], and Drummond, Perrault, and Bacchus [10]. Given a hospital h and a

set of doctors D′, the choice function Chh(D′) gives the subset of doctors D′′ ⊆ D′ that hospital

h would employ if only able to choose from doctors in D′. When ties are not allowed, and since

the preference relations are responsive (i.e., rDj (i) does not depend on the subset D′), Chh(D′)

simply contains the first min{ch, |D′|} doctors from D′ ordered by increasing rank. Equivalent

choice functions can also be defined for doctors, but we do not use them. We now introduce our

definition of a blocking coalition CH under what we refer to as KPR-stability, and then prove

that it is equivalent to the definition used in [20] (page 1602, item 2(b)) in the absence of ties.1

Definition 3. Let I be an instance of HRCT and let M be a matching in I. A couple (d1, d2)

and a hospital h form a blocking coalition CH of M under KPR-stability if

CH1- {(d1, h), (d2, h)} is an acceptable pair; and

CH2- (d1, d2) is either unmatched, or strictly prefers (h, h) to (M(d1),M(d2)); and

CH3- h has either

CH3.1- two free posts; or

CH3.2- one free post and either d1 ∈M(h) or d2 ∈M(h); or

CH3.3- one free post and it strictly prefers both d1 and d2 to some member of M(h); or

CH3.4- no free post and it strictly prefers both d1 and d2 to some member of M(h) and either

d1 ∈M(h) or d2 ∈M(h); or

CH3.5- no free post and it strictly prefers both d1 and d2 to two distinct members of M(h).

Theorem 1. The definition of a blocking coalition CH under KPR-stability in Definition 3 is

equivalent to the one proposed in Kojima, Pathak, and Roth [20] when ties are not allowed,

which states that a couple (d1, d2) and a hospital h form a blocking coalition of M if (d1, d2)

strictly prefers (h, h) to (M(d1),M(d2)) and if {d1, d2} ⊆ Chh(M(h) ∪ {d1, d2}).
1We do not consider the choice function definition of stability in the general HRCT case as there are multiple

interpretations as to what a hospital would choose if ties are allowed.
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Table 1: Six different cases in which couple (d1, d2) and hospital h could form a blocking coalition

Cases h has two free posts or more h has one free post h has no free post

d1 ∈M(h), d2 /∈M(h) CH3.1 CH3.2 CH3.4

d1 /∈M(h), d2 /∈M(h) CH3.1 CH3.3 CH3.5

Proof. We individually study each case of CH3.1-CH3.5 and show how each of them implies

“(d1, d2) ∈ Chh(M(h) ∪ {d1, d2})”.

1. If h has two free posts, then |M(h)| ≤ ch−2, so |M(h)∪{d1, d2}| ≤ ch. Thus, Chh(M(h)∪
{d1, d2}) contains both d1 and d2.

2. If h has one free post and either d1 ∈ M(h) or d2 ∈ M(h), then |M(h) ∪ {d1, d2}| ≤ ch.

Thus again, Chh(M(h) ∪ {d1, d2}) contains both d1 and d2.

3. If h has one free post and strictly prefers both d1 and d2 to some member of M(h), say d′,

then |M(h) ∪ {d1, d2}| ≤ ch + 1. However, we know that d′ is ranked worse than both d1

and d2. Thus, Chh(M(h)∪ {d1, d2}) would exclude d′ in order to include both d1 and d2.

4. If h has no free post and strictly prefers both d1 and d2 to some member of M(h), say

d′, and either d1 ∈M(h) or d2 ∈M(h), then |M(h) ∪ {d1, d2}| ≤ ch + 1. Again, we know

that d′ is ranked worse than both d1 and d2. Thus, Chh(M(h)∪ {d1, d2}) puts aside d′ to

include d1 or d2 (the member of the couple not yet assigned to h).

5. If h has no free post and strictly prefers both d1 and d2 to two distinct members of M(h),

say d′ and d′′, then |M(h) ∪ {d1, d2}| ≤ ch + 2. However, we know that d′ and d′′ are

ranked worse than both d1 and d2. Thus, Chh(M(h) ∪ {d1, d2}) puts aside d′ and d′′ to

include both d1 and d2.

We conclude the proof by noting that any blocking coalition CH described in [3] can be repre-

sented with one of the five cases described in CH3.1-CH3.5, as shown in Table 1.

Definition 4 ([5]). Let I be an instance of HRCT and let M be a matching in I. A couple

(d1, d2) and the same hospital h form a blocking coalition CH of M under BIS-stability if

CH1-CH2, CH3.1-CH3.5

CH3.6- no free post and it strictly prefers both d1 and d2 to any member of a couple with both

members in M(h).

Under BIS-stability, the objective is to minimise the worst rank of the hospitals’ assignees.

Thus, couples are compared based on their less-preferred member and a couple with two average-

ranked members is favoured over a couple with a good and a bad ranked member. However,

BIS-stability does not extend this policy to comparing couples with pairs of single doctors. One

reason for this might be that it could create a “loop” of blocking pairs of the form SH/CH that

would lead to an absence of a stable matching. In such loop, if a couple (d1, d2) is assigned to

a given hospital h, a single doctor d3 and h forms a blocking pair, and if d3 is assigned to h

instead, then d1 and d2 form a blocking coalition with h. Thus, it is supposed that hospitals

know which doctors are in couples, which is not a requirement in the other stability definitions.
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Definition 5 ([28]). Let I be an instance of HRCT and let M be a matching in I. A couple

(d1, d2) and the same hospital h form a blocking coalition CH of M under MM-stability if

CH1-CH2, CH3.1-CH3.2

CH3.3 ′ - one free post and it strictly prefers d1 or d2 to some member of M(h); or

CH3.4.1 ′- no free post and it strictly prefers d1 to some member of M(h)\{d2} and d2 ∈M(h)

or;

CH3.4.2 ′- no free post and it strictly prefers d2 to some member of M(h)\{d1} and d1 ∈M(h)

or;

CH3.5 ′ - no free post and it strictly prefers d1 to some member of M(h) and strictly prefers

d2 to another member of M(h).

MM-stability treats each position of a hospital independently, and favours a matching that

improves the rank of one or two assignees, providing the ranks of the other assignees remain

unchanged.

Intuitively, KPR-stability requires the strongest conditions for a couple to form a blocking

coalition with a single hospital. If a matching is MM-stable, then it is also KPR-stable: indeed,

(i) CH3.3 cannot be satisfied if CH3.3 ′ is not satisfied, (ii) CH3.4 cannot be met if neither

CH3.4.1 ′ nor CH3.4.2 ′ is met, and (iii) CH3.5 cannot be satisfied if CH3.5 ′ is not satisfied.

Similarly, if a matching is BIS-stable, then it is also KPR-stable. There is no dominance

relation between MM- and BIS-stability.

3.2.3 Examples

We now give three examples outlining noticeable differences in behaviour exhibited by each

stability definition.

Example 3. Let us consider an HRCT instance with one hospital, one couple, and two doctors

with the following preference lists and capacity information:

d1 : h1 h1 (c1 = 2) : d2 d1 d3 d4

(d2, d3) : (h1, h1)

d4 : h1

If M(h1) = {d1, d4}, the matching is BIS-stable (and thus, KPR-stable) as h1 has no free

post and does not strictly prefer d3 to two distinct members of M(h1). However, the matching

is not MM-stable because (d2, d3) forms a blocking coalition with h1: indeed, h1 has no free post

and strictly prefers d2 to d1 and d3 to d4. Note that if the capacity c1 were to be 3, the matching

would not be stable under any of the three definitions.

Example 4. Let us consider an HRCT instance with one hospital and two couples with the

following preference lists:

(d1, d4) : (h1, h1) h1 (c1 = 2) : d2 d1 d3 d4

11



(d2, d3) : (h1, h1)

If M(h1) = {d1, d4}, the matching is KPR-stable as h1 has no free post and does not strictly

prefer d3 to two distinct members of M(h). It is not BIS-stable because (d2, d3) forms a blocking

pair with h1: indeed, h1 has no free post and strictly prefers both d2 and d3 to d4, a member of a

couple with both members in M(h). As in the previous example, the matching is not MM-stable.

Again, if the capacity c1 were to be 3, the matching would not be stable under any of the three

definitions.

If M(h1) = {d2, d3}, the matching is stable under the three conditions. However, if the

capacity c1 were to be 3, then the matching would not be MM-stable anymore, as (d1, d4) would

form a blocking coalition with h1: indeed, h1 has one free post and strictly prefers d1 to d3.

Example 5. Let us consider an HRCT instance with one hospital and two couples with the

following preference lists and capacity information:

(d1, d4) : (h1, h1) h1 (c1 = 2) : d2 d1 d4 d3

(d2, d3) : (h1, h1)

If M(h1) = {d1, d4}, the matching is stable under all three definitions. As in the previous

example, if the capacity c1 were to be 3, then the matching would not be MM-stable anymore.

If M(h1) = {d2, d3}, the matching is MM-stable (and thus, KPR-stable), as h1 has no free

post and does not strictly prefer d1 and d4 to two distinct members of M(h). However, the

matching is not BIS-stable because (d1, d4) forms a blocking coalition with h1: indeed, h1 has

no free post and strictly prefers both d1 and d4 to d3. If the capacity c1 were to be 3, then the

matching would not be stable under any of the three definitions.

An exhaustive study of all the possible outcomes on instances with one couple/one single

doctor and two couples is presented in Tables 2 and 3. Similar outcomes for instances with

one couple/two single doctors are presented in Tables 14 and 15 in the appendix. We always

consider a unique hospital h1 (since only the definition of blocking pairs of type CH varies

among the different stability definitions). The first column contains the preference list of h1,

possibly with ties. Members of the same couple are denoted with the same letter: the upper

case is used for the doctor the hospital prefers (e.g., “A”), and the lower case is used for the

other member (e.g., “a”). If the hospital is indifferent between the two members, then the upper

case is used arbitrarily for one of the two members. The second column contains the capacity

of h1, then the next two columns give all possible stable matchings for each stability definition

in the case of “splittable couples”. A splittable couple accepts a matching in which only one

member is given an assignment and the other member is unmatched. The last columns give

the same information in case the couples are “unsplittable”. We use the symbol “∅” where a

stable matching does not exist. We use “all-2” (respectively “all-3”) where any matching of size

2 (respectively 3) is stable. Note that KPR- and BIS-stability are merged in most of the cases

as their stable matchings only differ when there are two unsplittable couples. For the sake of

conciseness, the tables also contain the results of KPR+-stability, our new stability definition

which is formally introduced later in the section.
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Table 2: Feasible matching for instances with one single doctor and one couple

h1 c1
Splittable couple* Unsplittable couple**

KPR and BIS KPR+ MM KPR and BIS KPR+ MM

AaB 2 Aa Aa Aa Aa Aa Aa

ABa 2 AB, Ba AB, Ba AB B B ∅
BAa 2 BA, Ba BA, Ba BA, Ba B B B

[AaB] 2 Aa, AB, aB Aa, AB, aB Aa, AB, aB Aa, B Aa, B Aa, B

A[aB] 2 Aa, AB, aB Aa, AB Aa, AB Aa, B Aa Aa

[AB]a 2 AB, Ba AB, Ba AB, Ba B B B

* preference list of (A, a) is (h1, h1)[(h1, ∅) (∅, h1)]

** preference list of (A, a) is (h1, h1)

The tables read as follows: under KPR-stability, if one splittable couple (A, a) and one single

doctor B apply to h1, with preference list “[AB]a” and capacity 2, a stable matching assigns

either A and B to h1, or B and a to h1.

We observe a number of interesting facts: (i) as expected, any matching that is MM-stable or

BIS-stable is also KPR-stable; (ii) when couples are unsplittable, various examples do not have

any feasible MM-stable matching, (iii) when couples are splittable, the set of MM-stable match-

ings is a subset of KPR/BIS-stable matchings, (iv) when couples are splittable, the KPR/BIS-

stable matchings that are not MM-stable always include the least favourite member of a couple

whose most favourite member is not assigned, (v) when ties are allowed in the preference lists,

the three stability definitions are more flexible and allow significantly more feasible match-

ings, and (vi) for unsplittable couples, increasing the capacity does not necessarily increase the

matching size.

Among these additional feasible matchings, some of them are not what a decision-maker

might qualify as stable: for example, in the preference list “A[aB]b” for h1 with capacity

2 and unsplittable couple, it is reasonable to think that matching couple (A, a) should be

favoured over matching couple (B, b). However, under KPR-stability, assigning either couple to

h1 leads to a stable matching. Similarly, in the preference list “A[aBb]” for h1 with capacity 2

and unsplittable couples, one could think that matching couple (A, a) should be favoured over

matching couple (B, b), but once again under KPR-stability, assigning either couple to h1 leads

to a stable matching. More generally, KPR-stability rarely makes any distinction between two

couples when they both have one of their members in the same tie.

In the following we define KPR+-stability, which we have specifically designed to avoid the

counter-intuitive scenarios outlined in the previous paragraph. Note that similar adaptations

can also be applied to BIS- and MM-stability definitions.

Definition 6. Let I be an instance of HRCT and let M be a matching in I. A couple (d1, d2)

and hospital h form a blocking coalition CH of M under KPR+-stability if

CH1-CH2, CH3.1-CH3.2

CH3.3+ - one free post and it weakly prefers both d1 and d2 to some member of M(h) and

strictly prefers one of them to some member of M(h); or
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Table 3: Feasible matching for instances with two couples

h1 c1
Splittable couple* Unsplittable couple**

KPR and BIS KPR+ MM KPR KPR+ BIS MM

AaBb
2 Aa Aa Aa Aa Aa Aa Aa

3 AaB, Aab AaB, Aab AaB, Aab Aa Aa Aa Aa

ABab
2 AB, Ba AB, Ba AB Aa, Bb Aa, Bb Aa Aa

3 ABa, Aab ABa, Aab ABa Aa Aa Aa ∅

ABba
2 AB, Ab AB, Ab AB, Ab Aa, Bb Aa, Bb Bb Aa, Bb

3 ABb, Bba ABb, Bba ABb Bb Bb Bb ∅

[AaBb]
2 all-2 all-2 all-2 Aa, Bb Aa, Bb Aa, Bb Aa, Bb

3 all-3 all-3 all-3 Aa, Bb Aa, Bb Aa, Bb Aa, Bb

A[aBb]
2 Aa, AB, Ab, aB, ab Aa, AB, Ab Aa, AB, Ab Aa, Bb Aa Aa, Bb Aa, Bb

3 all-3 AaB, Aab, ABb AaB, Aab, ABb Aa, Bb Aa Aa, Bb Aa

[AaB]b
2 Aa, AB, aB Aa, AB, aB Aa, AB, aB Aa, Bb Aa, Bb Aa Aa, Bb

3 AaB, Aab AaB, Aab AaB, Aab Aa Aa Aa Aa

[AB][ab]
2 AB, Ab, Ba, ab AB, Ab, Ba AB, Ab, Ba Aa, Bb Aa, Bb Aa, Bb Aa, Bb

3 all-3 ABa, ABb ABa, ABb Aa, Bb ∅ Aa, Bb ∅

AB[ab]
2 AB, Ab, Ba, ab AB, Ab, Ba AB, Ab Aa, Bb Aa, Bb Aa, Bb Aa, Bb

3 all-3 ABa, ABb ABa, ABb Aa, Bb ∅ Aa, Bb ∅

[AB]ab
2 AB, Ba AB, Ba AB, Ba Aa, Bb Aa, Bb Aa Aa, Bb

3 ABa, Aab ABa, Aab ABa Aa Aa Aa ∅

A[aB]b
2 Aa, AB, aB Aa, AB Aa, AB Aa, Bb Aa Aa Aa

3 AaB, Aab AaB, Aab AaB, Aab Aa Aa Aa Aa

* preference list of (A, a) and (B, b) is (h1, h1)[(h1, ∅) (∅, h1)]

** preference list of (A, a) and (B, b) is (h1, h1)

CH3.4.1+- no free post and it weakly prefers both d1 and d2 to some member of M(h) \ {d2}
and strictly prefers d1 to some member of M(h) \ {d2} and d2 ∈M(h); or

CH3.4.2+- no free post and it weakly prefers both d1 and d2 to some member of M(h) \ {d1}
and strictly prefers d2 to some member of M(h) \ {d1} and d1 ∈M(h); or

CH3.5+ - no free post and it weakly prefers both d1 and d2 to two distinct members of M(h)

and strictly prefers one of them to two distinct members of M(h) and d1 6∈ M(h) and

d2 6∈M(h).

For example, KPR+-stability favours matching couple (A, a) over single doctor B when

h1 has capacity 2 and preference list “A[aB]” with unsplittable couples. However, if h1 has

capacity 2 and preference list “AB[aC]” and the couples are unsplittable, KPR+-stability does

not favour couple (A, a) over single doctors B and C. Indeed, if that were the case, since B

precedes a in h1’s preference list, B and h1 would form a blocking pair of type SH, creating a

cycle of blocking pairs / coalitions resulting in the absence of stable matching.
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There are only a few cases in which such cycles cannot be avoided and thus where there is

no KPR+-stable matching: for example when h1 has capacity 3 and preference list “[AB][ab]”

and the couples are unsplittable. We remark that KPR+-stability differs from KPR-stability

only in the cases where ties are allowed and one member of the couple is strictly preferred over

the other.

Overall we observe some interesting behaviour for the stability definitions: when couples

are splittable, we distinguish between the “restrictive” definitions (such as MM) whose stable

matchings are also stable under the other definitions, and the “permissive” definitions (such as

BIS- and KPR-stability). We note that any matching that is stable in the “permissive” setting

but not in the “restrictive” setting always can be built from a matching that is stable in the

“restrictive” setting that contains only one member of a splittable couple (the most-preferred

according to h1) by replacing this most-preferred member of a splittable couple with the least-

preferred member of that couple. When couples are unsplittable, we still have the “permissive”

definitions (such as KPR) whose stable matchings include all the matchings that are stable

under any of the “restrictive” definitions. However, we now differentiate the “restrictive-blind”

definitions (such as MM-stability and KPR+) from the “restrictive-knowing” definitions (such

as BIS). The former supposes that hospitals do not know which of their currently matched

doctors are in a couple, and a hospital would consider rejecting one member of a couple without

knowing that some other doctor (the other doctor in the couple) would also then leave. The

latter supposes that hospitals do know which of their assigned doctors are in couples, and may

use this information to determine whether they would reject a currently assigned doctor or

couple in favour of a new doctor or couple.

As KPR+-stability is identical to KPR-stability when ties are not allowed or when both

members of the couple have the same rank, a blocking pair/coalition under KPR+-stability

under these conditions is also blocking under MM-stability. When ties are allowed and both

members of the couple have different ranks, KPR+-stability is sometimes more restrictive than

MM-stability (in particular when couples are unsplittable) and sometimes less restrictive (when

couples are splittable). As shown in Tables 2, 3, 14, 15, in total, only two one-hospital configu-

rations do not admit any stable matching under KPR+-stability (vs 10 for MM-stability). We

use the following example to remind the reader that there exist many HRCT instances with two

hospitals for which no feasible matching can be found under any of the aforementioned stability

definitions.

Example 6. Let us consider an HRCT instance with two hospitals, one couple, and one single

doctor with the following preference lists and capacity information:

d1 : h1 h2 h1(c1 = 1) : d2 d1

(d2, d3) : (h1, h2) h2(c1 = 1) : d1 d3

If M(h1) = {d1} and M(h2) = ∅, then (d2, d3) and (h1, h2) form a blocking coalition of type CHH.

If M(h1) = {d2} and M(h2) = {d3}, then d1 and h2 form a blocking pair of type SH.

If M(h1) = ∅ and M(h2) = {d1}, then d1 and h1 form a blocking pair of type SH.

Note that all three stability definitions have the same definitions for blocking coalitions of

type CHH and blocking pairs of type SH.
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4 ILP models for MAX-HRCT

A set of ILP models were proposed in the literature for BIS-stability [27] and for MM-stability [22].

In the following, we propose alternative formulations for each of the three definitions that are

based on model (1)-(5). Our goal is to introduce a unified base model which can be extended

to each stability definition discussed with minimal additional constraints. Let us consider the

following notation:

• The set of doctors D contains first the nS single doctors, then the first members of the

nC couples, and finally, the second members of the couples. Thus, couple k is composed

of doctors nS + k and nS + nC + k.

• H(i) is the set of hospitals acceptable for doctor (single or in a couple) i (i = 1, . . . , nS +

2nC).

• Hc(k) is the set of pairs of hospitals acceptable for couple k (k = 1, . . . , nC).

• D(j) is the set of doctors (single or in a couple) acceptable for hospital j (j = 1, . . . , nH).

• rDj (i) is the rank of hospital j for single doctor i, defined as the integer l such that j

belongs to the lth most-preferred tie in i’s list (i = 1, . . . , nS , j ∈ H(i)). The smaller the

value of rDj (i), the better hospital j is ranked for doctor i.

• rD(j1,j2)(k) is the rank of the pair of hospitals (j1, j2) for couple k, defined as the integer l

such that (j1, j2) belongs to the lth most-preferred tie in k’s list (k = 1, . . . , nC , (j1, j2) ∈
Hc(k)). The smaller the value of rD(j1,j2)(k), the better the pair of hospitals (j1, j2) is

ranked for couple k.

• rHi (j) is the rank of doctor i (single or in pair) for hospital j, defined as the integer l

such that i belongs to the lth most-preferred tie in j’s list (j = 1, . . . , nH , i ∈ D(j)). The

smaller the value of rHi (j), the better doctor i is ranked for hospital j.

• H≤j (i) is the set of hospitals that single resident i ranks at the same level or better than

hospital j, that is, H≤j (i) = {j′ ∈ H(i) : rDj′(i) ≤ rDj (i)} (i = 1, . . . , nS , j ∈ H(i)).

• H≤(j1,j2)(k) is the set of pairs of hospitals that couple k ranks at the same level or better

than the pair of hospitals (j1, j2), that is, H≤(j1,j2)(k) = {(j′1, j′2) ∈ Hc(k) : rD(j′1,j′2)(k) ≤
rD(j1,j2)(k)} (k = 1, . . . , nC , (j1, j2) ∈ Hc(k)).

• D≤i (j) is the set of doctors (single or in pair) that hospital j ranks at the same level or

better than doctor i, that is, D≤i (j) = {i′ ∈ D(j) : rHi′ (j) ≤ rHi (j)} (j = 1, . . . , nH , i ∈
D(j)).

Let MAX-HRCT denote the problem of finding a stable matching of maximum size in an

HRCT instance. By introducing binary decision variables xij that take value 1 if doctor i (single

or in a couple) is assigned to hospital j, and 0 otherwise (i = 1, . . . , nS + 2nC , j ∈ H(i)), and

binary decision variables ykj1j2 that take value 1 if couple k is assigned to the pair of hospital

(j1, j2), and 0 otherwise (k = 1, . . . , nC , (j1, j2) ∈ Hc(k)), MAX-HRCT can be modelled as

follows:
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max

nS+2nC∑
i=1

∑
j∈H(i)

xij (6)

s.t. (S1), (S2), (S3),∑
j∈H(i)

xij ≤ 1, i = 1, . . . , nS + 2nC , (7)

∑
i∈D(j)

xij ≤ cj , j = 1, . . . , nH , (8)

∑
(j1,j2)∈Hc(k),j1=j

ykj1j2 = xnS+k,j , k = 1, . . . , nC , j ∈ H(nS + k), (9)

∑
(j1,j2)∈Hc(k),j2=j

ykj1j2 = xnS+nC+k,j , k = 1, . . . , nC , j ∈ H(nS + nC + k), (10)

xij ∈ {0, 1}, i = 1, . . . , nS + 2nC , j ∈ H(i), (11)

ykj1j2 ∈ {0, 1}, k = 1, . . . , nC , (j1, j2) ∈ Hc(k), (12)

where (S1) are the stability constraints that remove blocking pairs SH, and (S2) and (S3) are

the constraints that remove blocking coalitions CHH and CH, respectively. All these stability

constraints are defined below.

The objective function (6) maximises the number of doctors assigned. Constraints (7) ensure

that each doctor (single or in a couple) is matched with at most one hospital and constraints (8)

ensure that each hospital does not exceed its capacity. Constraints (9) and (10) link the x and

the y variables.

Stability constraints (S1), that prevent blocking pairs of type SH, are as follows for MM-,

BIS-, and KPR-stability:

cj

1−
∑

q∈H≤j (i)

xiq

 ≤ ∑
p∈D≤i (j)

xpj , i = 1, . . . , nS , j ∈ H(i). (13)

Similar to HRT, they ensure that if single doctor i was not assigned to hospital j or any other

hospital they rank at the same level or higher than j, then hospital j has filled its capacity with

doctors (single or in couples) it ranks at the same level or higher than i.

Stability constraints (S2), that prevent blocking coalitions of type CHH, are defined as

follows for MM-, BIS-, and KPR-stability, respectively:

cj1

1−
∑

(q1,q2)∈H≤
(j1,j2)

(k)

ykq1q2 − α1
kj1j2

 ≤ ∑
p∈D≤nS+k(j1)

xpj1 − xnS+k,j1 , k = 1, . . . , nC , (j1, j2) ∈ Hc(k),

(14)

cj2

1−
∑

(q1,q2)∈H≤
(j1,j2)

(k)

ykq1q2 − α2
kj1j2

 ≤ ∑
p∈D≤nS+nC+k(j2)

xpj2 − xnS+nC+k,j2 , k = 1, . . . , nC , (j1, j2) ∈ Hc(k),

(15)

α1
kj1j2 + α2

kj1j2 ≤ 1, k = 1, . . . , nC , (j1, j2) ∈ Hc(k),

(16)

17



They ensure that if couple k was not assigned to the pair of hospitals (j1, j2) or any other

pair they rank at the same level or higher than (j1, j2), then either hospital j1 or j2 is fully

subscribed with doctors (singles or in couples) it ranks at the same level or higher than the

corresponding member of the couple. The hospital (if any) that is not fully subscribed with

better doctors has its corresponding α variable set to one. Also, if one of the two hospitals has

the corresponding member of the couple in the matching, then its α variable must be set to one.

The alpha variables can be seen as a “wild card” that allow at most one of the two constraints

to be violated.

Stability constraints (S3), that prevent blocking pairs of type CH, vary according to the

stability definition. For KPR-stability, they are defined as:

cj

1−
∑

(q1,q2)∈H≤
(j,j)

(k)

ykq1q2

− 1 + xi1j + xi2j ≤
∑

p∈D≤i2 (j)

xpj , k = 1, . . . , nC , (j, j) ∈ Hc(k), (17)

where i1 is the index of the member of the couple who is weakly preferred by the hospital (i.e.,

rHi1(j) ≤ rHi2(j), which is also assumed in the rest of the section). They ensure that if couple k

was not assigned to the pair of hospitals (j, j) or any other pair they rank at the same level

or higher than (j, j), then hospital j has filled its capacity minus 1 with doctors (singles or in

couples) it ranks at the same level or higher than the worst member of the couple. The “minus

1” is offset if one of the two members of the couple is assigned to j.

For BIS-stability, constraints (S3) are defined as:

cj

1−
∑

(q1,q2)∈H≤
(j,j)

(k)

ykq1q2

− 1 + xi1j + xi2j +
∑

k′∈Kj(k)

yk′jj ≤
∑

p∈D≤i2 (j)

xpj , k = 1, . . . , nC , (j, j) ∈ Hc(k),

(18)

where Kj(k) contains the indices of the couples also applying to (j, j) that have one member

ranked strictly worse than both i1 and i2 (to take into account criterion CH3.6) and one member

ranked at least as good as i2 (to ensure that the right-hand-side is always greater than or equal

to the left-hand-side in case couple k is assigned to hospital j). This rules out the assignment

of such couple to (j, j) if couple k was not already assigned to (j, j), or to a better choice.

For MM-stability, constraints (S3) are defined as:

cj

1−
∑

(q1,q2)∈H≤
(j,j)

(k)

ykq1q2

− 1 + xij + xi2j ≤
∑

p∈D≤i2 (j)

xpj , k = 1, . . . , nC , (j, j) ∈ Hc(k), i ∈ S, (19)

where S contains i1 and the indices of the doctors ranked strictly worse than i1 and at least as

good as i2, but not i2, i.e., S =
(
D≤i2(j) \

(
D≤i1(j) ∪ {i2}

))
∪ {i1}. Note that these constraints

can be aggregated into

cj

1−
∑

(q1,q2)∈H≤
(j,j)

(k)

ykq1q2

− 1 +

∑
i∈S xij

|S|
+ xi2j ≤

∑
p∈D≤i2 (j)

xpj , k = 1, . . . , nC , (j, j) ∈ Hc(k), (20)
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For MM-stability, the “minus 1” is offset if any member in S is selected, and the constraints

forbid both i2 and a member of S to be selected at the same time if i1 was not selected as well

(criteria CH3.4.1′ and CH3.4.2′).

For KPR+-stability , constraints (S3) include constraints (17) (from (S3) for KPR) and also

constraints (21), defined below. Note that constraints (21) only apply if one member of the

couple is strictly preferred to the other (i.e., rHi1(j) 6= rHi2(j)):

cj

1−
∑

(q1,q2)∈H≤
(j,j)

(k)

ykq1q2 − xi1j

− 1 ≤
∑

p∈D<
i2

(j)

xpj , k = 1, . . . , nC , (j, j) ∈ Hc(k), rHi1(j) 6= rHi2(j).

(21)

In constraints (21), the sum of the right-hand side is made on the doctors strictly preferred

over i2 instead of weakly preferred. The constraints are activated only if i1 is not assigned to

the hospital (xi1j is equal to 0). If xi2j is equal to 1, then the hospital needs to fill the rest of its

capacity with better doctors than i2 (the extra spot allowed by the “minus 1” is taken by i2).

If xi2j is equal to 0, then at most one doctor with the same rank as i2 or worse can be assigned

to the hospital.

5 Model improvements

Many improvements for HRT were proposed by Delorme et al. [9], including preprocessing,

dummy variables, and alternative stability constraints.

Preprocessing for HRT consists of removing some pairs (a potential assignment of a doctor

to a hospital) that cannot be part of any stable matching. In HRCT, we also have to ensure

that the removal of pairs does not create a new instance with stable matchings if the original

instance did not contain any stable matchings. In addition, tailored preprocessing techniques

for HRCT depend on the chosen stability definition, so a given preprocessing for BIS-stability

might not be valid for KPR-stability. For these reasons, we opted for a conservative extension

of the well-known “Hospitals-offer” and “Residents-apply” algorithms for HRT (see Irving and

Manlove [14]). As these algorithms require the absence of ties in the single doctors’ preference

lists, their extension is only valid for HRC-TCH.

Algorithm 1, “Hospitals-offer-couples”, considers in turn every hospital j and stores in F
the cj doctors (single or in couples) that hospital j most prefers. If the inclusion of the last tie

group would make |F| > cj , then the last tie group is not added to F but discarded instead.

We know that any single doctor i from |F| cannot be assigned to a hospital strictly worse than

j in a stable matching, otherwise (i, j) would form a blocking pair. We also know that, if both

members of a couple k are in |F|, and k finds (j, j) acceptable, then k cannot be assigned to a

pair of hospitals strictly worse than (j, j), under any stability definition. We do not make any

deduction for couples with exactly one member in |F|.
Algorithm 2, “Residents-apply-couples” first checks the first choice of each single doctor and

saves them in hospital-specific sets FHc=
1 (i), where Hc=

1 (i) is the favourite hospital of doctor i.

It then checks, for each hospital j, whether or not there are enough doctors in Fj to fill the

capacity cj of j. If this is the case, it finds the minimum rank m of the doctors in Fj required
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Algorithm 1 Hospitals-offer-couples

1: Input: An instance of HRC-TCH with hospitals H, single doctors S, and couples C

2: Output: Two sets R and R′ containing pairs (i, j′) and coalitions (i, j′, j′′) that can neither

be part of any stable matching nor cause infeasibility

3: for each j ∈ H do . for each hospital

4: F ← {i ∈ D(j) : |D≤i (j)| ≤ cj} . F contains the doctors that j would always select

5: for each single doctor i ∈ F do

6: for each j′ ∈ H(i) with rDj′(i) > rDj (i) do

7: R ← R∪ {(i, j′)}
8: end for

9: end for

10: for each i, i′ ∈ F such that (i, i′) forms couple k and such that (j, j) ∈ Hc(k) do

11: for each (j′, j′′) ∈ Hc(k) with rD(j′,j′′)(k) > rD(j,j)(k) do

12: R′ ← R′ ∪ {(k, j′, j′′)}
13: end for

14: end for

15: end for

16: return R,R′

to fill the hospital. From this point, we know that no doctor i (single or in couple) with rank

strictly worse than m according to j should ever be assigned to j in a stable matching, otherwise

(i′, j) would form a blocking pair, where i′ is a single doctor in Fj not assigned to j.

It was noticed in Delorme et al. [9] that ILP models for HRT could have up to O(nSnH)

constraints and up to O(nSnH(nS + nH)) non-zero elements, depending on the length of the

agents’ preference lists. In HRCT, couples are usually allowed to have longer preference lists

than single doctors: indeed, in the case of a single doctor willing to be assigned to two hospitals

h1 and h2, for example, four choices are required for a couple with the same preferences, namely

(h1, h1), (h1, h2), (h2, h1), and (h2, h2). In the Scottish Foundation Allocation Scheme (SFAS),

single doctors had a preference list of size up to p (where p = 10 in 2012), and couples had

a preference list of size up to p2 (the Cartesian product), bringing the theoretical number of

non-zero elements for HRCT models to O(nSnH(nS + nH) + nCnH
2(nC + nH

2)).

To reduce the model size, we adopt the same techniques as [9], that is, we employ an

alternative formulation that uses dummy variables to keep track of the single doctors, the

couples, and the hospitals assignments at each rank.

Let us consider the following additional notation:

• gs(i) is the number of distinct ranks (or ties) for single doctor i (i = 1, . . . , nS).

• gc(k) is the number of distinct ranks (or ties) for couple k (k = 1, . . . , nC).

• gh(j) is the number of distinct ranks for hospital j (j = 1, . . . , nH).

• Hs=
l (i) is the set of hospitals acceptable for single doctor i (i = 1, . . . , nS) with rank l

(l = 1, . . . , gs(k)).
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Algorithm 2 Residents-apply-couples

1: Input: An instance of HRC-TCH with hospitals H, single doctors S, and couples C

2: Output: Two sets R and R′ containing pairs (i, j) and coalitions (i, j′, j′′) that can neither

be part of any stable matching nor cause infeasibility

3: for each i ∈ S do . for each single doctor

4: FHc=
1 (i) ← i . i is added in the F of his favourite hospital

5: end for

6: for each j ∈ H do . for each hospital

7: if |Fj | ≥ cj then . if preprocessing can be done

8: m = min{rHi (j) : |D≤i (j) ∩ Fj | ≥ cj} . j cannot get doctors of rank worse than m

9: for each i ∈ D(j) : rHi (j) > m do . for each doctor with rank worse than m

10: if i is single then

11: R ← R∪ {(i, j)} . Mark the pair (i, j)

12: end if

13: if i belongs to couple k then

14: for each (j′, j′′) ∈ Hc(k) : j′ = j do

15: R′ ← R′ ∪ {(k, j′, j′′)} . Remove all coalitions (k, j′, j′′)

16: end for

17: end if

18: end for

19: end if

20: end for

• Hc=
l (k) is the set of pairs of hospitals acceptable for couple k (k = 1, . . . , nC) with rank l

(l = 1, . . . , gc(k)).

• D=
l (j) is the set of doctors (single or in couples) acceptable for hospital j (j = 1, . . . , nH)

with rank l (l = 1, . . . , gh(j)).

In addition, we introduce dummy binary decision variables ws
il (resp. wc

kl) that take value 1

if single doctor i (resp. couple k) is matched with a hospital (resp. a pair of hospitals) of rank

at most l, and 0 otherwise (i = 1, . . . , nS) (resp. (k = 1, . . . , nC)) . We also introduce integer

decision variables wh
jl that indicate how many doctors (single or in couple) of rank at most l are

assigned to hospital j. MAX-HRCT becomes:

max

nS+2nC∑
i=1

∑
j∈H(i)

xij (22)

s.t. (S2)∗, (S3)∗,

(7)− (12),∑
j∈Hs=

1 (i)

xij = ws
i1, i = 1, . . . , nS , (23)

∑
j∈Hs=

l (i)

xij + ws
il−1 = ws

il, i = 1, . . . , nS , l = 2, . . . , gs(i), (24)
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∑
(j1,j2)∈Hc=

1 (k)

ykj1j2 = wc
k1, k = 1, . . . , nC , (25)

∑
(j1,j2)∈Hc=

l (k)

ykj1j2 + wc
k,l−1 = wc

kl, k = 1, . . . , nC , l = 2, . . . , gc(k), (26)

∑
i∈D=

1 (j)

xij = wh
j1, j = 1, . . . , nH , (27)

∑
i∈D=

l (j)

xij + wh
j,l−1 = wh

jl, j = 1, . . . , nH , l = 2, . . . , gh(j), (28)

cj

(
1− ws

i,rDj (i)

)
≤ wh

j,rHi (j)
, i = 1, . . . , nS , j ∈ H(i), (29)

ws
il ∈ {0, 1}, i = 1, . . . , nS , l = 1, . . . , gs(i), (30)

wc
kl ∈ {0, 1}, k = 1, . . . , nC , l = 1, . . . , gc(k), (31)

wh
jl ∈ {0, 1, . . . , cj}, j = 1, . . . , nH , l = 1, . . . , gh(j). (32)

Constraints (23)-(28) maintain the coherence between the “new” variables (ws
il, w

c
kl, w

h
jl) and the

“old” variables (xij , ykj1j2). Constraints (29) are the adaptation of (S1). Stability constraints

(S2)*, (S3)*, the adaptation of (S2) and (S3), are built in a similar way.

Last, we also propose the following valid inequalities for constraints (S2)* that improve the

computational behaviour of the models:

α1
kj1j2 ≤ 1− xnS+k,j2 , k = 1, . . . , nC , (j1, j2) ∈ Hc(k), (33)

α2
kj1j2 ≤ 1− xnS+k,j1 , k = 1, . . . , nC , (j1, j2) ∈ Hc(k), (34)

For a given pair of distinct hospitals (j1, j2) in a couple’s preference list, constraints (33)-(34)

force the αkj1j2 variable (the “wild card”) related to one member of the couple to take value 0

if the other member is assigned to the hospital of their choice in another configuration (j1 for

the first member, or j2 for the second).

6 Computational experiments

We report in this section the outcome of extensive computational experiments aimed at (i)

testing the effectiveness of the proposed improvements for HRC-TCH and HRC-TC, and (ii)

provide managerial insights about parameters that might affect the difficulty of the problem

and the optimal matching size. All algorithms were coded in C++, and Gurobi 7.5.2 was used to

solve the ILP models. The implemented software is downloadable from https://doi.org/10.

5281/zenodo.3626706. The experiments were run on an Intel Xeon E5-2680W v3, 2.50GHz

with 192GB of memory, running under Scientific Linux 7.5. Each instance was run using a single

core and had a total time limit (comprising preprocessing, model creation time, and solution

time) of 3600 seconds per problem instance. The large amount of memory allowed us to run

several jobs in parallel. For informative purposes, we also re-ran some of the experiments on

a regular desktop with 16GB of memory and we report that no significant difference in terms

of average computing time or number of instances solved to optimality was observed. The

instances that were randomly generated are downloadable from the online repository http:

//researchdata.gla.ac.uk/953/.
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6.1 Instance generation

In many instances of HRCT, it can be assumed that agents establish their ranking based on

their own individual preferences. However, sometimes it is the case that agents’ preferences are

formulated on the basis of objective criteria. For example, in a specific variant of MAX-HRC-

TCH that arose in the context of SFAS, hospitals’ preference lists are constructed on the basis

of doctors’ scores. In this situation, the so-called master list, a ranking of all the doctors based

on their grades, is formulated at the outset. We remark that, as doctors are graded individually,

the fact that they are single or in couple does not interfere with the ranking.

For the instance generation, we used the software described in Irving and Manlove [14] for

HRT. The software can generate HR and HRT instances with no master list, and HRT instances

with a master list. To mimic HR instances with a master list, we selected the largest possible

grade range for the doctors allowed by the generator, which is [1, 50 000], and we modified

any duplicated grades so that the instance contains no ties in the hospitals’ preference lists.

To include couples in the instance (with a master list or without) we chose X doctors (where

X is determined by the percentage of couples in the given instance), and we paired them to

form couples. The preference list of a couple c = (i1, i2) is the Cartesian product of its two

single components formed as follows. If (j1, j2) and (j3, j4) are two pairs on c’s list, where(
rdj1(i1), rdj2(i2)

)
= (r, s) and

(
rdj3(i1), rdj4(i2)

)
= (r′, s′), then (j1, j2) precedes (j3, j4) if and

only if either (i) r+s
2 < r′+s′

2 or (ii) r+s
2 = r′+s′

2 and max{r, s} < max{r′, s′}. For example if the

preference list of d1 is h1 h2 h3 and the preference list of d2 is h3 h4 h5, then the preference list

of couple (d1, d2) is:

(h1, h3) [(h1, h4), (h2, h3)] (h2, h4) [(h1, h5), (h3, h3)] [(h2, h5), (h3, h4)] (h3, h5),

if partial assignment for couples is not allowed. If partial assignment is allowed, we add “∅” to

the preference list of each doctor in couple and apply the same procedure. In the given example,

the preference list of couple (d1, d2) becomes:

(h1, h3) . . . [(h2, h5), (h3, h4)] [(h1, ∅), (∅, h3)] (h3, h5) [(h2, ∅), (∅, h4)] [(h3, ∅), (∅, h5)].

In a specific set of instances that we generated, couples only apply jointly to the same hospital

(i.e., for any pair (hi, hj) in a couple’s preference list, hi = hj). In this case, if the preference

list of d1 is h1 h2 h3, then the preference list of couple (d1, d2) is (h1, h1), (h2, h2), (h3, h3), and

the preference list of d2 is simply discarded.

6.2 Model improvements

Considering that the ILP models for the four stability definitions have a similar structure, we

decided to test the improvements introduced in Section 5 (namely preprocessing, valid inequali-

ties, dummy variables and constraint merging) on only one of them. We opted for MM-stability

as it allows us to measure if the aggregated constraints (20) are better than (19). First, we

generated 30 small size instances with 375 doctors, 25 hospitals, 375 positions, preference lists

of size 5, an average of 20% of doctors in a couple (i.e., the last 76 doctors were paired to form 38

couples), where the couples cannot be partially assigned. The tie density on the hospital’s side

was set to 0.85 (the tie density can be interpreted as the probability of an entry in a hospital’s
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list being tied with its successor, see Delorme et al. [9]). We measure the impact of various

combinations of valid inequalities, preprocessing, constraint aggregation, and dummy variables

(associated with single doctors, couples, and hospitals) in Table 4.

Table 4: Comparison of the improvements efficiency for MM-stability on small-size instances

Method Values Model size

index
valid

inequal.
prepro.

stab. cons.

merging

dummy

variables
#opt time

number of

variables

number of

constraints

number of

non-zeros

M1 3 3386 6245 6156 492 715

M2 x 16 2198 6245 8016 501 619

M3 x x 20 1615 4780 6011 253 220

M4 x x x 20 1591 4780 5392 184 016

M5 x x x S 21 1517 5696 6308 186 135

M6 x x x S + priority 16 2065 5696 6308 186 135

M7 x x x C 21 1558 5301 5913 174 528

M8 x x x C + priority 18 1851 5301 5913 174 528

M9 x x x H 30 17 5026 5638 39 721

M10 x x x H + priority 30 19 5026 5638 39 721

M11 x x x C, H 30 12 5547 6159 25 670

M12 x x C, H 30 14 5547 6778 27 527

M13 x x x S, C, H 30 11 6463 7075 26 873

The “Method” columns detail the combination of options, with some attributes describing

the specific implementation: “index” identifies the method while “valid inequalities”, “pre-

processing”, “stability constraint merging” and “dummy variables” indicate the inclusion or

otherwise of the corresponding feature in the model. The letters “S”, “C”, or “H” note whether

dummy variables were used for Single doctors (ws
il), Couples (wc

kl), or Hospitals (wh
jl), respec-

tively. When “priority” is used, it means that we asked the solver to branch first on the dummy

variables. The two following columns give some indicators of the performance of each method:

the number of optimal solutions found and the average CPU time over all runs (including the

ones terminated by the time limit), where all timings reported in this section are in seconds.

The last three columns report some details about the model size: average number of variables,

constraints, and non-zero elements.

The results in Table 4 show that:

• M1 (the ILP model without any improvement) solves only 3 instances.

• The valid inequalities are very useful as they allow the solver to find 13 additional optimal

solutions.

• The preprocessing offers an improvement, as it reduces by roughly 25% the number of

constraints and variables in the model.

• Using the merged constraints (20) over (19) brings a marginal improvement: we barely

notice any difference between M3 and M4, and between M11 and M12.

• Dummy variables are extremely useful when they are used on the hospitals. They seem

to have a marginal effect on single doctors and couples.

• Giving a high priority to the dummy variables does not help the solver.
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• The best configuration M13 uses valid inequalities, preprocessing, constraint merging, and

all the dummy variables.

Considering these results, we decided to try the best algorithms: M9, M11, M12, and M13

on larger instances. We generated 30 medium size instances with 750 doctors, 50 hospitals, 750

positions, preference lists of size 10, an average of 20% of doctors in couple, couples cannot

be partially assigned, and a tie density at 0.85. The results obtained by the algorithms are

available in Table 5 and they confirm the comments made previously: the best approach is M13

(followed closely by M11 and M12). We also note that 10 instances could not be solved in one

hour of computing time, even with our best algorithm.

Table 5: Comparison of the improvements efficiency for MM-stability on small-size instances

Method Values Model size

index
valid

inequal.
prepro.

stab. cons.

merging

dummy

variables
#opt time

number of

variables

number of

constraints

number of

non-zeros

M9 x x H 18 2327 32 490 34 090 587 983

M11 x x x C, H 20 1935 36 219 37 818 170 346

M12 x x C, H 20 2025 36 219 42 170 183 403

M13 x x x S, C, H 20 1711 39 611 41 211 169 585

In the rest of this section, all our algorithms will use configuration M13.

6.3 HRC-TC instances

In order to compare the outcomes in terms of matching size and solving time of the different

stability definitions, we first tested them on various HRC-TC instances (i.e., with ties in couples’

preference lists only). We created 12 sets of instances, that are described in Table 6.

Table 6: Parameters of the tested sets of HRC-TC instances

Name Nb. doc. % couples Nb. pos. Nb. hos. Nb. pref. Master list Couple choice Partial assignment

I1 750 20 750 50 10 No Cartesian product not allowed

I2 1500 20 1500 100 10 No Cartesian product not allowed

I3 7500 20 7500 500 10 No Cartesian product not allowed

I4 750 20 750 50 10 Yes Cartesian product not allowed

I5 1500 20 1500 100 10 Yes Cartesian product not allowed

I6 7500 20 7500 500 10 Yes Cartesian product not allowed

I7 20 20 20 3 2 or 3 Yes Only the same hospital not allowed

I8 750 20 750 50 10 Yes Only the same hospital not allowed

I1P 750 20 750 50 10 No Cartesian product allowed

I2P 1500 20 1500 100 10 No Cartesian product allowed

I4P 750 20 750 50 10 Yes Cartesian product allowed

I5P 1500 20 1500 100 10 Yes Cartesian product allowed

The first eight sets of instances I1-I8 do not allow partial assignment of couples. Instance

sets I1-I3 do not have a master list and can be considered as medium, large, and very large

size instances, respectively. Instance sets I4-I6 are the counterpart of I1-I3 when a master list
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is considered. As the stability definitions only vary when couples apply to the same hospital,

we created specific sets of instances I7 and I8 in which the preference lists of the couples are

shortened (i.e., not obtained by the Cartesian product) and contain pairs of duplicated hospitals.

The following four sets of instances, namely I1P , I2P , I4P , and I5P , allow partial assignment of

couples. They are a copy of instance sets I1, I2, I4, and I5, in which the preferences of couples

also include partial assignments (i.e., with “∅”).

We report the results of the three models for MM-, BIS-, and KPR-stability in Tables 7

and 8. We do not provide results for KPR+-stability here, as the model is identical to KPR-

stability in the absence of ties in the hospitals’ preference lists. Columns “Name” indicate the

name of the instance set tested, columns “#opt” indicate how many instances were solved to

optimality or proven to be infeasible. Columns “#inf” indicate how many instances were proven

to be infeasible. Columns “time” indicate the average CPU time over all runs (including the

ones terminated by the time limit). Columns “size” indicate the average matching size (not

including the ones with no feasible matching). Finally, columns “% s” and “% c” indicate the

percentages of single doctors and doctors in couples that are unassigned.

Table 7: Comparison of MM-, BIS-, and KPR-stability definitions on HRC-TC instances

Name
MM BIS KPR

#opt #inf time size % s % c #opt #inf time size % s % c #opt #inf time size % s % c

I1 30 6 29 743.7 0.9 0.7 30 6 35 743.7 0.9 0.7 30 6 28 743.7 0.9 0.7

I2 30 1 35 1486.6 1.0 0.5 30 0 47 1486.7 1.0 0.5 30 0 38 1486.7 1.0 0.5

I3 28 1 2049 7426.7 1.1 0.7 28 1 2069 7426.7 1.1 0.7 29 1 2068 7426.4 1.1 0.6

I4 30 0 6 725.3 2.7 5.8 30 0 5 725.3 2.7 5.8 30 0 5 725.3 2.7 5.8

I5 30 2 12 1443.3 3.1 6.4 30 2 11 1443.3 3.1 6.4 30 2 12 1443.3 3.1 6.4

I6 30 5 70 7215.2 3.1 6.5 30 5 69 7215.2 3.1 6.5 30 5 69 7215.2 3.1 6.5

I7 30 13 0 19.4 2.2 5.9 30 0 0 19.1 2.7 11.7 30 0 0 19.1 2.7 11.7

I8 30 30 1 n/a n/a n/a 30 0 1 725.6 2.5 6.4 30 0 0 726.4 2.4 6.0

The results in Table 7 show that:

• The models can easily solve instances up to 7500 doctors, under any stability definition.

• For instance sets I1-I6, the three models behave similarly in terms of number of instances

solved, average matching size, average running time, and percentage of single doctors and

couples assigned.

• For many instances of sets I7-I8, MM-stability does not admit any feasible matching.

• When preferences are based on a master list, doctors in couples are more often unassigned

(e.g., in I6, 6.5% of the doctors in couples and 3.1% of the single doctors are not assigned).

The opposite phenomenon is observed in the absence of a master list (e.g., in I3, 0.7% of

the doctors in couples and 1.1% of the single doctors are not assigned).

• On average, matching sizes are smaller when preferences are based on a master list (e.g.,

the average matching size for I4 is 725.3 vs 743.7 for I1).

For the case where couples can be partially assigned, the results in Table 8 show that:
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Table 8: Comparison of MM-, BIS-, and KPR-stability definitions on HRC-TC instances

Name
MM BIS KPR

#opt #inf time size % s % c #opt #inf time size % s % c #opt #inf time size % s % c

I1P 30 0 18 744.0 0.9 0.5 30 0 37 744.0 0.9 0.5 30 0 24 744.0 0.9 0.5

I2P 30 0 58 1487.0 1.0 0.3 30 0 66 1487.0 1.0 0.3 30 0 67 1487.0 1.0 0.3

I4P 30 0 7 727.6 2.9 3.2 30 0 7 727.6 2.9 3.2 30 0 7 727.6 2.9 3.2

I5P 30 0 15 1447.8 3.4 3.7 30 0 14 1447.8 3.4 3.7 30 0 14 1447.8 3.4 3.7

• Allowing couples to be partially assigned slightly increases the average matching size (e.g.,

1447.8 for I5P vs 1443.3 for I5).

• Allowing couples to be partially assigned decreases the number of infeasible solutions (e.g.,

0 for I1P vs 6 for I1).

• Allowing couples to be partially assigned decreases the number of unassigned doctors in

couples (e.g., 3.7% for I5P vs 6.4% for I5).

• There is no difference at all between the three stability definitions in terms of average

matching size, average running time, and percentage of single doctors and couples assigned

when couples are allowed to be partially assigned.

In Table 16 in the Appendix we also provide additional information about the model sizes.

Due to the similar structure of the MM-, BIS-, and KPR-stability models, we do not observe

any difference at all for the number of variables and constraints, and a minor difference for the

number of non-zero elements.

6.4 HRC-TCH instances

To outline the main differences among the four stability definitions, we used the six sets of

instances described in Table 9. The first four sets of instances I9-I12 do not allow partial

Table 9: Parameters of the tested sets of HRC-TCH instances

Name
Nb.

doc.

%

couples

Nb.

pos.

Nb.

hos.

Nb.

pref.

Master

list

Tie density/

Grade range
Couple choice Partial assignment

I9 750 20 750 50 10 No 0.85 Cartesian product not allowed

I10 750 20 750 50 10 Yes [1,10] Cartesian product not allowed

I11 20 20 20 3 2 or 3 Yes [1,2] Only the same hospital not allowed

I12 750 20 750 50 10 Yes [1,10] Only the same hospital not allowed

I9P 750 20 750 50 10 No 0.85 Cartesian product allowed

I10P 750 20 750 50 10 Yes [1,10] Cartesian product allowed

assignment of couples. Instance sets I9 is a medium size set without master list and was already

used to test the model improvements. Instance I10 is its counterpart with a master list, where

the doctors have a grade between 1 and 10. In instance sets I11 and I12, couples only apply to
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the same hospital. The following two sets of instances I9P and I10P are a copy of I9 and I10 in

which partial assignment of couples is allowed.

We report the results of the four models MM-, BIS-, KPR-, and KPR+-stability in Table 10.

The meaning of each column is as before (except that Column “#inf” does not appear as no

instance was proven infeasible).

Table 10: Comparison of MM-, BIS-, KPR-, and KPR+-stability definitions on HRC-TCH

instances

Name
MM BIS KPR KPR+

#opt time size % s % c #opt time size % s % c #opt time size % s % c #opt time size % s % c

I9 20 1711 748.7 0.2 0 20 1838 748.6 0.2 0 19 2007 748.7 0.2 0.1 20 1831 748.6 0.2 0.0

I10 30 52 744.1 0.8 0.8 30 87 744.8 0.7 0.7 30 113 744.3 0.7 0.8 30 62 744.0 0.8 0.8

I11 30 0 19.9 0.2 1.7 30 0 19.9 0.2 1.7 30 0 19.9 0.2 1.7 30 0 19.9 0.4 1.7

I12 30 47 744.1 0.8 0.8 30 70 744.3 0.7 0.8 30 103 744.3 0.7 0.8 30 68 744.0 0.8 0.8

I9P 21 1820 748.8 0.2 0 20 1852 748.5 0.2 0.1 21 1667 748.7 0.2 0.1 20 1714 748.6 0.2 0.1

I10P 30 53 744.4 0.8 0.6 30 92 744.5 0.7 0.8 30 60 744.5 0.7 0.7 30 63 744.3 0.8 0.7

The results in Table 10 show that:

• Average size HRC-TCH instances with master list can be easily solved under any stability

definition. Average size HRC-TCH instances without master list are harder to solve.

• For HRC-TCH, the four models behave similarly in terms of number of instances solved,

average matching size, average running time, and percentage of single doctors and couples

assigned.

• No HRC-TCH instance was proven infeasible under any of the stability definition.

• Allowing couples to be partially assigned does not have a significant impact in these

instances of HRC-TCH.

• In HRC-TCH, matching sizes are slightly smaller when preferences are based on a master

list, but to a lesser extent than for HRC-TC.

6.5 Varying instance parameters

In this section we modify some families of instances to study the impact of various parameters

(such as the couple proportion, the tie density, and the number of available positions in the

hospitals) on the models’ solutions and performances. As we observed few differences between

the four stability definitions, for the rest of the section, all tests are done with KPR+-stability.

Note that we also ran the tests with KPR-stability, and no significant difference was observed in

terms of number of instances solved to optimality, number of instances proven to be infeasible,

and average running time.
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6.5.1 Impact of couple proportion

Biró, Irving, and Schlotter [5] noticed that when the couple proportion increased, it was harder

for their algorithms to find an optimal solution. To check whether or not this observation also

applies to our models, we created four copies of instance set I1, and paired 0%, 40%, 60%, and

80% of the doctors to form couples (instead of the 20% from the original set). We applied the

same procedure to I4, I9, and I10 to also have an overview of the impact of the proportion of

couples in the presence of ties and in the presence of a master list.

We report the results of the model for KPR+-stability on the modified I1, I4, I9, and I10

instances in Table 11. The first column indicates the couple proportion, whilst the meaning of

the other columns remains unchanged. The numbers in bold were taken from previous tables

and are added for the sake of comparisons. We remind the reader that KPR+-stability is

identical to KPR-stability in the absence of ties.

Table 11: Impact of couple proportion for KPR+-stability on HRC-TC and HRC-TCH instances

%

couples

I1 – HRC-TC no master list I4 – HRC-TC master list

#opt #inf time size % s % c nb. var. nb. cons. nb. nz. #opt #inf time size % s % c nb. var. nb. cons. nb. nz.

0 30 0 0 744.0 0.8 n/a 2259 3059 6734 30 0 0 727.6 3.0 n/a 2183 2983 6498

20 30 6 28 743.7 0.9 0.7 39 229 40 829 157 046 30 0 5 725.3 2.7 5.8 41 432 43 036 166 087

40 30 6 67 743.3 1.1 0.6 87 140 89 601 361 369 30 3 143 723.3 2.6 5.0 87 951 90 431 363 442

60 30 7 839 743.0 1.2 0.8 133 215 136 548 560 129 28 6 2266 721.9 2.4 4.6 133 543 136 857 560 322

80 4 0 3548 740.3 2.2 1.1 175 455 179 631 742 881 8 0 3541 724.0 1.5 4.0 176 089 180 263 744 990

%

couples

I9 – HRC-TCH no master list I10 – HRC-TCH master list

#opt #inf time size % s % c nb. var. nb. cons. nb. nz. #opt #inf time size % s % c nb. var. nb. cons. nb. nz.

0 27 0 728 748.7 0.2 0.0 5503 6303 20 000 30 0 8 744.4 0.7 0.0 3638 4438 13 075

20 20 0 1831 748.6 0.2 0.0 39 611 41 324 165 573 30 0 62 744.0 0.8 0.8 41 405 43 147 174 640

40 7 0 3212 748.3 0.3 0.1 84 532 87 293 361 009 29 0 1011 743.5 0.8 1.0 85 009 87 754 364 216

60 0 0 3601 0 n/a n/a 129 006 132 794 555 530 28 0 2101 743.2 0.8 1.0 128 625 132 388 555 057

80 0 0 3603 0 n/a n/a 169 967 174 755 734 578 13 0 3312 743 0.9 0.9 169 539 174 318 734 096

For the four sets of instances, the average size of the optimal matching is almost independent

of the couple proportion. However, we observe a strong correlation between the average time

required to solve the instance and the couple proportion. This is due to the sharp increase in the

model size: the number of variables, constraints, and non-zero elements is roughly multiplied

by 5 when the couple proportion goes from 20% to 80%. Thus, the observation made by Biró,

Irving, and Schlotter [5] for HRC is also true for HRC-TCH, and independent of the presence

of a master list.

6.5.2 Impact of tie density

We observed that matching sizes were bigger for HRC-TCH than for HRC-TC, in particular

when a master list is used to order the preference lists of the hospitals. As the master list is

based on the doctors’ grades, the number of distinct grades has a significant impact on the

outcome of the matching. For example, if the grade is between 0 and 100 and rounded to the

thousandths, there are 100 000 distinct grades. In this case, the chances of two doctors having

the exact same grade are extremely small, and the resulting problem instance will have a very
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low tie density. If instead, the grades are rounded to the closest unit, the number of distinct

grades is now 100. As a result, the tie density and the matching size increase.

It is legitimate to favour a doctor over another if the grade of the former is significantly

better than the grade of the latter. However, when this difference is counted in decimals or

hundredths, the significance of this difference is less obvious.

To study the impact of the tie density, we created 6 copies of instance set I4, a set of HRC-

TC instances with distinct (and integer) grades between 1 and 50 000. In each of the new sets,

we reduced the maximum grade range to 5000, 500, 50, 25, 10, and 5 by applying an integer

division by 10, 100, 1000, 2000, 5000, and 10 000, respectively.

We report the results of the model for KPR+-stability on the modified I4 instances in

Table 12. The first column indicates the grade range, the meaning of the other columns remain

unchanged, except for column “td” that indicates the tie density. The numbers in bold were

taken from previous tables and are added for the sake of comparisons.

Table 12: Impact of tie density for KPR+-stability on HRC-TC and HRC-TCH instances

Grade range #opt #inf time size % s % c nb. var. nb. cons. nb. nz. td

[1,50000] 30 0 5 725.3 2.7 5.8 41 432 43 036 166 087 0.0

[1,5000] 30 0 4 725.4 2.7 5.8 41 369 43 094 166 334 2.2

[1,500] 30 0 4 725.9 2.6 5.7 40 997 42 722 165 702 15.3

[1,50] 30 0 4 730.0 2.2 4.4 39 767 41 494 164 963 69.6

[1,25] 30 0 4 733.5 1.9 3.2 39 780 41 508 166 554 84.1

[1,10] 30 0 26 743.4 0.8 1.0 41 603 43 334 175 509 94.0

[1,5] 21 0 1410 749.7 0.1 0.0 45 118 46 850 190 785 97.3

As expected, the average matching size increases as the tie density increases. For example,

by going from 50 000 distinct grades to 50, the average matching size goes from 725.3 to 730.

We also observe that the models take longer to solve for instances with 10 distinct grades or

fewer. There are even unsolved instances with 5 distinct grades. This cannot be attributed to

the model size as the largest model has less than 20% of additional variables, constraints, and

non-zero elements with respect to the smallest model, on average.

6.5.3 Impact of the number of positions

In real-world HRT instances, the number of positions is often similar to the number of doctors

(see the real-world instances in Delorme et al. [9]). In theory, this should ensure that every

doctor gets a position, however we observe in practice that optimal matchings can have a size

that significantly differs from their theoretical upper bound, which is min{
∑

j∈H cj , nD}. This

observation is particularly true for HRC-TC instances with a master list: the average size of

the optimal matchings for I4 was 725.3 (out of a theoretical maximum of 750). In the following,

we call the difference between the average size and the obvious upper bound the “theoretical

difference”. In that case, the theoretical difference is equal to 24.7. To study the impact of

adding or removing positions on the theoretical difference, we created 10 copies of instance

set I1, and added {−5, . . . ,−1,+1, . . . ,+5} to each hospital capacity. Negative capacities are

increased to 0. We applied the same procedure to I4, I9, and I10.

We report the results of the model for KPR+-stability on the modified I1, I4, I9, and I10
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instances in Table 13. The first column indicates the adjustment in the hospital capacities, the

meaning of the other columns remain unchanged, except for columns “t-diff” that indicate the

average theoretical difference value. The numbers in bold were taken from previous tables and

are added for the sake of comparisons.

Table 13: Impact of the number of positions for KPR+-stability on HRC-TC and HRC-TCH

instances

Change

in cj

I1 – HRC-TC no master list I4 – HRC-TC master list I9 – HRC-TCH no master list I10 – HRC-TCH master list

#opt #inf time t-diff #opt #inf time t-diff #opt #inf time t-diff #opt #inf time t-diff

-5 30 0 0 0.0 30 1 1 0.0 30 0 1 0.0 30 0 28 0.0

-4 30 3 0 0.0 30 2 1 0.0 30 0 4 0.0 30 0 48 0.0

-3 30 3 1 0.0 30 2 2 0.6 30 0 99 0.0 30 0 38 0.0

-2 30 4 4 0.0 30 3 3 1.8 30 0 358 0.0 30 0 24 0.0

-1 30 4 11 0.2 30 5 3 7.0 30 0 459 0.0 29 0 158 0.4

0 30 6 28 6.3 30 0 5 24.7 20 0 1831 1.4 30 0 62 6.0

1 30 0 4 0.1 30 0 4 6.8 30 0 122 0.0 30 0 12 0.7

2 30 0 4 0.0 30 1 4 1.4 30 0 42 0.0 30 0 9 0.1

3 30 0 4 0.0 30 0 4 0.4 30 0 11 0.0 30 0 7 0.0

4 30 0 4 0.0 30 0 4 0.0 30 0 5 0.0 30 0 6 0.0

5 30 0 3 0.0 30 0 4 0.0 30 0 4 0.0 30 0 5 0.0

For HRC-TC instances, we observe that the theoretical difference is very low when the

hospital capacities are increased by 2 units, bringing the number of positions to 850 and the

average matching size to 748.6 in the presence of a master list (750 without). The same comment

can be made when the hospital capacities are decreased by 2 units: in that case, the number

of positions is 650 and the average matching size is 648.2 in the presence of a master list (650

without). For HRC-TCH instances, an increase or a decrease of the hospital capacities by one

unit is enough to considerably reduce the theoretical difference. We also notice that instances

with a large difference between the number of positions and the number of doctors are solved

faster by our models. Interestingly, only 1 instance is infeasible when the number of positions

is higher than the number of doctors, while 27 instances are infeasible in the opposite case.

6.6 Summary of the experiments

We empirically showed on a set of 30 small-size instances that the model improvements we

introduced had a significant impact on the time required by the solver to find an optimal

solution. Under MM-stability, the initial model could only solve 3 of the 30 instances in 3386

seconds on average while our best configuration could solve all 30 instances in 11 seconds

on average. Among all the techniques we tested, we empirically observed that (i) the valid

inequalities and the dummy variables associated with the hospitals were the most effective, (ii)

the preprocessing was also useful, but to a lesser extent, (iii) the dummy variables associated

with the single doctors and the couples had a positive, but marginal effect, and (iv) forcing the

solver to branch first on the dummy variables had a negative impact. Additional experiments

on medium-size instances confirmed these conclusions. As the ILP models for the four stability

definitions have a similar structure, the same outputs can be expected for BIS, KPR, and
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KPR+-stability definitions.

For HRC-TC instances (when ties are only allowed on the couples’ preference lists), we saw

that our best algorithm could solve instances with up to 7500 doctors, 500 hospitals, and 7500

positions under any stability definition in less than an hour. For HRC-TCH instances (when ties

are allowed on the couples’ and the hospitals’ preference lists), we saw that our best algorithm

could solve instances with up to 750 doctors, 50 hospitals, and 750 positions under any stability

definition in less than an hour. For all HRC-TCH and most of HRC-TC instances, we did not

observe any significant difference between the results obtained by the ILP models for MM, BIS,

KPR, and KPR+-stability in terms of number of instances solved, average running time, and

percentage of single doctors and couples assigned. We noticed however for HRC-TC instances

in which the couples’ preference lists only contain pairs of duplicated hospitals, that sometimes

MM-stability does not admit any feasible matching while the other stability definitions do.

Regarding some instance parameters, we observed that when hospitals’ preference lists were

based on a master list, the average time required to solve an instance was significantly shorter,

the average matching size was significantly smaller, and doctors in couples were more often

unassigned, in particular for HRC-TC instances. We also noticed in HRC-TC instances that

when couples were allowed to be partially assigned, the number of infeasible solutions was

smaller, the average matching size was significantly larger, and the number of unassigned doctors

in couples was smaller. In HRC-TCH instances, allowing couples to be partially assigned does

not have any significant impact.

Regarding other instance parameters, we empirically showed that the couple proportion does

not impact the average matching size, but it has a major impact on the average time required

to solve an instance to optimality (instances in which 80% of the doctors are in couples are very

difficult to solve while those with no couples are easier). We also outlined that reducing the

grade range in the instances with master lists could significantly increase the average matching

size, even though it would also make the ILP models take a longer time to be solved. Finally,

we observed that there is often a significant number of unoccupied vacancies when the total

number of available positions in the hospitals is exactly equal to the total number of doctors,

in particular for HRC-TC instances with master list. By allowing only one additional position

per hospital, the number of unoccupied vacancies could be significantly reduced and the time

required to solve the instance to optimality would be shortened.

7 Concluding remarks

We reviewed three stability definitions originally proposed for HRC and we extended them to

HRCT. We also introduced a new stability definition specially tailored for HRCT. We proposed

ILP models for each of the stability definitions that only differ by one set of constraints, to-

gether with a series of model enhancements based on preprocessing, dummy variables, and valid

inequalities. We observed that the enhancements are powerful as they allow more small-size

instances to be solved to optimality (from only 3 out of 30 to all of them) in a reduced amount

of time (from 3386s to 11s). We showed that the stability definition used does not have a ma-

jor impact on the solution quality, but we observed that instances of HRC-TC where couples

apply jointly to hospitals are more likely to have no stable matching under MM-stability than
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under any other stability definition. Even though the latter observation could make one think

that they should favour BIS, KPR, and KPR+ over MM-stability definition, we mention that it

remains the practitioner’s decision to choose the stability definition they believe to be the most

suitable for their application. For example, BIS-stability emerged from the requirements of the

former SFAS matching scheme, while KPR stability was introduced to tackle the needs of the

NRMP.

We showed that our models could easily solve HRC-TC instances with up to 7,500 doctors

and 500 hospitals with or without master list, and HRC-TCH instances with up to 750 doctors

and 50 hospitals. We also outlined some instance parameters that have an impact on the models’

performances: (i) a large difference between the number of positions available in the hospitals

and the number of doctors, a low tie density, and a low percentage of couples make the ILP

models faster to solve; (ii) a high tie density and a higher number of positions available in

the hospitals make the matching size bigger. We leave as future work the search for enhanced

preprocessing algorithms that are specific to a stability definition, the inclusion of a warm start

for the solver based on heuristics that are specific to each stability definition, and the extension

of our models to the Workers / Firms problem, the extension of the HRCT in which doctors

also have a capacity.
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[5] P. Biró, R.W. Irving, and I. Schlotter. Stable matching with couples: an empirical study.

ACM Journal of Experimental Algorithmics, 16, 2011. Section 1, article 2, 27 pages.
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[7] P. Biró, D.F. Manlove, and I. McBride. The Hospitals / Residents problem with Couples:

Complexity and Integer Programming models. In Proceedings of SEA ’14: the the 13th

International Symposium on Experimental Algorithms, volume 8504 of Lecture Notes in

Computer Science, pages 10–21. Springer, 2014.

[8] D. Cantala. Matching markets: the particular case of couples. Economics Bulletin, 3(45):1–

11, 2004.
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Appendix

Acronym Meaning

CH a blocking coalition in HRC/HRCT between a Couple of doctors and the same Hospital

CHH a blocking coalition in HRC/HRCT between a Couple of doctors and two distinct Hospitals

KPR-stability Stability definition introduced by Biró, Irving, and Schlotter in [5]

HR Hospitals/Residents problem

HRC Hospitals/Residents problem with Couples

HRC-TC Hospitals/Residents problem with Couples and ties in the couples’ preference lists only

HRC-TCH Hospitals/Residents problem with Couples and ties in the couples’ and hospitals’ preference lists

HRCT Hospitals/Residents problem with Couples and Ties

HRT Hospitals/Residents problem with Ties

ILP Integer Linear Programming

KPR-stability Stability definition introduced by Kojima, Pathak, and Roth in [20]

MM-stability Stability definition introduced by McDermid and Manlove in [28]

NRMP National Resident Matching Program

SFAS Scottish Foundation Allocation Scheme

SH a blocking pair in HRCT between a Single doctor and a Hospital

Mathematical notation Meaning

cj capacity of hospital j

C set of Couples of doctors

D set of Doctors (single or in couple)

D(j) set of Doctors acceptable for hospital j

D≤
i (j) set of Doctors that hospital j ranks at the same level or better than doctor i

D<

i (j) set of Doctors that hospital j ranks strictly better than doctor i

D=

l (j) set of Doctors acceptable for hospital j with rank l

gs(i) number of distinct ranks (or ties) for single doctor i

gc(k) number of distinct ranks (or ties) for couple k

gh(j) number of distinct ranks (or ties) for hospital j

H set of Hospitals

H(i) set of Hospitals acceptable for doctor i

Hs=

l (i) set of hospitals acceptable for single doctor i with rank l

Hc=

l (k) set of pairs of hospitals acceptable for couple k with rank l

H≤
j (i) set of Hospitals that doctor i ranks at the same level or better than hospital j

M a Matching

rD
j (i) rank of hospital j for doctor i

rH
i (j) rank of doctor i for hospital j

S set of Single doctors
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Table 14: Feasible matching for instances with two single doctors, one couple, and no ties

h1 c1
Splittable couple* Unsplittable couple**

KPR, KPR+ and BIS MM KPR, KPR+and BIS MM

AaBC
2 Aa Aa Aa Aa

3 AaB AaB AaB AaB

ABaC
2 AB, Ba AB BC ∅
3 ABa ABa ABa ABa

ABCa
2 AB AB BC BC

3 ABC, BCa ABC BC ∅

BAaC
2 BA, Ba BA, Ba BC BC

3 BAa BAa BAa BAa

BACa
2 BA BA BC BC

3 BAC, BCa BAC BC ∅

BCAa
2 BC BC BC BC

3 BCA, BCa BCA, BCa BC BC

* preference list of (A, a) is (h1, h1)[(h1, ∅) (∅, h1)]

** preference list of (A, a) is (h1, h1)
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Table 15: Feasible matching for instances with two single doctors, one couple, and ties

h1 c1
Splittable couple* Unsplittable couple**

KPR and BIS KPR+ MM KPR and BIS KPR+ MM

[AaBC]
2 all-2 all-2 all-2 Aa, BC Aa, BC Aa, BC

3 all-3 all-3 all-3 AaB, AaC, BC AaB, AaC, BC AaB, AaC, BC

A[aBC]
2 all-2 \{BC} Aa, AB, AC Aa, AB, AC Aa, BC Aa Aa, BC

3 all-3 AaB, AaC, ABC AaB, AaC, ABC AaB, AaC, BC AaB, AaC AaB, AaC

B[AaC]
2 BA, Ba, BC BA, Ba, BC BA, Ba, BC BC BC BC

3 BAa, BAC, BaC BAa, BAC, BaC BAa, BAC, BaC BAa, BC BAa, BC BAa, BC

[AaB]C
2 Aa, AB, aB Aa, AB, aB Aa, AB, aB Aa, BC Aa, BC Aa, BC

3 AaB AaB AaB AaB AaB AaB

[ABC]a
2 AB, AC, BC AB, AC, BC AB, AC, BC BC BC BC

3 ABC, BCa ABC, BCa ABC, BCa BC BC BC

[AB][aC]
2 AB, Ba AB, Ba AB, Ba BC BC BC

3 ABa, ABC, BaC ABa, ABC ABa, ABC AaB, BC AaB AaB

AB[aC]
2 AB, Ba AB, Ba AB BC BC BC

3 ABa, ABC, BaC ABa, ABC ABa, ABC ABa, BC ABa ABa

BA[aC]
2 BA, Ba BA, Ba BA, Ba BC BC BC

3 BAa, BAC, BaC BAa, BAC BAa, BAC BAa, BC BAa BAa

[AB]aC
2 AB, Ba AB, Ba AB, Ba BC BC BC

3 ABa ABa ABa ABa ABa ABa

[AB]Ca
2 AB AB AB BC BC BC

3 ABC, BCa ABC, BCa ABC BC BC ∅

A[aB]C
2 Aa, AB, aB Aa, AB Aa, AB Aa, BC Aa Aa

3 AaB AaB AaB AaB AaB AaB

B[AC]a
2 BA, BC BA, BC BA, BC BC BC BC

3 BAC, BaC BAC, BaC BAC, BaC BC BC BC

* preference list of (A, a) is (h1, h1)[(h1, ∅) (∅, h1)]

** preference list of (A, a) is (h1, h1)

Table 16: Model sizes for MM-, BIS-, and KPR-stability definitions on HRC-TC instances

Name
MM BIS KPR

nb. var. nb. cons. nb. nz. nb. var. nb. cons. nb. nz. nb. var. nb. cons. nb. nz.

I1 39 229 40 829 160 490 39 229 40 829 157 160 39 229 40 829 157 046

I2 78 358 82 020 318 390 78 358 82 020 315 077 78 358 82 020 315 017

I3 389 750 409 843 1 574 302 389 750 409 843 1 570 967 389 750 409 843 1 570 956

I4 41 432 43 036 170 144 41 432 43 036 166 215 41 432 43 036 166 087

I5 81 141 84 817 330 197 81 141 84 817 326 389 81 141 84 817 326 327

I6 403 535 423 771 1 632 563 403 535 423 771 1 628 462 403 535 423 771 1 628 448

I7 86 102 251 86 102 242 86 102 241

I8 12 946 12 596 55 465 12 946 12 596 41 020 12 946 12 596 38 594
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