University

of Glasgow

Morgan, C., Paun, I. and Ntarmos, N. (2020) Exploring Contextual Paradigms in
Context-Aware Recommendations. In: 4th IEEE Workshop on Human-in-the-Loop
Methods and Future of Work in Big Data 2020, IEEE Big Data 2020, Atlanta, GA,
USA, 10-13 Dec 2020, ISBN 9781728162515
(doi:10.1109/BigData50022.2020.9377964)

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/226316/

Deposited on 14 January 2021

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/BigData50022.2020.9377964
http://eprints.gla.ac.uk/226316/
http://eprints.gla.ac.uk/

Exploring Contextual Paradigms in Context-Aware
Recommendations

Conor Morgan
School of Computing Science
University of Glasgow
Glasgow, Scotland, UK
2199772m@student.gla.ac.uk

Abstract—Traditional recommendation systems utilise past
users’ preferences to predict unknown ratings and recommend
unseen items. However, as the number of choices from content
providers increases, additional information, such as context, has
to be included in the recommendation process to improve users’
satisfaction. Context-aware recommendation systems exploit the
users’ contextual information (e.g., location, mood, company, etc.)
using three main paradigms: contextual pre-filtering, contextual
post-filtering, and contextual modelling. In this work, we explore
these three ways of incorporating context in the recommendation
pipeline, and compare them on context-aware datasets with dif-
ferent characteristics. The experimental evaluation showed that
contextual pre-filtering and contextual modelling yield similar
performance, while the post-filtering approach achieved poorer
accuracy, emphasising the importance of context in producing
good recommendations.

Index Terms—recommendation systems; context-aware rec-
ommendations; contextual paradigms; user-centred information
models.

I. INTRODUCTION

Recommendation systems, a sub-type of information filter-
ing systems, have been actively used to address the information
overload problem by highlighting relevant items to the users
based on their tastes and previous interaction patterns. As
the popularity of recommendation systems kept growing, the
number of items available for recommendation also increased.
This led to the development of more complex user-item
models, which often capture underlying information about
users or items to improve the quality of the recommendations
and ultimately, the users’ satisfaction and engagement. One of
the dimensions that was explored as part of this process was
context.

Context in recommendation systems is the general situation
that the user is in when interacting with the item; it can take
many different forms like the mood a user is in or where
they are when using the item. Context affects decisions that
we make in our everyday lives, from what to eat to where
to go context is involved in the decision-making process. The
reason for introducing context into recommendation systems
comes from this idea of context affecting other decisions, and
so if a model can utilise context, then the recommendations

This work is supported by the Erasmus+ Programme of the European Union
under the PRIMES project (no. 2016-1-UK01-KA201-024631) and by the UK
Government through an EPSRC grant (no. 509668).

Iulia Paun
School of Computing Science
University of Glasgow
Glasgow, Scotland, UK
iulia.paun @ glasgow.ac.uk

Nikos Ntarmos
School of Computing Science
University of Glasgow
Glasgow, Scotland, UK
nikos.ntarmos @ glasgow.ac.uk

will be more accurate and appropriate. A non-contextual
recommendation algorithm may suggest a horror movie to
watch, which may normally be a good recommendation, but
if the user is with a young child, then given the context, a
horror movie is not a good recommendation.

There are many different ways of including context in a
recommendation system, each with their own advantages and
disadvantages within their methodology. This work investi-
gates the three main paradigms within context-aware models,
providing a detailed evaluation of how each approach can be
implemented under various recommendation tasks. This also
opens the stage for use cases where humans and machines
disagree, and how to model randomness in human decision
making. Furthermore, context-aware recommendation systems
could support users in the decision making process by creating
useful summaries from unstructured data.

A. Problem Formulation

As with traditional recommendation algorithms, there are
a range of methods and approaches to produce context-aware
recommendations. Therefore, given the abundance of options,
it is often difficult to know which model to select for each use
case. One of the main differences across the recommendation
systems is how the context is utilised; is the context used at
the start of the process on the data, is it used afterwards to
alter the recommendations made or is it best to use the context
directly with the system to produce recommendations? These
are some of the key questions that we address as part of this
study.

Datasets for models that contain contextual information are
not as common as datasets without the context, and those that
contain the users’ context may be of unknown quality. Col-
lecting context in datasets often relies on the user submitting
their ratings and data to use which can result in inaccurate
or missing data. Therefore, another problem investigated in
this work is whether the dataset used, and its characteristics
(e.g., sparsity), affect the recommendations made, as well as
the model.

B. Contributions

As part of this work, we investigated how the use and
modelling of the context can impact the quality of the rec-

ommendations. To this end, two context-rich datasets were
sourced and used as part of the experimental evaluation. Our
methodology is comprised of the three main paradigms found
in context-aware recommendations, and led to the following
contributions: (i) built a pre-filtering recommendation system
that modifies the contextual data to be used with a tradi-
tional model to produce recommendations; (ii) investigated
a heuristic-based contextual modelling recommendation algo-
rithm, which incorporates the contextual data with a collabora-
tive filtering nearest neighbour model to create recommenda-
tions; and (7ii) implemented a post-filtering recommendation
system that takes rating predictions from a traditional model
and incorporates context with two different methods to make
recommendations.

II. BACKGROUND

Context-Aware recommendation systems extend the regular
2-dimensional recommendation systems which only use users
and items, to take into account context when generating the
recommendations. Context is a multifaceted concept and has
many different meanings depending on the area of study it is
being used from computer science to linguistics, philosophy,
psychology and other sciences and as such it has been defined
many times [3]. Context in recommendation systems can be
said to be any information signal - e.g. location, time, social
companion, device, and mood- regarding the situation in
which a user experiences or interacts with an item. [5].

Context can be added to the Rating function (eq. 1) that
takes users and items as dimensions, to use context and extend
the function:

R: Users x Items x Context — Ratings (1)

where Users and Items are the complete sets of the users
and items involved, and Context is a set of the different
contextual attributes.

With multiple contexts, there would be multiple contextual
dimensions to the model. This is the multidimensional ap-
proach. In this approach the rating function is shown as a
mapping of a set of w different dimensional values to a rating
[4], as shown in eq. 2.

R: Dy x Dy x ... Dy — Ratings 2)

As the traditional 2-dimensional ratings can be mapped to a
user-item matrix, the multi-dimensional approach is mapped to
a w-dimensional cube. Two of the dimensions will always be
for the user and item dimensions. If d; and d» are the user and
item dimensions and the remaining dimensions are for context,
we can we can define context as an attribute ¢ € C' where C' is
the set of contexts [13]. If there are multiple contexts, ¢; . . . Cy,
this function can rewritten as follows:

R: Users x Items X c¢1... ¢, — Ratings 3)

(a) Contextual Prefiltering (b) Contextual Postfiltering (c) Contextual Modeling

Data Data Data

. UxIxCxR UxIxCxR UxIxCxR
e o]

b

Contextualized Data
UxIxR
2D Recomender 2D Recomender MD Recomender

__ UxI-R — Ux >R — UxIx C-R

Contextual

Contextual
Recommendations
iy, iy, f...

Contextual
Recommendations
iy, Iy, fs...

Recommendations
iq, 3, bs...

Fig. 1. The three methods for using context in recommendation systems: (a)
Contextual Pre-filtering (b) Contextual Post-filtering (c) Contextual Modelling

A. Contextual Paradigms

There are three paradigms for making contextual recom-
mendations (Figure 1). As context aware systems contain an
extra dimension in the rating function (User x Item x Context),
eq. 1, the system can include the context at different points
during the process and each looks slightly different from the
traditional method. The point at which context is included in
the process is the defining characteristic of the three different
paradigms.

Pre-filtering - The context is used to select only the data
points that are the most relevant for the chosen context. The
ratings are pre-filtered for the relevant context and the filtered
set of ratings are used with a 2-dimensional recommendation
system to make predictions.

Post-filtering — The context is ignored at first, recommen-
dations are made using a 2-dimensional model on the whole
dataset, discarding the context dimension. The recommenda-
tions are then filtered or adjusted with an additional step using
the context to create the final predictions.

Modelling — The context is used directly with the rec-
ommendation technique, not before or after as with previous
methods. In pre- and post-filtering, traditional recommendation
systems are employed with context being used to alter the data
before or the results after; modelling is the only paradigm that
provides the most integrated results, however at times, it can
be complex and computationally intensive.

B. Related Work

In context-aware recommendations, there are two main ways
approaches towards pre-filtering: exact pre-filtering and gen-
eralised pre-filtering. Exact pre-filtering (EPF) is the method
of only selecting the data points that have the exact context
as the relevant context for the prediction. The system only
selects the ratings from the initial full set of all ratings that
have the relevant context c. The system then uses the chosen
recommendation model on this reduced dataset and creates
recommendations for ¢ [11]. In sparse datasets, exact pre-
filtering can be problematic and make a dataset even sparser

than it was before. The data will be completely relevant to
the context which is an advantage however, there may not be
enough data to make reliable, accurate recommendations.

Generalised pre-filtering (GPF) was introduced by [1] and
permits a more general filter for selecting relevant data. Instead
of choosing the exact context, generalised filtering allows
similar contextual values to the relevant context to be chosen.
This is to increase the size of the dataset and keep the principle
of the pre-filtering method — to select the data points that have
the most relevant contexts. An example of the method is if
the recommendations are for a movie, the context is “Day
of the week” and the relevant selection is “Wednesday” —
R(Eleanor, The Avengers, Wednesday). There may not
be enough data with the exact filtering method for the same
movie on Wednesday. To generalise it, the context could be
opened up to select “Weekdays” instead of only Wednesday,
giving five possible days for the context instead of just one. A
drawback of this method is that sometimes irrelevant contexts
may still be selected as it is not known exactly how each
context affects the predictions at the time of pre-filtering —
in the example ‘“Monday” may be irrelevant for a movie
on Wednesday but gets selected because of the size of the
generalisation. The scope of the generalisation may need to be
refined through trial and error which can be time consuming
and inefficient.

In post-filtering, the contextual information is ignored, and
a 2-dimensional recommendation model can use all the 2-
dimensional data to create a set of recommendations. Context
is then used to filter and adjust the output of the 2D model.
When removing the context, if a user has multiple ratings
for the same item in different contexts, the average rating for
the item over each context is used e.g a user has rated an
item in 3 different contexts: Morning, Afternoon, Evening,
the average of each rating in the 3 contexts will be used
as the rating for the user and item combination in the 2D
recommendation algorithm [4]. Post-filtering, like pre-filtering,
allows the use of any traditional recommendation system to
create the predictions and post-filtering uses the context of the
data to alter the recommendations.

Panniello et al. [12] show 2 methods which can be used for
post-filtering: weight and filter. Both methods rely on creating
a model that analyses the original, contextual data to find usage
patterns and use this to contextualise the recommendations.
The contextual probability Py (u,4) that a user u selects item
i in context k is calculated and this probability is used to
weight or filter the predictions from the 2D recommendation
system. Contextual probability is calculated by the number of
neighbours (customers similar to «) who purchased the same
item ¢ in the same context k, divided by the total number
of neighbours. Both approaches use the contextual probability
however in slightly different ways as shown in [11].

There have been a number of heuristic based methods
developed for context-aware recommendations developed from
the turn of the century. [2] proposed to extend the traditional
neighbourhood-based approach to the multidimensional case
with context. The extension was to use a multidimensional

distance metric in the algorithm when calculating similarity
metrics, instead of the standard user-user similarity. [10] pre-
sented a new method called Contextual Neighbours which is
based on collaborative filtering. The method involves creating
a contextual profile for each user w in context ¢, Prof(u,c)
and using the profiles of each user to find the nearest neigh-
bours for user u. The profiles are used to define similarity
between users and find the nearest neighbours. The similarity
is calculated by using the cosine measure as this is a popular
collaborative-filtering approach.

The study in [16] proposed 2 contextual modelling methods
in Differential Context Relaxation (DCR) and Differential
Context Weighting (DCW). DCR treats the recommendation
algorithm as a collection of functional components and applies
context relaxation differently in each component. An example
of relaxation is if there is a context element Time with values
{Morning, Afternoon, Weekend} and Location with {Home,
Cinema}, and the relevant context is the {Morning, Home}.
If the data with context {Morning, Home} was too sparse,
relaxation would allow other similar contexts to be included
as relevant even though they are not a direct match. This
could allow, depending on the relaxation, {Morning, Home}
and {Morning, Cinema} to be classed as relevant context.
This is similar to the method of generalised pre-filtering in
[1] but this context relaxation is happening directly with the
recommendation system and the context is being used by the
system too. DCR extends Resnick’s algorithm for k-Nearest
Neighbour user-based collaborative filtering [14] and Pearson
correlation as a similarity measure.

DCW is evolved from DCR and has many similarities. DCW
introduces weighting vectors, a collection of weights, which
are used to scale the contribution of each context element to
the algorithm. The weights are used with a similarity metric
to calculate how similar different ratings contexts are and
depending on the similarity, the context is given a score. This
score is used to weight the influence the rating has on the
prediction. This system allows more of the dataset to be used
to create results with only contexts with similarities below a
threshold not being used.

Latent Factorisation models can but used for context-aware
recommendations. Matrix factorisation is based on the 2-
dimensional user-item matrix and so to include the contex-
tual dimensions, a multidimensional cube is used for each
additional dimension of context. Tensor factorisation is then
used to factorise the multidimensional cube in the same way a
matrix factorisation model would the 2D matrix, and so tensor
factorisation methods can be thought of as contextual versions
of matrix factorisation methods [4]. An example of tensor
factorisation is the Multiverse Recommendation model by [8]
which uses different types of context for additional dimensions
in the tensor, leading to a compact model of the data to provide
context aware recommendations. Tensor factorisation models
can be complex and resource intensive when the data and
dimensions get large.

III. EXPERIMENTAL METHODS

When context needs to be incorporated into the recom-
mendation systems and there are three methods for how to
include it: the context can be used at the start of the process
to filter the dataset and select the relevant ratings with the same
context before being passed to a 2D recommendation model;
the context can be used at the end of the process to modify
ratings after a 2D recommendation system makes predictions
based on the data with context values removed; the context
can be used directly with the recommendation algorithm
to create a multi-dimensional recommendation system and
produce recommendations.

A. Pre-filtering Paradigm

For this study, EPF was used to filter the dataset. EPF
was chosen over GPF to use because all the data chosen is
known to be exactly relevant to the user’s context; GPF has
the possibility of adding noise to the recommendation system
with some contexts that are not completely relevant. This
project is focused on comparing different methods of using
context in recommendation systems and EPF is the purest
pre-filtering approach and it was decided that it would be the
best representation of the advantages and disadvantages of the
approach.

The design for EPF meant the dataset was split into different
sets, with each set containing the exact same set of context
attributes as the other data points in the set. Each context
set had their context removed and the users, items and ratings
were passed to the model. The recommendation algorithm was
a pre-packaged system from Surprise [7]. Each set was split
into train and test sets and the recommendation model was
trained on the training set and used the test set to output a set
of predictions. The model predicted a score for each user-item
in the test set and created a set of predictions for each group
of contexts. The predicted ratings were compared against the
value of the true ratings from the test set.

B. Post-filtering Paradigm

To generate the ratings for this work, the context variables
were removed from the dataset before the whole dataset was
split into train and test sets. The full train set was used to
train the recommendation model and then the test set was
used to generate a set of predictions. These predictions are the
focus for the post-filtering stage and the original dataset with
the context values are used too. It was decided to implement
both Weight and Filter post-filtering methods as both methods
rely on the calculation of the Contextual Probability(Py (u, 7).
Once the contextual probability is calculated then it is trivial
to implement either of the methods so both were chosen to
compare the different versions of the same model.

Contextual Probability(Py(u, 7)) is defined as the number of
neighbours (customers similar to u) who purchased the same
item ¢ in the same context k, divided by the total number
of neighbours. Every prediction contains the user and item
the prediction is made for, plus the predicted rating. For each
prediction, Pj(u,%) is calculated for the user and item and

the context the rating was made in (taken from the original
dataset). Py (u,1) refers to neighbours in its definition and so
each user has a set of neighbours that needs to be found. The
method in [12] was followed to identify the neighbourhood.
The neighbourhood was found by using the cosine similarity
on the context values of ratings in the dataset and the target
context k. The users that had the most similar contexts were
added to the neighbourhood. Each neighbourhood was limited
to a certain size afterwards, with the exact size depending on
performance.

C. Modelling Paradigm

Differential Contextual Weighting (DCW) from [16] was
used as the model to create context-aware recommendations.
DCW was chosen as the model to use because of it’s
interesting concept of being able to assign weightings to
contexts, meaning contexts can be chosen to have more of
an effect on the model. Assigning weightings to features in
recommedantion systems is not a new idea, however applying
the weighting to contexts in the system is a novel approach.
Each context variable will affect the overall rating in different
manners, with some having a greater effect than others and
having the ability to weight these ratings provides the chance
to find the best combination of contexts for the most accurate
results. The weighting system also has the advantage of using
all the ratings in the dataset and assigning each a score based
on similarity, not filtering out or removing data which could
negatively affect sparse datasets.

The results by DCW in papers [6], [15] are promising and
are showing low error scores compared to other contextual
models and traditional recommendation systems; one paper
showed a comparison of two related differential context mod-
elling techniques and DCW provided the best results [16].

DCW is a heuristic, neighbourhood-based collaborative fil-
tering model that incorporates weighting vectors when com-
paring similarity of contexts to control the contribution of each
contextual feature to the algorithm. The weighting vectors are
a collection of weights and are used to scale the contribution
of each context element to the algorithm. They calculate the
similarity of contexts and assign a score to all ratings based
on context, instead of filtering out ratings. The similarity of a
context and the given context is calculated with the weighted
Jaccard Metric. If the similarities are above a certain threshold
then the context is relevant, and the rating can be used. Also,
the score is used to weight the ratings, in that a higher
similarity score gives a higher weighting as it is thought that
the rating will be more valuable to the system.

The weighting is the main focus of this algorithm and
so a weighting vector is predefined for the algorithm. Each
contextual attribute gets assigned a weighting in the range 0-1
and this is used to weight the attribute, for example if there are
2 contextual attributes {Time, Social} with a set of values that
each context can have. The weighting vector could be [0.75,
0.25] assigning a weight of 0.75 to the Time attribute and 0.25
to the Social attribute when calculating similarity between the
contexts.

IV. EVALUATION
A. Datasets and Evaluation Metrics

The first dataset used during implementation was the LDOS-
CoMoDa dataset [9]. This is a context-rich movie dataset and
contains ratings for movies and 12 pieces of contextual infor-
mation plus 18 other variables about the movies. The ratings
and the contextual information were acquired explicitly from
the users directly after watching the movie. The contextual
information describes the situation on how the user watched
the movie and is based on real interaction with the movie and
not any hypothetical situations. The values in the dataset are
all integers and any missing data was given a value of -1.
There were unique integer user IDs and item IDs and ratings
were on a scale of 1-5 with 5 being the best.

The DePaul Movie dataset is another context-rich dataset
and was collected by researchers at DePaul University [17].
It has ratings for movies and three context variables — Time,
Location, and Companion. The ratings and context were ac-
quired explicitly by students from the university after watching
the movie. The context is based on the situation the user is
watching the movie in and not off any hypothetical situations
or from memory. Time was based on what part of the week
the movie was watched and the values for time were Weekday,
Weekend; Location gave information on where the movie was
watched with two options of Cinema, Home; Companion gave
information on who the user was with when watching the
movie and had possible values of Alone, Family, Partner. The
ratings are on a scale from 1-5 with 5 being the best, missing
values were represented as “NaN” and the context values were
the text of the value unlike the first dataset. The DePaul dataset
was chosen as it is a much denser dataset than the LDOS-
CoMoDa with a density of 65.8% and should provide more
reliable results.

There were five metrics in total that were used for evaluation
of the models in the work and these were split into error-based
metrics (i.e, RMSE, MAE) and ranking-based metrics (i.e.,
precision, recall, F1 score). Error and ranking metrics were
used in this study as they both give indications of different
properties the results have. Error-based metrics are focused
on the accuracy of the prediction for a specific item. Ranking-
based metrics are only focused on ranking the items in order
of top recommendation to worst recommendation. Ranking
metrics do not consider the value of the prediction when
calculating the metric, the items in the recommended list are
compared with the true recommended list to give a score.

B. Results

From the results shown (Table I), it is not clear as to which
method is the best. Not one method completely dominates
the scores across the set of results in either datasets. With
RMSE and MAE, pre-filtering and contextual modelling have
the best scores with similar scores on LDOS dataset and pre-
filtering the best in DePaul. The ranking metrics tell a different
story however with modelling having better F1 scores for both
datasets, though the scores are again very similar.

Post-filtering methods are the worst across the board with
highest error values and the lowest F1 scores; recall is one
metric where post-filtering does well in and even better than
some other methods, so even describing post-filtering as the
worst is not clear-cut either.

Considering the complexity of the method to create and
use to get predictions from as well as the results, pre-filtering
appears to be the recommended method to use. The pre-
filtering results are very similar to, if not better than those
of contextual modelling, and the complexity of the method
is much lower and more straightforward to get results. If a
strictly ranking only recommendation system is being created,
then the DCW algorithm and contextual modelling may be
worth implementing as it has the best F1 scores across both
datasets.

TABLE I
THE RESULTS FOR THE LDOS-COMODA DATASET AND THE DEPAUL
DATASET. EXACT PRE-FILTERING (EPF), DIFFERENTIAL CONTEXTUAL
WEIGHTING (DCW), POST-FILTERING WEIGHT (PFW) AND
POST-FILTERING (PFF) ARE EVALUATED AGAINST RMSE, MAE,
PRECISION@K, RECALL@K AND F1 @K.

LDOS-CoMoDa

RMSE MAE Precision@k Recall@k Fl@k
= - - 5 10 5 10 5 10
EPF 0.985 0.855 0486 0375 0.829 0903 0.544 0.446
DCW 1.059 0.768 0.606 0.525 0.737 0.862 0.589 0.557
PFW 2.849 2652 0424 0329 0.822 0.899 0482 0.398
PFF 2.188 1.729 0432 0333 0.825 0.898 0487 0.399
DePaul
RMSE MAE Precision@k Recall@k Fl@k
= - - 5 10 5 10 5 10
EPF 1.158 0968 0.719 0.696 0.648 0.839 0.636 0.706
DCW 1.383 1.172 0.674 0.695 0.636 0.876 0.642 0.749
PFW 2.512 2.141 0592 0584 0595 0.798 0.559 0.635
PFF 1.904 1420 0.623 0.602 0.623 0.816 0.588 0.653

The ranking scores for DePaul dataset are better than the
equivalent results in LDOS for precision and F1 whereas
LDOS has better recall scores. When comparing ranking
scores from the same paper [12], the F1 scores in the paper
are values between 0.2-0.5 and are lower than the scores on
both datasets, with Post-filtering having the lowest F1 scores
but still as good as the results from the paper.

There appears to be a trend across both datasets, but mainly
LDOS, that the precision and F1 scores are best when k=5
rather than 10 and the opposite for recall. This trend is
due to the combination of the sparsity of the datasets, and
how precision and recall are calculated. Ranking metrics are
evaluated on the predictions made for each user in the test
set, predictions are made for the whole test set and then the
predictions are split by user to calculate the rankings. Each
user will have a predicted top-k list and an actual top-k list
based off their actual ratings. Depending on the density of
the dataset, users in the test set will have different amounts
of predictions made and this can cause unexpected behaviour.
Some users will have few predictions made for them and so
for some values of k, users may not have enough predictions
for a top-k list.

V. CONCLUSIONS AND FUTURE WORK

This work comprised an evaluation of various methods to
include contextual information into recommendation systems,
namely Contextual Pre-Filtering, Post-Filtering and Modelling
methods were implemented, as well as Exact Pre-Filtering,
Post-Filtering Weighting and Filter methods and Differential
Contextual Weighting (DCW). Two datasets with contextual
information were used to test how the methods performed
on datasets with different data densities and with different
contextual set-ups.

Each method was evaluated with each dataset and on a
series of metrics, both error and ranking-based metrics. From
the evaluation, the best performing method was not clear —
both EPF and DCW had similar results. It was concluded
that the best method to use depends on the situation and
type of recommendations being made. The relative simplicity
and good performance of EPF makes it the choice for all
round recommendation, however the results can be misleading
on sparse datasets. If rankings of items are to be predicted
then DCW is the choice as it outperforms EPF on ranking
metrics and has consistent results across both sparse and dense
datasets, however the algorithm can be complex to implement.
Both post-filtering models were the worst performing for
the error-based and ranking-based metrics, though they did
produce some good recall scores and with the DePaul dataset
the ranking metrics were not far off the best.

The two datasets, LDOS-CoMoDa and DePaul both con-
tained ratings of users for items and had contextual values for
each rating. LDOS was found to be a much sparser dataset and
had fewer ratings to use than DePaul. The two datasets had a
noticeable difference in the results of the models, DePaul had
similar if not lower error scores and higher ranking scores
than the methods with LDOS. This showed that the methods
do not produce the best or most accurate results when using
a sparser dataset.

Context is a broad term and many different things can
fall under its definition, so a possible extension to the work
would be to research if certain types of context are better for
recommendations. For example, “Mood” context is an attribute
of the user and “Location” is to do with the space a user
interacts with the item. Are contexts are directly concerned
with the user, like “Mood”, better indications of a rating than
external contexts, like “Location”. DCW algorithm begins to
look at this with giving different weights to contexts, but
it could be taken further to focus on the different types of
contexts and the effects they have.

Another extension to the study would be to collect a richer
dataset of users, items, ratings and contexts for the purpose of
comparison across recommendation models. The advantages
of collecting a dataset are that the context variables can be
chosen to suit the needs of the recommendation task; the
rating scale can be chosen beforehand, from rating 1-5 or a
simple liked/did not like system could be used; the method of
collecting contexts can be specified to be explicit or implicit
or a combination of both; and the density of the dataset can

be predefined in advance. Sourcing a larger dataset would
facilitate the personalisation of the contexts and features to
the needs and requirements of the users.

REFERENCES

[11 G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. In-
corporating contextual information in recommender systems using a
multidimensional approach, volume 23. Jan. 2005.

[2] G. Adomavicius and A. Tuzhilin. Incorporating Context into Recom-
mender Systems Using Multidimensional Rating Estimation Methods:.
In Proceedings of the 1st International Workshop on Web Personal-
isation, Recommender Systems and Intelligent User Interfaces, pages
3-13, Reading, United Kingdom, 2005. SciTePress - Science and and
Technology Publications.

[3] G. Adomavicius and A. Tuzhilin. Context-Aware Recommender Sys-
tems. In F. Ricci, L. Rokach, and B. Shapira, editors, Recommender
Systems Handbook, pages 191-226. Springer US, Boston, MA, 2015.

[4] C. C. Aggarwal. Context-Sensitive Recommender Systems. In C. C.
Aggarwal, editor, Recommender Systems: The Textbook, pages 255-281.
Springer International Publishing, Cham, 2016.

[5] P. G. Campos, I. Fernandez-Tobias, I. Cantador, and F. Diez. Context-
Aware Movie Recommendations: An Empirical Comparison of Pre-
filtering, Post-filtering and Contextual Modeling Approaches. In C. Hue-
mer and P. Lops, editors, E-Commerce and Web Technologies, Lecture
Notes in Business Information Processing, pages 137-149, Berlin,
Heidelberg, 2013. Springer.

[6] K. Gusain and A. Gupta. Context-Aware Recommendations Using
Differential Context Weighting and Metaheuristics. In H. S. Behera
and D. P. Mohapatra, editors, Computational Intelligence in Data
Mining, Advances in Intelligent Systems and Computing, pages 781—
791, Singapore, 2017. Springer.

[71 N. Hug. NicolasHug/Surprise, Mar. 2020.
23T14:59:38Z.

[8] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering. In Proceedings of the fourth ACM conference
on Recommender systems, RecSys 10, pages 79-86, Barcelona, Spain,
Sept. 2010. Association for Computing Machinery.

[9] A. Kosir, A. Odi¢, M. Kunaver, M. Tkal¢i¢, and J. Tasi¢. Database for

contextual personalization. 2011. Accepted: 2018-08-01T07:23:35Z.

U. Panniello and M. Gorgoglione. Incorporating context into recom-

mender systems: an empirical comparison of context-based approaches.

Electronic Commerce Research, 12(1):1-30, Mar. 2012.

U. Panniello, M. Gorgoglione, and C. Palmisano. Comparing Pre-

filtering and Post-filtering Approach in a Collaborative Contextual

Recommender System: An Application to E-Commerce. In T. Di Noia

and F. Buccafurri, editors, E-Commerce and Web Technologies, volume

5692, pages 348-359. Springer Berlin Heidelberg, Berlin, Heidelberg,

2009.

U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano, and A. Pe-

done. Experimental comparison of pre- vs. post-filtering approaches

in context-aware recommender systems. In Proceedings of the third

ACM conference on Recommender systems, RecSys 09, pages 265-

268, New York, New York, USA, Oct. 2009. Association for Computing

Machinery.

S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast

context-aware recommendations with factorization machines. In Pro-

ceedings of the 34th international ACM SIGIR conference on Research
and development in Information - SIGIR 11, page 635, Beijing, China,

2011. ACM Press.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grou-

pLens: an open architecture for collaborative filtering of netnews. In

Proceedings of the 1994 ACM conference on Computer supported

cooperative work, CSCW 94, pages 175-186, Chapel Hill, North

Carolina, USA, Oct. 1994. Association for Computing Machinery.

Y. Zheng, R. Burke, and B. Mobasher. Differential Context Modeling

in Collaborative Filtering. May 2013.

Y. Zheng, R. Burke, and B. Mobasher. Recommendation with differential

context weighting. In In The 2Ist Conference on User Modeling,

Adaptation and Personalization (UMAP 2013, pages 152-164, 2013.

Y. Zheng, B. Mobasher, and R. Burke. Carskit: A java-based context-

aware recommendation engine. In Proceedings of the 15th IEEE

International Conference on Data Mining Workshops. IEEE, 2015.

original-date: 2016-10-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

