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Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids

with an emergent magnetization that may offer an eco-friendly and tunable alternative to

conventional magnets and devices. Here, we investigate the origin of the magnetism arising at

these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu

and Pt in contact with fullerenes and RF sputtered carbon layers. These systems exhibit small

anisotropy and coercivity together with a high Curie point. Low energy muon spin spectroscopy

in Cu and Sc-C60 multilayers show a quick spin depolarization and oscillations attributed to non-

uniform local magnetic fields close to the metallo-carbon interface. The hybridization state of the

carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are

annealed into sp2�S graphitic states in sputtered carbon/copper multilayers. X-ray magnetic

circular dichroism (XMCD) measurements at the carbon K-edge of C60 layers in contact with Sc

films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher S*

molecular levels, while the dichroism in the V* resonances is small or non-existent. These results

support the idea of an interaction mediated via charge transfer from the metal and dz-S

hybridization. Thin film carbon-based magnets may allow for the manipulation of spin ordering



at metallic surfaces using electro-optical signals, with potential applications in computing,

sensors and other multifunctional magnetic devices.

Interfaces are critical in quantum physics, and therefore we must explore the potential for designer

hybrid materials that profit from promising combinatory effects. In particular, the fine tuning of spin

polarization at metallo-organic interfaces opens a realm of possibilities; from the direct applications in

molecular spintronics and thin film magnetism to biomedical imaging or quantum computing. This

interaction at the surface can control the spin polarization in magnetic field sensors, generate a

magnetization spin filtering effects in non-magnetic electrodes or even give rise to a spontaneous spin

ordering in non-magnetic elements such as diamagnetic copper and paramagnetic manganese.(1-11)

The impact of carbon-based molecules on adjacent ferromagnets is not limited to spin filtering and

electronic transport, but extend to induced changes in the metal anisotropy, magnetization, coercivity

and bias.(12-14) Charge transfer and d(metal)-ʌ(carbon) orbital coupling at the interface may change 

the density of states, spin population and exchange of metallo-carbon interfaces.(4, 15, 16) The

interaction between the molecule and the metal depends strongly on the morphology and specific

molecular geometry.(17, 18) It may lead to a change in the density of states at the Fermi energy N(EF)

and/or the exchange-correlation integral (Is) as described by the Stoner criterion for

ferromagnetism.(19, 20) The coupling can even extend through a non-magnetic metallic layer that

carries the exchange information from a ferromagnetic substrate to an organic layer.(21)

The emergent magnetism measured in Cu/ and Mn/C60 multilayers extends as well to other transition

metals close to complying with the Stoner criterion such as Sc and Pt –see table 1. We grow our films

via DC or RF sputtering and in-situ thermal evaporation (SI Appendix, section 1). Although we could

expect that metals closer to the Stoner criterion would present higher magnetization, it is apparent that

the magnetic properties of the sample are strongly determined by the charge transfer and coupling

between the carbon molecules and the metal. This is the case of Sc as compared to Cu; although Sc is



very close to fulfilling the condition for ferromagnetism, it is also a material very prone to oxidation.

Furthermore, the Fermi energy and the structure of Sc are not particularly well matched to those of C60.

Copper, on the other hand, has a good dz-S coupling, close lattice matching and the potential to transfer

up to 3 electrons per fullerene cage, and this may result in the higher observed magnetization. The

fullerenes may also be replaced by other nanocarbon allotropes with mixed sp2 and sp3 hybridization,

such as RF-sputtered amorphous carbon (aC) layers. These films have the advantages of being

smoother, cheaper than fullerenes and easily compatible with conventional metal sputtering, making

them more suitable for potential industrial applications in the future. However, the resulting

magnetization as measured using a superconducting quantum interference device -vibrating sample

magnetometer (SQUID-VSM; see SI Appendix, Section 1) is on average 20-40% lower than when

using C60, although they preserve the same trend observed in C60 multilayers, i.e. higher magnetization

and coercivity when using copper films.

System
Magnetisation
(emu/cc metal)

Coercivity
(Oe)

Cu/C60 67±10 90±5

Sc/C60 17±7 75±10

Mn/C60 18±2 75±5

Pt/C60 14±4 65±10

Cu/aC 35±5 95±10

Sc/aC 14±7 75±5

Table 1: Magnetic properties of different nanocarbon hybrids with 2-3 nm thick metal layers and the

structure Si(substrate)/Ta(3)/Nanocarbon/Metal/Nanocarbon. All materials are deposited in the same

chamber without breaking vacuum and with a base pressure ≤2!10-8 mbar. Metals are grown via DC

magnetron sputtering, C60 is thermally evaporated and amorphous carbon (aC) is RF sputtered from a

graphite target.



The magnetization of Cu and Mn – C60 multilayers has been measured to be dependent on the metallic

film thickness, with a peak at 2-5 nm. However, the magnetic moment in Sc/C60 samples is roughly

constant. For aC/Cu samples, a factor 2 higher moment is measured between ~2-5 nm, but this

difference is not as large as for Cu/C60, where the moment is a factor 6 higher for Cu layers 2-2.5 nm

thick than for layers of 3-4 nm. (4) This would be expected if the magnetic contribution is mostly due

to the interfacial region, resulting in a surface magnetization of ~0.05 emu/m2 in C60/Sc and 0.1

emu/m2 in aC/Cu (see fits in Fig. 1A). The presence of a magnetic moment for films below ~1 nm in

Sc/C60 seems indicative of a good wetting of the C60 by the Sc film, leading to continuous films or large

superparamagnetic islands with high susceptibility at room temperature. Copper films grown on C60, on

the other hand, tend to form islands that fill the rifts formed on the uneven molecular film (RMS

roughness of ~1-2 nm compared to 0.5د nm for sputtered metals) before forming a continuous layer.

The effect of the metal film thickness in the total roughness of the hybrid multilayer is also related to

the formation of clusters. As seen in figure 1B, samples with thin metal layers are smoother than

equivalent samples with thick metal layers, which may have an impact on the magnetization.

Pt and Sc-C60 samples result in a relatively weak magnetization and low coercivity Hc. According to

the Stoner-Wohlfarth model,(22, 23) the coercive field in the easy axis, Hc, should be equal to �K/Ms,

where K is the magnetocrystalline uniaxial anisotropy and Ms is the saturation magnetization. For

superparamagnetic systems with random crystal orientations, this equation is modified so that Hc drops

with temperature till it reaches a zero ideal value for single magnetic domains at the blocking

temperature TB: (24)
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Zero field cooled-field cooled (ZFC-FC) measurements of thin Sc multilayers (<1nm) show a thermal

hysteresis not characteristic of ferromagnetic materials, but rather of superparamagnets or spin glasses

below their blocking temperature (Fig. 1C).(25) The magnetic anisotropy derived from the fit of the

coercive field to equation (1) is very small, 500د J/m3 –similar to that of permalloy (Fig. 1D). On the

other hand, the blocking temperature is very high, some 885 K, corresponding to a grain size of 20 nm

ܭ) % ܸ ൎ ஻ܶ). Thicker Sc(2nm)/C60 films display shape anisotropy with saturation fields of 5 kOe (10

kOe) at 300 K and 12 kOe (17 kOe) at 2 K for in-plane fields (out of plane), respectively. The sample

saturation magnetization at low temperatures is not reached until fields of >10 kOe are applied for both

in-plane and out-of-plane measurements. The atomically rough interface may give rise to weakly

coupled magnetic moments with random orientation that do not align easily in smaller fields. That can

lead to the observed behavior at low temperatures and the zero field cooled/field cooled measurements

for ultra-thin films (<2 nm) with enough random dipolar fields.

Density functional theory (DFT) simulations show that the magnetization is more concentrated at the

interface for aC/Cu than for C60/Cu samples, resulting in a slower decay of the interface magnetic

moment with the metal layer thickness (see SI Appendix, Section 2). This effect is linked to a higher

magnetic contribution of the carbon layers in the case of aC compared to C60 (Figure 1F). Up to 95% of

the moment in Cu/C60 is computed to be in the metal, with the remaining 5% in the C60, but for Cu/aC

the moment in the carbon can be as high as 40% of the total. The calculated Stoner product of the

exchange integral (Is) with the density of states at the Fermi level (DOS(EF)) is also smaller for aC/Cu

than for C60/Cu, which agrees with the lower measured magnetization (Figure 1G).



Figure 1: (A) Magnetometry in Si//Ta(3)/C60(15)/Sc(t)/C60(15)/Al and Si//Ta(3)/aC(5)/Cu(t)/aC(5)/Al

multilayers, lines are fit to a constant interfacial magnetic moment. B Sample roughness measured via

atomic force microscopy (AFM) vs. number of layers (N) when each film thickness is kept constant

(blue dots; line fit to N2) or when the total multilayer thickness is kept constant (green squares; line fit

to asymptotic decay). Both curves should intercept at N=4, but different AFM tips shift them with

respect to each other by 1-2 Å. (C) ZFC-FC characteristic measured at 100 Oe for a 0.2 and a 2 nm Sc

samples normalized to the low temperature FC moment. The measurement shows thermal hysteresis

typical of systems such as superparamagnets and spin glasses. (D) The coercivity of thin Sc films with

C60 increases upon cooling following the dependence for superparamagnetic systems but with a high

blocking temperature of 885 K. (E) C60/Sc(2)/C60 samples have a high saturation field that increases at

low temperatures and with fields perpendicular to the sample. (F) The simulated contribution of the

carbon atoms (MC) to the total magnetic moment (Mtot) for different carbon allotropes and densities

shows that the magnetism in the carbon layers is more significant for aC/Cu than for C60/Cu. The as-

sputtered aC has a density of ~1.7 g/cc, whereas for annealed graphitic films it is ~2.3 g/cc (G) The

simulations predict as well a larger Stoner product Is!DOS(EF) for C60/Cu than for most aC/Cu

systems, in line with the experiments that show larger moments in C60-metal samples (Table 1).



In order to investigate the magnetic order at the interface and the propagation length of the effect, we

use low energy muon spin rotation (ȝSR) to provide a magnetic profile of the sample.(26-29) Here, a 

beam of almost fully polarised positive muons (ȝ+) is moderated to keV energies so that their tunable

stopping range is of the order of tens to hundreds of nm. The time evolution of the muon spin

polarization is a highly sensitive probe of the local magnetism. This is measured through the detection

of the anisotropically emitted decay positrons, preferentially emitted along the muon’s spin direction at

the moment of the decay (see SI Appendix, section 2 for further detail). We use this technique to probe

two Sc-C60 and Cu-C60 samples whose structure includes a thin Sc film of 2 nm (2.5 nm for Cu-C60)

and a thick Sc film of 5 nm (15 nm for Cu-C60). Nanoscaling of non-magnetic metals has been shown

to give rise to spin ordering.(30-33) The thin films should give rise to a strong magnetic signal,

whereas for the thicker films, the interfacial magnetization should be quenched or diluted by the bulk

properties of the metal. Full sample structures and muon stopping profiles are shown in figures 2A-B.

The muon spin spectroscopy measurements in Sc-C60 and Cu-C60 multilayers show similar properties.

At 250 K, both samples have an exponential decay of the polarization at zero field and at remanence

that may be due to the presence of local magnetic fields with dynamic or topological variations.(34, 35)

The amplitude of this signal can be modelled as a function of the contribution of each individual layer

in the samples. We find that the C60 interfaces with thin metal layers have a much stronger contribution

to the depolarization; e.g. for the Sc-C60 sample only 2% of the muons stopped in the top C60 layer (in

contact with Au and thick Sc) contribute to the fast exponential decay vs. 60% of those stopping in the

bottom C60 layer close to the thin Sc film -see boxes in Figs. 2C-D. Similar fast exponential decay

terms can be observed in antiferromagnetic or ferrimagnetic systems with spin canting, which would

explain the low remanent magnetization observed in these samples.

The presence of local hyperfine fields may also be evidenced by a zero-field precession signal at 250 K

of ~1.1 MHz in Sc/C60 and ~0.4 MHz in Cu/C60. Due to the lack of screening electrons in the molecular

semiconductor, muons couple with electrons in C60 to form the bound state muonium (P+-e-).(36, 37).



Two muonium states are known in C60: i) the exohedral muonium radical with anisotropic hyperfine

coupling which is observable below 100 K where the C60 rotational modes are frozen, and ii) the

endohedral muonium state with a large (vacuum muonium like), isotropic hyperfine coupling. At 250 K

the zero-field precession of the exohedral muonium state is not observable due to the fast C60 rotation.

The isotropic endohedral muonium state should not cause a zero-field precession in the MHz range.

However, charge transfer from the transition metal to the C60 may cause a deformation of the cage as it

is observed for the C60 spin triplet state.(38) This deformation may result in a slightly anisotropic

hyperfine coupling of the endohedral muonium state which then gives rise to the observed precession

frequency in the MHz range, similar as it has been observed in C70.(39)

The difference in the zero-field precession frequencies could then be related to different charge and

spin states as a function of the transition metal used as a substrate. The frequencies of oscillation shift

in remanence after an applied magnetic field of 300 Oe, and the amplitude of the signal is once again

stronger when probing the bottom Sc or Cu/C60 interface (Fig. 2E). Fig. 2F (top) shows the change in

the precession amplitude attributed to field inhomogeneities. This can be related as well with the

random orientation of local dipoles in small fields due to film roughness. The oscillation frequency of

the muons in an applied transverse external field of 140 Oe is also increased for implantation energies

corresponding to thin Cu layer due to the additional local field (Fig. 2 F-bottom).

Below 100 K, it is possible to observe the zero-field muonium precession frequencies of the exohedral

radical state in the range of 1-9 MHz. The fact that the muonium oscillation frequencies are clearly

observable implies that the magnetization must be localized close to the Cu layers; otherwise the

internal fields would shift/destroy these modes in C60. Their amplitude can be used to probe the

magnetic properties of the sample at 20 K (Figs. 2G-H). Given the number of particles implanted in

C60, the muonium signal should increase to reach a maxima at 8 keV (Sc-C60) or at 18 keV (Cu-C60).

However, the signal remains roughly constant, indicative of magnetic fields perturbing the muonium

signal at the higher implantation energies towards the bottom layers.



Figure 2: Muon stopping profile for (A) multilayer with the structure Si//Ta(3)/C60(20)/Sc(2)/

C60(50)/Sc(5)/C60(20)/Au(10) (Sc-C60) and (B) multilayer with the structure Si//Ta(3)/C60(25)/Cu(2.5)/

C60(50)/Cu(15)/C60(25)/Au(25) (Cu-C60) –film thickness in brackets in nm. All measurements at 250 K

unless otherwise indicated. The amplitude of the slowly relaxing component in the muon precession is

reduced as we approach the thin metal films in (C) Sc-C60 and (D) Cu-C60, indicating the presence of a

depolarization term. Lines are fits to the percentage of muons implanted at each layer contributing to

the decay. Schematics show this contribution for each multilayer in a red colour scale. In remanence,

the decay is faster but the contributions remain proportionally the same. The magnetic contribution of

the bottom metal-C60 interfaces leads to a drop of the muon decay asymmetry at 10-12 keV (Sc-C60) or

18 keV (Cu-C60). (E) Top: Muon oscillation amplitude at zero field in Sc-C60 (1.1 MHz). Bottom: in

remanence with two contributions (1.1 and 0.8 MHz). Lines are a fit to the layers contribution, with the

bottom metal and C60 layers having the largest input. (F) Oscillation amplitude (top) and frequency

(bottom) for the muon precession in Sc-C60 with an applied transverse field. Muonium oscillation

intensity (1.2, 7.8 and 9 MHz) at 20 K compared to the percentage of muons implanted in C60 layers for

(G) Sc-C60 and (H) Cu-C60. Local magnetic fields at the bottom layers reduce the muonium signal.



The orbital hybridization and molecular coupling with the metal are essential to the charge transfer and

emergent magnetism. C60 films degrade in ambient conditions due to light induced oxidation, which

leads to a decay of the magnetization in a few days if the structures are not protected (Fig. 3A). The

concentration of oxygen in C60 exposed to atmospheric conditions drops when heated in vacuum at 400

K, reaching near pristine levels by 450 K.(40) The magnetism at Sc/C60 interfaces follows this de-

oxygenation trend, with increased magnetization after heating to 400-500 K. At higher temperatures,

the C60 is desorbed from the metallic substrate, leading to a reduced magnetization (Fig. 3B).

For RF sputtered carbon, annealing alters the orbital states, bonding and structure of the layers. We use

Raman spectroscopy to track these changes via two vibrational modes: the D band due to the breathing

of benzene rings, and the G band due to the stretching of the C-C bond (E2g mode at the *-point).(41,

42) As the annealing temperature is increased, the G band shifts to higher frequencies; from 1520 to

1615 cm-1. The intensity of the D band (ID) with respect to the G band (IG) gets progressively higher;

ID/IG increases from ~0.6 in as-deposited films to ~2 after annealing at 875 K for one hour (Fig. 3C).

The Raman changes are evidence for the conversion of amorphous carbon into nanocrystalline graphite

and the change of orbital hybridization from sp3 to sp2.(41-43) In as-deposited films, the estimated

percentage of sp3 orbitals from the ID/IG ratio and G peak position is ~15-20%, but at 875 K the

percentage has dropped to zero. Above 875 K, graphitic nanocrystals expand until they form full

graphite sheets. This leads to the G peak shifting back to lower frequencies and the ID/IG ratio

decreasing again. In addition to these well characterized changes, above 875 K there is the formation of

a new peak at 1275 cm-1 that we have labelled as D*. This peak is at a frequency below those

conventionally assigned to the D band in graphite for a 532 nm source even in strain/stressed samples

(1340-1380 cm-1).(44) This shift could be due to charge transfer and reduction of the carbon atoms.

The structural changes result in a reduced magnetization but increased coercivity (Fig. 3D), with a net

enhancement in the B×H energy product (SI Appendix, section 3). These results are reproducible for

samples annealed in-situ (i.e. heated inside the SQUID at 50 mtorr He atmosphere using an oven probe)



and ex-situ (annealed in an external oven under vacuum and then re-measured). The solubility of

carbon in solid Cu above 1100 K for 72 h –i.e. at higher temperatures and for longer times than those

used in our experiment, is below 5 atomic ppm.(45) Although the solubility of RF sputtered aC in thin

films of Cu could be different than in bulk, we do not observe any sign of interdiffusion.

Figure 3: Degradation, annealing and carbon hybridization effects. (A) Time decay of the

magnetization in Cu/C60 multilayers. In samples with several layers, the bottom interfaces are

protected from chemical degradation by the top layers, and the magnetization decay is slow. (B) By

annealing, the magnetization of a Si//C60(15)/Sc(3nm)/C60(15) sample can be enhanced or the

degradation compensated. (C) Raman spectra of RF sputtered amorphous carbon on Cu after

annealing. At 475-775 K, the G peak moves to higher frequencies and decreases in intensity relative to

the D peak. At 875 K and above, the G peak increases again and the D peak has a replica at 1275 cm-1.

(D) Evolution of the magnetization and carbon structures during the annealing process. Lines are a

guide to the eye. Schematics show the sample structure changes derived from the Raman spectra.



An independent measurement of the magnetization contribution of the carbon material is provided by

soft X-ray Absorption Spectroscopy (XAS), exploiting its inherent chemical specificity when the X-ray

photon energy is tuned at the carbon K-edge electronic transition. It can therefore be used to assess the

presence of magnetic ordering in a given element separately from the contribution of other layers or

impurities using X-ray Magnetic Circular Dichroism (XMCD).(46) The K edge XMCD can only probe

orbital polarization due to the zero angular momentum of the 1s core shell.(47, 48) In figure 4 we

present results in the near edge X-ray fine absorption spectroscopy (NEXAFS) and XMCD at the

carbon K-edge of a Sc-C60 sample under a 1 T applied magnetic field along the X-ray beam direction,

incident at a 45 degree angle on the film. The edge structure of C60 on the metal surface is complex,

and at room temperature it includes features at 284 (LUMO), 286.2, 286.7 and 287.5 eV (excited

LUMO+1, +2, +3) in the S* antibonding region. (49, 50) The positions of these peaks are lower in

energy than for pure C60, which has previously been observed for fullerene films in contact with other

conducting magnetic substrates.(51, 52) The V* region is above the ionization potential and the modes

are less defined, producing wider peaks. The HOMO-LUMO transition (h1u-t1u) in C60 is optically

forbidden, although it is weakly present via vibrational excitations.

In XMCD spectra at room temperature, the first unoccupied states at the LUMO (t1u-t1g levels) appear

as magnetically ordered with the positive X-ray polarization having lower electron yield current –we

refer to this as negative dichroism, observed here in the absence of magnetic material. Conversely, the

following peaks around 287.5 eV (LUMO+2,+3) have positive dichroism. In contrast to this spin

polarization for S* states, the V* antibond orbitals are weakly or not polarized, see figure 4. Similar

results with a negatively polarized LUMO and positive higher S* states can be obtained in samples

with other Sc film thicknesses and under other experimental configurations (SI Appendix, section 4).

The measurements show a time dependence due to charging effects and/or radiolysis, but the sign of

the dichroism is changed when the Xray polarization is reversed or a negative magnetic field is applied.



There is a small peak some 5.5 eV above the LUMO, at 289.5 eV. This energy is too high for a charged

LUMO S* state. However, the resonance is too narrow and well defined for a V* state. Also, the peak

becomes much stronger at low temperatures, indicating a quantum state difficult to observe at 300 K.

We hypothesize that these characteristics may be interpreted as due to a delocalized superatom

molecular orbital (SAMO), previously measured using low temperature scanning tunneling microscopy

in C60 deposited on a metal surface.(53) The highest relative photo-ionization cross section would

correspond to the s-wave orbital,(54) but here the energy gap to the LUMO is closer to values observed

in microscopy for p- or d-wave orbitals. Another possibility is that this peak constitutes a carbon core

exciton (CEx) close to the ionization potential.(55, 56) XMCD measurements show this state to have

the same polarization direction as the LUMO. In addition to this prospective magnetically polarized

SAMO, two non-polarized states become visible at low temperatures: the metal-coupled charged

carbon state at 282-283 eV, and the peak due to aggregated or graphite-like C60 at 285.3 eV.

In conclusion, we have shown evidence for the universality of the emergent magnetism in metal-

nanocarbon interfaces and its magnitude in different materials. Our results give evidence that it is

indeed possible to have spin-polarized states at a metallic interface with molecular carbon even in the

absence of magnetic materials. This is of critical importance in the design and measurement of organic

spintronic devices and magnetic field sensors, where these interfaces can be used as spin filters.

Furthermore, given changes in polarization at the different energy levels, a gate voltage may give us

tuning access to spin up/down configurations or new quantum configurations, such as spin-polarized

superatom orbitals or polarons. The possibility of tailoring the magnetic properties of transition metal-

nanocarbon hybrids by using molecular interfaces opens as well tantalizing possibilities - for example

in non-corrosive magnets, bio-compatible hybrid nanoparticles, metal recovery and in magnetic

memories where the information is controlled via charge transfer with electro-optic irradiation.(5, 6)



Figure 4: X-ray spectroscopy of C60 grown on a Sc 4 nm film collected at room temperature (top) and

at 2 K (bottom). The measurements are done under an applied 1T perpendicular magnetic field in the

total electron yield mode (TEY) and a 45º beam incidence. The NEXAFS show the typical structure of

C60 –suggested modes in the bottom panel. Both measurements show magnetic dichroism, indicating

the presence of a considerably large orbital polarization in the C60 density of states -even in the

absence of a magnetic substrate. Note that XMCD measurements at low temperatures are multiplied by

a smaller factor and that there is an additional, negatively polarized peak provisionally assigned to a

superatom molecular orbital (SAMO) or core exciton (CEx).
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Supplementary Information for Emergent Magnetism at Transition

Metal-Nanocarbon Interfaces

S.1 Sample growth and magnetometry:

All thin films were deposited onto Si/SiO2 substrates. Thin films of C60 were deposited by sublimation

in a dual evaporation-sputter deposition system under high vacuum (on the order of 10-8 Torr). The C60

is deposited via high vacuum thermal sublimation at rates of 0.5-1 Å/s. The molecules were from a

source of 99.9% purity bought from Sigma-Aldrich. Thin metallic films of scandium (99.9% purity),

copper (99.999% purity) and platinum (99.9% purity) were deposited at ambient temperature using DC

magnetron sputtering with a 24 sccm argon gas flow at a sputtering pressure of 2.5 mtorr (10-8 torr base

pressure) with a deposition rate of 1-3 Å/s. An aluminum cap of 3-10 nm was deposited on top of the

devices to prevent oxidation of the sample. The metallic films are continuous and there is no evidence

for significant interdiffusion as seen in low angle Xrays and Raman spectroscopy. Xray absorption

spectroscopy spectra of our samples do not show impurities.

Figure S1: C60 film thickness uniformity over a 2!2 cm2 surface, similar to those used for low energy

muon spin spectroscopy. Magnetometry, Raman and XMCD are measured on samples of 0.5!0.5 cm2

or smaller.



The magnetometry results were taken using a MPMS3 superconducting quantum interference device

operated as a vibrating sample magnetometer (SQUID-VSM or SVSM) from Quantum Design. The

instrument has a resolution limit better than 10-8 emu, and the typical moment for our samples varies

between ~10-7 (background signal of the silicon substrate and holder) to 10-5 emu (strong and/or multi-

layered Cu-nanocarbon samples).
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In SQUID magnetometry, the moment increases with the number of interfaces and therefore

depositing several multilayers improves the signal to noise ratio as well as reducing the sample to

sample variation (several interfaces automatically averaged within a single sample). On the other hand,

adding more layers leads to enhanced roughness, which reduces the relative contribution of the top

layers –but only if the total thickness of the sample is also increased. Otherwise, if the total thickness is

maintained and the number of interfaces increased, the roughness is reduced and not increased, see

figure 1b. We also need to take into account that the degradation rates and recovery under annealing are

affected by the number of layers, with the top layers being less magnetic but acting as effective caps

that preserve the magnetism of the bottom layers when needed over long time periods for extensive

measurements. Therefore, different samples structures are measured to reach the optimal values over

the time of the measurements.
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Figure S4: Changes during annealing in the magnetization of a Sc/C60 multilayer with the structure

Si//Ta(3.5nm)/ [C60(15nm)/Sc(1.5nm)]x4 /Al(5nm). Although the trend is similar, note that changes at

350-475 K (±3%) are much smaller than the 15% enhancement observed in a single trilayer

C60(20)/Sc(1)/C60(20), see figure 3B in the manuscript. This is due to the reduced degradation and de-

oxygenation in a sample with thicker scandium and several metal layers.



S2. Density functional theory (DFT) simulations:

Standard and fixed spin-moment(S1), van der Waals (vdW) corrected(S2), Density Functional Theory

(DFT) simulations were executed via the Projected Augmented Wave (PAW) method as implemented

in the VASP program(S3) with the PBE exchange-correlation (XC) functional,(S4) a 400 eV plane-

wave energy cut-off, (0.2 eV, 1st order) Methfessel-Paxton electronic smearing,(S5) and a 10

symmetry irreducible k-point grid. The atomic-force threshold for geometry optimization was 0.02 eV

Å-1. In all cases, a vacuum separation of at least 12 Å was present between replicated images of the

interface models. To facilitate comparison between the results for the C60/Cu and aC/Cu interfaces, the

Cu substrate was consistently modelled as the 7-vacancy Cu(111)-4x4 reconstruction(S6, S7).

The models for the C60/Cu interface were the same C60/7-vacancy Cu(111)-4x4 systems as in Ref. (S8).

The aC models were initially prepared by creating random samples of different densities (1.4, 1.7, 2.3

and 2.6 gr/cc) at a distance of 1.5 Å above a 7-vacancy Cu(111)-4x4 slab of three Cu layers. Five

different random systems for each density were created and each of them was optimized together with

the Cu-susbstrate. The lowest energy aC/Cu structure for each aC density was used to prepare the

initial geometries for the systems with more Cu layers, adding extra Cu(111) layers (up to overall ten

Cu layers). The structure of these systems was eventually optimized relaxing all the C atoms and the

five topmost Cu layers. Figure S5 shows the optimized structure for the considered aC/Cu(111)-4x4

slabs (3 Cu layers).

Figure S5: Optimized atomic structure for the considered aC(pale blue)/Cu(orange) models on the 3 Cu-

layer slabs. (A) 1.4 gr/cc, (B) 1.7 gr/cc, (C) 2.3 gr/cc, (D) 2.6 gr/cc. C: blue, Cu: orange.



Due to the modelled non-magnetic ground-state for all the C60/Cu and aC/Cu models, atom-resolved

approximations to Stoner exchange integrals (Is) were computed by enforcing a magnetic moment of

0.075 ȝB/Cu atom via fixed spin-moment DFT. Following (S9) and (S8), atom-resolved values of Is

were computed from the (PAW-core projected) band-splitting at the Fermi energy [ο߳(ܧி)] and the

(PAW-core projected) atomic magnetic moment (ȟ݉) as:

[1] ௌܫ ൌ െ οఢ(ாಷ)
୼௠

As shown in Figure S6, the simulations suggest that the contribution to the total magnetic moment

(Mtot) due to the interface region (Mint), arbitrarily defined as the carbon layer and the five topmost Cu

layers, is larger for the denser (≥2.3 gr/cc) aC films than for the C60 one. The simulation indicate that,

as the thickness of the Cu slab increases, Mint for the C60/Cu system is more strongly quenched than for

the aC/Cu models. This result is in line with the measured weaker dependence on the Cu-film thickness

of the interface magnetization of aC samples with respect to C60 ones [Fig. 1 and (S8)], suggesting a

stronger (weaker) coupling of the interface magnetization with bulk-like metallic states in the Cu-

sample for the C60 (aC) films.

Figure S6: Calculated ratio between the interface (Mint) and total magnetic moment (Mtot) of the

C60/Cu and aC/Cu models as a function of the carbon-film and thickness of the Cu-slab. The computed

ŝŶƚĞƌĨĂĐĞ ĐŽŶƚƌŝďƵƚŝŽŶ ŝƐ ůĂƌŐĞƌ ĨŽƌ ƚŚĞ ĚĞŶƐĞƌ ;шϮ͘ϯ ŐƌͬĐĐͿ ĂC ĨŝůŵƐ͘ TŚĞ ŝŶƚĞƌĨĂĐĞ ƌĞŐŝŽŶ ŚĂƐ ďĞĞŶ 

arbitrarily defined as the carbon layer and the five topmost Cu layers.



Further support of the effect of the nature of the carbon-layer on the coupling between the innermost

part of the Cu film and the interface region is provided by atom-resolved analysis of the Stoner

exchange integral (IS) as a function of the distance from the carbon-Cu interface (Figure S7). Whereas

for the C60/Cu model enhancement of Is with respect to the bulk value (magnetic hardening) is found

also for Cu atoms at large distances from the most intimate C-Cu interface, in the case of the aC films

the magnetic hardening is concentrated close to the carbon substrate, leading to larger accumulation of

the magnetic moment at the interface region for aC films with respect to C60 ones (Fig. S6), and the

observed weaker dependence of the magnetic signals on the metal-sample thickness for aC films

(Figure 1).

Figure S7: Atom-resolved analysis of the Stoner exchange integral (Is) for the Cu-atoms of the

considered C60/Cu (A) and aC/Cu (B)-(E) interface models as a function of their shortest distance from

the C atoms.



S.3 Low energy muon spin spectroscopy:

Low energy muon spin spectroscopy is used to probe the local magnetisation in our multi-layered

structures. In this technique, anti-muons are implanted into a sample at different energies and therefore

at different depths from the surface. Once stopped, the particles decay into a detectable positron and a

neutrino/anti-neutrino pair. The method uses the preferred handedness of particles and anti-particles

implicit in CP violation to provide a probe of local magnetization. The restriction that the emitted

positron must be right-handed results in a preferred direction of emission along the direction of the P+

spin vector. Determining the direction of the positron decay allows the precession of the anti-muon spin

to be observed and, therefore, the local field at the anti-muon implantation site to be determined. A

polarized beam of high energy (about 4 MeV) anti-muons is obtained from the decay of ʌ+ generated 

in collisions of the 590 MeV proton beam of the PSI cyclotron with carbon nuclei of a graphite target.

A high intensity beam of these energetic muons is sent onto a cryogenic moderator consisting of a 300-

nm-thin solid argon layer deposited on a 10 K cold silver foil. Moderated muons with a mean energy of

about 15 eV are re-accelerated electrostatically to keV energies, forming the low-energy muon beam

with tuneable implantation energy. A spin rotator, made of a crossed electric and magnetic field, was

used to set an angle of 10° between the sample plane and the anti-muon beam polarization. Of the

implanted anti-muons, some 20% were expected to form muonium when stopped in the C60 layers.

Positrons emitted from muon decay were captured by two sets of detector segments, forward and

backward, and the count difference between these two detector sets was used to determine the spin

direction of implanted anti-muons as a function of time.



Figure S8: Left: Muon oscillation amplitude at zero field and remanence for

Si//Ta(3)/C60(25)/Cu(2.5)/C60(50)/Cu(15)/C60(25)/Au(25). Right: Frequencies for the oscillation. Below

8 keV, the muons can only penetrate to the top Au/C60 layers, where this slow oscillation is not present

or easily observed (see penetration profiles for this sample in figure 2 of the main manuscript).

The objective was partly to use the depth profile of the particles to assess the relative contributions

of two metal layers (4 interfaces) with different thicknesses. The measurement points to an enhanced

signal in thinner layers, i.e. the stronger signal in thinner films is not simply due to equal magnetic

moments in a smaller volume, but may have other contributions such as interface-to-interface coupling

or reduced screening when the metal layer is sufficiently thin.



S.4 Raman spectroscopy:

Raman spectra were measured using a LabRAM HR800 from Horiba Sci. with a 532 nm excitation

laser and a 600 ln/mm grating to obtain a resolution of the order of 1 cm-1. Changes in the Raman

spectra can be used to determine the carbon structure and hybridisation. In as-deposited films, the

carbon G peak position is found at ~1530 cm-1, which is in good agreement with values previously

found in amorphous carbon. As the film is annealed, the carbon atoms rearrange and form graphitic

nanocrystals. Once the carbon film is fully composed of these nanocrystals, the G peak should be found

at 1600 cm-1 with benzene-like ring arrangements. In our case, the G peak reaches a maximum value of

1615 cm-1, close to but not identical to the ideal value of 1600 cm-1. This is indicative of the presence

of small amounts of sp2 chains that can originate due to the growth of tetrahedral amorphous carbon

(ta-C) and/or in the presence of hydrogen during deposition –please see the seminal work by Ferrari

and Robertson (refs. 41-43 in the main manuscript). Annealing at higher temperatures lead to a

reduction in the G peak frequency, which may be related to the conversion of these chains in to

benzene ring arrangements and/or the formation of graphite and inter-sheet bonding. Pure graphite has

a G peak position of 1580 cm-1, and therefore requires annealing temperatures above 1000 K. These

values may be different for sputtered carbon on other substrates.

Figure S9: Left: changes with annealing temperature in the position of the carbon G peak and the D to

G peaks Raman intensity ratio (ID/IG), and Right: the magnetic strength (Bsat!Hc product) for two

copper-sputtered carbon interfaces annealed in-situ (magnetometry) and ex-situ (Raman). The sp3 Æ

sp2 conversion is expected to be completed at 850-900 K.
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S.5 X-ray absorption spectroscopy:

X-ray Absorption Spectroscopy (XAS) using X-ray Magnetic Circular Dichroism (XMCD) was

performed in the BOREAS beamline of the ALBA Sychrotron. Details of design and performance of

the beamline can be found in Barla, A., Nicolás, J., Cocco, D., Valvidares, S.M., et al., J. Synchrotron

Rad. 23(6), 1507-1517 (2016).
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Figure S10: Raw XAS spectra before edge correction for C60 on a Si substrate (top) and C60 layers on

Sc films of 2 and 4 nm at 300 and 4 K. The bottom two panels are the spectra for the results in figure 4

of the main manuscript before edge correction.



In measurements of the carbon K-edge, electrons are excited from the core 1s level to the p valence

shell. The photon spin is transferred to the photoelectron as an angular momentum, so the dichroism

can only be detected if the p shell possesses an orbital moment itself. Sensitivity to the spin magnetic

moment of the p shell arises only indirectly through the spin-orbit interaction (see Magnetism: From

Fundamentals to Nanoscale Dynamics by J. Stˆhr and H.C. Siegmann). The C60 may undergo changes

in its edge structure during the measurement due to charging effects and/or radiolysis. In XMCD, these

effects are accounted for by averaging over time measurements with different circular polarisations and

by measuring under different conditions. In XMCD, due to the short scape distance of the emitted

electrons, we only probe the top 1-5 nm of the sample, and therefore a single interface is only probed.
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Figure S11: Examples of XMCD at the carbon K-edge measured in two samples with different Sc film

thickness and under different conditions. Angles refer to the orientation of the film plane respect to the

magnetic field axis. Measurements plotted in red are taken in a negative magnetic field or with a

reversed polarisation; starting the measurement with the light polarisation vector antiparallel to the

magnetic field and subtracting the electron yield parallel to the field. A Fe ferromagnetic film for

positive applied field and light polarisation axis parallel to the field shows positive XMCD at L3.
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