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Abstract
Radar micro‐Doppler signatures have been proposed for human monitoring and activity
classification for surveillance and outdoor security, as well as for ambient assisted living in
healthcare‐related applications. A known issue is the performance reductionwhen the target
is moving tangentially to the line of sight of the radar. Multiple techniques have been
proposed to address this, such as multistatic radar and to some extent, interferometric (IF)
radar. A simulator is presented to generate synthetic data representative of eight radar
systems (monostatic, circular multistatic and in‐line multistatic [IM] and IF) to quantify
classification performances as a function of aspect angles and deployment geometries. This
simulator allows an unbiased performance evaluation of different radar systems. Six human
activities are considered with signatures originating from motion‐captured data of 14
different subjects. The classification performances are analysed as a function of aspect
angles ranging from 0° to 90° per activity and overall. It demonstrates that IF configurations
are more robust than IM configurations. However, IM performs better at angles below 55°
before IF configurations take over.

1 | INTRODUCTION

Radar signatures, in particular, micro‐Doppler (mD) signatures,
have attracted significant interests for classification of human
activities, both in the outdoor environments for security and
surveillance, and in the indoor environments for healthcare and
assisted living applications [1,2].

An issue for classification based on mD signatures is the
performance reduction for targets’ trajectories tangential to the
radar lineof sight, as themDfrequency shifts are reduced, and it is
challenging to extract informative features from the data. For
example, Tahmoush [3] showed that mD classification perfor-
mancedropped to40%athigh aspect angles, and references [4–7]
analysed the classificationperformance and limitations due to the
aspect angle.When the target is notwalking in the radial direction,
depending on the aspect angle, the salient features for classifica-
tionmay change, and the accuracy of classification reduces as the
target velocity gets closer to the tangential direction. In [8], a

monostatic radar is used to classify human activities at 0°, 45° and
90° yielding 96%, 97% and 91% accuracy, respectively, using
convolutionalneuralnetworks(CNN).Thiswas increasedto98%
whenthedirectionsare fused,but thiswouldrequire four separate
radar systems to acquire data sequentially to avoid interference as
opposed to using multiple views simultaneously with multistatic
radar.

As monostatic radar can only observe well the radial
component of themD signal, multiple cooperating radar sensors
have been suggested to enhance the classification of mD sig-
natures. This provides additional information from multistatic
perspectives, at the price of increased system complexity to
synchronise the different nodes [9–11] separated by a baseline
(the distance between nodes, e.g. transmitter to receiver in the
bistatic case). For example, in [12], the authors proposed two
methods for personnel recognition and gait classification using
deep CNN based on measured multistatic radar (in‐line with a
baseline of 50m – 3 receivers and a transmitter at the centre) mD
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signatures and obtained 99% accuracy and showed superior
performances compared to any of the nodes separately by 5% to
8%. However, the target aspect angle exploration is limited to
15°. Multistatic radar with fusion is shown in [13] for aspect
angles at 0°, 30°, 60°, 120°, 180°, 210°, 240° and 300° with
respect to the central radar node. The radar configuration is in‐
line with a baseline of 40 m (3 receivers and 1 transmitter on the
far right with the 3rd receiver). This showed that significant
performance accuracy could be achieved when using separate
classification at each node followed by a voting procedure to
reach the final decision, which was beneficial, especially at aspect
angles less favourable for mD feature detection. This method
achieved about 90% accuracy using feature extraction cepstrum
coefficients, principal component analysis, K‐nearest neighbour
and Naïve Bayes classifiers. An early implementation of simu-
latedmultistatic radar mD signatures from the Boulic model [14]
for walk is presented in [15]. It shows how noisier data and the
fusion of the mD signatures of several nodes together may
improve the quality/clarity of themDsignature in comparison to
only one node considering aspect angles at 0°, 30° and 75°.

Interferometric (IF) information has also been suggested
as an alternative/complementary technique. Nanzer [16], pre-
sented an analysis of the angular velocity measurement of a
person who is walking via a millimetre‐wave correlation
interferometer, which also covered the IF measurement theory
of angular velocity and the frequency response simulations of a
walking human participant. The IF channel provided infor-
mation about the target angular velocity. This IF signature is
more pronounced as the baseline between the antennas is
increasing. In [17], a 29.5 GHz IF radar prototype was tested,
and IF signatures of a person walking clockwise or counter-
clockwise were generated experimentally validating the theory
developed in [16]. In [18], the frequency shifts imparted on the
signal in both Doppler and IF detection modes were measured
in the time‐frequency domain. They showed that as the tra-
jectory moved from a completely radial motion to completely
angular motion, the Doppler frequency shift decreased.

In contrast, the IF frequency shift increased for the walking
action. Hence, these two detection modes can represent com-
plementary measurements, improving the ability to measure the
motion of randomlymoving objects. Reference [19] showed that
the IF radar signal is mathematically similar to that of a Doppler
radar and that the time‐frequency responses of bothmodes (mD
and IF) to a walking human had similar characteristics for clas-
sification purposes. In [20], the use of this technique was also
applied to unmanned aerial vehicles (UAVs), showing that when
the mD signature diminished, the IF signature increased,
therefore, maintaining salient information at any aspect angle.
The authors in [21] presented a Viterbi algorithm to estimate the
instantaneous frequency, and the echo signals decomposed with
intrinsic chirp component decomposition. These resulting
separated signatures were then analysed through feature
extraction to recover the target trajectory in the IF plane. In [22],
an analytical demonstration backed by simulations and experi-
ments, the effectiveness of the IF measurement when the blades
of a UAVwere rotating in the plane 90° from the radial direction
was demonstrated. All these studies show promise for

classification purposes using the IF modality, and this is further
reinforced for human gesture recognitionwith experimental data
in [23]. The study is missing a benchmark to evaluate the
effectiveness of the IF sensing modality against monostatic and
multistatic radar for varying aspect angles.

The focus of this study is on the benchmarking of human
activity recognition using different radar geometries with
respect to aspect angle. Improving neural networks for human
activity recognition or deriving detection estimation theories is
out of the scope of this study.

Figure 1 summarises the state‐of‐the‐art in human activity
recognition using radar with either simulated or measured data,
considering the different domains of radar data representations
based on [1,2,6,24,25]. The research community has mainly
focused on mD signatures for human radar classification. Still,
this domain has shown limitations to distinguish between ac-
tivities showing similar radial acceleration with respect to the
radar, a.k.a., confusers. Multistatic radar has been used to
enhance classification accuracy with confusers and to tackle
aspect angle issues, but the IF sensing modalities have seldom
been used in the study. The specific contributions of the
proposed bespoke simulator are:

� The benchmarking of the classification accuracy of eight radar
geometries per activity and overall as a function of aspect
angle ranging from 0° to 90° for six different activities.

� The robustness analysis of the reduction of the baseline of
in‐line multistatic (IM) radar and IF radar with respect to
aspect angle for indoor use.

This enables us to predict and compare classification per-
formances for different radar approaches and aspect angles,
providing useful pointers for practical deployment and most
favourable geometries before performing experimental study.

The focus of this study is on the Doppler‐time represen-
tations (mD signatures) and by association IF data often seen
as complementary and alternative to mD. Several techniques
have been used on mD signatures as it represents the majority
of contributions on human activity recognition with radar to
date. The classification techniques include Bi‐LSTM [25],
LSTM [26], SGRU [27], SAE, CAE [2], CNN [28,29] and
MFCC/FWCC [6,29] leading to increasingly better perfor-
mances. One aspect of deep learning that seems common to all
the reviewed studies is the importance of having networks that
converge and do not overfit to the training data. This is further
reinforced by recent study on simulated data to improve the
performances of deep neural networks for transfer learning to
improve accuracy for a limited amount of data, as is usually the
case in radar [30]. The authors tested the accuracy of the
networks depending on the depth of the networks and have
concluded that shallower networks performed better if data are
not available or augmented to the required amount. For this
study, a shallow CNN network (LeNet‐5 [31]) has been
selected to perform the transfer learning from optical recog-
nition to radar activity recognition.

The remainder of this study is organised as follows. Sec-
tion 2 describes the methodology to establish the simulation
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and classification framework. Section 3 presents the kinematic
validation of the simulator. Section 4 presents different fre-
quency responses and compares the results between the eight
radar systems. Finally, conclusions are given in Section 5.

2 | METHODOLOGY OF THE
SIMULATOR

A framework to simulate and compare performances of eight
radar systems, was developed, including monostatic radar
(mono): relying onmDsignatures fromasinglemono radar node;
circular multistatic radar (CM) (Figure 2(a)): using three separate
nodes, whose results are fused for classification purposes using a
majority voting approach; IM radar (Figure 2(b) black and red):
using three separate nodes with baselines of 2 (IM2), 5 (IM5) and
10 m (IM10), whose results are fused for classification purposes
using amajority voting approach; and IF radar (Figure 2(b) black
andblue): using tworeceiverswithbaselinesof2 (IF2), 5 (IF5) and
10 m (IF10), whose results are fused with their IF response for
classification using a majority voting approach.

Figure 3 shows the expected Doppler shifts for a carrier
frequency of 9.8 GHz for a target at 1 m/s at the centre of the
scene at varying aspect angles based on the theory described in
[11,13]. The circular configuration was chosen at 0°, 45° and
90° as is offered more diversity in Doppler shifts for a more

robust classification compared to narrower bistatic angles with
a transmitter placement on the side as in [15]. The in‐line
configuration is inspired by [12] and Figure 3(a) shows the
most extensive variation in Doppler shifts with a baseline of 10
m. As for the IF channel, the configuration is inspired by [19].

The performance comparison is based on the accuracy of
classification for six human motions where the aspect angle θ
between the target heading and the radar line of sight changes
from 0° to 90° with 5° per step in rotation. The details of the
geometry of the different radar setups are shown in Figure 2
and associated Doppler shift at the three receivers are shown in
Figure 3. It is important to note that the target may be
translating, and the aspect angle does not remain constant.
Instead, the heading of the target is considered to define the
aspect angle.

The six classes of motions considered include (I) walking;
(II) forward jumping; (III) kicking; (IV) sitting and standing;
(V) running; (VI) walking on uneven terrain. These data
originate from the Carnegie Mellon (CMU) motion capture
(MoCap) database [28,32], or the HDM05MoCap database
[33]. Motion data in ASF/AMC format were used since this
kind of skeleton‐based data can comprise an explicit skeleton
structure and also ensure that the bone lengths will be con-
stant in the movement [28]. Motion data for head, torso,
pelvis, legs, feet, arms and hands were used to simulate radar
returns.

F I GURE 1 State‐of‐the‐art overview of the human activity classification machine‐learning algorithms with radar as a sensing modality [1,2,6,24,25] – LSTM,
long short‐term memory; Bi‐LSTM, bi‐directional LSTM; SAE, stacked autoencoders; CAE, convolutional autoencoders; SGRU, stacked gated recurrent units;
MFCC, mel‐frequency cepstrum coefficients; FWCC, frequency‐warped cepstrum coefficients; CNN, convolutional neural network; 3D‐CNN, 3‐dimensional
CNN; MPCA, multilinear principal component analysis
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The motion data was originally captured at 120 frames per
second in the database [28]. To simulate the Doppler frequency
shift without aliasing, the sampling frequency was upsampled
to 2 kHz before the simulation. The animation of human
movement code was modified from the baseline MATLAB
code provided by Chen [34], in particular, to generate multi-
static and IFsignals and signatures.Furthermore, the simulations
are based on an accurate simulation of human motion based on
motion‐captureddatawhich is captured fromlivevolunteers [28–
33]. Therefore, the kinematics of the human activities reflect
natural movements. The radar signatures are based on proven
simulation methods from the seminal work [34], which is
extended using analytical equations for RCS inmono and bistatic
configurations from [35,36]. At last, the theoretical frameworks
for the bistatic and IF channels were demonstrated in [11,16–20].
The radar simulation parameters are carrier frequency 9.8 GHz,

bandwidth 400 MHz and distance to target at the centre of the
scene 7 m.

The resulting IF and Doppler responses are both processed
in the time‐frequency domain using hort‐time Fourier transform
(STFT). The STFTseparates the time‐varying signal into shorter
segments using overlapped Gaussian windows with a length of
256 samples (128 ms at 2 kHz pulse repetition period).

A total of 88 different motion files performed by 14 subjects
from the CMU database were simulated to generate the training
and testing datasets. Thesemotion files were used to generate the
frequency responses at different aspect angles. It was not
possible to have all six actions all the time from the same subject
due to the intrinsic limitations of this dataset. Samples from
every trial data were divided as 1‐second long snapshots to in-
crease the size of the dataset. Every class has 80 samples, and
hence, the total samples are 480 (Table 1). Around 75% of the
data was used for training, and 25% for testing.

CNNs use spectrograms/interferograms as input for
classification and extract spatial features automatically. The
mono radar system relies only on single mD signatures. The IF
radar system implemented majority voting [37] as a decision‐
level fusion mechanism on the output labels from two mD
signatures, and one IF frequency response. Therefore, it needs
three separate CNNs. The CM/IM radar system also utilised
the same fusion mechanism from three mD signatures from
different radar nodes, hence it also needs three CNNs. In total,
in every tested scenario, one CNN was trained per channel
using the corresponding frequency responses.

The same network structure, as shown in Figure 4, was
adopted in all of the CNNs with only small differences in the
hyperparameters, as given in Table 2. This structure was
inspired from LeNet‐5 CNNs framework [31], and it com-
prises two convolutional layers, two Max pooling layers and
two fully connected layers and can run from a classic laptop
without the support of a graphics processing unit.

3 | SIMULATOR KINEMATIC FIDELITY

The kinematic validity of the simulator is demonstrated using
mono measurements collected by utilising an off‐the‐shelf
frequency‐modulated continuous wave radar system in an in-
door meeting room at the University of Glasgow, where

F I GURE 2 The simulation geometry for:
(a) multistatic radar system—circular configuration
and (b) interferometric radar system (black and blue)
and multistatic radar—in‐line configuration (black
and red)

(a)

(b)

F I GURE 3 The expected Doppler shifts for: (a) the CM configuration
with nodes at 0°, 45° and 90° and (b) the in‐line configuration with a 10 m
baseline (Rx1/Rx2 have the same Doppler shifts in the interferometric case)
for a carrier frequency of 9.8 GHz
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multiple pieces of furniture such as chairs, tables, cupboards,
blackboards and computers were present. The equipment and
experimental scene are the same as those in [7,38]. The radar
AncortekSDR‐kit 580AD was operated at 5.8 GHz, with an
instantaneous bandwidth of 400 MHz and a chirp duration of
1 ms (Doppler frequency range of ±500 Hz). The transmitted
power of the radar was +19 dBm, and two linearly polarised
Yagi antennas (17 dBi, beamwidth of 24° in azimuth and
elevation). The antennas were located at a height of 1.2 m to
aim at the torso of the human subjects, which provided the
strongest contribution to the mD signature. The separation
between the transmitter and receiver antennas was 40 cm. The
experimental data collected from one volunteer performing
four different activities (walking, sitting and standing, circling
arms, bending) at 0° are analysed. The four activities are the

same in the simulation. The distance between the radar and the
target is consistent between experiments and simulations. CM/
IM or IF geometries could not be measured due to a lack of
suitable experimental equipment.

The mD signatures are segmented in 0.5s windows, and five
hand‐made features are selected to compare the simulated sam-
ples with the experimental samples centroid, entropy, skewness,
mean and standard deviation of energy curves looking at their
means and variances [35]. Thousand and two hundred samples
were obtained per activity from themeasured data, totalling 4800
samples.Wegenerated the samenumber of samples in simulation
for validation using a subject with a similar build. A quantitative
comparison of simulated and measured spectrograms at 0° is
shown in Table 3. The statistics of the five aforementioned fea-
tures extracted from the simulated/measured spectrograms are
based on a simulator validation presented in [39]. The mean and
varianceoffeaturesextractedfromeveryactivityarecalculatedfor
all the samples were seen to be comparable.

Based on this qualitative assessment of mono signatures,
methodology and literature, the bespoke simulator is assumed
to be providing signatures that are reflective of the physical
phenomena with kinematic fidelity. This bespoke simulator
does not use generative adversarial networks to generate sig-
natures, as can be seen in [2]. The kinematic fidelity of the
signatures cannot be altered, which could misrepresent the ra-
dar phenomenology, such as abnormal periodicity for a regular
walker without a gait impediment, abnormal limb velocity lower
than torso velocity or Doppler frequencies not matching the
direction of movement.

TABLE 1 Summary of motion data samples from CMU

Actions Number of subjects Number of files Training set Testing set

(I) Walking 3 (subject 02,07,08) 18 60 20

(II) Forward jumping 5 (subject 13,16,83,91,105) 23 60 20

(III) Kicking 1 (subject 144) 4 60 20

(IV) Sitting and standing 2 (subject 13,13) 9 60 20

(V) Running 2 (subject 09,35) 21 60 20

(VI) Walking on uneven terrain 1 (subject 36) 13 60 20

F I GURE 4 Structure of CNN used in this article
as a classifier

TABLE 2 Hyperparameters for CNN

Hyperparameters Value

Learning rate 0.012 ∼ 0.013

Mini batch size 24

L2 Regularisation ratio 0.0005

Dropout rate 0.5

Solver Stochastic gradient descent

Momentum 0.9

Mini batch size 16

Max epochs 150
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4 | RESULTS AND DISCUSSIONS

4.1 | Micro‐Doppler and interferometric
responses examples

For all eight radar systems, the signatures for eachof the receivers
were captured from 0° to 90° with 5° steps in rotation. This
section presents some examples of the signatures to visualise the
phenomenology better. Figure 5 shows themD signatures of the
mono radar system at three aspect angles 0°, 45° and 90°. It can
be observed from the mD signatures that the Doppler spread
and mean decrease as the aspect angle in rotation increases from
0° to 90°. At 90°, the action is barely distinguishable.

In Figure 5, the mD signatures obtained with the CM radar
system at receiver 3 (Rx3) as the aspect angle evolves from 0°
to 90°. Different bistatic angles in CM/IM configurations offer
different results. It can be observed that the IF channel in-
creases in amplitude as the aspect angle increases from 0° to
90°. Also, the greater the baseline, the larger the amplitude
registered as the aspect angle increases.

4.2 | Comparison of different radar systems

These eight radar geometries were compared in classification
accuracy of individual activities I to VI in Figures 6 and 7 and
the overall accuracy in Figure 8 for the scenarios where the
aspect angle changes from 0° to 90° with 5° steps. In every
chosen aspect angle, every network associated with each radar
channel was repeatedly trained 10 times through cross‐valida-
tion, and then the decision level information was fused
through majority voting.

Table 4 shows an analysis of the best configuration per
activity/overall per aspect angle.

4.2.1 | Mono vs. IF10

Mono shows comparable performance in all kinds of motion
with IF10 up to 30° with an overall accuracy difference under
2% up to 30°. It only outperforms IF10 by 1% for walking (I)
at 5° and for sitting (IV) at 25°. At 35°, there is an obvious

TABLE 3 Statistical properties of extracted features from simulated and measured spectrograms at 0°

Features Simulated mean Simulated variance Measured data Measured variance

Walking

Centroid 0.0077 1.6933 x 10‐4 0.0073 2.1802 x 10‐4

Entropy 1.9988 0.0206 2.6491 0.2850

Skewness 11.8347 0.0467 11.3217 0.1390

Mean of energy curves ‒2.7207 x 10‐15 1.1706 x 10‐13 6.0125 x 10‐16 6.2340 x 10‐14

Standard deviation of energy curves 55.0759 2.1238 63.9661 4.6087

Sitting and standing

Centroid 0.0038 0.0038 0.0038 0.0038

Entropy 1.1529 1.1534 1.1154 1.1163

Skewness 5.7820 5.7843 5.7806 5.7820

Mean of energy curves 2.7491 x 10‐16 7.9909 x 10‐14 3.5279 x 10‐16 6.5693 x 10‐14

Standard deviation of energy curves 26.0198 26.0586 39.5610 39.7027

Circling arms

Centroid 0.0026 0.0036 0.0026 0.0036

Entropy 0.6941 0.9822 0.7031 0.9950

Skewness 3.9129 5.5346 3.9125 5.5341

Mean of energy curves 3.0268 x 10‐16 6.1216 x 10‐14 1.5926 x 10‐15 6.6474 x 10‐14

Standard deviation of energy curves 17.6108 24.9513 22.9059 32.4629

Bending

Centroid 0.0018 0.0031 0.0019 0.0033

Entropy 0.6058 1.0520 0.5585 0.9677

Skewness 2.8474 4.9326 2.9025 5.0278

Mean of energy curves –3.6220 x 10‐16 3.9546 x 10‐14 –6.1519 x 10‐16 5.1257 x 10‐14

Standard deviation of energy curves 12.5474 21.7683 16.6133 28.8338
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decrease in accuracy in every kind of motion, especially in
walking on uneven terrain (VI) (∼0.11). The mean accuracy
increase of walking on uneven terrain varies between 7% and
31% (at 85°). Although mono performs best for walking (I)
and performs better in walking (I) and sitting and standing (IV)
compared to other activities at 90° with ∼84%, IF10 has a
∼13% accuracy increase at the same angle. The overall accu-
racy increase of IF10 from 30° is at least 2.5% and up to 18.5%
at 85°.

4.2.2 | CM vs. IF10

CM configuration shows comparable performance in all kinds
of motion with IF10 before 40° with ±1% accuracy difference.
In most of aspect angle schemes, kicking (III) has the best
mean accuracy in CM configuration. The accuracy of IF10 in
kicking (III) increases from 40° by at least 1% at 45° and 65° to
8% at 90°. By contrast, walking on uneven terrain (VI) has the
worst mean accuracy in CM and IF10 configurations in almost
all aspect angles. The accuracy of IF10 increases by at least 3%
at 40° and up to 14% at 60°. The IF10 has the biggest accuracy
increase in walking on uneven terrain (VI). From 40°, its value
increases by at least 3% at 70° up to 19% at 85° with some
fluctuations.

4.2.3 | IM10 vs. IF10

IM10 shows better performance compared with IF10 in
most cases before 55° with an overall variation under ±1%.
IM10 has the worst performance in walking on uneven

terrain (VI) where the mean accuracy decreases to 88% at
90° where IF10 shows an increase of 7%. IF10 from 55°
consistently equates or outperforms IM10 by up to 2% for
walking (I), up to 5% for forward jumping (II), up to 3% for
sitting and standing (IV) and 8% for walking on uneven
terrain (VI). From 55° to 70°, the overall increase in accuracy
provided by IF10 is up to 2%. From 75° to 90°, the contrast
is increasing in accuracy with improvements up to 10% per
activity and 4.3% overall compared with IM10. In terms of
robustness of classification, IM10 has no standard deviation
for walking (I) until 50° (55° for IF10), forward jumping (II)
and running (V) until 40° (10° and 15° respectively for IF10)
and kicking (III) until 70°. Both of them have very low
standard deviations in cross‐validation, but IF10 [0.37; 1.17]
has improved stability over IM10 [0.91; 1.83] from 70° to
90°.

IF10 clearly outperforms the mono configuration at all
angles. Whereas the CM configuration shows comparable
performances up to 40°, the IF10 dominates in perfor-
mance. The IM10 configuration dominates slightly at angles
up to 50° and then the IF10 configuration is dominant
slightly at angles between 55° and 70° and then outperforms
clearly at high angles 75° to 90°. These results have been
obtained with a large baseline 10 m. We, therefore, need to
test the robustness of the IM/IF configurations with smaller
baselines. This is supported by the analysis shown in
Table 4.

4.2.4 | IF5 vs. IF10

IF5 has very similar classification accuracy with IF10,
especially in walking (I), kicking (III) and running (V) with
up to ±2% difference. IF5 shows some minor improve-
ments in accuracy overall at 20°, 25°, 45°, 70° and 90° up
to 0.34%. IF5 shows a degradation in performance with
angles increasing and its performance in walking on uneven
terrain (VI) shows the most apparent decrease with mean
accuracy decreasing to 94% at 90°. By contrast, IF10 shows
a stable performance in walking on uneven terrain (VI) with
a little fluctuation around 96%. IF5 has a graceful reduction
in performance lower by up to 1% overall compared with
IF10. The degradation is most severe [0.8; 1]% at 40, 55‐65
and 75°.

4.2.5 | IF2 vs. IF10

IF2 configuration shows comparable classification accuracy up
to 55° with a degradation of up to 2% compared with IF10.
From 60°, the performance of IF2 decreases drastically espe-
cially in walking on uneven terrain (VI) with a degradation
ranging from 9.6% to 18% and, sitting and standing (IV) with a
degradation ranging from 7% to 12%. The accuracy gap in
forward jumping (II) increases to 10% at 85° and 90°. The
overall classification accuracy of IF2 degrades rapidly from 60°
from 4.7 up to 8.5% compared to IF10.

F I GURE 5 Simulated radar returns for action (II): (a) mD signatures
from the mono radar at aspect angles 0°, 45° and 90°; (b) simulated mD
signatures from the multistatic radar at receiver 3 (bistatic angle 90°) at aspect
angle 0°, 45° and 90° and (c) frequency responses from the interferometric
radar channel with a 10‐m baseline at 0°, 45°and 90°
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4.2.6 | IM5 vs. IM10

IM5 configuration shows similar classification accuracy with a
degradation of up to 1.8% compared with IM10 from 0° to 55°.
The overall accuracy from 60° to 90° experiences a degradation
ranging from 3.5% to 6.4%. The performance of IM5 in walking
onuneven terrain (VI) is not better than IM10 in all aspect angles.
The degradation is most notable for walking on uneven terrain
(VI) with 12.4% for IM5 compared to IM10 at 80° and forward
jumping (II) with 11% degradation at 80°.

4.2.7 | IM2 vs. IM10

IM2 shows similar performance with IM10 before 25° with
±0.3% difference. This degradation in performance for IM2 is
up to 5% from 30° to 55° compared to IM10. From 60°, the

overall accuracy for IM2 drops from 5% to 15% compared to
IM10. After 25°, the IM2 configuration is identical or worse
than IM10 in all motions, and the accuracy gap between them
increases as the aspect angle increases. The accuracy gap in
jumping forward (II) is noticeable where the increase ranges
from 7% at 50° to 21% at 90°. IM10 also shows a visible
increase in walking on uneven terrain (VI) where the accuracy
gap increases to 19% at 90° from 1% at 25°.

4.2.8 | IM5 vs. IF5

IM5 and IF5 show similar overall performance before 55° with
±1.3% difference. The degradation in overall accuracy for IM5
ranges from 3.4% to 8.3% compared to IF5 from 60°. IF5
shows better or equal performances compared to IM5
consistently in walking (I) from 5°, jumping forward (II) from

F I GURE 6 Comparison of the accuracy of the eight geometries (mono, CM, IF10, IM10, IF5, IM5, IF2, IM2) for: (a) activity I―the IF configuration
dominates in high aspect angles (>55°) and IM and IF have 100% recognition up to 50°, (b) activity II—the IF configuration dominates or equates IM in high
aspect angles (>45°), and IM dominates or equates IF up to 40° and (c) activity III—the IF configuration dominates or equates IM in high aspect angles (>65°),
and IM dominates or equates IF up to 65° for the scenarios where the aspect angle changes from 0° to 90° with 5° steps
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35°, kicking (III) from 60°, sitting and standing (IV) from 55°,
running (V) from 70° and walking on uneven terrain (VI) from
45°. IF5 shows noticeable accuracy increases in walking on
uneven terrain (VI) where the accuracy gap increases to 13.8%
at 90° from 1% at 45°.

4.2.9 | IM2 vs. IF2

IM2 shows better performance than IF2 before 35° with an
increase ranging from 0.33% to 1.7%. However, IF2 shows
better performance or marginal degradation compared to IM2
from 40° to 80° from 0.7% degradation up to 4.2% improve-
ment. IF2 shows the biggest accuracy increase at 85° and 90° in
all six motions with at least 7.5% (I), 13.3% (II), 3.2% (III), 6.8%

(IV), 8.5% (V) and 10.4% (VI) improvement, respectively. IF2
outperforms overall IM2 by 9.1% at 85° and 11% at 90°.

This confirms the IM configuration dominates at lower
angles even if by a small margin and that IF dominates more
significantly on higher angles overall because of the contribu-
tions of actions walking (I) and walking on uneven terrain (VI)
as shown in Table 4.

5 | CONCLUSION

Eight radar systems (mono, CM, IF10, IM10, IF5, IM5, IF2,
IM2), for six classes of motions (walking (I), forward jumping
(II), kicking (III), sitting and standing (IV) and walking on
uneven terrain (VI)) were simulated and compared in scenarios

F I GURE 7 Comparison of the accuracy of the eight geometries (mono, CM, IF10, IM10, IF5, IM5, IF2, IM2) for: (a) activity IV―the IF configuration
dominates or equates IM in high aspect angles (>50°) and at 45°, and IM dominates or equates IF up to 40° and at 50°, (b) activity V―the IF configuration
dominates or equates IM in high aspect angles (>40°) except at 55° and 65° where IM dominates, and IM dominates or equates IF up to 40° and (c) activity
VI―the IF configuration dominates or equates IM in high aspect angles (>40°), and IM dominates or equates IF up to 40° for the scenarios where the aspect
angle changes from 0° to 90° with 5° steps
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where the aspect angle to the heading of the target varies from
0° to 90° to the radar line of sight. A total of 88 different
motion data files performed by 14 human subjects from CMU
were simulated to generate corresponding spectrograms and
interferograms. The simulator kinematic validity was demon-
strated as well to ensure the fidelity of the simulations with
respect to measured data. In every scenario, one CNN was
trained per channel to achieve the tasks of classification and
comparison. From the simulation results given in Section 4, the
IF radar with 5 m or 10 m baseline is more robust in perfor-
mance compared to IM with similar baselines. The IM
configuration outperforms slightly or equates the IF configu-
ration for angles up to 55° for overall accuracy. The tendency
changes to IF outperforming slightly or equating IM up to 70°
and then at high aspect angles, IF clearly outperforms the IM
configuration.

IF10 maintains an accuracy of over 97.58% (94.5% for
IM10) overall and 97.08% with IF5 (91.3% for IM5). Even
with a reduction in the baseline, the IF radar maintains good
performances at high aspect angles.

In contrast, the performance degradation for the IM
configuration would not be acceptable for operational deploy-
ment considering indoor applications and would increase the
cost of the system by adding another radar to cover the decrease
in performance at high aspect angle or a different sensing mo-
dality. Additionally, for the IF configuration, the higher the
carrier frequency, the smaller the baseline has to be to enjoy the
same performances. With the advent of millimetre‐wave tech-
nologies, a similar level of performances will be available with a
much smaller form factor for indoor scenarios, whereas IM
would require a significant baseline to maintain good perfor-
mances and may not be suitable for indoor environments.

Future study will look at the feature level fusion for the
implementation of classification to reduce the computational
load, and lightweight implementation of the networks to
reduce their size and time for training and inference.

There is scope for expansion and improvement of the
bespoke simulator to increase realism through the

incorporation of additional details and different movements.
For example, an essential element to consider when simulating
would be the antenna beam pattern and free space losses, as
they do influence the results, especially for large baselines. The
baselines considered here are rather large for indoor moni-
toring. Higher operational frequencies in the millimetre‐wave
region will result in much smaller baselines for more practical
implementations in real life.

Furthermore, this study considered only one target in the
field of view. If two or more targets are in the radar field of
view, the correlation will entangle the signatures. Means to
separate the targets from both channels and match them will
need to be devised before the correlation operation to exploit
the IF channel in multioccupancy scenarios fully.
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