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Abstract—Deep neural network approaches have demonstrated
high performance in object recognition (CNN) and detection
(Faster-RCNN) tasks, but experiments have shown that such
architectures are vulnerable to adversarial attacks (FFF, UAP):
low amplitude perturbations, barely perceptible by the human
eye, can lead to a drastic reduction in labelling performance.
This article proposes a new context module, called Transformer-
Encoder Detector Module, that can be applied to an object
detector to (i) improve the labelling of object instances; and
(ii) improve the detector’s robustness to adversarial attacks. The
proposed model achieves higher mAP, F1 scores and AUC average
score of up to 13% compared to the baseline Faster-RCNN
detector, and an mAP score 8 points higher on images subjected
to FFF or UAP attacks due to the inclusion of both contextual and
visual features extracted from scene and encoded into the model.
The result demonstrates that a simple ad-hoc context module can
improve the reliability of object detectors significantly.

I. INTRODUCTION

Recognising objects in a visual scene is an effortless task
for humans, one that has challenged computer vision since its
inception. The advent of deep neural network approaches over
the last decades has delivered major improvements on this task
on all benchmarks, although some difficulties remain [39].

One notable weakness of deep neural network approaches
to vision, first demonstrated by Szegedy et al. [34], is that
perturbations of very small amplitude, barely visible to the
human eye, can be found that lead to major decrease in the
neural networks’ labelling accuracy—so called adversarial

attacks. This seminal finding was confirmed by following
studies, which showed that such attacks could be designed to
be independent on the specific neural network or even neural
architecture employed [23], and that such attack patterns could
be data independent [24].

This apparent weakness is in contrast to how robust human
perception of objects is to a variety of noise and perturbations.
One plausible reason for this difference in robustness between
human and artificial perception is context [3]. Contextual
information plays an important role in visual recognition for
both human and computer vision systems [3], [28]. Imagine
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there are an office desktop, a chair, a PC, a monitor and a
keyboard, then we ask the question “what is the missing object

in this scene?”. Some may say a cup, or a pen, but when
looking deeply and understanding the context, you are likely
to say the missing object is a mouse. Such guesses are made
even without seeing or gazing at the scene due to leveraging
contextual information. This shows how context carries rich
information about visual scenes. In terms of object recognition,
the context could be defined as cues captured from a scene that
presents knowledge about objects locations, size and object-
to-object relationships. Due to the importance of contextual
information and how it improves detection, it has been widely
studied [7], [11], [14], [25], [40]. Contextual information can
be captured from images explicitly as attempted in [1], or
implicitly as proposed in this paper upon the success of the
Transformer model proposed by [35] for Natural Language
Processing.

This paper describes a contextual detection module, pro-
posed as an add-on to classical object detection architectures
such as Faster-RCNN, named Transformer-Encoder Detector

Module (TEDM). This model implicitly encodes contextual
statistics of objects and uses attention mechanism to improve
the labelling of image regions. It improves the detection
performance of a state-of-the-art object detector, as evaluated
on natural images and perturbed images. This model does
rescore, relabel, and correct detector predictions, in contrast
to [8], [11], which only rescore detected objects’ confidences.

This paper is organised as follows: First, we review the
Transformer Model, and how it works. CNN-based detectors
(Section II). In Section III, we explain how the proposed model
is built and how features are encoded in the pipeline. Finally,
the proposed model is examined on MSCOCO2017 dataset in
comparison with Faster RCNN detector and the Relabelling
Model proposed by [1] in Section IV. Natural and perturbed
images are both used to evaluate the proposed model.

II. RELATED WORK

A. Adversarial attacks

The vulnerability of deep neural network architectures
to small amplitude perturbations optimised to damage the
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networks’ performance has first been found by Szegedy et

al. [34]. They demonstrated that image perturbations of small
amplitude, barely visible to the eye, when optimised to cause
the highest misclassification error, can achieve large decreases
in performance. Moreover, such perturbations can decrease
performance across network architectures and even on differ-
ent datasets.

Mohsen et al. [23] proposed an approach to find Uni-
versal Adversarial Perturbations (UAP), single patterns of
perturbation that lead to large misclassification across all
inputs of the network, and demonstrated its efficiency on
various classifiers (e.g. CaffeNet [18], VGG-16 [32], VGG-
19 [33]), claiming that the addition of the perturbations drops
the tested classifiers’ performance by almost 90% as tested
on ImageNet validation dataset. Therefore, this leads to the
result that the single universal perturbation vectors can cause
most of the natural images to be misclassified. Therefore,
it can be concluded that using UAP perturbations optimised
on a network architecture X (e.g., VGG-F) will also lead
to misclassification when applied to images classified with
another network architecture Y (e.g., CaffeNet).

Moreover, Reddy et al. [24] claim that their proposed model,
named Fast Feature Fool (FFF), is transferable to various
different models (i.e. they use the same models examined in
[23]). The main and important difference between UAP and
FFF is that FFF is data-independent. In other words, it can be
applied on any model even if the trained and tested models
are trained on different datasets (i.e., no prior knowledge about
the target CNNs is needed). It is also reported that when FFF
is trained on X dataset and evaluated on Y dataset, it can still
impact the CNN models, leading to an increase in the fooling
rate compared to UAP, which is a data-dependent method.

B. Visual context for object detection

Contextual information can help improve detection perfor-
mance due to the knowledge it provides from scenes [14], [20].
It is defined in [2] as any data obtained from an object’s own

statistical property and/or from its vicinity, including intra-

class and inter-class details. Such a definition is claimed due
to the information observed while studying the importance of
context in digital images.

It is said that contextual information is a tool used more
with multiple objects so that relationships among objects can
be deeply understood [12]. Roozbeh et al. [25] also state that
in digital images, objects with clear appearance (e.g. large
objects) are easy to detect, whereas some small objects are
harder. Lubor et al. [27] also claim that contextual information,
therefore, can be a solution here as it provides stronger cues in
detecting small objects due to the context where those objects
are present. Hence, contextual information is described as “a

natural way to improve detection” [4], [7].
Contextual information in the field of object detection can

help to understand and explore object vicinity (i.e., scene-level
context) as applied in [5], [38], and also provides object-object
relationships (i.e., object-level context) as in [10], [29]. More-
over, Contextual information has been also studied in different

Fig. 1. The Transformer Architecture, reproduced from [35]

areas, such as object localisation [11], image segmentation
[15], image annotation [21], scene modeling [7] and cognitive
robotics [40].

Context can be classified upon the sources of information
extracted from images. Biederman et al. [6] state that there
are five categories of object-environment dependencies, which
are: “(i) interposition objects interrupt their background, (ii)

support: objects often rest on surfaces, (iii) probability: ob-

jects tend to be found in some environments but not others, (iv)

position: given an object in a scene, it is often found in some

positions but not others, and (v) familiar size: objects have a

limited set of sizes relative to other objects”. Galleguillos et

al. [14] grouped those relationships into three main categories:
(i) Semantic (Probability), (ii) Spatial (interposition, support
and position) and (iii) Scale (familiar size).

C. Attention and the Transformer model

Vaswami et al. [35] proposed the Transformer architecture
for natural language processing, as a way to encode word
context from documents corpora using dot product attention
between word vectors. The Transformer consists of a set of
encoders and decoders, which are composed of a stack of
layers. In terms of encoders: each has two major components,
which are (1) self-attention layer and (2) feed-forward neural
network. On the other hand, the decoder has two similar
components and an additional one: (1) self-attention layer, (2)
encoder-decoder layer, and (3) feed-forward neural network.
The Transformer architecture is shown in Figure 1. We refer
the reader to [35] for further information. The Transformer
architecture, due to its performance and speed, has been
used in a variety of approaches in NLP, such as [13], [30],
[36], [37], and has recently been applied to computer vision
problems [9].

III. PROPOSED METHOD

A novel model is proposed in this paper, which obtains
a better performance compared to the Faster-RCNN detector
whether perturbations are applied to the images or not. The
proposed model is built upon the success of the Transformer
model proposed by [35]. However, only the Transformer-
Encoder is adapted, as shown in Figure 2, where the pro-
posed model, named Transformer-Encoder Detector Module

(TEDM) architecture is illustrated.
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Fig. 2. Transformer-Encoder Detector Module Architecture

First, an image is passed to the baseline detector (i.e.,
Faster-RCNN) for feature extraction. Faster-RCNN, proposed
by Shaoqing et al. [31], uses a two stages for detection. In
the first stage, it uses a CNN network to extract regions in the
image that are likely to contain an object. The second stage,
moreover, performs detection (classification & localisation) for
each region proposed by the first stage. Faster-RCNN has been
implemented in a variety of articles studying the importance
of contextual information (e.g. [16], [17]), and it is still one
of the state-of-the-art detection methods, and due to some of
its advantages (e.g. speed, accuracy), it is also used as the
baseline detector in this paper.

Features representing image regions for the detected objects
are extracted. As the dimension of the features extracted is
4, 096, they are mean-pooled to 2, 048 to suit further pro-
cessing. The pooled features and the boundary boxes obtained
from the detector representing the detected regions are passed
into the Transformer-Encoder with a dimension of 2, 048.
Boundary boxes are included to encode the spatial features to
extract the contextual information among regions implicitly.
Since there is no recurrence in the model, the positions of
the inputs are needed, thus positional encoding is applied,
which “injects some information about the relative or absolute
position of the tokens in the sequence”, using sine and cosine
functions of different frequencies. In other words, it is used
to obtain the context of each feature inputted [35].

The Transformer Model, moreover, is then applied, which
is already pre-trained on MS COCO 2014, adapted from [19],
[35]. In details, the Transformer-Encoder takes the passed
features and processes them with the attention mechanism
to output features with a dimension of 512. A feed-forward
NN classifier is then applied. The classifier produces the
new scores and predicted labels for each region. We use a
trainscg (scaled conjugate gradient back-propagation) Neural
Network approach, as implemented in MATLAB [22]. Scaled
conjugate gradient (SCG), a supervised learning algorithm, is
a network training function used to update weight and bias
value according to the scaled conjugate gradient method [26].
trainscg was implemented as explained in [22]. The standard
network consists of a two-layer feed-forward network, with a
sigmoid activation function in the hidden layer, and a softmax
function in the output layer. The number of hidden units
defined is 200, as different numbers were tested, and 200
achieved the highest performance for this data.

This method, to the best of our knowledge, is the first to

include the Transformer-Encoder to benefit from the use of
attention and the positional encoding operation to apply for
object detection performance in both natural and perturbed
images. The positional encoding, as said, helps to simply
encode the semantic and spatial contexts for each region
inputted implicitly. TEDM is examined, as below, on the MS
COCO 2017 val dataset in comparison with Faster RCNN (i.e.,
baseline detector) on two types of images: (1) Natural images,
where no perturbations are added, and (2) perturbed images,
as presented in Section IV.

IV. EXPERIMENTS

This section presents the results obtained from the appli-
cation of the new proposed method (TEDM). Images before
any attacks, called natural images, are used to examine the
impact of this model in comparison with Faster-RCNN, as
in Experiment one (Section IV-A). Experiment Two (Section
IV-B) illustrates the examination of the TEDM vs. Faster
RCNN on images under adversarial attacks.

A. Experiment One: Natural Images

In this section, we are presenting how effective TEDM is
in comparison with Faster RCNN when applied on natural
images.

Note that images used in these experiments are taken from
MS COCO 2017 val dataset. Only the images with more than
one object detected by Faster RCNN are used in order to
compare the performance of this proposed model with the
Relabelling Model proposed by [1], which explicitly extracts
contextual features from images. This model improves the
detection performance of Faster RCNN detector as it rescores
and relabels predictions. using some Refer to [1], [2] further
reading about contextual information and how Relabelling

Model works.
First, two chosen images with only one object presented

are used to examine the performance of TEDM when a single
object is presented. This is because TEDM does not solely
rely on contextual information as the Relabelling Model, but
also on the appearance features extracted by Faster RCNN.
Therefore, it is expected to work well even with one object
presented as illustrated in Figure 3, where the predictions
obtained from Faster RCNN and TEDM are shown on left
and right sides, respectively.

As we can see in the first row in Figure 3, a person is
detected by Faster RCNN with a confidence of 0.9985 and also
predicted by TEDM, but with very slightly lower confidence
as 0.9883. Similarly, in the second row, a kite is detected by
Faster RCNN as the only object presented. Applying TEDM,
in this case, increases the confidence from 0.9647 to 0.9920.
The two images are shown as each presents one object that
belongs to a different category. In all cases, TEDM is believed
to work very well when a single object is presented. It can be
said that TEDM is a compatible method producing comparable
results as Faster RCNN. Below, more visualised and statistical
results are reported where more than one object in the images
used are presented.



Faster RCNN TEDM

Fig. 3. Results: Faster RCNN vs. TEDM outputs on images with a single
Object: Green boxes represent correct detection.

TABLE I
A COMPARISON BETWEEN FASTER RCNN AND TEDM IN TERMS OF AUC

SCORES OF SOME MS COCO CLASSES.

Class Name Faster RCNN Relabelling Model [1] TEDM
Person 0.84345 0.84568 0.95174

Car 0.81246 0.80474 0.93287
Cow 0.82301 0.84035 0.93246

Snowboard 0.74229 0.87412 0.88235
Sport ball 0.84244 0.84203 0.95008

Mean 0.76472 0.78278 0.89222

Images with more than one object are used to keep con-
sistent and to report comparable statistical results with the
Relabelling Model. In Table I, the AUC scores for some ob-
jects and all objects average for both TEDM and Faster RCNN
are presented. It can be noticed that TEDM outperforms the
baseline detector in all cases shown obtaining a higher average
score of 0.8922. This is even better than the Relabelling Model,
whose mean of AUC scores is 0.78278.

Furthermore, Table II shows the mAP0.5 and mAP
(IoU=[0.5:0.05:0.95]) for TEDM and Faster RCNN. As pre-
sented, TEDM outperforms the baseline. Compared with the
Relabelling Model, whose mAP and F1 scores are 65.50% and
58.95%, as reported with [1], TEDM still performs better.

In addition, as shown in Figure 4, two randomly chosen
images taken from MS COCO 2017 validation dataset are
used to examine the performance of TEDM compared with
Faster RCNN. In the first row, seven objects are detected
by Faster RCNN. Four objects, which are a person, a TV,
a keyboard and a mouse are detected correctly. However,

TABLE II
MAP AND F1 SCORES IN PERCENTAGES [%] FOR FASTER RCNN AND

TRANSFORMER-ENCODER DETECTOR MODULE (TEDM).

Model mAP0.5 mAP F1
Faster RCNN 62.82 33.48 57.34

Relabelling Model [1] 65.50 34.07 58.95
Transformer-Encoder Detector Module 69.07 38.19 63.27

the other three, which are a person, a laptop and a chair

are incorrectly detected. TEDM is applied, which removes
two of the incorrectly detected objects, but still predicts the
laptop incorrectly, with very low confidence. This result is
promising as it shows how TEDM removes incorrect objects
and reduces the confidence of the laptop. More importantly,
in the following image, TEDM outperforms Faster RCNN
predictions. It corrects the bed, which is incorrectly detected,
to a couch as correct detection. This clearly shows how the
proposed model does not only contribute to removing false
detections but also how it rescores and relabels them.

Summary. Statistical and visual results suggest that TEDM

achieves a better performance than the baseline detector
benefiting from the self-attention mechanism. It also does a
great job in detecting either single-object or multiple objects,
which are better in comparison with Faster RCNN and the
Relabelling Model [2].

B. Experiment Two: Adversarial Images

Adversarial images are used to examine the impact of
TEDM, i.e. the use of contextual information, against adver-
sarial attacks. Such images may have different visual features
due to the addition of Adversarial Perturbations leading to an
effect on contextual information especially when some objects
are misdetected.

Adversarial Perturbations are noises carefully computed
such that, when added to images, they are not visible to the
naked human eye but they do fool the Deep Neural Networks
(DNNs) into mispredictions.

Due to the impact that both methods (i.e. UAP and FFF)
cause to the CNN models, they are used in this paper to
examine their effect on TEDM and Faster RCNN detector.
UAP perturbation used in this experiment is trained on MS
COCO 2017, as it is data-dependent. However, FFF is used as
proposed (i.e. already trained on ImageNet), but will be tested
on MS COCO 2017. Figure 5 shows the perturbations, which
are added on images. It can be seen they are different, even
though they both are trained on the same model (i.e. VGG-16),
but on different training datasets.

The two types of perturbations are applied and added to
images in two different approaches: (1) added to the entire
image as experimented in Section IV-B1, (2) added to each
detected region as experimented in Section IV-B2.

1) Perturbation on the Entire Image: In this section, per-
turbations are added to the entire image, where statistical and
visual results are illustrated, below, to show the performance
of TEDM in comparison with Faster RCNN.

In terms of the statistical results, as shown in Table III. The
average AUC scores for TEDM is noticeably higher than Faster
RCNN in both types of attacks. Considerably, TEDM obtains
higher scores for some objects such as the train, stop sign

and Pizza, we can clearly see a huge difference, as TEDM

benefits from the use of visual and contextual features in
contrast to Faster RCNN, which depends only on the visual
features. In comparison with the Relabelling Model, which
encodes contextual information in an explicitly manner, the



Original Image Faster RCNN TEDM

Fig. 4. Results: Faster RCNN vs. TEDM outputs: Green, red and white boxes represent correct detection, incorrect detection, and objects removed and
relabelled as background, respectively

FFF Perturbations UAP Perturbations

Fig. 5. FFF vs. UAP perturbations added to images

TABLE III
A COMPARISON BETWEEN SOME MSCOCO OBJECT CLASSES AUC

SCORES BETWEEN FASTER RCNN AND TEDM ON PERTURBED IMAGES

FFF UAP
Class Label Detector TEDM Detector TEDM

Person 0.62389 0.69576 0.62881 0.73342
Train 0.42961 0.62051 0.41062 0.56773

Stop Sign 0.76242 1 0.69155 0.78571
Surfboard 0.39266 0.52464 0.44750 0.59365

Pizza 0.67393 0.87767 0.63185 0.81783
Mean 0.34714 0.47683 0.36050 0.48713

average AUC scores are 0.4203, and 0.4333 for FFF and UAP
attacks respectively.

In addition, Table IV illustrates the mAP and F1 scores for
TEDM and Faster RCNN, where FFF and UAP perturbations
are applied. Clearly, TEDM scores a higher performance
than Faster RCNN in both cases. However, in the case of
UAP attack, we can see that both models are less impacted
compared with FFF. In comparison with the Relabelling Model

which obtains mAP and F1 of 49.39%, 41.91% and 50.72%,
43.12% for FFF and UAP respectively.

Figure 6 presents two images illustrating the impact of
FFF and UAP perturbations. Firstly, in the top row results,
FFF perturbation is added to the entire image. Faster RCNN
detects two objects correctly, which are two persons, whereas
incorrectly detects an umbrella, which is actually a wall. The

TABLE IV
AP AND F1 SCORES IN PERCENTAGES [%] FOR FASTER RCNN AND

TEDM ON PERTURBED IMAGES

Attacks Models mAP0.5 F1 Score

FFF Faster RCNN 45.34% 39.13%
TEDM 50.59% 43.16%

UAP Faster RCNN 46.40% 40.05%
TEDM 51.67% 44.00%

same perturbed image is passed into the TEDM predicting
the presence of only the correct objects, which are the two
persons, and relabels the umbrella as a background. However,
in compare with Faster RCNN, TEDM scores the correctly
detected objects with lower confidences, but still higher than
0.81.

In terms of UAP perturbations, as illustrated in the second
row. We can see that both models perform very well. However,
Faster RCNN fails to detect one of the frisbees, which labels
as a sports ball. TEDM correctly labels it as frisbee with a
confidence of 0.9089. Both models score all other objects with
considerably high confidences, even though perturbations are
added.

Summary. We can clearly see that TEDM performs better
scoring higher average AUC scores in the majority of cases,
and higher mAP and F1 scores compared with Faster RCNN
and the Relabelling Model. From the reported results, we can
say that TEDM is an excellent tool to overcome some of the
errors that Faster RCNN attempts. Below, both models are
examined when perturbations are added on regions rather than
on the entire image.

2) Perturbation On Regions: In this section, perturbation
is added on detected regions, because perturbations are added
to images, which are passed into single-object models, as
presented and developed in [23], [24]. Therefore, perturbations
will be added to each region of interest (RoI) that the detector
detects during the detection process.



Perturbation Original Image Faster RCNN TEDM

FFF

UAP

Fig. 6. Results: Faster RCNN and TEDM outputs for FFF and UAP perturbed images: Green, red and white boxes represent correct detection, incorrect
detection, and objects removed and relabelled as background, respectively

TABLE V
AP AND F1 SCORES IN PERCENTAGES [%] FOR FASTER RCNN AND

TEDM ON PERTURBED IMAGES

Attacks Models mAP0.5 F1 Score

FFF Faster RCNN 26.25% 20.78%
TEDM 35.28% 26.25%

UAP Faster RCNN 23.18% 18.17%
TEDM 31.39% 24.14%

Looking at Table V we can see that TEDM outperforms
Faster RCNN in both types of perturbation. FFF seems to
impact both models lower than what UAP does, but in general,
both attacks significantly drop the performance of both models.
We believe TEDM can be offered, to some extent, yet as a
solution to address perturbation issue in the field of object
detection. It also outperforms the Relabelling Model, whose
mAP and F1 scores for both FFF and UAP perturbations are
respectively 29.05%, 23.14% and 26.36%, 20.53%.

AUC scores are computed as presented in Table VI. On
average, TEDM performs better than Faster RCNN in the two
cases of perturbation. As said, both models perform better
when FFF attack is applied, unlike when UAP perturbation
added. However, in some classes such as microwave Faster
RCNN has higher AUC scores (as per class) comparing with
the proposed method. In comparison with the Relabelling

Model, which has an average AUC score for FFF and UAP
as 0.19470 and 0.16994, where TEDM again achieves better
performance.

Table 7 presents some results obtained from the application
of both attacks on Faster RCNN and TEDM. An image
showing the detected regions before any perturbation added,
followed by the predictions of both models are illustrated. As
the aim, here, is not just to illustrate the differences between
models performances before and after the attack, but rather
to show the differences among both models after attacked per
region is added. Therefore, results after the attack are reported
to provide ease when comparing.

In the first image, where FFF perturbation is added to

TABLE VI
A COMPARISON BETWEEN SOME MSCOCO OBJECT CLASSES AUC

SCORES BETWEEN DETECTOR AND TEDM ON PERTURBED REGIONS

FFF UAP
Class Label Detector TEDM Detector TEDM

Person 0.18573 0.31982 0.14653 0.28385
Train 0.05501 0.08737 0.03883 0.02912
Cat 0.06807 0.10563 0.03990 0.84507

Wine Glass 0.27083 0.19791 0.24791 0.25625
Microwave 0.17241 0 0.06896 0.09143

Mean 0.14310 0.23058 0.12043 0.19991

regions TEDM predicts no objects. All objects detected by
Faster RCNN after attacked are false detection. TEDM helps to
prevent false detections that Faster RCNN outputs. Noticeably,
as shown in the detected regions before the attack, the bed is
detected, but after the attack, it could not be predicted. This
is a good example of how negatively the perturbation impacts
the model. It is found that when the regions are large in size,
they are likely to be impacted more by perturbation resulting
in not being detected.

In terms of UAP perturbation, ten regions are detected by
Faster RCNN before the attack, and only half of them are
detected after. Faster RCNN detects four objects correctly
but fails in detects the cup. The TEDM fails to detect the
person that Faster RCNN already detects, which can be due
to the perturbation and lighting conditions. We can see that
the person in the large region is not detected, which can be
in line with the findings stated earlier that larger regions are
more likely to be impacted.

Summary. TEDM is performing better than Faster RCNN
to tackle adversarial perturbations. This is because of the
features encoding during the encoder process, as it learns the
spatial and visual features.

V. CONCLUSION

This paper presented a new context module, called
Transformer-Encoder Detector Module (TEDM), which when
combined with an object detection architecture to improve
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Fig. 7. Results: Faster RCNN and TEDM outputs for FFF and UAP perturbed regions: Light blue boxes represent regions detected before perturbation added.
Green, red and white boxes represent correct detection, incorrect detection, and objects removed and relabelled as background, respectively.

both performance and robustness to adversarial attacks. The
proposed model is based on the encoder part from the Trans-
form model [35] to encode the contextual features implicitly
for scenes, and visual features using Faster RCNN. TEDM

was examined on natural images and perturbed images, where
it outperforms Faster RCNN and a contextual model that
explicitly encodes contextual features.

As experimented, the impact of adversarial attacks was
reported to be higher when applied on regions, which we
believe is due to the size of the regions: the larger the region
is, the more it is impacted. Surprisingly, UAP perturbation
affects the performance of the examined models when added
to the entire image less than FFF does. However, when added
to regions, it drops performances considerably, which can be
due to the data-dependency.

Future work will involve developing an end-to-end model,
to refine not only predictions but also boundary boxes from
both contextual and visual features.
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