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Fast and Slow Nonlinearities in Epsilon-Near-Zero Materials

Jacob B. Khurgin,* Matteo Clerici, and Nathaniel Kinsey

Novel materials, with enhanced light–matter interaction capabilities, play an
essential role in achieving the lofty goals of nonlinear optics. Recently,
epsilon-near-zero (ENZ) media have emerged as a promising candidate to
enable the enhancement of several nonlinear processes including refractive
index modulation and harmonic generation. Here, the optical nonlinearity of
ENZ media is analyzed to clarify the commonalities with other nonlinear
media and its unique properties. Transparent conducting oxides as the family
of ENZ media with near-zero permittivity in the near-infrared (telecom) band
are focused on. The instantaneous and delayed nonlinearities are
investigated. By identifying their common origin from the band
nonparabolicity, it is shown that their relative strength is entirely determined
by a ratio of the energy and momentum relaxation (or dephasing) times.
Using this framework, ENZ materials are compared against the many
promising nonlinear media that are investigated in literature and show that
while ENZ materials do not radically outpace the strength of traditional
materials in either the fast or slow nonlinearity, they pack key advantages
such as an ideal response time, intrinsic slow light enhancement, and
broadband nature in a compact platform making them a valuable tool for
ultrafast photonics applications for decades to come.

1. Introduction

Nonlinear optics has been and remains a fascinating field since
the 1960s, ignited shortly after the invention of the laser.[1,2] In the
most general form, nonlinear optics enables the optical control
of light in the temporal and frequency domains, resulting in phe-
nomena such as the intensity-dependent index, nonlinear and
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multiphoton absorption, self and cross-
phase modulation, wave mixing, sum
and difference-frequency generation, and
multiple harmonic generation. Over the
last 60 years, advances made in the study
and application of these effects have cul-
minated in notable practical solutions in-
cluding Kerr mode-locking,[3] optical fre-
quency combs,[4] optical parametric gen-
erators and oscillators,[5] high-harmonic
generation,[6] and others.
Yet from the inception of the field, it

has been understood that these nonlinear
photon–photon interactions are medi-
ated by materials. As such, the develop-
ment of new and high-performance non-
linear optical media has been intertwined
with the discovery of new processes and
the realization of practical solutions. De-
spite decades of study and the several po-
tentially transformative developments—
think of organics,[7] semiconductor
quantum wells and superlattices,[8] plas-
monic metals,[9] carbon nanotubes,[10]

and 2D materials[11,12]—the list of
materials playing a leading role in nonlinear optical applications
has not significantly expanded beyond what was available in the
1980s. Indeed, second-order processes aremostly enabled by con-
ventional crystals like LiNbO3,

[13] BBO,[14] and KTP[15] from UV
to near-IR, and AgGaSe2 and other chalcogenides for mid- and
far-IR.[16] Similarly, applications relying on third-order processes
are mostly based on silica fiber,[17] SiN,[18] Si,[19] III–V,[20] and II–
VI[21] semiconductors as well as chalcogenide glasses.[22] This il-
lustrates the extreme difficulty to find a material that can satisfy
the sometimes opposing requirements imposed by applications,
such as large nonlinearity, speed, wide optical bandwidth, high
damage threshold, thermal stability, and others.
In the last few years, a new class of promising nonlinear mate-

rials has emerged, characterized by a refractive index (and hence
the real part of dielectric constant) that approaches zero, called
epsilon-near-zero or ENZ materials. The real part of 𝜖 may ap-
proach zero in many systems, such as in polar crystals near the
longitudinal optical phonon (SiC) and in metals at the plasma
frequency. In the visible and near-IR range, ENZ materials are
predominantly realized with heavily (degenerately) doped semi-
conductors such as indium tin oxide (ITO), aluminum zinc ox-
ide (AZO), gallium-doped zinc oxide (GZO), and others in the
transparent conducting oxide (TCO) family.[23] We shall focus on
TCOs from here on, due to their relevance to ultrafast photonics
applications in the visible and telecom spectral ranges.
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Simply, the concept of ENZ can be understood by considering
the contributions to the dielectric constant of the TCO described
by the well-known Drude–Lorentz relative permittivity𝜀(𝜔) =
𝜀∞ − Ne2∕𝜀0m∗𝜔(𝜔 + i𝛾) where m∗ is effective mass. When the
free carrier density is sufficiently large, the negative contribution
due to free electrons, and the positive contribution 𝜀∞, arising
from bound electrons, nearly cancel each other at a particular
wavelength and a number of interesting effects ensue such as
low group velocity, enhanced diffraction, and in particular, en-
hanced nonlinear phenomena. In the case of TCOs, when the
carrier density reaches 1020–1021 cm−3, the cancellation occurs
in the telecommunications spectral range, which has clear prac-
tical implications. As a result, ENZmaterials have experimentally
demonstrated enhancement to several nonlinear phenomena in-
cluding (but not limited to) third[24] and higher[25] harmonic gen-
eration and cross-phase modulation.[26,27]

In experiments dealing with switching,[28] phase
conjugation,[29] negative refraction,[30] cross-phase
modulation,[31] and adiabatic frequency shifts,[32,33] the ori-
gin of the nonlinearity is generally explained by an increase
of the electron temperature that exhibits a temporal response
of a few hundred femtoseconds, commensurate with the rate
of thermal relaxation of hot carriers—a slow nonlinearity (al-
though it is still fast, on the order of 1 ps, in an absolute sense).
At the same time, experiments demonstrating enhanced har-
monic generation[24,25,34] cannot be explained by such a slow
nonlinearity and require a fast or instantaneous temporal effect.
It appears then that ENZmaterials possessmore than one kind

of nonlinearity, and it is not clear if and how they are related to
each other. Here, we seek to solve this conundrum, discussing
the relation between fast and slow nonlinearities in TCOs. In ad-
dition, we utilize this framework to compare the performance of
ENZmaterials to the wide range of previous nonlinear materials.
To do so, in Section 2, we outline the common origin of fast and
slow optical nonlinearities in dielectrics and establish how their
strengths are related. In Section 3, we derive equations for carrier
transport in a nonparabolic band. Based on that, in Section 4 we
derive the expression and estimate the magnitude of fast nonlin-
earity in ENZ and show that it is of the same order of magnitude
as fast nonlinearity in conventional materials at the same wave-
length. In Section 5, we estimate the slow nonlinearity in ENZ
material, and show that it has the same physical origin as the
fast nonlinearity and that the strengths of the two components
are related in exactly the same way as in more conventional non-
linear materials. In Section 6, the comparison between different
nonlinearities is performed using common figures of merit and
the niches where ENZ materials have advantages are identified.
Finally, the conclusions are drawn in Section 7.

2. Fast and Slow Nonlinearities: General
Discussion

Third-order nonlinearities are the lowest order nonlinear phe-
nomena intrinsic to all media (with or without inversion symme-
try). Any third-order optical process is characterized by the non-
linear susceptibility 𝜒 (3)(𝜔4 = 𝜔1 ± 𝜔2 ± 𝜔3) which reveals that
in essence it is a four-wave interaction. However, since two or
more of the waves can be degenerate, this susceptibility can de-
scribe self- and cross-phase modulation, third harmonic genera-

tion, and quite a few other nonlinear phenomena. Furthermore,
being a complex number, the susceptibility can describe optically
induced change in both refraction and absorption.
Third-order processes are usually subdivided into two broad

categories—fast or instantaneous nonlinearities, and slow or de-
layed nonlinearities. The fast or instantaneous nonlinearity is as-
sociated with virtual processes, i.e., not mediated by real tran-
sitions. Familiar examples of such nonlinearities are the optical
Kerr effect[35] as well as harmonic generation in dielectrics[36] or
semiconductors excited well below the bandgap.[35] These pro-
cesses are usually associated with low optical losses and a lim-
ited magnitude of the nonlinearity. The second is the variety of
slow nonlinearities where real excitations take place and persist
over a certain lifetime, which may be the recombination time or
thermal diffusion time. A typical example is the nonlinear index
for semiconductors excited near the bandgap.[37] The magnitude
of these nonlinearities is relatively high and they exhibit reso-
nances. For these processes the response is slow, on the scale of
recombination time (picosecond to nanosecond), and losses are
large as the nonlinear effects are based on the absorption and ex-
citation of real carriers in the band. The speed can be enhanced
by reducing the recombination time, e.g., including defects,[38]

although this comes, at the expense of a decreased magnitude.
Yet, the ability to engineer the response of slow nonlinearity, e.g.,
by annealing,[38,39] makes them attractive for optical control ap-
plications.
While the fast and slow nonlinearities are usually treated dif-

ferently, they are in fact closely related, and as we show in this
section, practically every nonlinear process has both a fast and a
slow component.
The nonlinearity that is perhaps the most familiar originates

from the transitions between discrete atomic or molecular
energy levels, or between the energy bands in dielectrics or
semiconductors. As an example of this process, we consider a
degenerate four wave mixing (FWM) in the two-level system
(Figure 1a), the process in which two waves with frequencies
𝜔1 and 𝜔2 mix and build up a time-dependent polarization
oscillating with frequency components 2𝜔2 − 𝜔1 and 2𝜔1 − 𝜔2.
This choice allows us to explore the temporal response of the
nonlinear susceptibility 𝜒 (3)(𝜔3 = 𝜔1 − 𝜔2 + 𝜔1) by varying the
beat frequency Δ𝜔 = 𝜔2 − 𝜔1.
The nonlinear medium can be modeled with a two-level

system characterized by the usual set of density matrix
equations[40,41]

dΔ𝜌
dt

= − (Δ𝜌 − 1) ∕T1 + i
𝜇21 ⋅ 𝖤

ℏ
(𝜌21 − 𝜌12)

d𝜌21
dt

= −𝛾𝜌21(𝗋) − i𝜔21𝜌21(𝗋) + i
𝜇21 ⋅ 𝖤

ℏ
Δ𝜌

𝜌21 = 𝜌∗12 (1)

where ℏ𝜔21 is the transition energy, Δ𝜌 = 𝜌11 − 𝜌22 is the pop-
ulation difference between the lower and upper levels. The off-
diagonal terms 𝜌21and 𝜌12 are sometimes called coherences and
describe the net atomic polarization; 𝜇21 = ez21 is the transition
dipole matrix element; T1 is the interlevel relaxation (recom-
bination) time; 𝛾 = 1∕T2 is the scattering rate, where T2 is the
dephasing time. We can write the electric field E(t) = E1e

−i𝜔1t +
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Figure 1. a) Two-level system and a diagram of a degenerate four wave mixing process in it. b) Two-band solid-state nonlinear material that is approxi-
mated by a two-level system c) intraband nonlinearity in a nonparabolic conduction band. On the left, electrons near Fermi level move in the nonparabolic
energy band in the presence of optical field E(t)—origin of fast nonlinearity. On the right, the electrons get promoted from below the Fermi level to above
Fermi level where they are considered “hot” and have higher effective mass—the origin of slow nonlinearity.

E2e
−i𝜔2t + c.c., and in the rotating wave approximation we can

expand the matrix elements adopting a perturbative approach

𝜌21 = 𝜎1e
−i𝜔1t + 𝜎2e

−i𝜔2t + 𝜎112e
−i(2𝜔1−𝜔2)t + 𝜎221e

−i(2𝜔2−𝜔1)t +⋯

Δ𝜌 = 1 − 𝛿12e
−i(𝜔1−𝜔2)t − 𝛿∗12e

+i(𝜔1−𝜔2)t +⋯
.

(2)

The first equation illustrates that the net polarization is a
sum of both linear (two first terms) and nonlinear polarizations.
Here, we have kept the linear polarization terms 𝜎1(2) oscillat-
ing at 𝜔1,𝜔2 and FWM terms 𝜎112(221) oscillating at 2𝜔2 − 𝜔1 and
2𝜔1 − 𝜔2, which are the subject of this section. However, one
should keep in mind that other third-order terms correspond-
ing to third harmonic, sum frequencies, and others are also
present. Similarly, the net population difference between states
1 and 2, Δ𝜌, can also be expanded into terms which oscillate at
different frequencies. Here, we have kept only the second-order
terms 𝛿12 describing population variation at the beat frequency
Δ𝜔 = 𝜔1 − 𝜔2 because it is these population pulsations that en-
gender FWM.
Substituting the expansion (2) into (1) and equating the

terms oscillating at the same frequency on the l.h.s. and r.h.s.
results first in the steady state solution for the linear atomic
polarization

𝜎1(2) =
𝜇21E1(2)ℏ

−1

(𝜔21 − 𝜔1) − i𝛾
(3)

which is the traditional Lorentzian. Second, the expression for
the oscillations of population difference that occur at the beat fre-
quency is found as

𝛿12 =
𝜔1 − 𝜔2 + 2i𝛾
𝜔1 − 𝜔2 + i∕T1

𝜇2
21E1E2∕ℏ

2

(𝜔21 − 𝜔1 − i𝛾)(𝜔21 − 𝜔2 + i𝛾)
(4)

Once this population beating ismixed with a third electric field
at frequency 𝜔1 or 𝜔2 the third-order coherence at the intermod-

ulation frequency 2𝜔1 − 𝜔2 or 2𝜔2 − 𝜔1 is produced

𝜎112 =
𝜔1 − 𝜔2 + 2i𝛾
𝜔1 − 𝜔2 + i∕T1

×
𝜇3
21E

2
1E2∕ℏ

3

(𝜔21 − 𝜔1 − i𝛾)(𝜔21 − 𝜔2 + i𝛾)(𝜔21 − 2𝜔1 + 𝜔2 − i𝛾)
(5)

Now, the material polarization is P = N𝜇21𝜌21 + c.c., where N
is the density of the two-level entities. Therefore, the first-order
(linear) polarization can be found as

P(1)(𝜔1) = N𝜇21𝜎1e
−𝜔1t + c.c. ≡ 𝜀0𝜒

(1)(𝜔1)E
1
1e

−𝜔1t + c.c. (6)

and the third-order nonlinear polarization responsible for FWM
can be found as

P(3)(2𝜔1 − 𝜔2) = N𝜇21𝜎112e
−i(2𝜔1−𝜔2)t + c.c.

≡ 𝜀0𝜒
(3)(𝜔3 = 𝜔1 − 𝜔2 + 𝜔1)E

2
1E

∗
2e

−i(2𝜔1−𝜔2)t + c.c.

(7)

where we have introduced the first- and third-order susceptibili-
ties, 𝜒 (1) and 𝜒 (3), respectively. If we assume that the frequencies
are reasonably close, i.e.,Δ𝜔 ≪ 𝜔1,𝜔2, then one can approximate
all the optical frequencies in the denominator of (5) by the mean
frequency �̄� = (𝜔1 + 𝜔2)∕2, and obtain the expression for third-
order susceptibility for the FWM process

𝜒 (3)(𝜔3 = 𝜔1 − 𝜔2 + 𝜔1) ∼
Δ𝜔 + 2j𝛾
Δ𝜔 + i∕T1

N𝜇4
21∕𝜀0ℏ

3[(
𝜔21 − �̄�

)2 + 𝛾2
]3∕2 ejΦ

=
(
1 +

2T1∕T2 − 1
1 − iΔ𝜔T1

) N𝜇4
21∕𝜀0ℏ

3[(
𝜔21 − �̄�

)2 + 𝛾2
]3∕2 ejΦ = 𝜒

(3)
fast + 𝜒

(3)
slow

(8)
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Figure 2. Frequency dependence of the FWMsusceptibility (solid line) and
its fast and slow components (dashed lines) for the material system with
T1 = 1ns and T2 = 1ps.

where Φ is the phase that is not important for the present
discussion.
The nonlinear polarization contains two terms that have com-

mon dependence on material parameters but differ in their de-
pendence of beat frequency as shown in Figure 2. There is a
fast (almost instantaneous) nonlinear response 𝜒

(3)
fast that is fre-

quency independent, and a slow response 𝜒 (3)
slow whose frequency

response has 3 dB bandwidth 1∕2𝜋T1. The slow term is related
to absorption and the so-called “real” excitations, where electrons
get excited (instantaneously) to the upper state and then decay
after the time T1. The fast term is often related to “virtual” exci-
tations, where carriers spend very short time in the upper state,
determined by the uncertainty principle.
At low beat frequencies, Δ𝜔 < 1∕T1, the slow term is larger

than the fast one by 2T1∕T2 − 1. For most nonlinear media the
ratio 2T1∕T2 ≫ 1 and the slow nonlinearity is much larger than
the fast one, with the possible exception of low-pressure atomic
gases. However, once the beat frequency Δ𝜔 exceeds 2∕T2, the
fast nonlinearity becomes dominant.
Notice that even when the two frequencies are the same and

one talks about, for example, self-phase modulation, there are
still two components to 𝜒 (3)—the fast and slow one. It can also
be seen that for other nonlinear processes, for example, third-
harmonic generation, Δ𝜔 gets replaced by 2𝜔 in (8) and the
“slow” response becomes extremely small, leaving only the in-
stant nonlinearity.
Wemay also consider the relativemagnitudes of the individual

contributions. For the fast effect, the third-order susceptibility can
be expressed via the first-order susceptibility 𝜒 (1)(𝜔) = 𝜀(𝜔) − 1
(6) as

𝜒
(3)
fast ∼ 𝜒 (1)

e2z221[(
𝜔21 − �̄�

)2 + 𝛾2
]
ℏ2

(9)

where z21 is on the scale of the interatomic distance, i.e., 0.1 nm
and for the case of condensed matter and ℏ(𝜔21 − 𝜔) is on the
scale of an eV, while 𝜒 (1) is on the scale of 10 eV which means the
scale 𝜒 (3)

fast ≈ 1019m2V−2, which is easy to interpret as the inverse
square of the internal field in a typical polarizable bond.
Although Equation (8) has been derived in the case of a two-

level system, the same model can be applied to describe the non-

linear effects of standard dielectric materials. For these materials
the upper and lower states are distributed over the valence and
conduction bands that extend over ranges comparable to or even
wider than the optical bandgap (width of transmission region).
In this case, for transitions that are sufficiently detuned from the
absorption edge, ℏ𝜔 < Egap, one can approximate the band by a
two-level system with some average optical transition energy, of-
ten referred to as the “Penn gap” ℏ�̄�21

[42] which is significantly
larger than Egap (by a few eV), see Figure 1b. When �̄�21 is substi-
tuted for 𝜔21 in (9), and, since ℏ�̄� ≤ Egap, the denominator in (9)
is always on the scale of a few eV2 and is nearly frequency inde-
pendent. This approximation has been used with a great degree
of accuracy to describe both the linear[43,44] and nonlinear[45,46]

properties of many crystals and can be used in conjunction with
Equations (8) and (9) to estimate the fast nonlinearity for dense
materials.
For the “slow” nonlinearity, the situation is different because

the absorption underpinning the slow effect does not follow the
Lorentz behavior seen in the two-level system. Rather, the absorp-
tion changes with frequency, for example, it decreases exponen-
tially below the bandgap as described by the Urbach rule.[47,48]

Nevertheless, Equation (8) can still be used by allowing the ef-
fective scattering rate 𝛾 = T−1

2 in (8) to be a function of optical
frequency 𝛾(𝜔) (as was done in refs. [49, 50] where it was shown
that the effective scattering rate decreases almost exponentially
with detuning from the bandgap Egap − ℏ𝜔), so at a particular
frequency 𝜔 the relation between the fast and slow nonlineari-
ties 𝜒 (3)

slow(𝜔)∕𝜒
(3)
fast(𝜔) ≈ 2T1∕T2(𝜔) is conserved.

3. Carrier Motion in the Nonparabolic Band

Now, that we have established that the interband nonlinearity
has two components—a slow term, associated with excitation
of real carriers, and a fast term, associated with virtual carrier
excitation—the question is whether the same approach can be ap-
plied to the intraband nonlinearity, based on the motion of free
carriers inside the band, which is responsible for the extraordi-
nary properties of ENZ materials.
To answer this question, the motion of electrons in the

isotropic band with dispersion E(k), where kis a wavevector, is
considered when the harmonic field Ez(t) = E1e

−i𝜔1t + E2e
−i𝜔2t +

c.c. is applied along the z-direction (Figure 1c). The equation of
motion for a carrier with the wavevector k0 in this band is

dkz
dt

= − e
ℏ
Ez − 𝛾(kz − kz0) (10)

where 𝛾 is the momentum scattering rate. The solution for a har-
monic input field is kz(t) = kz0 + 𝛿k(t), where

𝛿k(t) = e
ℏ(i𝜔1 − 𝛾)

E1e
−i𝜔1t + e

ℏ(i𝜔2 − 𝛾)
E2e

−i𝜔2t + c.c. (11)

The electron velocity in the band E(k) and in the direction of
the applied electric field is vz = ℏ−1𝜕E∕𝜕kz, and can be expanded
into the power series around k0as

vz(t) = vz(kz0) +
𝜕vz
𝜕kz

𝛿k(t) + 1
2
𝜕2vz
𝜕k2z

𝛿k2(t) + 1
6
𝜕3vz
𝜕k2z

𝛿k3(t) +… (12)
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Figure 3. Dispersion of a) energy and b) velocity in the nonparabolic band (solid lines) and its parabolic approximation (dashed lines).

Since due to time reversal symmetry v(k) = −v(−k), summa-
tion over all the filled states in the band will produce a net zero
velocity for the time independent term, we may drop the first
term in (12). The first remaining term that is linear in 𝛿k(t)
can then be represented by introducing the (inverse) transport
effective mass as

m−1
t = ℏ−1 𝜕vz

𝜕kz
(13)

so that 𝛿vz = ℏm−1
t 𝛿k(t). The expression for the transport effective

mass is derived as[23]

m−1
t = ℏ−1

[
2
3
v(k)
k

+ 1
3
dv(k)
dk

]
= 1
3ℏk2

d
dk

(
k2v(k)

)
(14)

This definition is somewhat different from the conventional
definition of the effective massmc(k) = ℏ−1dv∕dk as well as from
the alternative definition of the optical effective mass mopt(k) =
ℏ−1v∕k. However, for the case of an ideal parabolic band with a
linear velocity–momentum relation, all three definitions result
in the same value. For the nonparabolic band, though there is
an important difference. Using the definition in (14), when the
velocity saturates, i.e., dv∕dk = 0, the effective mass does not go
to infinity. Evenwhen dv∕dk < 0mt(k) stays finite and positive. As
we shall see further on, for a typical ENZmaterial, the difference
is not drastic and does not change the conclusion.
Now let us introduce the dispersion of a nonparabolic band de-

rived from a simple two-band k·Pmodel. According to Kane[51]

E(k) =
Egap
2

√
1 + 2ℏ2k2

m∗Egap
=

Egap
2

√
1 + (k∕k0)

2 (15)

wherem∗ is the effectivemass at k= 0, Egap is the bandgap energy
and we have introduced the “nonparabolicity” wavevector k0 =√
m∗Egap∕2ℏ2 at which the dispersion changes from “parabola-

like” to “linear-like” as shown in Figure 3a, where the energy is
measured relative to the bottom of conduction band, wavevectors

are normalized to k0, and the energy is normalized to Egap∕2. The
velocity, plotted in Figure 3b, is

vz(k) = vsat
(k∕k0)√
1 + (k∕k0)

2
(16)

where the saturation velocity is

vsat =
1
2

Egap
ℏk0

=
ℏk0
m∗ (17)

The effective optical mass can be calculated according to (14)

m−1
t =

vsat
ℏk0

2(k∕k0)
2 + 3

3
[
1 + (k∕k0)

2]3∕2 = m∗−1 2(k∕k0)
2 + 3

3
[
1 + (k∕k0)

2]3∕2 (18)

and is shown in Figure 4a compared to the other two definitions
of the effective mass mentioned above (mc(k) = ℏ−1dv∕dk and
mopt(k) = ℏ−1v∕k). We also compute the first and second deriva-
tive of the inverse effective mass as it is required below. The first
derivative

𝛼 =
dm−1

t

dk
= ℏ−1 d

2vz
dk2

=
m∗−1

k0

k
k0

2(k∕k0)
2 + 5

3
[
1 + (k∕k0)

2]5∕2 (19)

is plotted in Figure 4b (in units of m∗−1∕k0), and the second
derivative

𝛽 =
d2m−1

t

dk2
= ℏ−1 d

3vz
dk3

=
m∗−1

k20

4(k∕k0)
4 + 14(k∕k0)

2 − 5

3
[
1 + (k∕k0)

2]7∕2 (20)

is plotted in Figure 4c, normalized to m∗−1∕k20. Note that in their
normalized form both coefficients are of the order of unity, and
this fact will play an important role further on when we compare
the slow nonlinearity that depends on 𝛼 with the fast one that
depends on 𝛽.
From this we can see two possible avenues from which opti-

cal nonlinearities can arise, similar to the ideal two-level system
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Figure 4. a) Inverse effectivemassesmt
−1 (solid line),mc

−1 andmopt
−1 (dashed lines) normalized tom∗−1. b) Normalized first and c) second derivatives

of the inverse effective mass versus k0. d) Mean value of the second derivative versus Fermi wavevector.

described in Section 2. The first avenue is through an applied
electric field which effectively polarizes the conduction band elec-
trons in the nonparabolic band (see (12) and Figure 3b). Note that
the expansion of carrier velocity, i.e., conductivity current in (12)
is conceptually no different from the expansion of polarization
(and displacement current) in (6) and (7), and involves no char-
acteristic time. The second avenue is through the absorption of
energy which redistributes carriers within the nonparabolic band
(see (18) and Figure 4a). As we will show, the first constitutes the
fast component of the nonlinearity while the second constitutes
the slow effect as its relaxation is governed by the hot carrier life-
time T1.

4. Fast Nonlinearity in ENZ Material

To uncover the fast component of the nonlinearity, we return to
(12) and express the electron velocity as a function of the first and
second derivative of the effective mass

vz(k, t) = ℏ

[
m−1

t 𝛿k(t) + 1
2
𝛼𝛿k2(t) + 1

6
𝛽𝛿k3(t)

]
(21)

The current density can then be computed as

J(t) = −e
∑
k

vz(k, t) = −e
kF∑
k

ℏ

[
m−1

t 𝛿k(t) + 1
6
𝛽𝛿k3(t)

]
≈ −Neℏ

[⟨
m−1

t

⟩
𝛿k(t) + 1

6
⟨𝛽⟩ 𝛿k3(t)] (22)

where kF is Fermi wavevector. We note that the summation over
k cancels for the second-order term as 𝛼(k) is an odd function,

hence the current has only odd order terms—first-order (or lin-
ear) J(1) and the third-order one J(3). Here,N is the carrier density
and the averaging is done over the distribution of carriers in the
band where

⟨
m−1

t

⟩
= 3

k2F

kF

∫
0

m−1
t (k)k2dk =

m∗−1[
1 + (kF∕k0)

2]1∕2
⟨𝛽⟩ = 3

k2F

kF

∫
0

𝛽k2dk

=
m∗−1

k20

⎧⎪⎨⎪⎩
4sinh−1(kF∕k0)

(kF∕k0)
3

−
4(kF∕k0)

4 + 11(kF∕k0)
2 + 4

(kF∕k0)
2[1 + (kF∕k0)

2]1∕2
⎫⎪⎬⎪⎭
(23)

The latter is plotted in Figure 4d, and once again, when prop-
erly normalized it is of the order of unity. Note that approximation
(23) is valid for degenerate doping with a Fermi energy approach-
ing 1 eV, i.e., much larger than the thermal energy of electrons
and typical ENZ material operating in visible or near-infrared
falls into this category.
Substituting (11) into (22), we obtain the linear (first order) cur-

rent response described by

J(1)(𝜔1,2) =
iNe2

⟨
m−1

t

⟩
𝜔1,2 + i𝛾

E1,2e
−i𝜔1,2t + c.c. (24)
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Figure 5. The coefficients f𝛽 for fast nonlinearity and f𝛼 for slow nonlinear-
ity as functions of the Fermi level position.

and the corresponding free carrier part of the susceptibility
reads

𝜒
(1)
fc (𝜔) = −

Ne2
⟨
m−1

t

⟩
𝜀0𝜔(𝜔 + i𝛾)

(25)

while the total dielectric constant is 𝜀(𝜔) = 𝜀∞ + 𝜒
(1)
fc (𝜔).

The third-order nonlinear response is

J(3) = −i
Ne4 ⟨𝛽⟩
6ℏ2

(
E1e

−i𝜔1t

𝜔1 + i𝛾
+
E2e

−i𝜔2t

𝜔2 + i𝛾
+ c.c.

)3

(26)

Selecting the FWM term we get

J(3)FWM ≈ −i
Ne4 ⟨𝛽⟩

2ℏ2(�̄�2 + 𝛾2)3∕2
(
E21E2e

−i(2𝜔1−𝜔2)t + E22E1e
−i(2𝜔2−𝜔1)t

)
eiΦ

+ c.c. (27)

and the fast FWM susceptibility

𝜒
(3)
fast(𝜔3 = 𝜔1 − 𝜔2 + 𝜔1) =

Ne4 ⟨𝛽⟩
2𝜀0ℏ2(�̄�2 + 𝛾2)3∕2

≈ 𝜒
(1)
fc (𝜔)

e2f𝛽
2ℏ2k20 (�̄�

2 + 𝛾2)
(28)

where

f𝛽 (kF) = k20 ⟨𝛽⟩ ⟨mt⟩ (29)

is plotted in Figure 5, and is once again on the order of unity. Ob-
viously, Equation (28) describes the fast nonlinearity as its mag-
nitude does not depend on the beat frequencyΔ𝜔 = 𝜔1 − 𝜔2. Ad-
ditionally, it can be seen from (26) that the third harmonic sus-
ceptibility will have a similar magnitude, which would not be the
case for the slow component.
To evaluate the reasonability of the approach, we may con-

sider ITO with a carrier density N = 1.1 × 1021cm−3, i.e., kF =
(3𝜋2N)1∕3 = 3.2 nm−1. The value of k0 can be obtained by fitting

as roughly 2 nm−1 which makes kF∕k0 ≈ 1.6 and f𝛽 ≈ 0.5. Fur-
thermore, since we are concerned with the response near the
ENZ condition, 𝜒 (1)

fc (𝜔) ∼ −𝜀∞ ≈ −4 and so for 1 eV excitation we
obtain

𝜒
(3)
fast(𝜔3 = 𝜔1 − 𝜔2 + 𝜔1) ≈ 𝜀∞

e2

2ℏ2𝜔2k20

⟨
f𝛽
⟩
≈ 2.5 × 10−19 m2V−2

(30)

This instant nonlinearity due to free electrons has roughly the
same order of magnitude as the fast nonresonant nonlinearity
due to bound electrons as estimated in (9). Comparing (30) with
(9) one can notice that 𝜀∞ for ENZ material is comparable to 𝜒 (1)

of traditional material, therefore it appears that z21 and k0 are re-
lated as z12k0 ≈ 1. We shall return with an explanation of this re-
markable fact in Section 6.

5. Slow (Thermal) Nonlinearity in ENZ Material

Next, wemove to an estimate of the slow nonlinearity. To do so, we
must calculate the amount of absorbed power per unit volume,
found from (24) as

𝛿P(t) = J(t)E(t) =
2Ne2𝛾

⟨
m−1

t

⟩
�̄�2 + 𝛾2

[
E21 + E22 + 2E1E2 cos[(𝜔1 − 𝜔2)t]

]
(31)

where the oscillations at frequencies of the order 2𝜔 are ne-
glected. The absorbed power is transferred to the hot electrons
excited from below to above Fermi level as shown in Figure 1c,
left panel. The excess energy density of hot carriers can be found
from

dUhot(t)
dt

= 𝛿P(t) −
Uhot

𝜏el
(32)

where 𝜏el is the energy relaxation rate between hot carriers and
lattice. We are interested in the energy density oscillations at beat
frequency Δ𝜔 = 𝜔1 − 𝜔2

Uhot(t) =
𝜏el

1 − iΔ𝜔𝜏el

2Ne2𝛾
⟨
m−1

t

⟩
�̄�2 + 𝛾2

E1E2e
−i(𝜔1−𝜔2)t + c.c. (33)

This energy is not shared equally by all the conduction elec-
trons as the hot electrons include both the “primary,” generated
when photon is absorbed, and the “secondary” carriers, gener-
ated via fast (100 fs or less) electron–electron collisions. Thus,
the number of excited carriers is not fixed. Usually it is assumed
that the electrons thermalize with a certain electron temperature
Te which needs to be evaluated. However, even though electron–
electron collissions are fast, it may take longer than 100 fs to es-
tablish thermal equilibrium. Therefore, it is preferable to evalu-
ate the nonlinearity without making any assumption of thermal
equilibrium.
Let us say the fraction of the “hot” carriers promoted from be-

low the Fermi levels is fhot and their density is fhotN. Then the
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energy of the average hot carrier oscillates as 𝛿E(t) = U(t)∕fhotN,
and the average time-dependent change of the wavevector is

𝛿k(t) = 𝛿E(t)∕ℏvF (34)

which causes the change of the inverse effective mass of the hot
carriers

𝛿m−1
t (t) =

dm−1
t

dk
𝛿k(t) = 𝛼F

Uhot(t)
fhotNℏ𝜈F

(35)

where 𝛼F = |𝛼(kF)|, and describes first derivative of inverse trans-
port effective mass af Fermi level. The change in susceptibility,
and hence dielectric constant, can then be estimated as

𝛿𝜀(t) = 𝛿𝜒 (1)(t) ≈ fhot
𝛿m−1

t⟨
m−1

t

⟩𝜒 (1) = 𝛼F
Uhot(t)⟨

m−1
t

⟩
Nℏ𝜈F

𝜒 (1) (36)

where the transport mass is averaged over the electron distribu-
tion. Note that, as expected, the change in the susceptibility does
not depend on fhot. Hence, as long as the electron temperature
is not excessively high, Te ≪ EF∕kB ≈ 15000 K, it is not required
to compute the exact distribution of the carriers that are excited
to obtain a decent estimate of nonlinearity, and the calculation
of the electron temperature is, therefore, unnecessary. Substitut-
ing (33) we obtain the beat frequency oscillations of the dielectric
constant

𝛿𝜀(𝜔1 − 𝜔2) ≈ 𝛼F
1

Nℏ𝜈F

𝛾𝜏el

1 − iΔ𝜔𝜏el
2Ne2

(�̄�2 + 𝛾2)
𝜒 (1)E1E2e

−i(𝜔1−𝜔2)t

+ c.c. (37)

When the electric field E1e
−i𝜔1t scatters from these oscillations,

the nonlinear polarization arises, with a slow FWM susceptibility
given by

𝜒
(3)
slow(𝜔3 = 𝜔1 − 𝜔2 + 𝜔1) =

𝛾𝜏el

1 − iΔ𝜔𝜏el
2𝛼F
ℏ𝜈F

e2

�̄�2 + 𝛾2
𝜒 (1) (38)

From (16) and (19), we get

𝛼F

vF
=

m∗−1

vsatk0
f𝛼(kF) =

1
ℏk20

f𝛼(kF) (39)

where

f𝛼(kF) =
2(kF∕k0)

2 + 5

3
[
1 + (kF∕k0)

2]2 (40)

and is plotted in Figure 5, and once again is on the order of unity.
Substituting (39) into (38), we obtain the final expression for the
slow nonlinearity

𝜒
(3)
slow(𝜔3 = 𝜔1 − 𝜔2 + 𝜔1) =

2𝜏el∕𝜏s
1 − iΔ𝜔𝜏el

𝜒 (1) e2f𝛼
ℏ2k20 (�̄�

2 + 𝛾2)
(41)

where 𝜏s = 𝛾−1 is the momentum scattering time. Momentum
scattering typically occurs due to scattering on impurities and
phonons and can be estimated from themobility measurements.

For ITO, AZO, and many other transparent oxides, it is on the
scale of 10 fs or less. The electron-lattice relaxation time 𝜏el is
also determined by the electron–phonon scattering, but is typ-
ically much longer than 𝜏s and is on the scale of 100s of fem-
toseconds. The reason for it is threefold. First of all, momen-
tum scattering occurs independently of whether the scattering
event involves the absorption or emission of a phonon, but the
energy transfer from hot carriers to lattice is determined by the
net emission of phonons, i.e., the difference of phonon emission
and absorption rates. Second, the phonon energy is usually less
than thermal energy of hot carriers kBTe, so it takes quite a few
phonon emission events per carrier to cool them down. Finally,
the impurity and surface scattering contributing to momentum
relaxation are elastic processes and do not provide a channel for
energy transfer to the lattice.
From Figure 5 one can note that for the example of ITO with

kF∕k0 = 1.6, f𝛼 ≈ f
𝛽
∕2, and for other ENZ materials there is not

much difference. Therefore, one can write the relation between
the slow (41) and fast (28) nonlinearities as

𝜒
(3)
slow ≈

2𝜏el∕𝜏s
1 − iΔ𝜔𝜏el

𝜒
(3)
fast (42)

which is quite similar to the relation between the slow (real)
and fast (virtual) interband nonlinearities in the more conven-
tional materials discussed in Section 2, see (8). It follows that
𝜒
(3)
slow is about two order of magnitude higher than 𝜒

(3)
fast, up to

10−17m2V−2. Clearly, the momentum scattering time 𝜏s plays the
role of the dephasing time T2 and the electron-lattice energy re-
laxation time 𝜏el plays the role of the recombination time T1. But
the magnitudes of these times are quite different in ENZmateri-
als. Typical values of the recombination times in dielectrics and
semiconductors are on the nanosecond scale, while 𝜏el in TCOs
is less than a picosecond, hence even the “slow” nonlinearity in
TCO can be considered “ultrafast” as the term “ultrafast” is de-
fined today (sub-picosecond, or THz). It is quite conceivable that
as ultrafast science progresses, the definition of “ultrafast” may
shift into femtosecond domain. But, of course, in TCOs the non-
linearity enhancement is weaker than in the nonlinearity based
on saturation of absorption—the usual gain-bandwidth compro-
mise.

6. Discussion

Through this discussion it is clear that there is a strong connec-
tion between the nonlinearities in traditional materials and ENZ
materials. Let us now consider how the nonlinearity can be tai-
lored for a given application.
The fast nonlinearity does not radically change whether it be

from one material to another or if one considers traditional non-
linearities due to bound carriers, or nonlinearities due to free car-
riers in ENZ materials. We can understand this by considering
the terms that play into the strength of the fast nonlinearity—
for odd-order traditional nonlinearities only the matrix element
of the dipole transition between valence and conduction bands
𝜇cv = ezcv, the density, and the detuning from resonance play a
role. Among them, the dipole zcv is proportional to the bond
length and the density is inversely proportional to its cube, but
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in all nonlinear materials the bond length remains roughly con-
stant varying between 1.6 and 2.1 Å.[52] Similarly, the effective de-
tuning �̄�21 − 𝜔 is commensurate with bandgap, which is again
roughly the same for the materials with the same transparency
bandwidth. Together, this explains why the magnitudes of non-
linearities in dielectrics are all similar and only show some in-
crease with an increase in wavelength as one can use materials
with narrower bandgap.
For the nonlinearities in ENZ materials, the magnitude de-

pends upon the density of free carriers and the band nonparabol-
icity. Although the free carrier density is not fixed, if one is to ap-
proach the ENZ condition in the telecommunications spectrum
(as is the case for most TCOs) the density must be high enough
to cancel the positive dielectric constant which forces the major-
ity of materials to maintain a comparable carrier density ≈1021

cm−3. What is important though is that linear susceptibility of
the ENZ material due to free carriers is comparable to the lin-
ear susceptibility of traditional nonlinear materials. Additionally,
the nonlinearity hinges on the nonparabolicity of the band, as ex-
pressed by the value of k−10 in (15). However, the strength of the
interband nonlinear and the band nonparabolicity are connected
by the same oscillator sum rule[53]

2
m0

∑
k≠n

P2kn
Ek − En

+
m0

m∗
n

= 1 (43)

where the first term contains the strength of all the interband
transitions originating in the band n andm∗

n is the effective mass
of that band. For the two band model, using definition of k0 this
expression can be simplified to

m0Egap
2ℏ2k20

= 1 +
2P2cv

m0Egap
(44)

where Pcv is the matrix element of the momentum for the
valence-to-conduction band transition given byPcv = m0zcvEgap∕ℏ
according to Kane’s k·P[51] theory. Combining these two expres-
sions we can see that k−10 ∼ zcv. As a result, fast nonlinearities
in traditional and ENZ materials are both determined by the
strength of the interband transition, and thus it follows that their
magnitudes are quite similar.
The main difference between fast intraband (free carriers) and

interband (bound carriers) nonlinearities is that the loss in the
intraband nonlinearities is unavoidable simply because for any
photon frequency there always exist plenty of filled initial and
empty final states. In the interband nonlinearities, as long as
one operates far enough from the absorption edge the loss is
minimized. That explains why for the femtosecond nonlinear
processes, such as supercontinuum generation and optical fre-
quency combs, or for the harmonic generation, the low loss trans-
parent materials, such as SiO2, SiN, diamond, and LiNbO3 re-
main dominant and it would be a trall order for lossy materials
like ENZ will replace them.
As for slow nonlinearities, they rely on absorption which pro-

vides a broad range of tunability in the nonlinear response for
both the traditional and ENZ nonlinearities, with ENZ materi-
als, as explained next, having distinct advantages. To identify the
optimalmaterial properties, we approximate the propagation (ab-

sorption) length as La ∼ c𝜒 (1)∕𝛾 which can be used to introduce
a figure of merit (FOM)—the product of maximum nonlinearity,
propagation length, and the signal bandwidth B—to evaluate and
optimize materials. For ENZ materials the FOM becomes

FOM = 𝜒
(3)
slowLaB ≈

nge
2cf𝛼

2𝜋ℏ2k20�̄�
2
, B = 1∕2𝜋𝜏el (45)

and for the traditional nonlinearity

FOM = 𝜒
(3)
slowLaB ≈

nge
2z221c�̄�

2𝜋ℏ2
(
𝜔21 − �̄�

)3 , B = 1∕2𝜋T1 (46)

where an additional enhancement by the group index ng has been
included due to enhanced interaction time between light and
matter.[32,54] For ENZ materials, this can be a factor of a few in
thin film form, while for most traditional nonlinearities, a large
group index can be attained only by utilizing specially fabricated
structures such as photonic crystals.
As one can see, the FOM is rather well defined and constant

for a given wavelength, therefore a prudent way to optimization
leads to making the bandwidth just sufficient for a given task.
In this sense, the ENZ response time, 100 fs < 𝜏el < 1 ps, is al-
most ideal to allow the nonlinear effects to accumulate over the
time 𝜏el while remaining fast enough for many applications in
telecommunications such as all-optical switching, adiabatic fre-
quency shifting, and FWM at a speed of a few THz.
For the interband transitions, the recombination time T1 is

about three orders of magnitude longer for direct bandgap ma-
terials (and even longer for indirect bandgap), and that is way
too long for all optical processing, but may be sufficiently fast for
spatial light modulators and or all optical routers. Of course, the
speed of the interband nonlinearity can be enhanced if the re-
combination time is quenched in structures full of defects, for
instance, low-temperature growth GaAs,[55] but that introduces
significant background absorption, and the only application of
these materials is as saturable absorbers, which of course may
be extremely useful for some applications, like passive mode-
locking,[56] and for photoconductive switching for the generation
of THz waves.
Aside from having just about the ideal response time, an im-

portant advantage of the ENZ “slow” nonlinearity is that it is fairly
broadband (in the sense of optical bandwidth Bopt) since the ab-
sorption follows the smooth Drude dispersion∼ 𝜔−2. That is dra-
matically different from the traditional slow nonlinearity whose
magnitudemay change by orders of magnitude over a few tens of
nanometers. Of course, since the absorption length also changes
by the equal amount, the FOM is broadband, but that means that
the length of the device should be changed when wavelength
changes, which makes it impractical. Therefore, as mentioned
above slow interband nonlinearities are used almost exclusively
as saturable absorbers,[56] an important, but a relatively narrow
application niche.
Before concluding, one can also make an interesting compari-

sonwith intersubband nonlinearities in semiconductor quantum
wells, investigated at length in 1990s[57,58] but given a new life
more recently in combination with metasurfaces.[59,60] On one
hand, these are intraband nonlinearities (like ENZ), but on the
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other hand the carriers in them are confined and the transitions
are between discrete levels. However, the intersubband relaxation
time T1 and intrasubband scattering time T2 in square QWs are
roughly of the same order of magnitude (100s of fs), while the
lineshape is perfectly Lorentzian. As a result, in simple structures
there is no huge difference between the “slow” and “fast” non-
linearities in terms of magnitude, although by means of band
engineering one can increase the intersubband relaxation time
and enhance the slow nonlinearity,[61,62] obviously at the price of
making it slower, but still sufficiently fast for THz applications.
In that respect, intersubband nonlinearities and nonlinearities
in ENZ are very similar (although intersubband nonlinearities
are currently limited to mid-IR by the finite values of band off-
sets in semiconductors). The main difference lies in the fact that
intersubband transitions are relatively narrow and thus one can
provide additional resonant enhancement, but obviously at the
expense of optical bandwidth, while ENZ nonlinearities are in-
herently broadband. Therefore, rather than competing, ENZ and
intersubband nonlinearities complement each other depending
on what is more important: sheer magnitude of the effect or op-
tical bandwidth, and what spectral range is being considered.
One cannot also omit the fact that the hot carrier nonlinear-

ity observed in ENZ materials can and has been observed in
metals.[9] However, nonparabolicity in noble metals, most often
used in combination with plasmonic enhancement, is much less
than in ENZ materials (as well as in other semiconductors). For
example, the conduction band in silver has effective mass almost
equal to that of free electron in vacuum,meaning that the band is
almost perfectly parabolic. In addition, in metals there is no non-
linearity enhancement associated with slow propagation which is
one of the main advantages of ENZ materials.

7. Conclusions

In this study, we have placed the nonlinearity in ENZ materi-
als based on conductive oxides into the conventional framework
of nonlinear susceptibilities. While the mechanism of nonlin-
earity in ENZ materials (band nonparabolicity and carrier heat-
ing) is seemingly different than the mechanism in more con-
ventional nonlinear materials, ENZ nonlinearities can still be
expressed in terms of nonlinear susceptibilities. Just as in con-
ventional materials, there are two components to the effect—a
“fast,” or “instant,” and a relatively “slow” one. Despite appar-
ently different mechanisms, the magnitudes of “fast” nonlinear-
ity at a given wavelength for the ENZ and conventional non-
linearity are roughly of the same magnitude. A deeper look re-
veals that in the end, intraband ENZ and conventional interband
mechanisms rely on the same dipole matrix element of the in-
terband transition to achieve their fast nonlinearity, hence their
similar magnitudes (for a given wavelength) should not come as
a surprise.
Another important conclusion is that, for both the nonlinear-

ity in ENZ and conventional nonlinearities, the relative strength
of slow and fast components is determined by the ratio of two
characteristic times, T1∕T2. T1 is the energy relaxation time that
determines the speed of the “slow” nonlinearity while T2 is mo-
mentum relaxation (or dephasing) time, which also determines
the absorption strength. As a result, the figure-of-merit, defined
as the product of nonlinear susceptibility, signal bandwidth, and

absorption length, is roughly the same for any nonlinear mecha-
nism for a given wavelength. However, ENZ does have three im-
portant advantages.
First of all, the energy relaxation time in ENZ being a few hun-

dred femtoseconds happens to be just right for many important
applications, which means that the relatively “slow” ENZ non-
linearity is still ultrafast on the absolute scale. In other words,
for THz scale processes the nonlinearity in ENZ is as high as
it can be (for a given wavelength). Second, the “slow” nonlin-
earity in ENZ materials is very broadband due to the nonres-
onant character of absorption. And finally, both the fast and
slow nonlinearities in ENZ are enhanced by low group veloc-
ity achieved without any required nanofabrication. As a result,
many experimental results achieved in the most recent past have
made use of these unique benefits to demonstration exceptional
nonlinear interactions in ENZ thin films including adiabatic
frequency conversion,[32] negative refraction,[29,30] and phase
conjugation, all-optical switching,[26,28] bicolor switching,[63]

and more.[64,65]

Subsequently demystified, ENZ materials may not be a magic
solution for all tasks nonlinear optics is expected to perform,
but they do have an important niche to occupy—the niche in
which one is looking for a temporal response on the scale of
a few hundreds of femtoseconds and compact size. Combined
with the fact that many ENZ materials achieve these properties
in the near-infrared spectral range using well-established CMOS-
compatible materials bodes well for the continued exploration
for THz switching and routing in telecommunications as well
as compact wave mixing and harmonic generation in both inte-
grated and free-space platforms. As a result, in contrast to the
numerous promising platforms explored in the past which have
come and gone, we expect ENZ materials to be a mainstay in
the nonlinear community for the foreseeable future and continue
driving advancements in key application spaces of nonlinear
optics.
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