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Abstract. Designing multiple near-Earth asteroid (NEA) rendezvous
missions is a complex global optimization problem, which involves the
solution of a large combinatorial part to select the sequences of aster-
oids to visit. Given that more than 22,000 NEAs are known to date,
trillions of permutations between asteroids need to be considered. This
work develops a method based on Artificial Neural Networks (ANNs)
to quickly estimate the cost and duration of low-thrust transfers be-
tween asteroids. The capability of the network to map the relationship
between the characteristics of the departure and arrival orbits and the
transfer cost and duration is studied. To this end, the optimal network
architecture and hyper-parameters are identified for this application. An
analysis of the type of orbit parametrization used as network inputs for
best performance is performed. The ANN is employed within a sequence-
search algorithm based on a tree-search method, which identifies multi-
ple rendezvous sequences and selects those with lowest time of flight
and propellant mass needed. To compute the full trajectory and con-
trol history, the sequences are subsequently optimized using an optimal
control solver based on a pseudospectral method. The performance of
the proposed methodology is assessed by investigating NEA sequences
of interest. Results show that ANN can estimate the cost or duration of
optimal low-thrust transfers with high accuracy, resulting into a mean
relative error of less than 4%.

Keywords: Neural network · Space mission · Trajectory optimization ·
Near-Earth asteroids.

1 Introduction

In the last decades, Near-Earth Asteroids (NEAs) have caught the attention of
the scientific community for planetary defense, technology demonstration, and
resource exploitation. The irregularity of their shape, size, gravity and magnetic
fields, composition makes each of them unique and worth to be studied [7].
Multiple NEA rendezvous missions allow to visit a larger number of asteroids
than single-NEA missions, while reducing the cost for each observation. Low-
thrust propulsion systems, such as solar electric propulsion (SEP), are a more
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efficient technology than chemical propulsion in terms of fuel consumption. The
higher specific impulse of low-thrust systems makes them an attractive solution
for multi-target missions since they require less propellant for a given velocity
increment ∆V [18].

The design of multiple NEA missions requires the solution of a complex
global optimization problem to compute the optimal trajectory that meets the
mission requirements, such as type of propulsion system and propellant mass
available. This problem consists mainly of two sub-problems which are tightly
coupled: a large combinatorial part, aiming at the identification of the most
convenient asteroid sequences; and a continuous part to identify the optimal
trajectory and control history to fly from asteroid to asteroid. The final purpose
is to determine an optimal trajectory, which requires the least amount of fuel
mass and maximizes the number of asteroids visited within a given time of flight
(TOF).

To identify the most promising sequences of asteroids, all the permutations
among them need to be considered. Given that more than 22,000 NEAs are
known to date, according to the NASA’s database1, trillions of permutations
should be analyzed. Moreover, since low-thrust propulsion produces little thrust
continuously for a long time, the problem is continuous, thus computationally
very intensive to obtain solutions for each asteroid-to-asteroid transfer.

Several methodologies have been proposed to solve this complex problem.
The solution advanced by the majority of them requires the use of a simplified
model to determine the most convenient asteroid sequences and, successively,
convert it into feasible trajectories by means of a low-thrust optimization. For
instance, Peloni et al. [10] approximate the low-thrust legs using a shape-based
method and find the sequence with a search-and-prune algorithm; while a ho-
motopic approach was used for approximating transfers in Ref. [15].

Previous works show that artificial intelligence can be applied to solve com-
plex problems in aerospace sciences. A method based on an evolutionary al-
gorithm and an artificial neural network (ANN) was employed to determine
trajectories to a single NEA using solar sailing as propulsion system.[3] It was
proved that this method can find a solution more efficiently than traditional
optimal control methods. Machine learning was also successfully used in identi-
fying low-thrust trajectories with minimum fuel consumption between main belt
asteroids [5] and in estimating the final mass of the spacecraft after a transfer
between two NEAs [8]. Other applications include the accuracy enhancement for
pinpoint landing [13] and orbit prediction [11].

This paper investigates the use of ANNs within a sequence-search algorithm
to solve the global optimization problem of multiple asteroid missions, by iden-
tifying the most convenient asteroid sequences and providing estimates of the
cost and duration of each transfer. In essence, the goal of the analysis is to
demonstrate that ANN can quickly estimate the cost and TOF of low-thrust
transfers between NEAs. When trained appropriately, using a neural network

1 Data available through the link https://cneos.jpl.nasa.gov/orbits/elements.html (ac-
cessed on 2020/01/10)
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can potentially eliminate the need to prune the database of asteroids as it can
generalize the network function to asteroids and departure dates not included in
the training.

The ANN design for the tour of multiple asteroids presents multiple chal-
lenges. First, a method to compute the training database needs to be identified.
With the goal of including a sufficient number of samples in the database, di-
rect and indirect optimization methods result to be very expensive in terms of
computational effort. Instead, analytic methods can help in the initial phase of
the design, thus when training the network, to provide a quick and reliable, but
approximated, description of the trajectory. Secondly, since the network inputs
influence the accuracy of the network output with respect to the targets, differ-
ent parametrizations of the orbits and their effect on the network performance
are studied. Also, the extended close-up observation of the NEAs requires that
velocity and position of the asteroids are matched by the spacecraft at the de-
parture and arrival point of each transfer; thus, the asteroid phasing should be
carefully considered in the inputs. It is paramount to define the topology and
hyper-parameters of the network for this application. This is not straightforward
and needs to be investigated.

The structure of the paper is the following. In Section 2 the optimal control
problem is described, followed by the generation of the ANN training database.
The input vector, architecture and hyper-parameters of the network are opti-
mized in Section 3 to achieve the highest performance. The trained ANN is
then integrated into a sequence search algorithm, which is detailed in Section 4.
Among the sequences obtained, one is optimized, highlighting the main results
of the methodology. Finally, Section 6 completes this paper with the conclusions.

2 Optimal Low-Thrust Trajectories

In the following, an optimal control problem (OCP) for low-thrust trajectories
is formulated. This identifies the optimal trajectory for each body-to-body leg,
i.e., Earth-to-asteroid or asteroid-to-asteroid. For a spacecraft orbiting the Sun,
the state vector, x, is expressed in modified equinoctial elements (MEE) [2],
adjoined by the spacecraft mass:

x = [p, f, g, h, k, L,m]T (1)

The following set of ordinary differential equations of motion can be defined:

ẋ(t) = A(x)a + b(x) (2)

with a being the acceleration generated by the propulsion system, and A(x)
and b(x) being, respectively, the matrix and the vector of the dynamics. A
full definition of A(x) and b(x) can be found in Ref. [1]. The SEP propulsive
acceleration can be described as follows:

a =
Tmax
m

N (3)
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where Tmax is the maximum thrust that can be generated and N = [Nr, Nθ, Nh]T

indicates the acceleration direction and magnitude vector in radial, transverse,
out-of-plane frame. The mass of the spacecraft m changes with time while thrust-
ing as described by the following mass differential equation:

ṁ = −Tmax||N||
Ispg0

(4)

with ||N|| being the magnitude of N and Isp is the specific impulse of the propul-
sion system. For the remainder of this work, a solar electric propulsion system
with Isp = 3000 s and Tmax = 0.3 N is adopted for a spacecraft with initial mass
of 1500 kg.

In this case the objective of the optimization is to find the optimal control
history u(t) ≡ N(t) so that the least amount of propellant mass is used to visit
the highest number of NEAs. Thus, the performance index to minimize is:

J =

∫ tf

t0

m(t) dt (5)

subject to the constraint:

||N(t)|| ≤ 1 ∀t ∈ [t0, tf ]

r(t0) = r0

v(t0) = v0

r(tf ) = rf

v(tf ) = vf

(6)

where N can vary in magnitude to allow for thrust throttling, with Nr, Nθ,
Nh ∈ [−1, 1]. Moreover, to satisfy the rendezvous conditions, the position r and
velocity v of the spacecraft have to match with the position r0 and velocity v0

of the departure body at the departure time t0, and with the the position rf
and velocity vf of the arrival body at the arrival time tf .

Several methodologies were proposed to solve the low-thrust OCP. Indirect
methods solve the OCP by transforming the problem into a two-boundary value
problem, using the Pontryagin’s principle [12]. Direct methods transcribe the
continuous OCP into a non-linear programming (NLP) problem which discretizes
the trajectory into smaller arcs of constant thrust magnitude and direction [14].
Both method are computationally intensive, thus not efficient to generate the
network training database where thousands of samples are included.

It is chosen to use a shape-based approach, which can produce a trajectory
solution while reducing the required computational effort. This method approx-
imates the shape of the rendezvous trajectory with minimum-cost for the given
range of launch dates, TOF, and number of revolutions [4]. The required control
history to fly the calculated trajectory is retrieved from the acceleration profile.
A genetic algorithm is employed to search for the optimal shaping parameters
for the transfer with minimum time of flight.
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Fig. 1: Visualization of all the asteroids in the training database.

2.1 Database Generation

The training database contains the network inputs and the desired outputs,
which are the orbital characteristics of the departure and arrival orbits and the
position of the objects along their orbits (input vector x) and the cost ∆V and
TOF of the transfer between them (output vector y), defined as follows:

x = [p0, f0, g0, h0, k0, L0, pf , ff , gf , hf , kf , Lf ] (7)

y = [∆V, t0,f ] (8)

where ∆V indicates the velocity increment and t0,f the time of flight.
The NEA orbital characteristics are obtained from the NASA’s Near-Earth

Object Program2. NEAs that are interesting for scientific reasons, their compo-
sition and orbital dynamics are included in the database.

To improve the converge rate of low-thrust OCPs, the highly-inclined (i ≥
20◦) and highly-eccentric (e ≥ 0.4) asteroids are excluded. Transfers to those
asteroids would have been excluded by the network anyway since they require
a longer TOF and considerable amount of propellant. This results in 6286 as-
teroids, with about 300 Potentially Hazardous Asteroids (PHA) and about 1450
Near-Earth Object Human Space Flight Accessible Targets Study (NHATS).
PHAs have an Earth minimum orbit intersection distance lower than 0.05 AU
and estimated diameter greater than 150 m, while NHATS are selected by NASA
because they might be accessible by future human space flight missions.

Figure 1 shows all the asteroids included in the database with respect to the
the orbit of Earth. The reference time of 2019/04/27 (2458600.5 Julian day) is
used to determine the position of the asteroids along their orbits.

For the generation of the training database, the permutations among a subset
of NEAs including 100 objects are considered for a total of 10,100 transfer sam-
ples. The goal is to verify the generalization property of the neural network: a
successfully trained ANN is able to generalize estimating transfer costs between
NEAs not included in the database and with different launch dates.

2 Data available through the link https://cneos.jpl.nasa.gov/orbits/elements.html (ac-
cessed on 2019/06/17)
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To verify the generalization property during the training, the database is
divided into training set, validation set and test set. The training set is used
for the training, while the validation and test sets contain samples that are not
included in the training. The validation set is used to verify the overfitting does
not occur during the training and the test set is used to test the performance of
the network after the training with totally new cases.

For each transfer between two selected bodies, the shape-based method is
used to find the ∆V and TOF of the transfer. The training database is generated
by storing for each transfer the parametrization of the departure and arrival
orbits, the angular position of the relative asteroids at a reference time, and the
cost and TOF of the minimum-cost transfer. The launch window is set in the
period 01/01/2020 and 30/12/2030. A maximum time of flight of 1500 days per
transfer is set as transfers longer than four years are not of interest.

3 Neural Network Design

The topology and the hyper-parameters of the network can affect its perfor-
mance. Since their best values are not known a priori, it is essential to analyze
the ANN performance with respect to its parameters so that the correlation be-
tween network outputs and targets is maximized and the network error in the
identification of transfer cost and time mapping is minimized. In a regression
analysis, the correlation identifies how well the outputs fit the targets, with one
and zero indicating perfect or zero fit, respectively. The network error can be
defined as the mean square error (MSE) between the output of the network y
and the targets yt:

EMSE =
1

N

N∑
i=1

||yi − yt,i||2 (9)

with N being the number of outputs. Since the validation set has samples which
are not included in the training database, the validation-set MSE is often used.

3.1 Input Vector Analysis

The input vector of the network needs to define completely the departure and
arrival orbits. To this end the orbital parameters can be used. However, several
orbit parametrizations exist. Among these, the classical orbital elements (COE),
modified equinoctial elements (MEE), equinoctial elements (EE), Cartesian co-
ordinates, Delaunay elements, and eccentricity and angular momentum vector
(eH) [19]. In this section, the effect of using different orbit parametrization on
the network performance is investigated.

These parametrizations are used as input to a network, whose architecture is
taken from Ref. [8], with two hidden layers and 80 neurons per layer to evaluate
how the performance changes. The sigmoid is used as activation function and the
stochastic gradient-descent algorithm is adopted for the training. The learning
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Table 1: Network performance for different parametrizations of the orbit.

ANN input Correlation Validation-set MSE

COE 0.855 0.530
EE 0.856 0.487
MEE 0.925 0.236
Cartesian 0.551 0.761
Delaunay 0.694 0.862
eH 0.908 0.221

rate is set to 0.01, which is the highest value that does not cause divergence in the
training process, and the database is divided in 70% training set, 15% validation
set, and 15% test set. The performance of the network, in terms of correlation
and validation-set MSE, is presented in Table 1 for each orbit parametrization.

The highest correlation is obtained when MEE are used as inputs (CMEE =
0.925), which presents also a low validation-set error (eMEE = 0.236). The latter
is slightly lower when the eH parametrization is used, but a poorer correlation
is registered in this case. However, priority is given to the highest correlation
since this represents the performance of the network in all the three training,
validation and test phases. Thus, for the remaining of this paper, MEE are used
to describe the departure and arrival orbits as input to the network.

3.2 Architecture Optimization

In this subsection, we aim at finding the best values of the network hyper-
parameters. To this end, the response of the network to each of these parameters
is analyzed. The architecture of the network is defined by the number of hidden
layers and the number of neurons. Other hyper-parameters that can affect the
performance are the learning algorithm, activation function for each hidden layer,
learning rate or gradient constant and its increase or decrease factor.

To determine the optimal values of the network architecture and hyper-
parameters, an optimization procedure needs to be carried out. In theory, the
most systematic option would be to optimize all the parameters at the same
time by using, for instance, a genetic algorithm. However, the number of pa-
rameters to optimize and the need to train the network at every trial make the
computational time extremely extensive. For this reason, one parameter at a
time is tuned. First, the parameter’s values are set to their default values taken
from Ref. [8]. Secondly, one parameter is varied individually and the effect on
the ANN performance is studied. The parameter is then set equal to the optimal
value found, and the next parameter is considered for the same procedure. The
default values and search space for each network parameter are detailed in Table
2, where the parameters are presented in the same order of analysis.

A neural network with an appropriate number of layers and neurons per
each layer can approximate any continuous linear or non-linear function [6]. A
larger number of neurons and layers will increase the flexibility of the network
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Table 2: Default values, search space and optimal values for the network hyper-
parameters.

ANN Parameter Default Search space Optimal

Number of hidden layers 2 [2,8] 4
Number of neurons 80 [40, 100] 80

Learning algorithm


Levenberg-Marquardt
Resilient back-propagation
Scaled conjugate gradient
Gradient descent

Gradient Levenberg-
Descent Marquardt

Activation function sigmoid tansig, sigmoid, ReLu sigmoid

2 3 4 5 6 7 8
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Fig. 2: Effect of varying the network parameters on its performance.

introducing more weights. However, more flexibility can induce to an overfitting
of the data, thus to a bad generalization of the network function.

The samples are divided in 75% training set, 15% validation set, and 15%
testing set. For the analysis the datasets, weights and biases are initialized with
same seed at every evaluation. The effect of changing the number of layers and
neurons on the correlation coefficient R, MSE of the validation set and training
time Ttrain is shown in Figure 2. Increasing the number of layers and neurons
improves the network performance up to certain number of layers and neurons
(peak), after which the performance starts to degrade. As expected, the time re-
quired for the training process increases significantly as the depth of the network
grows. The highest correlation coefficient and lowest validation-set MSE occur
with number of layers of four and number of neurons of 80.

Different training algorithms and activation functions of the hidden layers
are studied. As shown in Table 3, each of them induces some differences in the
accuracy and the training speeds. Among the training algorithms, the Levenberg-
Marquardt backpropagation offers the best performance at cost of a larger train-
ing time, while the sigmoid function performs better as activation function. For
the chosen training algorithm, the gradient constant µ influences the state vector
x as follows:
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Table 3: Effect of different values of the network parameters on its performance.

Training Algorithm R Validation MSE Ttrain [min]

Levenberg-Marquardt 0.9732 0.1211 59.79
Resilient back-propagation 0.9258 0.1598 2.39
Scaled conjugate gradient 0.9386 0.1467 4.67
Gradient descent 0.9205 0.1584 76.93

Activation Function R Validation MSE Ttrain [min]

tanh 0.9489 0.1609 34.31
sigmoid 0.9732 0.1211 59.79
ReLu 0.9210 0.2295 52.42

xk+1 = xk − [JTJ + µI]−1JTe (10)

where J is the Jacobian matrix of the network error vector e with respect to the
current k-th weights and biases. The initial value of µ is set to 0.001. When µ is
large, the algorithm becomes a gradient descent with small step size. However,
after each successful step (i.e., the cost function is reduced) µ is reduced of a de-
crease factor µdec. The closest µ is to zero, the more the algorithm moves towards
the Newton’s method, which has a faster convergence and is more accurate. The
decrease factor is set equal to 0.1.

From the investigation of all the parameters the optimal structure of the
network is defined and detailed in Table 2. As a verification, the algorithm is run
again but this time using the optimal values as default values. The test confirms
that the obtained values allow the network to achieve the highest performance,
with correlation coefficient of 0.9732 and validation-set MSE of 0.1211.

4 Sequence Search

The sequence search identifies the most convenient sequences of asteroids. It
starts at the Earth at a fixed departure date. Once the full NEA database is
loaded, the asteroid ephemerides are updated at departure time t0,i, with i indi-
cating the ith leg of the sequence. The trained ANN is employed to calculate the
cost and the TOF of transfers from the Earth to all the NEAs available in the
database. Only Nmax = 200 of the best transfers, in terms of largest number of
objects visited with lower ∆V , are stored. To ensure close-up observation, a 100-
days stay time is added at the arrival asteroid. At this point, the arrival asteroid
becomes the departure asteroid of the following transfer, for which the same
procedure is iterated, following a tree-search method. The sequence is complete
when the total mission time reaches 10 years.

The departure date 01/01/2035 is chosen outside of the time frame used to
build the network training database, so that the generalization property can be
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Table 4: Orbital characteristics of the NEAs visited in the optimized sequence.

Designation 2011 WU2 2014 WU200 2013 DA1 2004 FM32 2007 SQ6 2019 FU2
Classification NHATS NHATS NHATS NHATS NHATS PHA

a, AU 1.182 1.028 1.168 1.099 1.043 1.069
e, - 0.0439 0.0715 0.1365 0.1623 0.1456 0.1116
i, deg 3.02 1.27 1.89 3.76 9.10 7.79
Ω, deg 236.78 265.69 142.45 183.99 191.40 189.55
ω, deg 198.59 226.51 348.42 298.55 283.77 287.42
M , deg 341.04 43.17 290.34 66.42 224.21 82.30

Note: M is calculated at 2019/04/27

tested. In [16] it is shown that, in the context of the global optimization prob-
lem, using a trained ANN allows a much faster evaluation of the best asteroid
sequences. The algorithm is 25 times faster than other methodologies [10] pre-
viously used, where the same type of machine was used to compute the same
search.

5 Tour of Multiple Asteroids

The sequence search algorithm identifies 200 asteroid sequences in less than 15
hours. Once all the sequences have been characterized, one of the sequences
that visits six asteroids, which are NHATS and at least one PHA, in 10 years
is chosen to be fully optimized. The algorithm implements the OCP detailed in
Sec. 2, optimizing the trajectory leg by leg. It requires an initial guess which is
generated by solving a Lambert problem [2] and uses the departure and arrival
orbits and TOF identified by the network. To allow for close-up observations and
avoid overlapping between legs, a minimum stay time of 20 days is enforced. The
OCP is solved by using a discrete NLP together with a variable-order adaptive
Radau collocation method [9] and the NLP solver IPOPT [17].

The orbital characteristics of the encountered bodies are detailed in Table 4
for the selected sequence. The characteristics of the multiple NEA rendezvous
mission are reported in Table 5. It presents the departure and arrival dates, the
cost and TOF resulted from the optimization, in brackets the cost and TOF
calculated by the ANN, and the stay time at each object.

To evaluate how well the network performs with respect to the optimization
procedure, the values of ∆V and TOF from ANN are compared to the optimal
ones. The deviation is quantified by calculating the average percentage error:

E∆V =
1

N

N∑
i

(
∆Vopt −∆VANN

∆Vopt

)
· 100 = 2.19% (11)

ETOF =
1

N

N∑
i

(
TOFopt − TOFANN

TOFopt

)
· 100 = 4.97% (12)
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Table 5: Mission parameters of the optimized NEA sequence.

Leg
Departure TOF ∆V Stay Time

Arrival [days] [km/s] [days]

Earth - 2011 WU2
2035/08/24 553 5.71 20
2037/02/27 (503) (4.96)

2011 WU2 - 2014 WU200
2037/03/19 661 5.31 100
2039/01/09 (631) (4.87)

2014 WU200 - 2013 DA1
2039/04/19 530 4.78 20
2040/09/30 (580) (4.92)

2013 DA1 - 2004 FM32
2040/10/20 515 4.24 20
2042/03/19 (518) (4.28)

2004 FM32 - 2007 SQ6
2042/04/09 637 5.27 20
2044/01/06 (657) (5.44)

2007 SQ6 - 2019 FU2
2044/01/26 650 5.08 –
2045/11/06 (670) (4.23)

(.) Results from ANN.

with N being the number of legs in the trajectory.

The low average percentage error for both ∆V and TOF indicates that the
network was able to learn the complicated non-linear relationship between the
inputs (i.e., departure and arrival orbits and position of the bodies at a reference
time) and outputs, which are an estimation of the cost and duration of the low-
thrust transfer between these two orbits. Considering also the drastic reduction
of computational time that ANN allows, it is possible to conclude that using
ANN to search for preliminary multiple-asteroid rendezvous missions improves
the speed of the search and guarantees a high accuracy of the results.

6 Conclusions

An artificial neural network is designed to estimate the cost and time of flight
of transfers between asteroids with the final purpose of computing low-thrust
tours of multiple asteroids. Tuning the architecture and hyper-parameters of the
network as well as choosing the best inputs for this application is essential to
optimize the network performance.

It is shown that employing an ANN within a sequence search algorithm offers
a high accuracy with a relative error of less than 4% on average. In addition, it
vastly improves the speed of the algorithm, reducing the computational time of
25 times.

To obtain the flight trajectory and control history, an optimal control prob-
lem needs to be solved. However, using this methodology allows to reduce the
problem to solve the OCP only for the sequences of interest.
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