

Maznyczka, A. M. et al. (2021) Effect of coronary flow on intracoronary alteplase: a prespecified analysis from a randomised trial. *Heart*, (doi: <u>10.1136/heartjnl-2020-318324</u>)

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/226108/

Deposited on 17 November 2020

Enlighten – Research publications by members of the University of Glasgow <u>http://eprints.gla.ac.uk</u>

Effect of coronary flow on intracoronary alteplase, a prespecified analysis from a randomised trial

Journal:	Heart
Manuscript ID	heartjnl-2020-317828.R2
Article Type:	Original research
Date Submitted by the Author:	29-Oct-2020
Complete List of Authors:	Maznyczka, Annette; British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K, ; King's College Hospital, Cardiology mccartney, peter; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Duklas, Patrycja; Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, U.K. McEntegart, Margaret; Golden Jubilee National Hospital, Cardiology Oldroyd, Keith; West of Scotland Regional Heart and Lung Centre, Cardiology Greenwood, John; Leeds General Infirmary, Cardiology; University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine Muir, Douglas; James Cook University Hospital Chowdhary, Saqib; Manchester University NHS Foundation Trust, Manchester, U.K. Gershlick, Anthony H; University of Leicester, Division of Cardiology Appleby, Clare; Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, U.K. Eteiba, Hany; University of Glasgow, Institute of Cardiovascular and Medical Sciences Cotton, James; Royal Wolverhampton Hospitals NHS Trust, Department of Cardiology Wragg, Andrew; Barts and The London Hospital, London, U.K. Curzen, Nick; University Hospital Southampton NHS F Trust, Wessex Cardia Unit Tait, Robert; Glasgow Royal Infirmary, Department of Haematology MacFarlane, Peter; University of Glasgow, Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre Petrie, Mark; University of Glasgow Institute of Cardiovascular and Medical Sciences, Fritish Heart Foundation Glasgow Cardiovascular Research Centre Petrie, Mark; University of Glasgow, U.K. Fox, Ketth; University o

	Biostatistics Berry, Colin; University of Glasgow, BHF Glasgow Cardiovascular Research Centre; Golden Jubilee National Hospital, Cardiology
Keywords:	Acute myocardial infarction < Coronary artery disease < DISEASES
	Objectives: Persistently impaired culprit artery flow (<timi 3)="" a="" according="" administration.<="" alteplase="" coronary="" drug="" during="" effects="" evaluated="" failed="" flow="" for="" grade="" immediately="" intervention="" intracoronary="" is="" myocardial="" of="" percutaneous="" perfusion.="" preceding="" primary="" surrogate="" td="" the="" timi="" to="" we=""></timi>
	Methods: In T-TIME, patients ≤6 hours from onset of ST-elevation myocardial infarction (STEMI), were randomised to placebo, alteplase 10mg, or alteplase 20mg, administered by infusion into the culprit artery, pre-stenting. In this pre-specified, secondary analysis, coronary flow was assessed angiographically, at the point immediately before drug administration. Microvascular obstruction, myocardial haemorrhage and infarct size were assessed by cardiovascular magnetic resonance (CMR), at 2-7 days and 3 months.
Abstract:	Results: TIMI flow was assessed after first treatment (balloon angioplasty/ aspiration thrombectomy), immediately pre-drug administration, in 421 participants (mean age 61 ± 10 years, 85% male), and was 3, 2, or 1 in 267, 134, and 19 participants respectively. In patients with TIMI flow ≤ 2 pre-drug there was higher incidence of microvascular obstruction with alteplase (alteplase 20mg [53.1%] and 10mg [59.5%] combined vs. placebo [34.1%]; OR=2.47 [95% CI: 1.16-5.22, p=0.018] interaction p=0.005) and higher incidence of myocardial haemorrhage (alteplase 20mg [53.1%] and 10mg [57.9%] combined vs. placebo [27.5%]; OR=3.26 [95% CI: 1.44-7.36, p=0.004] interaction p=0.001). These effects were not observed in participants with TIMI 3 flow pre-drug. There were no interactions between TIMI flow pre-drug, alteplase and 3-month CMR findings.
	Conclusion: In patients with impaired culprit artery flow (<timi 3)="" after="" alteplase="" and="" angioplasty="" aspiration,="" associated="" balloon="" haemorrhage.<="" increased="" initial="" intracoronary="" microvascular="" myocardial="" obstruction="" of="" presence="" td="" thrombus="" was="" with=""></timi>
SCHOLARONE [™] Manuscripts	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

1		
2 3	1	Effect of coronary flow on intracoronary alteplase, a pre-specified
4	1	Effect of coronary now on intracoronary alteplase, a pre-specified
5 6 7	2	analysis from a randomised trial
8 9 10	3	
11		
12 13 14	4	Short title: Coronary flow and alteplase during primary PCI
15 16	5	Authors: Annette M. Maznyczka ^{1,2} PhD, Peter J. McCartney ^{1,2} MBChB, Patrycja Duklas
17 18 19	6	MSc ³ , Margaret McEntegart ² PhD, Keith Oldroyd ^{1,2} MD, John P. Greenwood ⁴ PhD, Douglas
20 21	7	F. Muir ⁵ MBChB, Saqib Chowdhary ⁶ PhD, Anthony H. Gershlick ⁷ MBBS, Clare Appleby ⁸
22 23	8	PhD, Hany Eteiba ² MD, James M. Cotton ⁹ MD, Andrew Wragg ¹⁰ PhD, Nick Curzen ¹¹ PhD,
24 25 26	9	R. Campbell Tait ¹² MBChB, Peter W. Macfarlane ¹³ DSc, Paul Welsh ¹ PhD, Naveed Sattar ¹
26 27 28	10	PhD, Mark Petrie ^{1,2} MBChB, Ian Ford ³ PhD, Keith AA. Fox ¹⁴ MBChB, Alex McConnachie
29 30	11	PhD ³ , Colin Berry ^{1,2} PhD for the T-TIME (Trial of low-dose adjunctive alTeplase during
31 32 33	12	primary PCI) investigators.
34 35 36	13	Institutions:
37 38	14	¹ British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow,
39 40 41	15	UK.
42 43 44	16	² West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK.
45 46 47	17	³ Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of
48 49 50	18	Glasgow, U.K.
51 52	19	⁴ Leeds University and Leeds Teaching Hospitals NHS Trust, Leeds, UK.
53 54 55	20	⁵ James Cook University Hospital NHS Trust, Middlesbrough, U.K.
56 57 58	21	⁶ Manchester University NHS Foundation Trust, Manchester, U.K.
59 60	22	⁷ Leicester University Hospitals NHS Trust, and University of Leicester, Leicester, U.K.
		CONFIDENTIAL – EMBARGO APPLIES

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
41
42 43
43 44
44 45
45 46
40 47
47 48
48 49
50
51
52
53
54
55
56
57
58
59
60

1 2

⁸Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, U.K.

⁹Wolverhampton University Hospital NHS Trust, Wolverhampton, U.K.

¹⁰Barts and The London Hospital, London, U.K.

¹¹University Hospital Southampton Foundation Trust, & School of Medicine, University of
Southampton, Southampton, U.K.

¹²Department of Haematology, Royal Infirmary, Greater Glasgow and Clyde Health Board,
Glasgow, U.K.

30 ¹³Electrocardiology Group, Royal Infirmary, Glasgow. U.K,

31 ¹⁴Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, U.K.

Funding: Dr Maznyczka is funded by a fellowship from the British Heart Foundation 32 (FS/16/74/32573). Professor Berry is supported by grants from the British Heart Foundation 33 34 (RE/18/6/34217; FS/16/74/32573). T-TIME was supported by grant 12/170/4 from the Efficacy and Mechanism Evaluation (EME) programme of the National Institute for Health 35 Research (NIHR-EME). Boehringer-Ingelheim U.K. Ltd. provided the study drugs (alteplase 36 37 10mg, 20mg, matched placebo). These organisations had no other involvement in the conduct of the study, or in any aspect of the manuscript. The research was in part supported by the 38 NIHR infrastructure at Leeds. 39

Disclosures: Colin Berry, based on contracts with the University of Glasgow, has held
research and/or consultancy agreements with Abbott Vascular, AstraZeneca, Boehringer
Ingelheim, HeartFlow, GSK, Novartis, Philip and Siemens Healthcare. He has held grants
from NIHR-EME (reference 12/170/45) and the British Heart Foundation (reference
FS/16/74/32573; RE/18/6/34217) in support of the current study. Nick Curzen has received
an unrestricted grant and fees for lectures and consultancy from Abbott Vascular and Boson

Heart

Scientific. James Cotton has received research support and speaker fees from Abbott Vascular. Keith G. Oldrovd has received speaker fees and research support from Abbott Vascular and Boston Scientific. Keith AA. Fox has received grants and personal fees from Bayer/Janssen, grants from AstraZeneca, personal fees from Sanofi/Regeneron and Verseon. None of the other investigators or committee members have any relevant potential conflict of interest to declare. **Correspondence:** Professor Colin Berry, British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, 126 University Place, University of Glasgow, Glasgow, G12 8TA, Scotland, UK. Telephone: +44 (0) 141 330 1671 or +44 (0) 141 951 5180. Fax +44 (0) 141 330 6794. Email: colin.berry@glasgow.ac.uk Acknowledgements: We thank the patients who participated in this study, the T-TIME investigators, the Trial Steering Committee and Data Monitoring Committee, and the University of Glasgow Clinical Trials Unit. Patient and public involvement was incorporated RZ ONI in the trial. Word count: abstract 250, total 3000. Clinical Trial Registration: Clinical Trials.gov Identifier NCT02257294.

CONFIDENTIAL – EMBARGO APPLIES

67 Abstract

Objectives: Persistently impaired culprit artery flow (<TIMI 3) during primary percutaneous
coronary intervention is a surrogate for failed myocardial perfusion. We evaluated the effects
of intracoronary alteplase according to TIMI flow grade immediately preceding drug
administration.

Methods: In T-TIME, patients ≤6 hours from onset of ST-elevation myocardial infarction
(STEMI), were randomised to placebo, alteplase 10mg, or alteplase 20mg, administered by
infusion into the culprit artery, pre-stenting. In this pre-specified, secondary analysis,
coronary flow was assessed angiographically, at the point immediately before drug
administration. Microvascular obstruction, myocardial haemorrhage and infarct size were
assessed by cardiovascular magnetic resonance (CMR), at 2-7 days and 3 months.

Results: TIMI flow was assessed after first treatment (balloon angioplasty/ aspiration thrombectomy), immediately pre-drug administration, in 421 participants (mean age 61±10 years, 85% male), and was 3, 2, or 1 in 267, 134, and 19 participants respectively. In patients with TIMI flow ≤ 2 pre-drug there was higher incidence of microvascular obstruction with alteplase (alteplase 20mg [53.1%] and 10mg [59.5%] combined vs. placebo [34.1%]; OR=2.47 [95% CI: 1.16-5.22, p=0.018] interaction p=0.005) and higher incidence of myocardial haemorrhage (alteplase 20mg [53.1%] and 10mg [57.9%] combined vs. placebo [27.5%]; OR=3.26 [95% CI: 1.44-7.36, p=0.004] interaction p=0.001). These effects were not observed in participants with TIMI 3 flow pre-drug. There were no interactions between TIMI flow pre-drug, alteplase and 3-month CMR findings.

Conclusion: In patients with impaired culprit artery flow (<TIMI 3) after initial balloon
angioplasty/ thrombus aspiration, intracoronary alteplase was associated with increased
presence of microvascular obstruction and myocardial haemorrhage.

CONFIDENTIAL – EMBARGO APPLIES

Page 7 of 81

Heart

1		
2 3 4 5	91	Key Questions
6 7 8	92	What is already known?
9 10 11	93	• Microvascular obstruction following ST-segment elevation myocardial infarction
12 13	94	(STEMI) confers a worse prognosis.
14 15	95	• There are no evidence-based treatments for microvascular obstruction.
16 17 18	96	What does this study add?
19 20 21	97	• Adjunctive intracoronary alteplase, during primary percutaneous coronary
21 22 23	98	intervention (PCI), was associated with increased presence of microvascular
24 25	99	obstruction and myocardial haemorrhage, in participants with impaired culprit artery
26 27	100	flow (TIMI <3) at the time of study drug administration.
28 29 30	101	• Low-dose intracoronary lytic therapy in patients with STEMI, who have impaired
31 32	102	coronary flow may be harmful.
33 34 35	103	How might this impact on clinical practice?
36 37	104	• The findings are relevant to trials of adjunctive intracoronary fibrinolytic therapy
38 39 40	105	during primary PCI, and as a disincentive to clinicians when considering bail-out lytic
40 41 42	106	therapy for angiographic "no reflow".
43 44	107	• Future studies evaluating the effects of intracoronary lytic therapy should limit
45 46 47	108	recruitment to patients with TIMI 3 flow at the time of study drug administration,
48 49	109	which would be post-stent implantation for most patients, rather than pre-stent
50 51	110	implantation.
52 53 54	111	
55 56 57	112	
58 59 60	113	

2 3 4 5	114	Key Words
6 7 8	115	ST-segment elevation myocardial infarction
9 10 11	116	TIMI coronary flow grade
12 13 14	117	Fibrinolytics
15 16 17	118	Microvascular obstruction
18 19 20	119	Myocardial haemorrhage
21 22 23	120	
24 25 26	121	
27 28 29	122	
30 31 32	123	
33 34 35	124	
36 37 38	125	
39 40 41	126	
42 43 44	127	
45 46 47	128	
48 49 50	129	
51 52 53	130	
54 55 56	131	
57 58 59	132	
60	133	
		CONFIDENTIAL – EMBARGO APPLIES

1 2

tential: For Review Only

	AUC	Area-under-the-curve
	CI	Confidence interval
	CMR	Cardiovascular magnetic resonance
	eGFR	Estimated glomerular filtration rate
	IQR	Interquartile range
	LGE	Late gadolinium enhancement
	LV	Left ventricular
	MVO	Microvascular obstruction
	OR	Odds ratio
	PCI	Percutaneous coronary intervention
	QCA	Quantitative coronary angiography
	SD	Standard deviation
	STEMI	ST-segment elevation myocardial infarction
	TIMI	Thrombolysis in Myocardial Infarction
135		

136 Introduction

Despite routinely restoring epicardial coronary patency with primary percutaneous
coronary intervention (PCI), microvascular obstruction (MVO) affects about half of
patients(1) and confers an adverse prognosis(2, 3). A key component of MVO is distal
embolization and microvascular thrombi(4-6).

In the T-TIME trial (NCT02257294), we hypothesised that low-dose intracoronary alteplase, administered shortly after balloon angioplasty or aspiration thrombectomy, before stenting, would reduce intracoronary and microvascular thrombosis, and distal embolization, thereby reducing MVO. However, as assessed by contrast-enhanced cardiovascular magnetic resonance (CMR), MVO did not differ with intracoronary alteplase vs. placebo(7). Interestingly, in a T-TIME subgroup analysis, participants presenting ≥4 hours after symptom onset, had a dose dependent increase in mean amount of MVO and myocardial haemorrhage with alteplase vs. placebo(8). Invasively measured index of microcirculatory resistance did not differ with intracoronary alteplase vs. placebo(9), and there was no difference in clinical outcomes at 1-year between treatment groups(10).

Coronary angiography allows a semi-quantitative grading of coronary flow, according to the Thrombolysis in Myocardial Infarction (TIMI) flow grades(11). Persistently reduced flow in the culprit coronary artery (TIMI flow <3) after first treatment, is termed "no-reflow"(12, 13). TIMI flow <3 is a surrogate for impaired myocardial perfusion(14, 15) and predicts heart failure(16), larger infarct size(14) and mortality(16, 17). TIMI flow ≤ 3 early during the primary PCI procedure (pre-stenting) may be even more closely associated with mortality(18, 19) and larger infarct size(19), than TIMI flow <3 post-stenting. In contrast, recovery of TIMI 3 flow in the culprit artery after first treatment (balloon angioplasty/ thrombus aspiration) may help restore microvascular function(15).

Heart

Persisting impairment of antegrade flow in the culprit artery may influence the effect of intracoronary alteplase. We hypothesised that impaired coronary flow reduces the effective

 μ

 icrocircu

 issociations bets

 ic 20mg), and MVO. %

 it group and the secondary end.

 delivery of alteplase to the microcirculation. The primary aim of this pre-specified secondary analysis was to assess the associations between TIMI flow grade, treatment group (placebo, alteplase 10mg, alteplase 20mg), and MVO. We also investigated associations between TIMI

flow grade, treatment group and the secondary endpoints from the T-TIME trial(10).

Methods

Trial Design

T-TIME was a randomised, double-blind, parallel group, phase 2 clinical trial of low-dose adjunctive intracoronary alteplase during primary PCI(7, 10). Patients were enrolled by 11 U.K. hospitals, from March 2016 to December 2017. The methodology has been described previously in detail(7) (Figure 1).

Consent

Screening and study drug administration occurred during standard care primary PCI. Witnessed verbal assent to participate was obtained in the catheterisation laboratory. Written informed consent was subsequently obtained on the ward. The study was approved by the West of Scotland Research Ethics Committee (reference 13-WS-0119).

Eligibility

Patients were eligible to participate if they presented with persistent ST-segment elevation or recent left bundle branch block, ≤ 6 hours from symptom onset, and with an occluded culprit artery (TIMI 0 flow), TIMI 1 flow (contrast passes beyond the obstruction, but fails to opacify the entire distal coronary bed), or reduced coronary flow (TIMI 2 flow, slow but complete filling), in the presence of TIMI thrombus grade ≥ 2 .

Key exclusion criteria (Supplemental Methods) included a functional coronary collateral supply (Rentrop grade ≥ 2) to the culprit artery and cardiogenic shock.

Randomisation and Blinding

Participants were randomised using an interactive voice response-based system. The randomisation sequence was computer generated, using the method of randomised permuted blocks of length 6, with stratification by location of MI (anterior vs. non-anterior). The **CONFIDENTIAL – EMBARGO APPLIES**

Page 13 of 81

1 2 3 Heart

4	
5	
6	
7	
, 8	
•	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
55	
55 56	
57	
58	
59	
60	

allocation sequence was on a 1:1:1 basis, between placebo and the reduced dose of alteplase
groups (10mg and 20mg), i.e. one tenth, or one fifth, of standard dose. The participants, staff
and researchers were blinded to the treatment group allocation.

192 Interventions

193The trial protocol encouraged achieving TIMI flow grade ≥ 2 , using balloon194angioplasty/ aspiration thrombectomy, prior to randomisation. After randomisation, the195allocated intervention was prepared, during which TIMI flow grade deteriorated in a minority196of patients prior to study drug administration, before stent deployment. The 20ml volume of197study drug was manually infused into the culprit artery, over 5-10 minutes, proximal to the198culprit lesion, using either an intracoronary catheter, or the guiding catheter if selectively199engaged.

200 CMR

201 CMR (1.5 Tesla) was analysed by an investigator who was blind to the angiographic findings and treatment allocation. A second read was undertaken by a cardiologist with level 202 3 CMR certification. MVO presence and extent (% left ventricular [LV] mass) was revealed 203 by late gadolinium enhancement (LGE), 10-15 minutes after administration of gadolinium-204 based contrast media. MVO was defined as a dark zone on early gadolinium enhanced 205 imaging 1, 3, 5 and 7 minutes post-contrast injection that persisted within an area of LGE at 206 207 15 minutes. The myocardial mass of the dark zone was quantified by manual delineation and expressed as % of LV mass. 208

Myocardial haemorrhage presence and extent (% LV mass) was revealed by T2*
mapping. A region of reduced signal intensity within the infarcted area, with a T2* value
<20ms was considered to confirm the presence of myocardial haemorrhage. This area was
manually delineated and expressed as % LV mass.

CONFIDENTIAL – EMBARGO APPLIES

> The presence of acute infarction was established based on abnormalities in cine wall motion, rest first-pass myocardial perfusion, and LGE imaging, in 2 imaging planes. The myocardial mass of late gadolinium was quantified using a 5-standard deviation (SD) semiautomated method and expressed as % of total LV mass. Myocardial salvage was calculated by subtraction of percent infarct size from percent area-at-risk (as reflected by the extent of oedema) and the myocardial salvage index was calculated by dividing the myocardial salvage area by the initial area-at-risk.

MVO and myocardial haemorrhage were reported on CMR scans acquired 2–7 days
post-STEMI. The other CMR parameters were reported from the 2–7 day and 3-month scans
(Supplement).

223 Angiography, ECGs and Troponin

The ECG and angiographic parameters were determined by blinded core laboratoryanalysis (blinded to CMR data and treatment allocation).

The angiograms were analysed prospectively by one researcher, and then a second read was undertaken by an experienced interventional cardiologist. Discrepancies were resolved by consensus agreement. The following were assessed in the culprit artery: TIMI flow grade, TIMI frame count, myocardial perfusion grade, TIMI thrombus grade, and plaque characteristics (Supplement).

The angiogram acquisition protocol required stored fluoroscopy of study drug
administration, to enable verification by the core laboratory that the guide catheter was
selectively engaged in the culprit artery during drug delivery. This also enabled core
laboratory evaluation of TIMI flow grade immediately before study drug administration,
which was submitted to the data coordination centre prior to database lock. Participants were

Heart

grouped according to TIMI flow grade (≤2 vs. 3) in the culprit artery immediately preceding
study drug administration.

The absolute percentage ST-segment resolution on ECGs obtained 60 minutes after reperfusion (i.e. after initial restoration of flow in the culprit artery), compared to prereperfusion was calculated. Troponin T area-under-the-curve (AUC) was measured in blood samples obtained immediately pre-reperfusion (0 hours), then at 2- and 24-hours postreperfusion.

243 Coagulation

Coagulation and haemostasis parameters were measured in peripheral blood samples taken pre-reperfusion, then 2, and 24 hours post-reperfusion. The parameters included fibrinogen and plasminogen (both measures of systemic fibrinolysis), fibrin D-dimer (a measure of fibrin lysis), tissue plasminogen activator (a measure of endogenous fibrinolytic system activation and circulating alteplase) and prothrombin fragment F_{1+2} (a measure of thrombin generation).

250 Statistical Analysis

This study was a pre-specified secondary analysis in the T-TIME trial population. The analyses were performed according to treatment received (alteplase 20mg, 10mg, or placebo). The trial endpoints were assessed using linear regression (continuous variables), or logistic regression (binary variables), to make treatment effect estimates. In regression models, logarithmic, or square root transformations were used where necessary to improve model residual distributions. As MVO extent was not normally distributed, we adopted square root transformation for MVO extent, in keeping with the analysis plan for the main T-TIME trial(7). However, as 56% of patients had zero values for MVO extent we also performed a sensitivity analysis using bootstrapping confidence intervals (CIs) to model this endpoint.

Regression models were used to assess treatment effects through interactions, with treatment as 3-level and 2-level categorical variables. The regression analyses were adjusted for the location of MI (anterior vs. non-anterior). All tests were 2-tailed and assessed at the 5% significance level. There was no imputation for missing values and there were no adjustments for multiple statistical comparisons. Given the high proportion of participants with a 0 value for MVO extent and myocardial haemorrhage extent, the median values for MVO and myocardial haemorrhage were 0 for all groups, therefore the mean (SD) values were reported, despite not being ideal summaries for these data. Data were analysed using R (version 3.6.1, R Development Core Team, Auckland, New Zealand) and SPSS (version 25.0, SPSS, IBM,

Armonk, NY, USA).

1 2		
2 3 4 5	270	Results
6 7 8	271	Population
9 10	272	Four hundred and forty participants were randomised to placebo, alteplase 10mg, or
11 12 13	273	alteplase 20mg. Nineteen patients were excluded from the analysis (Figure 2): in 7 patients
14 15	274	TIMI flow grade was unevaluable immediately before study drug administration; in 5
16 17	275	participants study drug was not given; in 3 participants study drug was administered post-
18 19 20	276	stent implantation, and; in 4 participants study drug was administered distal to the lesion.
20 21 22 23	277	The analysis therefore included 421 participants (mean age 61±10 years, 85% male).
23 24 25	278	Out of the 421 participants who were included, 1 participant who was randomised to 10mg of
26 27	279	alteplase received 20mg, and 1 participant randomised to placebo received 20mg of alteplase,
28 29 30	280	because of handling errors.
31 32	281	The baseline and procedural characteristics for participants with TIMI flow ≤ 2
33 34 35	282	(n=154) or TIMI 3 flow (n=267) pre-study drug were broadly similar (Tables 1, 2 and
36 37 38	283	Supplemental Table 1).
39 40	284	The distribution of TIMI flow grades immediately before study drug administration
41 42	285	was as follows: TIMI grade 0 in 1 participant (0.2%), who received alteplase 10mg; TIMI
43 44 45	286	grade 1 in 19 participants (4.5%), of whom 8 received placebo, 4 received alteplase 10mg,
43 46 47	287	and 7 received alteplase 20mg; TIMI grade 2 in 134 participants (31.8%), of whom 42
48 49	288	received placebo, 44 received alteplase 10mg and 48 received alteplase 20mg, and; TIMI
50 51	289	grade 3 in 267 participants (63.4%), of whom 92 received placebo, 88 received alteplase
52 53 54	290	10mg and 87 received alteplase 20mg.
55 56 57	291	In multivariable logistic regression analysis, only anterior MI was associated with
58 59 60	292	TIMI flow ≤2 pre-study drug (odds ratio [OR] 1.61 [95% CI 1.07-2.43] p=0.023). Ischaemic

time (symptom onset to reperfusion time) was not associated with TIMI flow ≤2 immediately
pre-study drug (OR 1.05 [95% CI 0.91-1.22] p=0.499).

295 CMR Parameters

CMR was performed in 387 participants (92%) at 2–7 days (Table 3 and Supplemental Table 2), and in 358 participants (85%) at 3-months post-STEMI (Table 4 and Supplemental Table 2). The CMR results (2-7 day) stratified by location of MI are shown in Supplemental Table 3. Baseline/ procedure characteristics were similar for patients who had MVO data available (n=383) vs. those with missing MVO data (n=38) (Supplemental Tables 4 and 5). This suggests that data was missing at random, and the impact of missing data should be affecting each treatment group in a similar way. Mean MVO extent was higher in patients who had TIMI flow $\leq 2 (3.7 \pm 6.0\%)$ vs. TIMI 3 flow $(2.3 \pm 4.2\%)$ immediately pre-drug (coefficient: 0.33 [95% CI: 0.05-0.60] p=0.022 [derived from linear regression, using square root transformed MVO]). In participants with TIMI 3 flow pre-study drug, there were no associations between alteplase and infarct characteristics, apart from an increase in LV end-diastolic volume with alteplase 10mg vs. placebo (Tables 3 and 4, and Supplemental Table 2). **MVO** Participants with TIMI flow ≤2 pre-study drug, had MVO present more often with alteplase (placebo, 34.1% [n=15/44]; alteplase 10mg, 59.5% [n=25/42]; alteplase 20mg, 53.1% [n=26/49]; OR for alteplase 10mg and 20mg combined vs. placebo 2.47 [95% CI:

313 1.16-5.22] p=0.018) (Table 3 and Figure 3A). Interactions were observed for association with

MVO presence, between TIMI flow pre-drug, and treatment analysed as 3-, or 2-level

categorical variables (p=0.013 and p=0.005 respectively) (Table 3). When the 19 patients

Page 19 of 81

1

Heart

2	
3	3
4 5	
6	3
7 8	3
o 9	5
10	_
11 12	3
12 13	3
14	5.
15	3
16 17	
18	3
19 20	2
20	3
22	3
23 24	
25	3
26	
27 28	3
29	3
30	5
31 32	3
33	
34	3
35 36	
37	3
38 39	
39 40	3
41	_
42 43	3
43 44	
45	3
46 47	
48	3
49	2
50 51	3
52	3
53	
54 55	3
56	
57	3
58 59	3
60	э.

316	with TIMI 1 flow and the one patient with TIMI 0 flow immediately pre-drug were excluded,
317	significant interactions remained between alteplase, TIMI flow pre-drug (2 vs. 3) and the
318	presence of MVO (p=0.022) (Supplemental Table 6).

10		
11 12	319	Participants with TIMI flow ≤2 pre-drug, had increased extent of MVO (% LV mass)
12 13 14	320	with alteplase (placebo 2.6 \pm 5.7%, alteplase 10mg 2.7 \pm 3.9%, alteplase 20mg 5.4 \pm 7.4%,
15 16	321	estimated mean difference [for MVO analysed on a square root scale] alteplase 20mg and
17 18 19	322	10mg combined vs. placebo 0.53 [95% CI: 0.06-1.00] p=0.027) (Table 3). There was an
20 21	323	interaction between MVO extent (% LV mass), TIMI flow pre-drug and treatment, when
22 23	324	alteplase 10mg and 20mg were combined vs. placebo (p=0.041), but not for treatment as a 3-
24 25 26	325	level categorical variable (p=0.070) (Table 3). On bootstrap linear regression analysis, 20mg
26 27 28	326	alteplase was associated with MVO extent when compared to placebo in patients with TIMI
29 30	327	flow ≤2 pre-drug (mean difference: 3.37 [95% CI: 0.77-6.89] p=0.016), but not in patients
31 32 33	328	with TIMI 3 flow pre-drug (mean difference: 1.91 [95% CI: -0.74, 3.01] p=0.287)
34	329	(Supplemental Table 7).

330 Myocardial Haemorrhage

Myocardial haemorrhage presence/ absence was evaluable in 366 participants at 2-7
days, and myocardial haemorrhage extent was evaluable in 348 participants.

In participants with TIMI flow ≤2 pre-study drug, myocardial haemorrhage occurred more often with alteplase than placebo (alteplase 20mg, 53.1% [26/49], alteplase 10mg, 57.9% [n=22/38] vs. placebo, 27.5% [n=11/40]; OR for alteplase 10mg and 20mg combined vs. placebo: 3.26 [95% CI: 1.44-7.36] p=0.004) (Figure 3A). Interactions were observed between myocardial haemorrhage presence, TIMI flow pre-drug and treatment, analysed as 3-level, or 2-level categorical variables (p=0.004 and p=0.001 respectively) (Table 3). When the 19 patients with TIMI 1 flow and the one patient with TIMI 0 flow immediately pre-drug

340 were excluded, significant interactions remained between alteplase, TIMI flow pre-drug (2

vs. 3) and the presence of myocardial haemorrhage (p=0.009) (Supplemental Table 6).

Infarct Size, Myocardial Salvage Index, LV Ejection Fraction and LV Volumes at 2-7 days and 3-months

An interaction was observed for association with infarct size (2-7 day), between TIMI flow and treatment analysed as a 2-level categorical variable (p=0.026). Similar findings were observed for myocardial salvage index at 2–7 days post-STEMI (Table 3).

In participants with TIMI flow ≤2 pre-study drug, alteplase was not associated with
 LV ejection fraction, or LV volumes 2-7 days post-STEMI (Table 3, Supplemental Table 2),

or at 3-months (Table 4, Supplemental Table 2).

350 Angiographic and ECG Parameters

The inter-observer reliability for TIMI flow grade pre-study drug, assessed in 65 consecutive participants, was excellent (kappa=0.94). Occlusion of the culprit coronary artery after study drug administration occurred in 44 out of 334 patients (13%). There were no interactions between TIMI flow pre-drug, alteplase and angiographic or ECG surrogates of failed microvascular reperfusion (Supplemental Table 8).

356 Blood Chemistry

357 There were no interactions between TIMI flow pre-drug, alteplase and troponin T
 358 measured in 306 participants (Supplemental Table 8).

359 Coagulation

Regarding coagulation data (Table 5, Supplemental Table 9), there was an increase in fibrin D-dimers (a product of fibrin lysis), and decrease in plasminogen and fibrinogen, 2
 hours post-primary PCI relative to baseline, with alteplase vs. placebo, regardless of TIMI

Page 21 of 81

 Heart

3 4	363	flow grade pre-drug. This is consistent with what is expected following intra-arterial
5 6	364	fibrinolysis. There was an increase in prothrombin fragment F_{1+2} (a measure of thrombin
7 8	365	activation) two hours post-primary PCI relative to baseline, with alteplase vs. placebo,
	365	activation) two hours post-primary PCI relative to baseline, with alteplase vs. placebo, regardless of TIMI flow grade pre-drug (Table 5).
52 53		

367 Discussion

 Low-dose adjunctive intracoronary alteplase administered early during primary PCI, was associated with increased MVO and myocardial haemorrhage in participants who had TIMI flow ≤2 pre-drug administration (Figure 3A). These effects were not observed in participants with normalised TIMI 3 flow.

Our findings contrast with a previous study (n=95), which reported smaller infarct size at 6 months in patients given intracoronary streptokinase immediately post-primary PCI(20). Differences between the previous study(20) and ours include the previous study was not double-blinded, streptokinase is not fibrin specific, whereas alteplase is, and streptokinase was delivered post-stent insertion in the previous study (when 89% of the cohort had TIMI 3 flow), whereas we administered alteplase pre-stent implantation.

We might speculate that impaired antegrade coronary flow would in turn lead to
inadequate drug delivery to the microcirculation, resulting in less effective microvascular
reperfusion. In fact, increased fibrin D-dimer and lower plasminogen concentrations were
observed with alteplase in patients with TIMI flow ≤2 pre-drug (Table 5, and Supplemental
Table 9), which indicates that fibrinolysis did indeed occur in this group of participants.

Our findings may be related to the undesired procoagulant effects of fibrinolytic therapy (Figure 3B). In circumstances of slow microvascular flow, intracoronary alteplase potentially promotes the procoagulant effects of alteplase(21), thereby promoting microvascular thrombosis and worsening MVO. Indeed, increased prothrombin fragment F_{1+2} concentrations were observed with intracoronary alteplase (Table 5), despite therapeutic anticoagulation with heparin, indicating thrombin generation and increased risk of thrombosis(22).

CONFIDENTIAL - EMBARGO APPLIES

Page 23 of 81

1 2 Heart

2			
3 4	390	Our findings may suggest that in circumstances of reduced antegrade flow,	
5 6	391	myocardial perfusion is reduced leading to prolonged, higher local concentrations of	
7 8 9	392	alteplase, due to reduced washout of alteplase from the microcirculation. TIMI 3 flow is no	ot
9 10 11	393	synonymous with normal myocardial perfusion, for example in our population 42% of	
12 13	394	patients with TIMI 3 flow pre-study drug administration had MVO present. However,	
14 15	395	participants with TIMI flow ≤ 2 immediately pre-study drug had more extensive	
16 17 18	396	microvascular injury, evidenced by these patients having significantly more MVO than the	
19 20	397	patients with TIMI 3 flow pre-drug. Myocardium with extensive microvascular damage from	om
21 22	398	coronary occlusion, is characterised by loss of capillary integrity. In these circumstances,	
23 24 25	399	intracoronary fibrinolysis appears to worsen extravasation of erythrocytes, resulting in	
26 27	400	myocardial haemorrhage in the infarct core (an irreversible manifestation of persistent	
28 29	401	MVO). An increase in extravasation of blood into the interstitial space of the infarct core	
30 31 32	402	results in external compression of capillaries, which worsens MVO (Figure 3B).	
33 34	403	Insights from previous studies of glycoprotein IIbIIIa inhibitors, are consistent with	l
35 36 37	404	our findings(23, 24). An animal study demonstrated an increased incidence of myocardial	
38 39	405	haemorrhage with the addition of intracoronary glycoprotein IIbIIIa inhibitors(24), and in	
40 41 42	406	humans peri-procedural glycoprotein IIbIIIa inhibitors have also been associated with	
42 43 44	407	myocardial haemorrhage(24).	
45 46 47	408	Our findings are relevant to clinicians when considering bail-out lytic therapy in ac	ute
47 48 49	409	STEMI patients with massive thrombus and angiographic "no reflow". Our findings are als	50
50 51	410	relevant to ongoing clinical trials. Notably, the RESTORE-MI trial (NCT03998319) is	
52 53	411	randomising patients with STEMI (n=800) to adjunctive intracoronary tenecteplase or	
54 55 56	412	placebo, in a double-blind design, during primary PCI. For the RESTORE-MI trial, a key	
57 58	413	inclusion criteria is a post-stent index of microcirculatory resistance >32 in the culprit arter	y,
59 60	414	which signifies incomplete microvascular reperfusion and microvascular dysfunction(26).	
		CONFIDENTIAL – EMBARGO APPLIES	21

Our analyses raise the possibility that low-dose intracoronary lytic therapy in patients with
STEMI, who have incomplete reperfusion at the end of PCI, may not reduce infarct
pathology and, indeed, may be harmful. Nonetheless, there are important differences in the
design of T-TIME as compared to RESTORE-MI, such as the timing of study drug
administration (before or after stent implantation, respectively) and the lytic agent (alteplase
vs. tenecteplase).

421 Strengths and Limitations

422 Strengths of our study include the double-blind design, high follow up rates with 423 CMR, core-lab analyses, and the fact that TIMI flow grade immediately pre-study drug 424 administration was prospectively analysed and was submitted to the data coordination centre 425 prior to database lock. However, due to the potential for type 1 statistical error, the findings 426 should be interpreted as exploratory/ hypothesis generating.

Although the randomisation was not stratified according to TIMI flow grade, the
randomisation was stratified according to location of MI (anterior vs. non-anterior), which
was the only independent associate of TIMI flow pre-drug. Regression analyses were
adjusted for MI location, to limit the influence of confounding.

431 Conclusion

In STEMI patients with impaired coronary flow at the time of study drug
administration, intracoronary alteplase was associated with increased incidence of MVO and
myocardial haemorrhage.

Heart

2 3 4 5	438	References
6 7	439	1. Carrick D, Haig C, Ahmed N, McEntegart M, Petrie MC, Eteiba H, et al. Myocardial
8 9 10	440	Hemorrhage After Acute Reperfused ST-Segment-Elevation Myocardial Infarction: Relation
10 11 12	441	to Microvascular Obstruction and Prognostic Significance. Circ Cardiovasc Imaging.
13 14	442	2016;9(1):e004148.
15 16	443	2. de Waha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, et al.
17 18 19	444	Relationship between microvascular obstruction and adverse events following primary
20 21	445	percutaneous coronary intervention for ST-segment elevation myocardial infarction: an
22 23	446	individual patient data pooled analysis from seven randomized trials. Eur Heart J.
24 25	447	2017;38(47):3502-3510.
26 27 28	448	3. van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A, et al.
29 30	449	Prognostic value of microvascular obstruction and infarct size, as measured by CMR in
31 32	450	STEMI patients. JACC Cardiovasc Imaging. 2014;7(9):930-939.
33 34 35	451	4. Henriques JP, Zijlstra F, Ottervanger JP, de Boer MJ, van 't Hof AW, Hoorntje JC, et
36 37	452	al. Incidence and clinical significance of distal embolization during primary angioplasty for
38 39	453	acute myocardial infarction. Eur Heart J. 2002;23(14):1112-1117.
40 41 42	454	5. Zalewski J, Undas A, Godlewski J, Stepien E, Zmudka K. No-reflow phenomenon
43 44	455	after acute myocardial infarction is associated with reduced clot permeability and
45 46	456	susceptibility to lysis. Arterioscler Thromb Vasc Biol. 2007;27(10):2258-2265.
47 48 49	457	6. Schwartz RS, Burke A, Farb A, Kaye D, Lesser JR, Henry TD, et al. Microemboli
50 51	458	and microvascular obstruction in acute coronary thrombosis and sudden coronary death:
52 53	459	relation to epicardial plaque histopathology. J Am Coll Cardiol. 2009;54(23):2167-2173.
54 55	460	7. McCartney PJ, Eteiba H, Maznyczka AM, McEntegart M, Greenwood JP, Muir DF,
56 57 58	461	et al. Effect of Low-Dose Intracoronary Alteplase During Primary Percutaneous Coronary
50 59 60		

462 Intervention on Microvascular Obstruction in Patients With Acute Myocardial Infarction: A
463 Randomized Clinical Trial. JAMA. 2019;321(1):56-68.
464 8. McCartney PJ, Maznyczka AM, Eteiba H, McEntegart M, Oldroyd KG, Greenwood
465 JP et al. Low-Dose Alteplase During Primary Percutaneous Coronary Intervention According

- 466 to Ischemic Time. J Am Coll Cardiol. 2020;75(12):1406-21.
- 467 9. Maznyczka AM, McCartney PJ, Oldroyd KG, Lindsay M, McEntegart M, Eteiba H et
- 468 al. Effects of Intracoronary Alteplase on Microvascular Function in Acute Myocardial
- 469 Infarction. J Am Heart Assoc. 2020;9(3):e014066.
- 470 10. Maznyczka AM, McCartney PJ, Eteiba H, Greenwood JP, Muir DF, Chowdhary S et
- 471 al. One-Year Outcomes After Low-Dose Intracoronary Alteplase During Primary
- 472 Percutaneous Coronary Intervention: The T-TIME Randomized Trial. Circ Cardiovasc Interv.
 473 2020;13(2):e008855.
- 474 11. Group TS. The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings.
 475 N Engl J Med. 1985;312(14):932-936.
- 476 12. Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll
 477 Cardiol. 2009;54(4):281-292.
- 478 13. Kloner RA, Ganote CE, Jennings RB. The "no-reflow" phenomenon after temporary
 479 coronary occlusion in the dog. J Clin Invest. 1974;54(6):1496-1508.
- 480 14. Ndrepepa G, Tiroch K, Keta D, Fusaro M, Seyfarth M, Pache J, et al. Predictive
- 481 factors and impact of no reflow after primary percutaneous coronary intervention in patients
- 482 with acute myocardial infarction. Circ Cardiovasc Interv. 2010;3(1):27-33.
- 483 15. Ito H, Okamura A, Iwakura K, Masuyama T, Hori M, Takiuchi S, et al. Myocardial
 - 484 perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after
 - 485 coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation.

486 1996;93(11):1993-1999.

Page 27 of 81

Heart

1 2		
2 3 4	487	16. Morishima I, Sone T, Okumura K, Tsuboi H, Kondo J, Mukawa H, et al.
5 6	488	Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients
7 8 9	489	treated with percutaneous transluminal coronary angioplasty for first acute myocardial
9 10 11	490	infarction. J Am Coll Cardiol. 2000;36(4):1202-1209.
12 13	491	17. Ndrepepa G, Tiroch K, Fusaro M, Keta D, Seyfarth M, Byrne RA, et al. 5-year
14 15	492	prognostic value of no-reflow phenomenon after percutaneous coronary intervention in
16 17 18	493	patients with acute myocardial infarction. J Am Coll Cardiol. 2010;55(21):2383-2389.
19 20	494	18. Jiecheng P, Ai-Ling W. Clinical significance of no-reflow in different stages of
21 22	495	primary angioplasty among patients with acute myocardial infarctions. Perfusion.
23 24	496	2016;31(4):300-306.
25 26 27	497	19. Brener SJ, Dambrink JH, Maehara A, Chowdhary S, Gershlick AH, Genereux P, et al.
28 29	498	Benefits of optimising coronary flow before stenting in primary percutaneous coronary
30 31	499	intervention for ST-elevation myocardial infarction: insights from INFUSE-AMI.
32 33 34	500	EuroIntervention. 2014;9(10):1195-1201.
35 36 37 38 39 40	501	20. Sezer M, Cimen A, Aslanger E, Elitok A, Umman B, Bugra Z, et al. Effect of
	502	intracoronary streptokinase administered immediately after primary percutaneous coronary
	503	intervention on long-term left ventricular infarct size, volumes, and function. J Am Coll
41 42 43	504	Cardiol. 2009;54(12):1065-1071.
44 45	505	21. Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in
46 47	506	hemostasis and thrombosis: Virchow's triad revisited. Anesth Analg. 2012;114(2):275-285.
48 49 50	507	22. Ota S, Wada H, Abe Y, Yamada E, Sakaguchi A, Nishioka J, et al. Elevated levels of
51 52	508	prothrombin fragment 1 + 2 indicate high risk of thrombosis. Clin Appl Thromb Hemost.
53 54	509	2008;14(3):279-285.
55 56	510	23. Buszman PP, Wojakowski W, Milewski K, Debinski M, Pajak J, Aboodi MS, et al.
57 58 59 60	511	Controlled reperfusion with intravenous bivalirudin and intracoronary abciximab

CONFIDENTIAL – EMBARGO APPLIES

5 6	513
7 8	514
9 10	515
11 12 12	516
13 14 15	517
16 17	518
18 19	519
20 21	
22 23	520
24 25	521
26 27	522
28 29	523
30 31	524
32 33	525
34 35 26	526
36 37 38	527
39	
40 41	528
42 43	529
44 45	530
46 47 48	531
49 50	532
50 51 52	533
53 54	534
55 56	535
57 58	
59 60	536

1 2 3

4

combination therapy in the porcine myocardial infarction model. Thromb Res. 512

2012;130(2):265-272.

24. Amier RP, Tijssen RYG, Teunissen PFA, Fernandez-Jimenez R, Pizarro G, Garcia-

Lunar I, et al. Predictors of Intramyocardial Hemorrhage After Reperfused ST-Segment

Elevation Myocardial Infarction. J Am Heart Assoc. 2017;6(8).

 Jury J, .

 Ja
 25. Carrick D, Haig C, Carberry J, May VT, McCartney P, Welsh P, et al. Microvascular

resistance of the culprit coronary artery in acute ST-elevation myocardial infarction. JCI

Insight. 2016;1(6):e85768.

Heart

537	Contributorship Statement
538	A.M.M. wrote the manuscript. A.M.M. and C.B. conceived the idea for the manuscript.
539	A.M.M., C.B., and M.McE. performed the angiogram analyses. A.M.M., P.D. and A.McC.
540	performed the statistical analyses. P.J.M. and C.B. analysed the magnetic resonance images.
541	P.W.M. analysed the ECGs. R.C.T. analysed the coagulation data. J.P.G., K.O., M.McE.,
542	C.B., D.F.M., S.C., A.H.G., C.A., H.E., J.M.C., A.W. and N.C. contributed to data
543	acquisition. K.A.A., R.C.T., and N.C. contributed to interpreting the data and revising the
544	work critically for intellectual content. All authors made the decision to submit. C.B. is
545	guarantor.
546	
- 4-	
547	Declaration
548	The Corresponding Author has the right to grant on behalf of all authors and does grant on
549	behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a
550	worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if
551	accepted) to be published in Heart editions and any other BMJPGL products to exploit all
552	subsidiary rights.
553	
554	
555	
556	
557	
558	
559	

561 Figure Titles and Legends

562 Figure 1. Graphical layout of trial protocol

563 Abbreviations: CMR, cardiovascular magnetic resonance; LGE, late gadolinium

enhancement; MVO, microvascular obstruction; TIMI, Thrombolysis in Myocardial

565 infarction; STEMI, ST-segment elevation myocardial infarction

566 Figure 2. Study flow diagram

567 CMR (cardiovascular magnetic resonance) follow up is reported according to treatment

received. Abbreviations: MVO, microvascular obstruction; TIMI, Thrombolysis in

569 Myocardial Infarction.

570 Study Flow Diagram.

571 Figure 3. Summary of main findings and potential mechanisms

A. Forrest plots showing increased MVO and myocardial haemorrhage presence associated
with alteplase vs. placebo in participants with TIMI flow ≤2 at the time of study drug
administration.

B. In participants with reduced antegrade flow in the culprit artery (TIMI flow ≤ 2), there may have been increased microvascular exposure to higher local concentrations of alteplase for longer. TIMI coronary flow ≤ 2 may indicate ongoing impaired myocardial reperfusion, due to extensive microvascular damage. In these circumstances, intracoronary fibrinolysis appears to worsen MVO and extravasation of erythrocytes, resulting in myocardial haemorrhage in the infarct core and potentially promotes microvascular thrombosis. An increase in extravasation of blood into the interstitial space results in external compression of capillaries with an associated increase in microvascular resistance. This leads to a further

 Heart

<text><text> reduction in myocardial blood flow, and exacerbates myocardial necrosis and capillary

			nless otherwise	, accu.					
	Impaired coronary flow (TIMI flow ≤ 2)				Normal coronary flow (TIMI 3 flow)				
	All (n=154)	Placebo (n=50)	Alteplase 10mg (n=49)	Alteplase 20mg (n=55)	All (n=267)	Placebo (n=92)	Alteplase 10mg (n=87)	Alteplase 20m (n=88)	
Age	59.5 ± 10.7	59.5 ± 11.3	58.7 ± 11.3	60.3 ± 9.7	61.2 ± 10.0	61.8 ± 10.6	60.1 ± 9.9	61.8 ± 9.5	
Male	134 (87%)	44 (88%)	43 (88%)	47 (86%)	224 (84%)	76 (83%)	74 (85%)	74 (84%)	
White	143 (93%)	46 (92%)	47 (96%)	50 (91%)	253 (95%)	89 (97%)	81 (93%)	83 (94%)	
Asian	9 (6%)	3 (6%)	1 (2%)	5 (9%)	14 (5%)	3 (3%)	6 (7%)	5 (6%)	
Body mass index (kg/m ²)	28.4 ± 4.8	29.1 ± 5.6	28.1 ± 4.2	27.9 ± 4.4	28.1 ± 5.0	28.1 ± 5.1	28.7 ± 5.2	27.6 ± 4.5	
Heart rate at presentation, beats/ min	73.7 ± 17.2	72.1 ± 16.2	70.6 ± 15.3	78.0 ± 18.9	72.1 ± 20.1	73.5 ± 25.6	72.3 ± 16.6	70.3 ± 16.4	
Systolic blood pressure at presentation, mmHg	132.4 ± 22.9	128.8 ± 21.5	135.8 ± 23.8	132.7 ± 23.3	134.9 ± 26.6	134.8 ± 28.4	134.3 ± 25.6	135.5 ± 25.	
Diastolic blood pressure at presentation, mmHg	81.1 ± 14.7	77.8 ± 15.1	81.1 ± 14.3	83.4 ± 14.5	80.0 ± 16.0	80.0 ± 17.2	80.6 ± 15.6	79.4 ± 15.1	
Infarct location:									
Anterior	81 (53%)	26 (52%)	26 (53%)	29 (53%)	104 (39%)	38 (41%)	33 (38%)	33 (38%)	
Non-anterior	73 (47%)	24 (48%)	23 (47%)	26 (47%)	163 (61%)	54 (59%)	54 (62%)	55 (63%)	
Hypertension	53 (34%)	18 (36%)	15 (31%)	20 (36%)	82 (31%)	27 (29%)	28 (32%)	27 (31%)	
Renal impairment *	1 (1%)	1 (2%)	0	0	5 (2%)	1 (1%)	3 (3%)	1 (1%)	
Hypercholesterolemia	40 (26%)	15 (30%)	13 (27%)	12 (22%)	56 (21%)	25 (27%)	14 (16%)	17 (19%)	
Diabetes mellitus †	20 (13%)	5 (10%)	9 (18%)	6 (11%)	33 (12%)	13 (14%)	8 (9%)	12 (14%)	
Smoking:									
Current	75 (49%)	28 (56%)	20 (41%)	27 (49%)	122 (46%)	42 (46%)	45 (52%)	35 (40%)	
Former (stopped >3 months)	32 (21%)	9 (18%)	13 (27%)	10 (18%)	49 (18%)	17 (19%)	9 (10%)	23 (26%)	
Never	47 (31%)	13 (26%)	16 (33%)	18 (33%)	96 (36%)	33 (36%)	33 (38%)	30 (34%)	
Previous PCI	4 (3%)	1 (2%)	2 (4%)	1 (2%)	14 (5%)	6 (7%)	3 (3%)	5 (6%)	
Angina	2 (1%)	1 (2%)	1 (2%)	0	13 (5%)	4 (4%)	4 (5%)	5 (6%)	
Previous myocardial infarction	2 (1%)	0	2 (4%)	0	15 (6%)	5 (5%)	3 (3%)	7 (8%)	
Stroke/ Transient Ischemic Attack	0	0	0	0	5 (2%)	2 (2%)	1 (1%)	2 (2%)	
Peripheral vascular disease Pre-existing maintenance medication:	3 (2%)	2 (4%)	1 (2%)	0	9 (3%)	1 (1%)	2 (2%)	6 (7%)	

CONFIDENTIAL – EMBARGO APPLIES

https://mc.manuscriptcentral.com/heart

Aspirin	16 (10%)	6 (12%)	5 (10%)	5 (9%)	47 (18%)	20 (22%)	11 (13%)	16 (18%)
P2Y712 inhibitor								
Clopidogrel	1 (1%)	0	0	1 (2%)	1 (0.4%)	1 (1%)	0	0
Ticagrelor or prasugrel	4 (3%)	1 (2%)	0	3 (6%)	16 (6%)	8 (9%)	4 (5%)	4 (5%)
Statin	31 (20%)	11 (22%)	11 (22%)	9 (16%)	60 (23%)	27 (29%)	17 (20%)	16 (18%)
Beta blocker	14 (9%)	4 (8%)	6 (12%)	4 (7%)	26 (10%)	12 (13%)	8 (9%)	6 (7%)
ACE inhibitor or ARB	30 (20%)	8 (16%)	10 (20%)	12 (22%)	43 (16%)	13 (14%)	16 (18%)	14 (16%)
Mineralocorticoid receptor antagonist	2 (1%)	0	2 (4%)	0	2 (1%)	1 (1%)	0	1 (1%)
Symptom onset to arrival at primary PCI centre,	2.2 (1.6, 3.4)	2.2 (1.7, 3.1)	2.1 (1.5, 3.8)	2.5 (1.4, 3.4)	2.2 (1.5, 3.2)	2.0 (1.5, 3.1)	2.2 (1.5, 3.3)	2.2 (1.6, 3.2
nedian (IQR) hrs								
Arrival at primary PCI centre to reperfusion,	0.4 (0.3, 0.6)	0.4 (0.3, 0.6)	0.4 (0.3, 0.6)	0.4 (0.3, 0.6)	0.4 (0.3, 0.6)	0.4 (0.3, 0.6)	0.4 (0.3, 0.6)	0.4 (0.3, 0.0
nedian (IQR) hrs								
Symptom onset to reperfusion, median (IQR)	2.7 (2.1, 3.8)	2.7 (2.1, 3.5)	2.7 (1.9, 4.2)	2.9 (2.1, 3.8)	2.6 (2.0, 3.8)	2.6 (2.0, 3.7)	2.8 (1.9, 4.0)	2.7 (2.0, 3.
nrs								
nitial blood results on admission:								
Hemoglobin, g/dL	147.3 ± 13.2	144.9 ± 15.1	145.7 ± 11.0	151.0 ± 12.5	144.6 ± 13.3	144.0 ± 13.5	145.9 ± 13.6	143.8 ± 12
Platelet count, $10^3/\mu L$	259.7 ± 61.2	248.7 ± 61.2	273.3 ± 64.6	257.7 ± 56.8	262.6 ± 63.6	254.2 ± 61.0	269.7 ± 75.8	263.9 ± 50
Creatinine, µmol/L	80.5 ± 17.3	83.6 ± 19.2	74.8 ± 12.3	82.7 ± 18.2	80.9 ± 18.1	78.0 ± 17.3	83.4 ± 18.7	$81.2 \pm 18.$
eGFR (ml/min/1.73m ²)	92.7 ± 21.4	91.1 ± 21.6	96.4 ± 18.4	91.0 ± 23.4	88.9 ± 20.7	90.4 ± 20.9	86.9 ± 20.0	89.3 ± 21.
* Renal impairment was defined a	according to t						3 m ² fulfilling	
criteria for renal impairment.			, chinerenen intere			// 1111/1./		,11 v

Heart

[†] Diabetes Mellitus was defined as a history of diet-controlled or treated diabetes.

Missing: body mass index (calculated as weight in kg divided by height in meters squared), 2; creatinine, 68; eGFR, 68; haemoglobin, 16; platelets, 30.

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; eGFR, estimated glomerular filtration rate; IQR, interquartile range; PCI, percutaneous coronary intervention; TIMI, Thrombolysis in Myocardial Infarction.

Table 2. Procedure characteristics, by subgroups of TIMI flow grade (<2 vs. 3) immediately before study drug administration. Data are reported according to treatment received (n=421). Data are mean \pm SD, or n (%), unless otherwise stated.

	Impaired coronary flow (TIMI flow ≤ 2)				Normal coronary flow (TIMI 3 flow)					
	All (n=154)	Placebo (n=50)	Alteplase 10mg (n=49)	Alteplase 20mg (n=55)	All (n=267)	Placebo (n=92)	Alteplase 10mg (n=87)	Alteplase 20mg (n=88)		
Culprit artery: *	(11-134)	(11-30)	(11-49)	(11-33)	(11-207)	(11-92)	(11-07)	(11-00)		
Left anterior descending	82 (53%)	26 (52%)	27 (55%)	29 (53%)	109 (41%)	40 (44%)	35 (40%)	34 (39%)		
Circumflex	82 (33%) 12 (8%)	3 (6%)	3 (6%)	6 (11%)	41 (15%)	16 (17%)	14 (16%)	11 (13%)		
Right coronary artery	60 (39%)	21 (42%)	19 (39%)	20 (36%)	117 (44%)	36 (39%)	38 (44%)	43 (49%)		
Multivessel disease: *	00 (3970)	21 (4270)	19 (3970)	20 (30%)	117 (4470)	30 (3970)	38 (4470)	43 (4970)		
	112 (720/)	24 (690/)	24 (600/)	44 (200/)	165 (620/)	(2)((70/))	52 (600/)	51 (590/)		
1	112 (73%)	34 (68%)	34 (69%)	44 (80%)	165 (62%)	62 (67%)	52 (60%) 27 (219()	51 (58%)		
2	37 (24%)	13 (26%)	14 (29%)	10 (18%)	80 (30%)	25 (27%)	27 (31%)	28 (32%)		
	5 (3%)	3 (6%)	1 (2%)	1 (2%)	22 (8%)	5 (5%)	8 (9%)	9 (10%)		
Initial TIMI coronary flow grade: * †	110 (770)	41 (000)	20 (700 ()	10 (720)	01((010))	01 (000()				
0 (no flow)	119 (77%)	41 (82%)	38 (78%)	40 (73%)	216 (81%)	81 (88%)	67 (77%)	68 (77%)		
1 (minimal flow)	9 (6%)	2 (4%)	2 (4%)	5 (9%)	23 (9%)	1 (1%)	12 (14%)	10 (11%)		
2 (slow but complete flow)	25 (16%)	7 (14%)	8 (16%)	10 (18%)	23 (9%)	8 (9%)	6 (7%)	9 (10%)		
3 (normal flow)	1 (1%)	0	1 (2%)	0	5 (5%)	2 (2%)	2 (2%)	1 (1%)		
Initial TIMI thrombus grade: * ‡										
0 - 2	0	0	0	0	0	0	0	0		
3	3 (2%)	1 (2%)	1 (2%)	1 (2%)	8 (3%)	2 (2%)	1 (1%)	5 (6%)		
4	32 (21%)	9 (18%)	9 (18%)	14 (26%)	43 (16%)	9 (10%)	19 (22%)	15 (17%)		
5	119 (77%)	40 (80%)	39 (80%)	40 (73%)	216 (81%)	81 (88%)	67 (77%)	68 (77%)		
Mode of reperfusion:										
Aspiration thrombectomy	45 (29%)	12 (24%)	14 (29%)	19 (35%)	74 (28%)	23 (25%)	28 (32%)	23 (26%)		
Balloon angioplasty	109 (71%)	38 (76%)	35 (71%)	36 (66%)	192 (72%)	69 (75%)	59 (68%)	64 (73%)		
Primary stent	0	0	0	0	1 (0.4%)	0	0	1 (1%)		
Balloon angioplasty pre-stent	144 (94%)	48 (96%)	46 (94%)	50 (91%)	244 (91%)	83 (90%)	82 (94%)	79 (90%)		
Method of study drug delivery:										
Thrombectomy catheter	112 (73%)	38 (76%)	36 (74%)	38 (69%)	188 (70%)	65 (71%)	58 (67%)	65 (74%)		
Guide catheter	35 (23%)	10 (20%)	9 (18%)	16 (29%)	65 (24%)	21 (23%)	26 (30%)	18 (21%)		
Other	7 (5%)	2 (4%)	4 (8%)	1 (2%)	14 (5%)	6 (7%)	3 (3%)	5 (6%)		
PCI with stent implantation	152 (99%)	50 (100%)	48 (98%)	54 (98%)	266 (100%)	91 (99%)	87 (100%)	88 (100%)		
Post stent dilatation	133 (86%)	48 (96%)	42 (86%)	43 (78%)	233 (87%)	76 (83%)	76 (87%)	81 (92%)		

CONFIDENTIAL – EMBARGO APPLIES

https://mc.manuscriptcentral.com/heart

Page	35	of	81
------	----	----	----

1									
2						1			
3	Total length of stents deployed from	32.7 ± 14.4	32.9 ± 13.8	35.2 ± 16.2	30.2 ± 13.1	34.5 ± 14.4	34.9 ± 13.3	34.8 ± 14.2	33.9 ± 14.7
4	QCA (mm) *								
5	QCA reference vessel diameter post-stent	3.3 ± 0.5	3.2 ± 0.5	3.3 ± 0.6	3.2 ± 0.4	3.2 ± 0.4	3.1 ± 0.4	3.2 ± 0.5	3.2 ± 0.4
6	(mm) *								
7	Loading with aspirin at first medical	135 (88%)	44 (88%)	43 (88%)	48 (87%)	230 (86%)	78 (85%)	77 (89%)	75 (85%)
8	contact								
9	Aspirin loading dose, mg, No/ total (%):								
10	300	133/135 (99%)	44/44 (100%)	42/43 (98%)	47/48 (98%)	220/230 (96%)	73/78 (94%)	74/77 (96%)	73/75 (97%)
11	>300	2/135 (2%)	0	1/43 (2%)	1/48 (2%)	10/230 (4.3)	5/78 (6%)	3/77 (4%)	2/75 (3%)
12	Additional antiplatelet medication at first								
13	medical contact:								
14	None	18 (12%)	5 (10%)	5 (10%)	8 (15%)	30 (11%)	12 (13%)	8 (9%)	10 (11%)
15	Clopidogrel	55 (36%)	20 (40%)	20 (41%)	15 (27%)	90 (34%)	26 (28%)	29 (33%)	35 (40%)
16	Ticagrelor	75 (49%)	24 (48%)	22 (45%)	29 (53%)	142 (53%)	53 (58%)	49 (56%)	40 (46%)
17	Prasugrel	6 (4%)	1 (2%)	2 (4%)	3 (6%)	5 (2%)	1 (1%)	1 (1%)	3 (3%)
18	Unfractionated heparin, median (IQR), U	10000.0	10000.0	10000.0	10000.0	10000.0	9000.0	10000.0	10000.0
19		(8000.0, 13000.0)	(8000.0, 15000.0)	(8000.0, 13000.0)	(8000.0, 12000.0)	(7000.0, 12000.0)	(7000.0, 12000.0)	(7500.0, 13000.0)	(7000.0, 13000.0)
20	Activated clotting time (s)	276.3 ± 89.8	264.3 ± 89.8	303.4 ± 97.6	263.0 ± 78.3	284.0 ± 87.4	280.8 ± 88.5	294.9 ± 88.5	276.1 ± 85.2
21	Intravenous morphine	114 (74%)	37 (74%)	38 (78%)	39 (71%)	197 (74%)	62 (67%)	64 (74%)	71 (81%)
22	Inhaled oxygen, No/ total (%)	28/151 (19%)	8/49 (16%)	14/48 (29%)	6/54 (11%)	32/259 (12%)	14/90 (15%)	10/85 (12%)	8/84 (10%)
23	Glycoprotein IIb/IIIa antagonist, No/ total	28/151(19%)	6/49 (12%)	11/48 (23%)	11/54 (20%)	38/259 (15%)	8/90 (9%)	17/85 (20%)	13/84 (16%)
24	(%)								
25	Duration of study drug infusion (min)	6.6 ± 2.0	6.9 ± 2.1	6.5 ± 2.0	6.5 ± 1.9	6.4 ± 1.9	6.2 ± 1.9	6.4 ± 1.9	6.7 ± 2.0
26	Days from PCI to 2 – 7 days CMR,	4.0 (3.0, 6.0)	4.0 (3.0, 5.0)	4.0 (3.0, 6.0)	4.0 (2.8, 6.0)	4.0 (3.0, 6.0)	4.0 (2.8, 5.0)	5.0 (3.0, 6.0)	4.0 (4.0, 6.0)
27	median (IQR)								
28	Days from PCI to 3-month CMR, median	91.0 (85.0, 98.8)	91.0 (85.0, 97.0)	92.0 (86.0, 99.5)	90.0 (85.0, 99.0)	90.0 (86.0, 95.3)	90.0 (85.8, 94.0)	90.0 (86.0, 96.0)	91.0 (86.0, 97.0)
29	(IQR)								
30	None of the participants r	received intraver	nous or intracord	onary treatment v	with bivalirudin, n	netoprolol, nicorand	lil, or sodium nit	troprusside.	
31	1 1				· · · · · · · · · · · · · · · · · · ·	, ,			

Heart

* The angiographic parameters are based on central laboratory assessments.

[†] TIMI flow grade is a visual assessment of antegrade coronary artery flow at angiography, graded from 0 (no flow) to 3 (normal flow).

‡ TIMI thrombus grade allows the classification of thrombus burden (greatest dimension) revealed during coronary angiography. TIMI thrombus grade 0, no thrombus; 1, possible thrombus, with reduced contrast density, haziness, irregular lesion contour; 2, definite thrombus less than half

CONFIDENTIAL – EMBARGO APPLIES

the vessel diameter; 3, definite thrombus greater than half, but less than 2 vessel diameters; 4, definite thrombus greater than or equal to 2 vessel diameters; 5, total occlusion.

 Missing: Activated clotting time, 96; aspirin loading dose, 56; duration of study drug infusion 24; glycoprotein IIb/IIIa antagonist, 11; inhaled oxygen, 11.

Abbreviations: CMR, cardiovascular magnetic resonance; IQR, interquartile range; PCI, percutaneous coronary intervention; QCA, quantitative .ombolysis in 14.5... coronary angiography; TIMI, Thrombolysis in Myocardial Infarction.

CONFIDENTIAL – EMBARGO APPLIES

Table 3. Analysis of CMR parameters 2–7 days after primary PCI, by subgroups of TIMI flow grade (≤2 vs. 3) immediately before study drug administration (adjusted for MI location [anterior vs. non-anterior]). Treatment effect estimates and interaction with treatment received are shown (see footnotes). Data are mean ± SD, median [IQR], or n (%), unless otherwise stated.

0								
1		Treatment group		Treatme	ent Effect		Treatment Effect	
2 3 4 5	Placebo	Alteplase	Alteplase	Alteplase 10mg vs. placebo	Alteplase 20mg vs. placebo	Interaction p-value (treatment as a 3-level	Alteplase (10mg or 20mg) vs. placebo	Interaction p-value (treatment as a 2-level
6	(n=142)*	10mg	20mg			categorical variable)	·	categorical variable)
/ 8		(n=136)*	(n=143)*	Estimate (95% CI) p-value	Estimate (95% CI) p-value	variabic)	Estimate (95% CI), p-value	variabicj
9 0 MVO presence (n/ t	rotal) (a)			· ~				
1 2 TIMI flow ≤2	15/44 (34.1)	25/42 (59.5)	26/49 (53.1)	2.86 (1.19, 6.88) p=0.019	2.18 (0.94, 5.04) p=0.069	0.013	2.47 (1.16, 5.22) p=0.018	0.005
TIMI 3 flow	41/85 (48.2)	29/80 (36.3)	33/83 (39.8)	0.61 (0.33, 1.14) p=0.119	0.72 (0.39, 1.34) p=0.298	0.015	0.66 (0.39, 1.13) p=0.128	0.005
5 6 MVO extent (% of]	LV mass)† (b)							
7 3 TIMI flow ≤2	2.6 ± 5.7	2.7 ± 3.9	5.4 ± 7.4	0.31 (-0.24, 0.86) p=0.269	0.72 (0.19, 1.25) p=0.008	0.070	0.53 (0.06, 1.00) p=0.027	0.041
9 TIMI 3 flow	2.2 ± 3.4	2.4 ± 4.8	2.3 ± 4.3	-0.09 (-0.49, 0.31) p=0.661	-0.06 (-0.45, 0.34) p=0.777		-0.07 (-0.42, 0.27) p=0.677	
1 2 Myocardial haemor	rhage presence (n/ tot	al) (a)						
3 4 TIMI flow ≤2	11/40 (27.5)	22/38 (57.9)	26/49 (53.1)	3.67 (1.42, 9.49) p=0.007	2.97 (1.22, 7.27) p=0.017	0.004	▶ 3.26 (1.44, 7.36) p=0.004	0.001
5 TIMI 3 flow 6	39/82 (47.6)	28/76 (36.8)	30/81 (37.0)	0.64 (0.34, 1.21) p=0.168	0.66 (0.35, 1.23) p=0.188	0.004	0.65 (0.38, 1.11) p=0.117	0.001
3								

CONFIDENTIAL – EMBARGO APPLIES

https://mc.manuscriptcentral.com/heart

Heart

Myocardial haemorr	hage extent (% LV n	nass)† (c)						
TIMI flow ≤2	1.7 ± 5.2	2.2 ± 3.4	3.8 ± 5.8	0.55 (-0.31, 2.42) p=0.562	2.15 (0.45, 3.85) p=0.014	0.120	0.50 (-0.04, 3.04) p=0.057	0.179
TIMI 3 flow	1.4 ± 2.8	1.8 ± 3.6	1.5 ± 3.8	0.29 (-1.00, 1.58) p=0.656	0.11 (-1.16, 1.38) p=0.867	0.120	0.20 (-0.91, 1.31) p=0.726	0.179
Infarct size (% LV m	Infarct size (% LV mass) (c)							
TIMI flow ≤2	28.1 ± 15.5	32.0 ± 12.7	32.3 ± 13.1	3.87 (-1.08, 8.81) p=0.126	3.87 (-0.90, 8.63) p=0.112	0.076	3.87 (-0.34, 8.07) p=0.072	0.026
TIMI 3 flow	26.0 ± 12.6	24.7 ± 11.7	22.8 ± 12.3	-1.35 (-4.92, 2.22) p=0.460	-2.68 (-6.22, 0.86) p=0.138	0.070	-2.03 (-5.09, 1.03) p=0.195	0.020
Myocardial salvage i	Myocardial salvage index (c)							
TIMI flow ≤2	0.4 ± 0.3	0.3 ± 0.2	0.3 ± 0.2	-0.06 (-0.16, 0.04) p=0.231	-0.09 (-0.18, 0.01) p=0.080	0.108	-0.07 (-0.16, 0.01) p=0.086	0.049
TIMI 3 flow	0.4 ± 0.2	0.4 ± 0.2	0.4 ± 0.2	0.02 (-0.05, 0.09) p=0.593	0.04 (-0.03, 0.11) p=0.254	0.110	0.03 (-0.03, 0.09) p=0.329	
LV ejection fraction (%) (c)								
TIMI flow ≤2	43.4 ± 10.5	41.5 ± 8.8	42.6 ± 8.8	-1.85 (-5.18, 1.48) p=0.276	-0.67 (-3.88, 2.53) p=0.681	0.681	-1.22 (-4.05, 1.62) p=0.400	0.431
TIMI 3 flow	44.8 ± 7.9	44.7 ± 7.4	45.4 ± 7.9	-0.03 (-2.43, 2.37) p=0.982	0.40 (-1.98, 2.79), p=0.740	0.081	0.19 (-1.87, 2.25) p=0.856	0.431

(a) Treatment effect estimates reported as odds ratios between groups, from a logistic regression model.

 (b) Treatment effect estimates reported as mean differences in square root transformed MVO extent between groups, from a linear regression model.

(c) Treatment effect estimates reported as mean differences between groups, from a linear regression model.

(d) Data analysed on a logarithmic scale. Treatment effect estimates reported as relative difference between groups.

The p values and 95% CI have not been adjusted for multiplicity, therefore these analyses should be interpreted as exploratory and not definitive.

CONFIDENTIAL – EMBARGO APPLIES

 * Missing data: MVO extent, or presence/ absence (n=38); myocardial haemorrhage extent (n=73); myocardial haemorrhage presence/ absence (n=55); infarct size, or myocardial salvage index (n=38); LV ejection fraction (n=34)

Heart

† Given the high proportion of participants with a 0 value for MVO amount (56% of participants), and myocardial haemorrhage amount (57% of participants) the median value for MVO and myocardial haemorrhage was 0 for all groups, while the mean (SDs) are not ideal summaries for these data, it has been reported as such for this reason.

Abbreviations: CI, confidence interval; CMR, cardiovascular magnetic resonance; LV, left ventricular; MI, myocardial infarction; MVO, Thrombolysis in Myocaca microvascular obstruction; TIMI, Thrombolysis in Myocardial Infarction.

Heart

1 2

> 44 45 46

3 Table 4. Analysis of CMR parameters 3 months after primary PCI, by subgroups of TIMI flow grade (<2 vs. 3) immediately before study drug administration 4 5 (adjusted for MI location [anterior vs. non-anterior]). Treatment effect estimates and interaction with treatment received are shown (see footnotes). Data are 6 7 8 mean ± SD, or median [IQR], unless otherwise stated. 9 10 **Treatment Group Treatment Effect Treatment Effect** 11 12 Interaction Interaction 13 p-value Alteplase (10mg or 20mg) p-value Alteplase 10mg vs placebo Alteplase 20mg vs. placebo 14 (treatment vs. placebo (treatment Placebo Alteplase Alteplase as a 3-level as a 2-level 15 categorical categorical 16 (n=142)* 10mg 20mg variable) variable) 17 Estimate (95% CI) p-value Estimate (95% CI) p-value Estimate (95% CI), p-value (n=136)* (n=143)* 18 19 Infarct size (% LV mass) (a) 20 21 22 TIMI flow ≤ 2 21.3 ± 14.7 22.1 ± 11.3 23.9 ± 13.0 1.11 (-3.61, 5.83) p=0.645 2.73 (-1.84, 7.3) p=0.242 1.97 (-2.07, 6.01) p=0.339 0.488 0.261 23 TIMI 3 flow -1.09 (-4.57, 2.39) p=0.539 -0.74 (-4.17, 2.7) p=0.675 17.5 ± 11.2 16.3 ± 10.3 16.2 ± 10.3 -0.91 (-3.9, 2.08) p=0.552 24 25 Myocardial salvage index (a) 26 27 TIMI flow ≤2 0.5 ± 0.3 0.5 ± 0.2 0.5 ± 0.2 28 0.0 (-0.09, 0.10) p=0.929 -0.04 (-0.13, 0.06) p=0.437 -0.02 (-0.10, 0.07) p=0.671 0.844 0.623 29 TIMI 3 flow 0.6 ± 0.2 0.6 ± 0.2 0.02 (-0.05, 0.09) p=0.596 0.0 (-0.07, 0.07) p=0.940 0.01 (-0.05, 0.07) p=0.801 0.6 ± 0.2 30 31 LV ejection fraction (%) (a) 32 33 TIMI flow ≤2 47.4 ± 11.9 47.3 ± 8.7 46.8 ± 9.2 -0.26 (-3.83, 3.32) p=0.889 -0.69 (-4.15, 2.77) p=0.696 -0.49 (-3.55, 2.57) p=0.754 34 0.805 0.632 35 TIMI 3 flow -1.7 (-4.31, 0.90) p=0.201 -1.13 (-3.71, 1.44) p=0.389 -1.41 (-3.65, 0.82) p=0.216 50.8 ± 6.8 49.1 ± 7.3 49.9 ± 7.9 36 37 38 39 (a) Treatment effect estimates reported as mean differences between groups. 40 41 **CONFIDENTIAL – EMBARGO APPLIES** 38 42 43 https://mc.manuscriptcentral.com/heart

 Heart

(b) Data analysed on a logarithmic scale. Treatment effect estimates reported as relative difference between groups. The p values and 95% CI have not been adjusted for multiplicity, therefore these analyses should be interpreted as exploratory and not definitive.

*Missing data: infarct size (n=66); myocardial salvage index (n=72); LV ejection fraction (n=63).

L. A. (n=72); LV ejection fractio.. In Myocardial Infarction. Abbreviations: CI, confidence interval; CMR, cardiovascular magnetic resonance; IQR, inter quartile range; LV, left ventricular; SD, standard deviation; MI, myocardial infarction; TIMI, Thrombolysis in Myocardial Infarction.

CONFIDENTIAL – EMBARGO APPLIES

Heart

Supplemental Table 5. Analysis of coagulation variables at 2 hours compared to baseline, by subgroups of TIMI flow grade (<2 vs. 3) immediately

		Treatment Group		Treatment Effect			Treatment Effect	
	Placebo	Alteplase	Alteplase	Alteplase 10mg vs. placebo	Alteplase 20mg vs. placebo	Interaction p-value (treatment as a 3-level	Alteplase (10mg or 20mg) vs. placebo	Interaction p-value (treatment as a 2-level
	(n=142)*	10mg	20mg	Estimate (95% CI) p-value	Estimate (050/ CD) n volue	categorical variable)	Estimate (95% CI), p-value	categorical variable)
		(n=136)*	(n=143)*	Estimate (95% C1) p-value	Estimate (95% CI) p-value	(Estimate (95% CI), p-value	(
Ratio of fibrinoge	en at 2 hours relative to	o baseline (a)		· /				
TIMI flow ≤2	1.00 [1.00, 1.14]	1.03 [0.90, 1.17]	0.97 [0.90, 1.05]	1.02 (0.95, 1.09) p=0.658	0.93 (0.87, 0.99) p=0.021	0.020	0.96 (0.91, 1.02) p=0.237	0.504
TIMI 3 flow	1.00 [0.90, 1.11]	1.00 [0.90, 1.10]	1.00 [0.90, 1.14]	0.98 (0.93, 1.03) p=0.336	0.99 (0.94, 1.04) p=0.761	0.032	0.98 (0.94, 1.03) p=0.467	0.594
Change in plasmi	nogen (U/dL) at 2 hou	rs relative to baseline	(b)					
TIMI flow ≤2	1.0 [-2.0, 3.0]	-3.0 [-9.5, 4.5]	-10.0 [-15.0, -6.0]	-4.30 (-8.20, -0.40) p=0.034	-13.40 (-17.10, -9.60) p<0.001		-9.30 (-12.80, -5.80) p<0.001	
TIMI 3 flow	1.0 [-3.3, 5.0]	-5.0 [-11.0, -0.8]	-9.5 [-16.0, -4.0]	-6.10 (-8.90, -3.30) p<0.001	-10.20 (-13.00, -7.40) p<0.001	0.110	-8.20 (-10.70, -5.60) p<0.001	0.609
Ratio of fibrin D-	dimer at 2 hours relati	ive to baseline (a)						
TIMI flow ≤2	1.1 [1.0, 1.3]	3.2 [2.2, 6.0]	3.8 [2.0, 6.2]	3.27 (2.47, 4.32) p<0.001	3.52 (2.70, 4.59) p<0.001		→ 3.40 (2.67, 4.32) p<0.001	
TIMI 3 flow	1.1 [0.9, 1.5]	3.4 [2.2, 4.6]	4.9 [3.2, 7.4]	2.86 (2.35, 3.50) p<0.001	4.16 (3.41, 5.08) p<0.001	0.213	3.46 (2.91, 4.12) p<0.001	0.907

CONFIDENTIAL – EMBARGO APPLIES

https://mc.manuscriptcentral.com/heart

1									
2									
3 4									
5									
6 7	Ratio of prothron	nbin fragment F ₁₊₂ at 2	hours relative to baseline	e (a)					
8 9	TIMI flow ≤2	1.1 [0.9, 1.3]	1.3 [1.1, 1.6]	1.2 [1.0, 1.6]	1.46 (1.16, 1.85) p=0.002	1.20 (0.96, 1.51) p=0.104	0.242	1.31 (1.08, 1.60) p=0.008	0.432
10 11	TIMI 3 flow	1.1 [0.9, 1.4]	1.2 [0.9, 1.5]	1.3 [1.1, 1.6]	1.18 (1.00, 1.39) p=0.057	1.20 (1.02, 1.42) p=0.030	0.242	1.19 (1.03, 1.38) p=0.018	0.432
12 13	Ratio of tissue pla	sminogen activator at 2	2 hours relative to baselin	ne (a)					
14 15	TIMI flow ≤2	1.1 [0.0, 3.0]	1.4 [1.2, 1.7]	1.5 [1.3, 2.0]	1.29 (0.95, 1.74) p=0.105	1.46 (1.09, 1.94) p=0.011	0.7(1	1.38 (1.06, 1.78) p=0.015	0.441
16 17	TIMI 3 flow	1.1 [-0.3, 2.0]	1.3 [1.1, 1.7]	1.6 [1.3, 1.9]	1.14 (0.92, 1.42) p=0.233	1.29 (1.04, 1.60) p=0.021	0.761	1.21 (1.01, 1.46) p=0.041	0.441
18	((a) Data analysed	on a logarithmic sca	le. Treatment	effect estimates reported a	as relative difference betw	een groups.		
19 20	((b) Treatment effe	ct estimates reported	d as mean diffe	erences between groups.				
21 22	The	p values and 95% C	I have not been adjust	ted for multiplic	tity, therefore these analyses	should be interpreted as ex	ploratory and no	ot definitive.	
23 24									
25									
26 27	*Mis	ssing data: change ir	n coagulation paramete	ers at 2 hours re	elative to baseline (n=80)				
28 29	Abbi	reviations: IQR, inte	er quartile range; MI, r	myocardial infa	rction; TIMI, Thrombolysis	in Myocardial Infarction.			
30									
31 32									
33 34									
35									
36									
37									
38 39									
40									
41				CONFIL	DENTIAL – EMBARGO A	APPLIES		41	
42 43									
44				h	ttps://mc.manuscriptcentral.co	om/heart			
45									

Confidential: For Review only

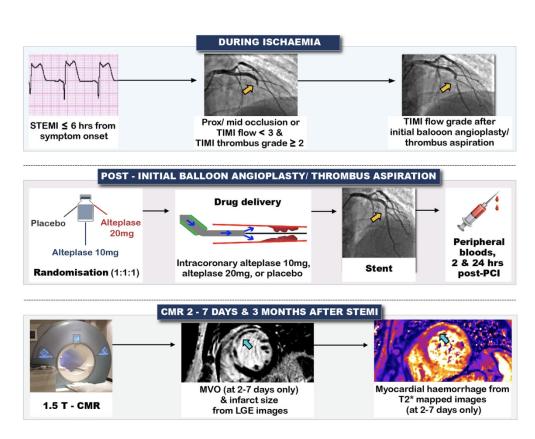


Figure 1. Graphical layout of trial protocol

127x98mm (300 x 300 DPI)

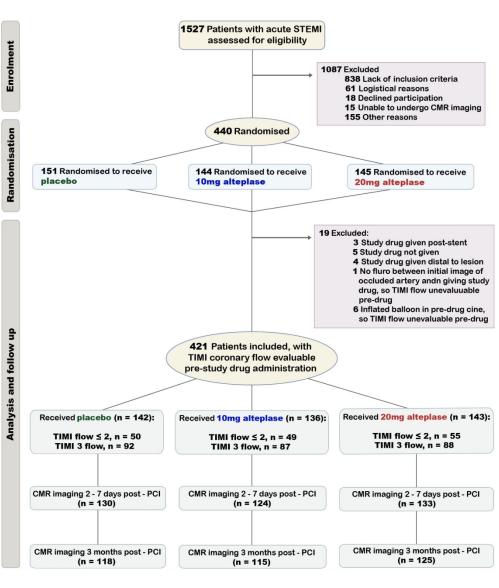
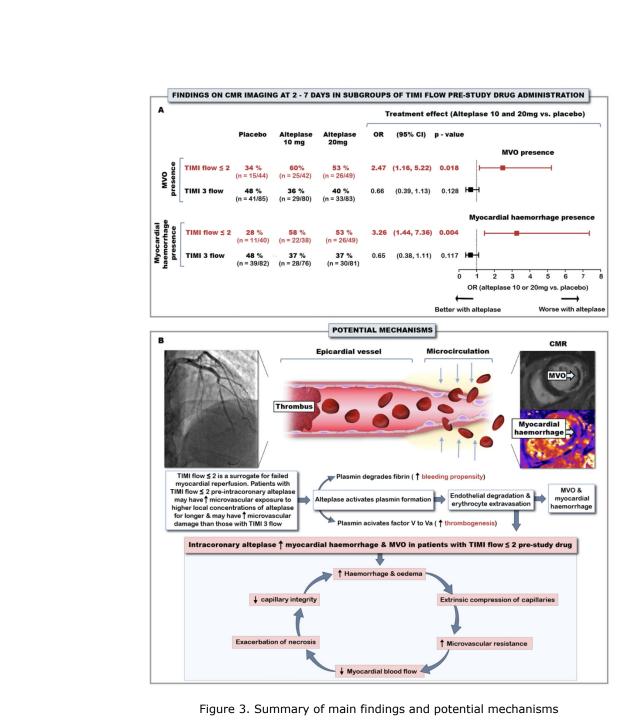



Figure 2. Study flow diagram

137x152mm (300 x 300 DPI)

Heart

117x152mm (300 x 300 DPI)

1	SUPPLEMENTAL METHODS & RESULTS	
2	Effect of coronary flow on intracoronary alteplase, a pre-specified	
3	analysis from a randomised trial	
4	ClinicalTrials.gov: NCT02257294	
5 6	Contents	
	Eligibility Criteria	Page 3
	Standard Care	Page 6
	Interventions	Page 6
	Angiogram Acquisition and Analysis Methods	Page 6
	CMR Acquisition and Analysis Methods	Page 9
	Local Hospital Blood Sample Handling	Page 11
	Central Laboratory Analysis for Troponin T	Page 11
	Central Laboratory Analysis for Coagulation Parameters	Page 12
	Trial Management	Page 13
	Supplemental Table 1. Additional procedure characteristics, by subgroups of TIMI flow grade	Page 15
	(≤2 vs. 3) immediately before study drug administration.	
	Supplemental Table 2. Analysis of CMR derived LV end-diastolic and end-systolic volumes, by	Page 16
	subgroups of TIMI flow grade (≤2 vs. 3) immediately before study drug administration (adjusted	
	for MI location [anterior vs. non-anterior]).	
	Supplemental Table 3. Analysis of CMR parameters 2-7 days after primary PCI, by subgroups of	Page 17
	TIMI flow grade (≤2 vs. 3) immediately before study drug administration, and by subgroups of MI	
	location.	
	Supplemental Table 4. Baseline characteristics according to availability of MVO data (complete	Page 20
	vs. missing).	

Heart

Supplemental Table 5. Procedure characteristics according to availability of MVO data	Page 22
(complete vs. missing).	
Supplemental Table 6. Analysis of CMR parameters 2–7 days after primary PCI, by subgroups of	Page 24
TIMI flow grade (2 vs. 3) immediately before study drug administration (adjusted for MI location	
[anterior vs. non-anterior]).	
Supplemental Table 7. Analysis of MVO extent (% LV mass) 2-7 days after primary PCI,	Page 25
by subgroups of TIMI flow grade (≤ 2 vs. 3) immediately before study drug	
administration, with treatment effects derived by bootstrapping (10,000 replicates,	
stratified by the location of myocardial infarction).	
Supplemental Table 8. Analysis of electrocardiographic, biochemical and angiographic	Page 26
parameters, by subgroups of TIMI flow grade (≤2 vs. 3) immediately before study drug	
administration (adjusted for MI location [anterior vs. non-anterior]).	
Supplemental Table 9. Analysis of coagulation variables, at 2 hours, at 24 hours, and at 24	Page 28
hours compared to baseline, by subgroups of TIMI flow grade (≤ 2 vs. 3) immediately before	
study drug administration (adjusted for MI location [anterior vs. non-anterior]).	
References	Page 31

5 4 5	8	Eligibility Criteria
6 7	9	Patients with a clinical diagnosis of acute ST-segment elevation myocardial infarction (STEMI) were
8 9	10	eligible for randomisation according to the following eligibility criteria:
10 11 12	11	Inclusion
13 14	12	• Acute MI (symptom onset \leq 6 hours) with persistent ST-segment elevation or recent left bundle
15 16 17	13	branch block
18 19	14	• Coronary artery occlusion (TIMI [Thrombolysis in Myocardial Infarction] coronary flow grade
20 21	15	0 or 1), or impaired coronary flow (TIMI coronary flow grade 2, slow but complete filling) in
22 23 24	16	the presence of definite angiographic evidence of thrombus (TIMI grade 2 or more)
25 26	17	• Proximal-mid culprit lesion location in a major coronary artery (i.e. the right, left anterior
27 28	18	descending, intermediate, or circumflex artery)
29 30 31	19	Radial artery access
32 33	20	• Successful coronary reperfusion (TIMI coronary flow grade ≥2) pre-stent achieved prior to
34 35	21	randomisation.
36 37 38	22	• Informed consent, i.e. only patients who were sufficiently well to understand the information
39 40	23	about the study, as described by the attending cardiologist, were eligible to participate.
41 42	24	Exclusion
43 44 45	25	• Normal flow in the culprit coronary artery at initial angiography (TIMI grade 3)
46 47	26	• Functional coronary collateral supply (Rentrop grade 2/3) to the culprit artery
48 49	27	• Previous infarction in the culprit artery (known or suspected clinically, e.g. wall motion
50 51 52	28	abnormality revealed by echocardiography)
52 53 54	29	Cardiogenic shock (Killip Class IV)
55 56	30	• Multivessel percutaneous coronary intervention (PCI) intended before the day 2-7
57 58	31	cardiovascular magnetic resonance (CMR) scan
59 60	32	• Estimated body weight <60 kg

CONFIDENTIAL – EMBARGO APPLIES https://mc.manuscriptcentral.com/heart

n
-
_
-

Page 51 of 81

1

Heart

2		
3 4	33	• Non-cardiac co-morbidity with expected survival <1 year
5 6 7	34	Contra-indication to contrast-enhance CMR imaging
8 9	35	Pacemaker, or implantable defibrillator
10 11 12	36	• Known impaired renal function (estimated glomerular filtration rate <30ml/min)
12 13 14	37	• Significant bleeding disorder either at present or within the past 6 months
15 16	38	Known haemorrhagic diathesis
17 18 19	39	• Patient with current concomitant oral anticoagulation therapy (international normalised ratio
20 21	40	>1.3), including apixaban, dabigatran and rivaroxaban
22 23	41	• Any history of central nervous system damage (i.e. neoplasm, aneurysm, intracranial or spinal
24 25 26	42	surgery)
27 28	43	• Severe hypertension (blood pressure >180/110 mmHg) not controlled by medical therapy
29 30 21	44	• Major surgery, biopsy of a parenchymal organ, or significant trauma within the past 3 months
31 32 33	45	(this includes any trauma associated with the current acute MI)
34 35	46	• Recent head trauma (<2 months)
36 37 38	47	• Prolonged cardiopulmonary resuscitation (>2 minutes) within the past 2 weeks
39 40	48	Acute pericarditis and/ or subacute bacterial endocarditis
41 42	49	Acute pancreatitis
43 44 45	50	Severe hepatic dysfunction, including hepatic failure, cirrhosis, portal hypertension
46 47	51	(oesophageal varices) and active hepatitis
48 49	52	 Active peptic ulceration Arterial aneurysm and known arterial/venous malformation
50 51 52	53	Arterial aneurysm and known arterial/venous malformation
53 54	54	Neoplasm with increased bleeding risk
55 56	55	Any known history of haemorrhagic stroke, or stroke of unknown origin
57 58 59	56	• Known history of ischaemic stroke, or transient ischemic attack in the preceding 6 months
60	57	• Dementia

CONFIDENTIAL – EMBARGO APPLIES https://mc.manuscriptcentral.com/heart Heart

58	Hypersensitivity to gentamicin, or natural rubber
59	Incapacity, or inability to provide informed consent
60	• Previous randomisation to this study, or participation in a study with an investigational drug, or
61	medical device within 90 days prior to randomisation
62	• Women of child bearing potential (i.e. pre-menopausal), or breast feeding
63	• Requirement for immunosuppressive therapy at any time during the preceding 3 months. This
64	would include corticosteroids (but not inhaled or topical), drugs used following transplantation
65	(e.g tacrolimus, cyclosporine), anti-metabolite therapies (e.g. mycophenolic acid, azathioprine,
66	leflunomide and immunomodulators including biologics (e.g. adalimumab, or etanercept) and
67	disease modifying anti-rheumatic drugs. This list is not exhaustive.
68	• Active or prophylactic treatment with oral, or parenteral antibiotic, antifungal, or antiviral
69	therapy, to prevent or treat infection
70	• Any anti-cancer treatment (excluding surgery as this is covered above) at any time during the
71	preceding 3 months, including chemotherapy, radiotherapy, and treatment with biologics, such
72	as Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors (e.g. bevacizumab,
73	pazopanib). This list is not exhaustive.
74	• Any significant concurrent, or recent condition(s) not listed above that in the opinion of the
75	treating clinician would pose an additional risk to the patient.
76	
77	
78	
79	
80	
81	
82	
	 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

Heart

3	
4	
5	
6	
5 6 7	
8	
9	
8 9 10	
11	
12	
12	
17	
11 12 13 14 15	
16	
12 13 14 15 16 17	
10	
10	
20	
∠∪ 21	
 17 18 19 20 21 22 23 24 25 26 27 28 29 	
22	
23 24	
24	
25	
20	
27	
28	
30	
31	
32	
33	
34 35 36 37	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

83 Standard Care

Standard care for coronary reperfusion was with balloon angioplasty, or aspiration
thrombectomy for thrombus-containing lesions. A coronary balloon diameter (mm) vs. lumen diameter
(mm) relationship of <1:1 and a low inflation pressure were recommended to minimise thrombus</p>
embolization. The balloon angioplasty was intended to stabilise the thrombotic lesion and prevent vessel
re-occlusion prior to stent implantation. Anti-thrombotic therapy included oral anti-platelet drugs and
intravenous heparin (5000 IU, or as per standard practice) at the first medical contact. The target
activated clotting time (ACT) was 250s.

91 Interventions

After initial balloon angioplasty/ thrombus aspiration, the participants were randomised using an interactive voice response-based system, and then received the allocated intervention. The study drug (placebo, alteplase 10mg, or alteplase 20mg) was manually infused before stent implantation. The drug was reconstituted by the clinical staff using 20ml of sterile water for injection. The cardiologist then infused the solubilised drug over 5-10 minutes directly into the culprit artery, proximal to the culprit lesions, using either an intracoronary catheter or the guiding catheter if selectively engaged.

98 Angiogram Acquisition & Analysis Methods

99 Coronary angiograms were acquired during emergency care with cardiac catheter laboratory Xray and information technology equipment. The angiograms were analysed using post-processing 100 101 software (QAngio® XA Medis, Leiden, NL.) by experienced investigators who were blinded to treatment allocation. Catheter calibration was performed using the catheter calibration function on 102 103 MEDIS QAngio. For each lesion, a view perpendicular to the long axis of the vessel was used in order 104 to avoid foreshortening and overlap of branches. The single plane projection showing the best opacified 105 and most severe lesion with minimal foreshortening and minimal branch overlap was selected. 106 Feedback was provided to sites on the quality and completeness of the angiograms. 107

CONFIDENTIAL – EMBARGO APPLIES https://mc.manuscriptcentral.com/heart

108 TIMI Coronary Flow Grade

	TIMI coronary flow grade	Definition
	0	No flow
	1	Minimal flow past obstruction
	2	Slow (but complete) filling and slow clearance
	3	Normal flow and clearance
10		
11	TIMI Myocardial Perfusion Grade	
10	TIN II was sourced at a set wise a	
12	T IIVII myocardiai pertusion g	rade provides a score for ground-glass appearance ('blush') of the
13	contrast entering the microvasculature	and contrast washout. TIMI myocardial perfusion grade was
14	assessed according to the following de	efinitions(2):
	TIMI myocardial perfusion grade	Definition
	0	Minimal or no myocardial blush in the distribution
		of the culprit artery.
	1	Myocardial blush is present in the distribution of
		the culprit artery. But there is incomplete
		clearance of dye between injections (with ~ 30
		seconds between injections).
	2	Myocardial blush is present in the distribution of
		the culprit artery. But there is slow contrast
		entry into the microvasculature and slow clearance
		of contrast. Specifically, blush is strongly persistent
		(i.e. either does not or only minimally diminishes in
		intensity) beyond 3 cardiac cycles after injection.
	3	Myocardial blush is present in the distribution of
	5	the culprit artery, with normal entry and exit
		of dye (mild/ moderate persistence of dye beyond 3
		cardiac cycles, but notably reduced after 3 cardiac
		cycles). Blush that is only mild intensity throughout 3
		cardiac cycles after injection (washout phase), but fade

109 The TIMI coronary flow grade was assessed using the following definitions(1):

Heart

1 2			
2 3 4	116	TIMI Frame Count	
5 6	117	The TIMI frame cou	int represents the amount of time (in frames) for contrast dye to reach
7 8 9	118	a standardized distal lar	ndmark.(2) If the culprit vessel was the left anterior descending artery
10 11	119	the frame count was div	vided by 1.7 (correcting for longer vessel length).
12 13	120	TIMI Coronary Throm	nbus Grade
14 15 16	121	Thrombus burden re	vealed during coronary angiography was classified according to the
16 17 18	122	TIMI thrombus grade(3):
19		Thrombus grade	Definition
20		0	No angiographic characteristics of thrombus are present
21 22		0	No angiographic characteristics of unomous are present
23 24 25 26 27 28		1	Possible thrombus is present, with reduced contrast density, haziness, irregular lesion contour, or a smooth convex 'meniscus' at the site of total occlusion suggestive but not diagnostic of thrombus
29 30 31 32 33		2	Definite thrombus, with greatest dimensions \leq half the vessel diameter
34 35 36		3	Definite thrombus but with greatest long axis dimension >1/2 but <2 vessel diameters
37 38 39 40		4	Definite thrombus, with the largest dimension ≥ 2 vessel diameters
41 42		5	Total occlusion
43 44	123		
45 46	124	Lesion Characterisatio	n O
47 48 49	125	The culprit lesions w	vere assessed for complexity using the modified American College of
50 51	126	Cardiology/ American I	Heart Association score, which characterises coronary lesions as type
52 53	127	A, B1 (one characteristi	ic of a type B lesion), B2 (two or more characteristics of a type B
54 55 56	128	lesion) and C.(4)	
57 58	129	The culprit lesions v	were also assessed for complexity using a 6-point plaque
59 60	130	characterisation score,(5) comprising:

Heart

2 3 4	131	(i) Intraluminal filling defect consistent with thrombus
5 6	132	(ii) Ulcerated appearance, for example hazy contour, and/ or apple-core appearance
7 8	133	(iii) Irregularity of vessel borders
9 10 11	134	(iv) TIMI flow <3 beyond the lesion
12 13	135	(v) Moderate to severe calcification, i.e. calcification in more than one cine, outlining
14 15 16	136	the full lumen
16 17 18	137	(vi) Lesion at a bifurcation point
19 20	138	CMR Acquisition and Analysis
21 22 23	139	CMR was performed using 1.5-T platforms (Siemens MAGNETOM Avanto,
23 24 25	140	Erlangen, Germany and Philips Intera, Best, The Netherlands). The imaging protocol
26 27	141	followed a standard operating procedure that included planning and localisers, T1-mapping,
28 29	142	T2*-mapping, cine CMR with steady-state free precession (SSFP), and late gadolinium
30 31 32	143	enhancement imaging 10 – 15 minutes after administration of contrast media.(6) The scan
33 34	144	acquisitions were spatially co-registered and also included different slice orientations to
35 36	145	enhance diagnostic confidence.
37 38 39	146	The intravenous contrast agent used in this study was gadobutrol (Gadovist®, Bayer:
40 41	147	1.5 mmol/ml solution for injection), which was administered in two doses. The first dose
42 43	148	injection (0.05 mmol/kg) was given to initiate the first-pass of contrast. The second dose (0.1
44 45 46	149	mmol/kg) was given immediately after the first-pass. Therefore, the total dose of gadobutrol
47 48	150	was 0.15 mmol/kg.
49 50	151	SSFP cine breath-hold sequences (with parallel imaging acceleration) were used. The
51 52 53	152	heart was imaged in multiple parallel SAX planes 8-mm thick, separated by 2mm gaps,
54 55	153	equating to approximately 10 slices and 30 cardiac phases. The CMR analyses were
56 57	154	undertaken using Medis® Suite MR (Medis, Leiden, NL), by two trained investigators who
58 59 60	155	were blinded to treatment allocation.

Heart

156 Late Gadolinium Enhancement

Late microvascular obstruction (MVO) was imaged 10-15 minutes after intravenous
Gadovist contrast administration, using in general a motion corrected T1-weighted phasesensitive inversion recovery radiofrequency pulse sequence. A full stack, aligned to T2*
scans (or cines) and 3 long axis views (vertical long axis, horizontal long axis and 3 chamber
view) were acquired.

MVO was defined as a dark zone on early gadolinium enhancement imaging 1, 3, 5 and 7-minutes post-contrast injection that remained present within an area of late gadolinium enhancement at 15 minutes. The endocardial and epicardial borders were contoured. The myocardial mass (grams) of the dark zone was quantified by manual delineation and expressed as a percentage of total left ventricular (LV) mass.

167 Infarct Size

The presence of acute infarction was established based on abnormalities in cine wall motion, rest first-pass myocardial perfusion, and late gadolinium enhancement imaging in two imaging planes. The myocardial mass of late gadolinium (grams) was quantified using computer assisted planimetry and the territory of infarction was delineated using a 5 standard deviation method and expressed as a percentage of total LV mass. Typical late gadolinium enhancement and MVO imaging parameters with phase sensitive inversion recovery: matrix 192 x 256 pixels; flip angle 25°; TE 3.36 ms; bandwidth 130 Hz/pixel; echo spacing 8.7ms and trigger pulse 2. The voxel size is 1.8 x 1.3 x 8 mm. Inversion times individually adjusted to optimize nulling of apparently normal myocardium (typical values, 200 to 300ms).

177 Myocardial Oedema

178 The presence of myocardial oedema was established based on an area of increased179 signal intensity on the SSFP cine images (acquired two minutes after gadolinium contrast

CONFIDENTIAL – EMBARGO APPLIES https://mc.manuscriptcentral.com/heart

Heart

180 injection). The myocardial mass was calculated by manual delineation in end-diastole and

181 end-systole. The values were averaged and expressed as a percentage of LV mass.(6)

182 Myocardial Salvage

183 Myocardial salvage was calculated by subtraction of percent infarct size from percent
184 area-at risk, as reflected by the extent of oedema. The myocardial salvage index was
185 calculated by dividing the myocardial salvage area by the initial area-at-risk.

186 Myocardial Haemorrhage

On the T2* parametric maps, a threshold of 20ms was applied. A region of reduced
signal intensity within the infarcted area, with a T2* value of <20 ms(7)(8) was considered to
confirm the presence of myocardial haemorrhage. The area was manually delineated and
expressed as % LV mass.

191 Local Hospital Blood Sample Handling

Blood samples were measured when site logistics permitted. The sampling time-points were 0, 2 and 24 hours post-PCI. Blood samples were collected into 0.109M sodium citrate (for haemostasis assays), or EDTA (Troponin). The blood samples were centrifuged locally and plasma separated and frozen within 2 hours of sampling. Frozen plasma samples were subsequently transported on dry ice for central laboratory analysis in the department of Haematology, Macewan Building, 16 Alexandra Parade, Glasgow Royal Infirmary, G31 2ER. Plasma samples were stored at -80°C until analysis, with residual samples being transferred to the Glasgow Biorepository for storage at the end of the study. **Central Laboratory Analysis for Troponin T** EDTA plasma samples were stored at -80°C in the Glasgow Royal Infirmary until batch analysis at the end of the study. The biochemical analyses were performed in the

203 British Heart Foundation Glasgow Cardiovascular Research Centre.

CONFIDENTIAL – EMBARGO APPLIES https://mc.manuscriptcentral.com/heart

Page 59 of 81

1 2 Heart

2 3 4	204
5 6	205
7 8 9	206
10 11	207
12 13	208
14 15	209
16 17 18	210
19 20	211
21 22	212
23 24 25	213
25 26 27	214
28 29	215
30 31	216
32 33 34	217
35 36	218
37 38	219
39 40 41	220
42 43	221
44 45	222
46 47 48	223
48 49 50	224
51 52	225
53 54 55	226
55 56 57	227
58 59	227
60	ZZŎ

EDTA plasma samples were stored to analyse high-sensitivity cardiac troponin T (ng/ml) on first thaw. Serial measurements of troponin T using the Roche high-sensitivity assay were used to provide a biochemical measurement of infarct size (area-under-the-curve). For measurement of high sensitivity cardiac troponin T, we used an automated method (e411, Roche Diagnostic, Burgess Hill, U.K.) calibrated and quality controlled using the manufacturers reagents. We also participated in the National External Quality Assurance Scheme (NEQAS). The lower limit of detection of Troponin T is 0.003 ng/ml and the 99th percentile value in a healthy subpopulation is 0.0014 ng/ml (Roche Diagnostics, data on file). The between-assay coefficient of variations were 2.2% and 4.2% for control materials with mean Troponin T concentrations of 2.098 ng/ml and 0.00027 ng/ml, respectively. **Central Laboratory Analysis for Coagulation Parameters** The coagulation parameters measured in this study included fibrinogen and plasminogen (both measures of coagulation and systemic fibrinolysis), fibrin D-Dimer (a measure of fibrin lysis), tissue plasminogen activator (tPA) (a measure of endogenous tPA and any circulating alteplase) and prothrombin fragment F1+2 (a measure of thrombin activation). A depletion of fibrinogen and plasminogen following thrombolysis correlates with systemic fibrinolysis and may correlate with bleeding risk. Prothrombin fragment F1+2 is a measure of thrombin activation and correlate with the (undesired) procoagulant effect of thrombolysis. Prothrombin fragment F1+2 is depressed by anti-coagulants administered before and during PCI. Standard laboratory assays (Fibrinogen by Clauss method; high sensitivity Fibrin D-Dimer by latex immunoassay; and Plasminogen Activity by chromogenic assay were

227 Company, Bedford, U.S.). The fibrinogen Clauss assay had a normal reference rages 170 –

4.0 g/L (internally derived) and an inter-assay coefficient of variation of 5.8% and 7.7% for

CONFIDENTIAL – EMBARGO APPLIES https://mc.manuscriptcentral.com/heart

performed on an IL TOP700 analyser using HemosIL[®] reagents (Instrumentation Laboratory

Heart

low control samples with mean concentrations of 2.92 g/L and 2.22 g/L respectively. The fibrin D-Dimer assay had a normal reference range <0.230 µg/ml (manufacturer derived), and an inter-assay coefficient of variation of 11.7% and 5.2% for control samples with mean concentrations of 0.343 μ g/ml and 0.770 μ g/ml respectively. The plasminogen activity assay had a normal reference rage 80 - 133 U/dL (manufacturer derived), and an inter-assay coefficient of variation of 2.1% and 1.8% for control samples with mean concentrations of 95.4 U/dL and 29.6 U/dL, respectively. Non-standard laboratory ELISA assays (tissue plasminogen activator [tPA] and Prothrombin fragment F1+2 antigen levels) were performed on a TECAN Sunrise

238 spectrophotometer (Labtech International Ltd, U.K.) using Zymutest tPA Antigen (Hyphen

239 BioMed, Neuville-sur-oise France) and Enzygnost F1+2 Mono (Siemens, Marburg,

240 Germany) commercial kits respectively. The tPA antigen assay had a normal reference range

241 <10 ng/ml (manufacturer derived), and an inter-assay coefficient of variation of 4.7% and

242 11% for control samples with mean concentrations of 11.0 ng/ml and 3.1 ng/ml, respectively.

243 The F1+2 assay had a normal reference rage 69 – 229 pmol/L (manufacturer derived) and an

244 inter-assay coefficient of variation of 7.9% for a normal control sample with a mean

245 concentration of 97.6 pmol/L.

246 Trial Management

247 There was a Trial Management Group for operational activity, an independent Data
248 and Safety Monitoring Committee and a Trial Steering Committee to coordinate the trial and
249 liaise with the Sponsor and Trials Unit. Each committee had a charter that was established
250 before enrolment started.

The independent Data and Safety Monitoring Committee met before the enrolment
 began, and twice again during the active phase of the trial. This committee had responsibility
 for potentially recommending early discontinuation of the entire study or an individual arm,

Page 61 of 81

Heart

1		
2 3 4	254	because of safety concerns or due to futility. The funder, the Efficacy and Mechanism
5 6	255	Evaluation (EME) program of the National Institute for Health Research (NIHR) required an
7 8	256	interim analysis for futility and also specified the criteria. Following a prespecified futility
9 10 11	257	analysis, performed when 40% of the trial population had reached 3 months follow-up, the
12 13	258	Data and Safety Monitoring Committee recommended that enrolment into the T-TIME trial
14 15	259	should be discontinued on December 21 2017.
16 17 18	260	The Robertson Centre for biostatistics within the Glasgow Clinical Trials Unit
19 20	261	provided the trial-specific electronic data collection system, acted as an independent
21 22	262	coordination centre for randomisation and data management. The trial was approved by the
23 24 25	263	National Research Ethics Service (reference 13/WS/0119). The clinical trial registration
25 26 27	264	number is NCT02257294 and the trial was co-sponsored by the University of Glasgow and
28 29	265	greater Glasgow and Clyde Health Board, NHS Scotland. The sponsor undertook feasibility
30 31	266	assessments at each site, visits were undertaken in all of the sites. All serious adverse events
32 33 34	267	were prospectively reported to the Pharmacovigilance Unit.
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		

Supplemental Table 1. Additional procedure characteristics, by subgroups of TIMI flow grade (≤2 vs. 3) immediately before study drug administration. Data are reported according to treatment received (n=421). Data are mean \pm SD, or n (%).

Heart

		Impaired coronary	flow (TIMI flow ≤ 2)			Normal coronary	flow (TIMI 3 flow)	
	All (n=154)	Placebo (n=50)	Alteplase 10mg (n=49)	Alteplase 20mg (n=55)	All (n=267)	Placebo (n=92)	Alteplase 10mg (n=87)	Alteplase 20mg (n=88)
American Heart Association culprit lesion								
type: *								
B2	42 (27%)	13 (26%)	15 (31%)	14 (26%)	62 (23%)	17 (19%)	20 (23%)	25 (28%)
С	112 (73%)	37 (74%)	34 (69%)	41 (75%)	205 (77%)	75 (82%)	67 (77%)	63 (72%)
Culprit lesion plaque characterisation								
score: † *								
2	1 (1%)	0	1 (2%)	0	3 (1%)	1 (1%)	2 (2%)	0
3	20 (13%)	5 (10%)	6 (12%)	9 (16%)	76 (29%)	27 (29%)	26 (30%)	23 (26%)
<u>л</u>	115 (75%)	40 (80%)	35 (71%)	40 (73%)	164 (61%)	54 (59%)	53 (61%)	57 (65%)
5	17 (11%)	4 (8%)	7 (14%)	6 (11%)	24 (9%)	10 (11%)	6 (7%)	8 (9%)
6	1 (1%)	1 (2%)	0	0	0	0	0	0
QCA lesion length pre-drug (mm) *	25.5 ± 11.2	26.7 ± 11.6	27.4 ± 12.4	22.7 ± 9.3	27.2 ± 11.3	26.7 ± 10.6	27.6 ± 11.6	27.5 ± 11.8
Total number of stents deployed:								
0	2 (1%)	0	1 (2%)	1 (2%)	1 (0.0%)	1 (1%)	0	0
1	104 (68%)	35 (70%)	29 (59%)	40 (73%)	188 (70%)	59 (64%)	65 (75%)	64 (73%)
2	40 (26%)	13 (26%)	14 (29%)	13 (24%)	64 (24%)	30 (3%)	14 (16%)	20 (23%)
≥3	8 (5%)	2 (4%)	5 (10%)	1 (2%)	14 (5%)	2 (2%)	8 (9%)	4 (5%)

* The angiographic parameters are based on central laboratory assessments.

† The plaque characterisation score comprised one point for each of: intraluminal thrombus, ulceration, irregularity of vessel borders, TIMI flow

<3 beyond the lesion, moderate-severe calcification and bifurcation.

Abbreviations: QCA, quantitative coronary angiography.

Heart

Supplemental Table 2. Analysis of CMR derived LV end-diastolic and end-systolic volumes, by subgroups of TIMI flow grade (≤2 vs. 3) immediately before study drug administration (adjusted for MI location [anterior vs. non-anterior]). Data are median [IQR].

6 7			Treatment Group		Treatment Effect		Interaction	Treatment Effect	Interaction
8 9		Placebo	Alteplase	Alteplase	Alteplase 10mg vs placebo	Alteplase 20mg vs. placebo	p-value (treatment as a 3-level	Alteplase (10mg or 20mg) vs. placebo	p-value (treatment as a 2-level
10 11		(n=142)*	10mg (n=136)*	20mg (n=143)*	Estimate (95% CI) p-value	Estimate (95% CI) p-value	categorical variable)	Estimate (95% CI), p-value	categorical variable)
12 13	CMR parameters 2-	7 days after primary PC	CI						
14	LV end-diastolic vol	ume (ml)							
15 16	TIMI flow ≤ 2	174.2 [153.9, 214.1]	177.3 [163.9, 212.3]	161.6 [142.6, 200.0]	1.02 (0.93, 1.12) p=0.721	0.94 (0.86, 1.03) p=0.171	0.340	0.97 (0.90, 1.06) p=0.525	0.141
17	TIMI 3 flow	162.2 [141.8, 190.1]	176.5 [155.5, 205.8]	170.5 [136.6, 194.3]	1.08 (1.01, 1.16) p=0.021	1.02 (0.95, 1.09) p=0.601		1.05 (0.99, 1.11) p=0.105	
18 19	LV end-systolic volu	me (ml)							
20 21	TIMI flow ≤ 2	96.2 [80.2, 118.9]	105.3 [85.6, 124.3]	95.5 [80.8, 113.6]	0.0 (-0.85, 0.86) p=0.993	0.73 (-0.08, 1.54) p=0.080	0.261	0.40 (-0.32, 1.13) p=0.277	0.284
22	TIMI 3 flow	90.2 [75.9, 108.0]	92.9 [79.0, 113.5]	92.5 [72.3, 109.0]	-0.12 (-0.80, 0.57) p=0.738	-0.10 (-0.80, 0.60) p=0.778		-0.11 (-0.70, 0.49) p=0.72	
23 24	CMR parameters 3	months after primary P	CI						
	LV end-diastolic vol	ume (ml)			()	\mathbf{N}			
26 27	TIMI flow ≤2	170.2 [158.8, 207.1]	170.0 [152.9, 206.4]	174.0 [150.5, 195.1]	1.01 (0.91, 1.12) p=0.796	0.95 (0.86, 1.05) p=0.349		0.98 (0.90, 1.07) p=0.673	
27							0.567		0.281
29	TIMI 3 flow	157.9 [138.9, 188.5]	173.6 [153.7, 205.6]	162.9 [140.4, 194.3]	1.08 (1.00, 1.16) p=0.045	1.01 (0.94, 1.08) p=0.847		1.04 (0.98, 1.11) p=0.213	
30 21	LV end-systolic volu								
31 32	TIMI flow ≤2	81.6 [72.8, 114.7]	88.9 [71.4, 116.5]	92.1 [71.5, 110.1]	1.03 (0.88, 1.20) p=0.729	0.99 (0.85, 1.15) p=0.878		1.01 (0.88, 1.15) p=0.923	0.500
33 34	TIMI 3 flow	77.5 [60.7, 99.5]	85.9 [71.7, 103.3]	78.5 [65.8, 102.1]	1.10 (0.99, 1.23) p=0.085	1.03 (0.92, 1.15) p=0.640	0.762	1.06 (0.97, 1.17) p=0.210	0.508
35					ates reported as relative	0 1			
36 37	The p	values and 95% CI	have not been ad	justed for multipl	icity, therefore these anal	yses should be interprete	ed as explorat	tory and not definitive.	
37 38	* Miss	sing data: LV volun	nes 2 – 7 days aft	er primary PCI (n	=34), LV volumes 3 mor	ths after primary PCI (n=	=63).		
39 40	* Miss	sing data: LV volun	nes 2 – 7 days aft	er primary PCI (n	=34), LV volumes 3 mor	ths after primary PCI (n=	=63).		

Supplemental Table 3. Analysis of selected CMR parameters 2-7 days after primary PCI, by subgroups of TIMI flow grade (≤2 vs. 3) immediately before study drug administration, and by subgroups of MI location (anterior [n=187], non-anterior [n=234]). Treatment effect estimates and interaction with treatment received are shown (see footnotes). Data are mean ± SD, or n (%), unless otherwise stated.

			Treatment Group		Treatment Effect		Interaction	Treatment Effect	Interaction
)		Placebo	Alteplase	Alteplase	Alteplase 10mg vs placebo	Alteplase 20mg vs. placebo	p-value (treatment as a 3-level	Alteplase (10mg or 20mg) vs. placebo	p-value (treatment _ as a 2-level
2		(n=142)*	10mg (n=136)*	20mg (n=143)*	Estimate (95% CI) p-value	Estimate (95% CI) p-value	categorical variable)	Estimate (95% CI), p-value	categorical variable)
MVO presence (n	/ total) (a)		40						
	TIMI flow ≤2	8/23 (34.8)	11/22 (50.0)	15/27 (55.6)	1.88 (0.57, 6.21) p=0.304	2.34 (0.75, 7.37) p=0.145	0.254	2.12 (0.77, 6.13) p=0.151	0.150
7	TIMI 3 flow	19/36 (52.8)	16/34 (47.1)	15/31 (48.4)	0.80 (0.31, 2.03) p=0.633	0.84 (0.32, 2.19) p=0.720	0.354	0.82 (0.36, 1.84) p=0.625	0.150
Non-anterior MI:	TIMI flow ≤2	7/21 (33.3)	14/20 (70.0)	11/22 (50.0)	4.67 (1.25, 17.44) p=0.022	2.00 (0.58, 6.87) p=0.271	0.014	2.94 (0.98, 8.81) p=0.054	0.012
)	TIMI 3 flow	22/49 (44.9)	13/46 (28.3)	18/52 (34.6)	0.48 (0.21, 1.14) p=0.095	0.65 (0.29, 1.45) p=0.292	0.014	0.57 (0.28, 1.15) p=0.116	0.012
MVO extent (% I	LV mass)† (b)								
Anterior-MI:	TIMI flow ≤2	3.7 ± 7.4	2.5 ± 3.4	6.3 ± 8.0	0.0 (-0.85, 0.86) p=0.993	0.73 (-0.08, 1.54) p=0.080	0.2(1	0.40 (-0.32, 1.13) p=0.277	0.294
3	TIMI 3 flow	3.0 ± 4.1	2.9 ± 4.6	3.1 ± 5.6	-0.12 (-0.80, 0.57) p=0.738	-0.10 (-0.80, 0.60) p=0.778	0.261	-0.11 (-0.70, 0.49) p=0.72	0.284
Non-anterior MI:	TIMI flow ≤2	1.4 ± 2.9	3.1 ± 4.5	4.2 ± 6.5	0.65 (-0.07, 1.37) p=0.079	0.71 (0.00, 1.41) p=0.050	0.156	0.68 (0.07, 1.29) p=0.031	0.052
5	TIMI 3 flow	1.5 ± 2.6	2.1 ± 4.9	1.8 ± 3.3	-0.07 (-0.54, 0.40) p=0.775	-0.02 (-0.48, 0.44) p=0.922	0.156	-0.04 (-0.45, 0.36) p=0.828	0.053
Myocardial haem	orrhage presence	(n/ total) (a)							
Anterior-MI:	TIMI flow ≤2	7/21 (33.3)	10/19 (52.6)	15/27 (55.6)	2.22 (0.62, 7.98) p=0.221	2.50 (0.77, 8.16) p=0.129	0.245	2.38 (0.83, 7.32) p=0.114	0.102
)	TIMI 3 flow	17/34 (50.0)	15/33 (45.5)	12/29 (41.4)	0.83 (0.32, 2.18) p=0.710	0.71 (0.26, 1.92) p=0.494	0.245	0.77 (0.33, 1.79) p=0.544	0.102
Non-anterior MI:	TIMI flow ≤2	4/19 (21.1)	12/19 (63.2)	11/22 (50.0)	6.43 (1.62, 30.35) p=0.012	3.75(0.99, 16.56) p=0.061	0.007	4.79 (1.45, 19.13) p=0.015	0.002
<u>-</u> 3	TIMI 3 flow	22/48 (45.8)	13/43 (30.2)	18/52 (34.6)	0.51 (0.22, 1.22) p=0.129	0.63 (0.28, 1.40) p=0.254	0.007	0.57 (0.28, 1.17) p=0.124	0.003
Myocardial haem	orrhage extent (%	% LV mass)† (c)							
Anterior-MI:	TIMI flow ≤2	2.9 ± 7.1	2.8 ± 4.0	4.6 ± 6.4	-0.08 (-3.22, 3.05) p=0.959	1.74 (-1.10, 4.64) p=0.230	0.472	1.01 (-1.59, 3.61) p=0.447	0.752
7	TIMI 3 flow	1.6 ± 3.0	2.0 ± 3.4	2.2 ± 5.2	0.39 (-2.08, 2.87) p=0.757	0.55 (-2.01, 3.10) p=0.676	0.472	0.46 (-1.71, 2.64) p=0.677	0.752
Non-anterior MI:	TIMI flow ≤ 2	0.4 ± 1.1	1.6 ± 2.5	2.9 ± 4.9	1.21 (-0.94, 3.36) p=0.272	2.52 (0.56, 4.47) p=0.012	0.072	1.99 (0.23, 3.75) p=0.028	0.067
)	TIMI 3 flow	1.3 ± 2.7	1.6 ± 3.8	1.1 ± 2.8	0.28 (-1.04, 1.60) p=0.679	-0.16 (-1.43, 1.11) p=0.804	0.072	0.04 (-1.08, 1.16) p=0.944	0.067

CONFIDENTIAL – EMBARGO APPLIES https://mc.manuscriptcentral.com/heart

1 2										
3	Infarct size (% LV	⁷ mass) (c)								
4 5	Anterior-MI:	TIMI flow ≤2	33.4 ± 17.0	37.6 ± 11.5	35.3 ± 15.4	4.13 (-3.97, 12.23) p=0.319	1.91 (-5.80, 9.61) p=0.628	0.202	2.91 (-3.94, 9.75) p=0.407	0.100
6		TIMI 3 flow	331. ± 12.7	31.3 ± 12.0	28.4 ± 14.5	-1.75 (-8.24, 4.75) p=0.598	-4.71 (-11.36, 1.95) p=0.167	0.382	-3.16 (-8.79, 2.47) p=0.272	0.180
7 8	Non-anterior MI:	TIMI flow ≤ 2	22.3 ± 11.4	25.8 ± 11.3	28.5 ± 8.3	3.57 (-2.35, 9.49) p=0.238	6.23 (0.45, 12.01) p=0.036	0.097	4.96 (-0.08, 10.01) p=0.055	0.045
9		TIMI 3 flow	20.8 ± 9.8	19.8 ± 8.8	19.5 ± 9.4	-1.06 (-4.95, 2.83) p=0.595	-1.34 (-5.11, 2.43) p=0.488	0.077	-1.21 (-4.51, 2.1) p=0.475	0.045
10 11	Myocardial salvag	e index (c)								
12	Anterior-MI:	TIMI flow ≤2	0.4 ± 0.2	0.3 ± 0.2	0.3 ± 0.2	-0.09 (-0.22, 0.04) p=0.197	-0.05 (-0.18, 0.08) p=0.434	0.217	-0.07 (-0.18, 0.04) p=0.241	0.085
13 14		TIMI 3 flow	0.3 ± 0.2	0.4 ± 0.2	0.4 ± 0.3	0.05 (-0.06, 0.15) p=0.402	0.08 (-0.03, 0.18) p=0.173	0.217	0.06 (-0.03, 0.15) p=0.202	0.085
15	Non-anterior MI:	TIMI flow ≤ 2	0.4 ± 0.3	0.3 ± 0.3	0.2 ± 0.2	-0.03 (-0.18, 0.12) p=0.676	-0.13 (-0.28, 0.01) p=0.077	0.213	-0.08 (-0.21, 0.04) p=0.196	0.231
16 17		TIMI 3 flow	0.4 ± 0.2	0.4 ± 0.2	0.4 ± 0.2	0.00 (-0.10, 0.10) p=0.990	0.02 (-0.08, 0.11) p=0.740	0.215	0.01 (-0.07, 0.09) p=0.836	0.231
18	LV ejection fraction	on (%) (c)								
19	Anterior-MI:	TIMI flow ≤ 2	38.8 ± 12.6	39.8 ± 8.0	40.8 ± 8.8	0.96 (-4.10, 6.02) p=0.711	2.03 (-2.83, 6.9) p=0.414	0.969	1.54 (-2.77, 5.84) p=0.485	0.896
20 21		TIMI 3 flow	41.0 ± 8.4	41.3 ± 7.7	43.2 ± 7.0	0.29 (-3.81, 4.39) p=0.890	2.12 (-2.08, 6.32) p=0.323		1.16 (-2.39, 4.71) p=0.522	
22	Non-anterior MI:	TIMI flow ≤2	48.4 ± 3.2	43.4 ± 9.5	44.7 ± 8.4	-4.97 (-9.35, -0.59) p=0.027	-3.69 (-7.92, 0.54) p=0.089	0.199	-4.29 (-8.00, -0.57) p=0.025	0.093
23 24		TIMI 3 flow	47.4 ± 6.3	47.2 ± 6.1	46.8 ± 8.2	-0.25 (-3.10, 2.59) p=0.861	-0.69 (-3.47, 2.09) p=0.627		-0.48 (-2.91, 1.94) p=0.697	
25	(3	a) Treatment e	effect estimate	es reported as o	dds ratios be	tween groups, from a log	istic regression model.			
26 27	()	b) Treatment of	effect estimate	es reported as m	nean differen	ces in square root transfo	ormed MVO extent betwee	en groups, f	rom a linear regression	
28		model.								
29 30	()	c) Treatment	effect estimate	es reported as m	nean differen	ces between groups, fron	n linear regression.			
31		,		1		0 1	lyses should be interpreted	l as evolora	tory and not definitive	
32		p values alle 9		or been adjuste	a ioi munipi	ierty, merciore mese ana	ryses should be interpreted	a as exploia	tory and not definitive.	
33 34	* Mi	ssing data: M	VO extent. or	presence/ abser	nce (n=38): n	nvocardial haemorrhage	extent (n=73); myocardial	haemorrha	ge presence/ absence	
35 36		•		•				machionnu	5° presence, assence	
37	(n=5	<i>s</i>); infarct size	e, or myocardi	ai saivage inde	x (n=38); LV	v ejection fraction (n=34)				

Heart

ue for Mv cardial haemorrhage v is reason. .MR, cardiovascular magnetic resonance; L irombolysis in Myocardial Infarction. *†* Given the high proportion of participants with a 0 value for MVO amount (56% of participants), and myocardial haemorrhage amount (57% of participants) the median value for MVO and myocardial haemorrhage was 0 for all groups, while the mean (SDs) are not ideal summaries for these data. It has been reported as such for this reason.

Heart

Abbreviations: CI, confidence interval; CMR, cardiovascular magnetic resonance; LV, left ventricular; MI, myocardial infarction; MVO, microvascular obstruction; TIMI, Thrombolysis in Myocardial Infarction.

CONFIDENTIAL – EMBARGO APPLIES https://mc.manuscriptcentral.com/heart

Page 67 of 81

Heart

	MVO data available	MVO data missing	P-value
	(n=383)	(n=38)	
Age	60.5 ± 10.0	61.9 ± 12.8	0.501
Male	327 (85%)	31 (82%)	0.482
White	359 (94%)	37 (97%)	0.715
Asian	22 (6%)	1 (3%)	0.710
Body mass index (kg/m ²)	28.1 ± 4.9	29.1 ± 4.9	0.235
Heart rate at presentation, beats/ min	72.4 ± 19.1	75.2 ± 18.6	0.396
Systolic blood pressure at presentation, mmHg	133.8 ± 25.1	135.4 ± 27.3	0.730
Diastolic blood pressure at presentation, mmHg	81.1 ± 14.7	80.0 ± 16.0	0.683
Anterior myocardial infarction	170 (44%)	15 (40%)	0.610
Hypertension	117 (31%)	18 (47%)	0.044
Hypercholesterolemia	83 (22%)	13 (34%)	0.103
Diabetes mellitus †	45 (12%)	8 (21%)	0.120
Smoking:			
Current	176 (46%)	21 (55%)	0.308
Former (stopped >3 months)	74 (19%)	7 (18%)	1.000
Never	133 (35%)	10 (26%)	0.370
Pre-existing maintenance medication:			
Aspirin	54 (14%)	9 (24%)	0.148
Statin	77 (20%)	14 (37%)	0.023
Beta blocker	33 (9%)	7 (18%)	0.074
ACE inhibitor or ARB	62 (16%)	11 (29%)	0.069
Symptom onset to arrival at primary PCI centre, median (IQR) hrs	2.2 (1.5, 3.2)	2.5 (1.7, 3.5)	0.354
Arrival at primary PCI centre to reperfusion, median (IQR) hrs	0.4 (0.3, 0.6)	0.6 (0.4, 0.7)	0.002

Supplemental Table 4. Baseline characteristics according to availability of MVO data (complete vs. missing). Data are mean ± SD, or n (%), unless otherwise stated.

3	
4	
5	
6	
7	
8	
0	
8 9 10	
10	
11	
12 13	
14	
15	
16 17	
17	
18	
19	
20	
20 21	
22	
22 23	
24	
24 25	
26 27	
27	
28	
29	
30	
31	
32	
33	
34 35	
22	
36 37	
20	
38 39	
39	
40	
41	
42	
43	
44	
45	
46	

Initial blood results on admission:			
Hemoglobin, g/dL	145.6 ± 13.6	145.8 ± 10.3	0.892
Platelet count, $10^3/\mu L$	260.6 ± 60.9	270.9 ± 80.4	0.486
Creatinine, µmol/L	80.9 ± 17.7	78.6 ± 18.6	0.546
$eGFR (ml/min/1.73m^2)$	90.1 ± 20.4	92.5 ± 28.5	0.679
nridential.	For Review	r M	

	MVO data available	MVO data missing (n=38)	P-value
	(n=383)		
Culprit artery:			
Left anterior descending	176 (46%)	15 (40%)	0.497
Circumflex	44 (12%)	9 (24%)	0.040
Right coronary artery	163 (43%)	14 (37%)	0.606
>50% stenosis in ≥2 major coronary arteries	134 (35%)	10 (26%)	0.370
Initial TIMI coronary flow grade:			
≤1	337 (88%)	30 (79%)	0.126
≥2	46 (12%)	8 (21%)	0.126
Initial TIMI thrombus grade:			
3/4	76 (20%)	10 (26%)	0.398
5	307 (80%)	28 (74%)	0.398
American Heart Association culprit lesion type A	287 (75%)	30 (79%)	0.695
Culprit lesion plaque characterisation score ≥4	292 (76%)	• 29 (76%)	0.100
QCA lesion length pre-drug (mm)	26.8 ± 11.4	25.0 ± 10.0	0.305
Reperfusion achieved with balloon angioplasty	269 (70%)	32 (84%)	0.089
Balloon angioplasty pre-stent	354 (92%)	34 (90%)	0.523
Study drug delivered with thrombectomy catheter	278 (73%)	22 (58%)	0.062
Total number of stents deployed ≥ 2	115 (30%)	11 (29%)	1.000
Post-stent dilatation	337 (88%)	29 (76%)	0.072
Total length of stents deployed from QCA (mm)	34.0 ± 14.4	32.8 ± 14.9	0.638
QCA reference vessel diameter post-stent (mm)	3.2 ± 0.5	3.2 ± 0.4	0.535
Unfractionated heparin, median (IQR), U	10000.0	8750.0	0.135
	(75000.0, 13000.0)	(7125.0, 12000.0)	

Supplemental Table 5. Procedure characteristics according to availability of MVO data (complete vs. missing). Data are mean ± SD, or n (%), unless otherwise stated.

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
1/	
10 10	
$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 37\\ 38\end{array}$	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
22	
22 22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
10	

Activated clotting time (s)	281.7 ± 88.0	273.0 ± 94.0	0.673
Intravenous morphine	284 (74%)	27 (71%)	0.700
Inhaled oxygen (%)	55 (15%)	5 (15%)	1.000
Glycoprotein IIb/IIIa antagonist (%)	57 (15%)	9 (27%)	0.091
Duration of study drug infusion (min)	6.5 (2%)	6.4 (2%)	0.679
Glycoprotein IIb/IIIa antagonist (%) Duration of study drug infusion (min)			

Supplemental Table 6. Analysis of CMR parameters 2–7 days after primary PCI, by subgroups of TIMI flow grade (2 vs. 3) immediately before study drug administration (adjusted for MI location [anterior vs. non-anterior]). Treatment effect estimates and interaction with treatment received are shown (see footnotes). Data are mean ± SD, median [IQR], or n (%), unless otherwise stated.

		Treatment group		Treatmo	ent Effect	Interaction	Treatment Effect	Interaction
	Placebo (n=134)*	Alteplase 10mg	Alteplase 20mg	Alteplase 10mg vs. placebo	Alteplase 20mg vs. placebo	p-value (treatment as a 3-level	Alteplase (10mg or 20mg) Vs. placebo	p-value (treatment as a 2-level
		(n=131)*	(n=136)*	Estimate (95% CI) p-value	Estimate (95% CI) p-value	categorical variable)	Estimate (95% CI), p-value	 categorical variable)
MVO prese	ence (n/ total) (a)		22					
TIMI 2 f TIMI 3 f	()	22/37 (59.5) 29/80 (36.3)	21/43 (48.8) 33/83 (39.8)	2.58 (1.00, 6.65) p=0.051 0.61 (0.33, 1.14) p=0.119	1.66 (0.67, 4.13) p=0.257 0.72 (0.39, 1.34) p=0.298	0.153	2.06 (0.92, 4.62) p=0.081 0.66 (0.39, 1.13) p=0.128	0.022
MVO exter	t (% of LV mass)† (b)							
TIMI 2 f TIMI 3 f		$\begin{array}{c} 2.8\pm3.9\\ 2.4\pm4.8\end{array}$	$\begin{array}{c} 5.2\pm7.2\\ 2.3\pm4.3\end{array}$	0.26 (-0.36, 0.89) p=0.405 -0.09 (-0.49, 0.31) p=0.661	0.55 (-0.18, 1.27) p=0.136 -0.06 (-0.45, 0.34) p=0.777	0.243	0.43 (-0.17, 1.02) p=0.158 -0.07 (-0.42, 0.27) p=0.677	0.107
Myocardia	l haemorrhage presence (n/ t	otal) (a)						
TIMI 2 f TIMI 3 f	10/33(30.0)	20/35 (57.1) 28/76 (36.8)	21/43 (48.8) 30/81 (37.0)	3.05 (1.12, 8.31) p=0.029 0.64 (0.34, 1.21) p=0.168	2.14 (0.82, 5.62) p=0.121 0.66 (0.35, 1.23) p=0.188	0.054	2.55 (1.07, 6.06) p=0.034 0.65 (0.38, 1.11) p=0.117	0.009
Myocardia	l haemorrhage extent (% LV	′ mass)† (c)						
TIMI 2 f TIMI 3 f		$\begin{array}{c} 2.0\pm2.9\\ 1.8\pm3.6\end{array}$	$\begin{array}{c} 4.2\pm 6.0\\ 1.5\pm 3.8\end{array}$	1.95 (-0.33, 4.24) p=0.093 0.29 (-1.00, 1.58) p=0.656	1.98 (-0.74, 4.69) p=0.151 0.11 (-1.16, 1.38) p=0.867	0.132	0.50 (-0.04, 3.04) p=0.287 0.20 (-0.91, 1.31) p=0.726	0.362
Infarct size	(% LV mass) (c)							
TIMI 2 f TIMI 3 f		30.5 ± 12.7 24.7 ± 11.7	$\begin{array}{c} 31.9 \pm 13.5 \\ 22.8 \pm 12.3 \end{array}$	2.46 (-3.91, 8.82) p=0.445 -1.35 (-4.92, 2.22) p=0.460	3.00 (-3.48, 9.48) p=0.359 -2.68 (-6.22, 0.86) p=0.138	0.158	2.69 (-2.67, 8.04) p=0.322 -2.03 (-5.09, 1.03) p=0.195	0.085
Myocardia	l salvage index (c)							
TIMI 2 f TIMI 3 f		$\begin{array}{c} 0.3\pm0.2\\ 0.4\pm0.2\end{array}$	$0.3 \pm 0.2 \\ 0.4 \pm 0.2$	-0.05 (-0.17, 0.08) p=0.464 0.02 (-0.05, 0.09) p=0.593	-0.07 (-0.18, 0.04) p=0.205 0.04 (-0.03, 0.11) p=0.254	0.201	-0.06 (-0.15, 0.04) p=0.245 0.03 (-0.03, 0.09) p=0.329	0.117

Supplemental Table 7. Analysis of MVO extent (% LV mass) 2-7 days after primary PCI, by subgroups of TIMI flow grade (≤2 vs. 3) immediately before study drug administration, with treatment effects derived by bootstrapping (10,000 replicates, stratified by the location of myocardial infarction).

	Treatment Effe	ct on MVO extent	Treatment Effect on MVO extent
	Alteplase 10mg vs placebo	Alteplase 20mg vs. placebo	Alteplase (10mg or 20mg) vs. placebo
	Estimate (95% CI) p-value	Estimate (95% CI) p-value	Estimate (95% CI), p-value
TIMI flow ≤2	2.19 (-1.40, 4.08) p=0.284	3.37 (0.77, 6.89) p=0.016	2.80 (-0.09, 5.51) p=0.057
TIMI 3 flow	1.96 (-0.65, 3.20) p=0.237	1.91 (-0.74, 3.01) p=0.287	1.99 (-0.57, 2.92) p=0.246
issing data: MVO	extent (n=38).		
	https		

Heart

Supplemental Table 8. Analysis of electrocardiographic, biochemical and angiographic parameters, by subgroups of TIMI flow grade (≤2 vs. 3) at the time of study drug administration (adjusted for MI location [anterior vs. non-anterior]). Treatment effect estimates and interaction with treatment received are shown (see footnotes). Data are mean ± SD, median [IQR], or n (%), unless otherwise stated.

		,		× //				
		Treatment Group		Treatme	nt Effect	Interaction	Treatment Effect	Interaction
	Placebo	Alteplase	Alteplase	Alteplase 10mg vs. placebo	Alteplase 20mg vs. placebo	p-value (treatment as a 3-level	Alteplase (10mg or 20mg) vs. placebo	p-value (treatment as a 2-level
	(n=142)*	10 mg (n=136)*	20 mg (n=143)*	Estimate (95% CI) p-value	Estimate (95% CI) p-value	categorical variable)	Estimate (95% CI), p-value	categorical variable)
Absolute % ST-se	egment resolution 60 n	nin (a)	102					
TIMI flow ≤2 TIMI 3 flow	45.0 ± 44.3 50.7 ± 36.4	40.6 ± 52.1 44.4 ± 41.8	37.7 ± 43.3 50.5 ± 46.0	-4.43 (-21.96, 13.1) p=0.621 -6.89 (-20.50, 6.73) p=0.322	-7.37 (-24.21, 9.47) p=0.392 -0.34 (-13.59, 12.91) p=0.960	0.671	-6.02 (-20.91, 8.87) p=0.429 -3.44 (-14.99, 8.11) p=0.560	0.789
Troponin T (ng/n	nL) AUC, 0–24 hours ((b)						
TIMI flow ≤2 TIMI 3 flow	2.66 [1.10, 5.20] 3.16 [1.16, 5.76]	2.94 [1.73, 6.86] 2.67 [1.53, 5.71]	4.60 [1.20, 8.19] 3.47 [1.57, 6.30]	1.67 (0.96, 2.89) p=0.071 1.38 (0.92, 2.08) p=0.120	1.83 (1.07, 3.12) p=0.029 1.34 (0.90, 2.00) p= 0.151	0.662	1.75 (1.09, 2.80) p=0.021 1.36 (0.96, 1.92) p= 0.082	0.402
TIMI coronary fl	ow grade post-PCI ≤2	(c)						
TIMI flow ≤2 TIMI 3 flow	19 (38.0) 5 (5.4)	15 (30.6) 12 (13.8)	22 (40.0) 11 (12.5)	0.72 (0.31, 1.66) p=0.432 2.80 (0.95, 8.34) p=0.064	1.09 (0.50, 2.39) p=0.838 2.53 (0.84, 7.61) p=0.099	0.134	0.90 (0.45, 1.81) p=0.762 2.66 (0.98, 7.27) p=0.056	0.071
Corrected TIMI	frame count post-PCI	(b)						
TIMI flow ≤2 TIMI 3 flow	26.5 [17.4, 39.4] 17.7 [12.0, 24.0]	22.4 [15.5, 35.9] 20.0 [14.0, 26.0]	28.0 [21.8, 40.5] 17.4 [12.9, 24.0]	0.91 (0.73, 1.13) p=0.372 1.18 (1.00, 1.39) p=0.049	1.07 (0.87, 1.32) p=0.534 1.08 (0.92, 1.26) p=0.377	0.095	0.99 (0.82, 1.19) p=0.902 1.12 (0.98, 1.29) p=0.099	0.276
Myocardial perfu	sion grade post-PCI ≤	51 (c)						
TIMI flow ≤2 TIMI 3 flow	24 (48.0) 31 (33.7)	23 (46.9) 36 (41.4)	33 (60.0) 23 (26.1)	0.95 (0.42, 2.13) p=0.895 1.43 (0.77, 2.65) p=0.264	1.65 (0.75, 3.66) p=0.214 0.71 (0.37, 1.37) p=0.308	0.050	1.27 (0.63, 2.54) p=0.501 1.02 (0.59, 1.77) p=0.932	0.634
-								

(a) Treatment effect estimates reported as mean differences between groups.

(b) Data analysed on a logarithmic scale. Treatment effect estimates reported as relative difference between groups.

(c) Treatment effect estimates reported as odds ratios between groups, from a logistic regression model.

 Justed for multiplicity, there:

 .n (n=43); Troponin AUC (n=115); c.

 .e-curve; CI, confidence interval; IQR, interqua.

 .ervention; TIMI, Thrombolysis in Myocardial Infarction.

 The p values and 95% CI have not been adjusted for multiplicity, therefore these analyses should be interpreted as exploratory and not definitive. *Missing data: % ST-segment resolution (n=43); Troponin AUC (n=115); corrected TIMI frame count post-PCI (n=2).

Abbreviations: AUC, area-under-the-curve; CI, confidence interval; IQR, interquartile range; MI, myocardial infarction; SD, standard deviation;

PCI, percutaneous coronary intervention; TIMI, Thrombolysis in Myocardial Infarction.

 Supplemental Table 9. Analysis of coagulation variables, at 2 hours, at 24 hours, and at 24 hours compared to baseline, by subgroups of TIMI flow grade (<2 vs. 3) immediately before study drug administration (adjusted for MI location [anterior vs. non-anterior]). Treatment effect estimates and interaction with treatment received are shown (see footnotes). Data are median [IQR], unless otherwise stated.

7					, k	QRJ, unless otherwise st		1	
8 9			Treatment Group		Treatment Effect		Interaction p-value	Treatment Effect	Interaction p-value
9 10 11		Placebo (n=142)*	Alteplase 10mg	Alteplase 20mg	Alteplase 10mg vs. placebo	Alteplase 20mg vs. placebo	(treatment as a 3-level	Alteplase (10mg or 20mg) vs. placebo	(treatment as a 2-level
12 13		(II-142) ^{**}	(n=136)*	(n=143)*	Estimate (95% CI) p-value	Estimate (95% CI) p-value	categorical variable)	Estimate (95% CI), p-value	categorical variable)
14	Fibrinogen (g/L)	2 hours post-PCI (a)							
15 16 17	TIMI flow ≤2 TIMI 3 flow	3.3 [2.7, 4.0] 3.3 [2.8, 3.9]	3.2 [2.6, 3.6] 3.0 [2.6, 3.8]	3.1 [2.7, 3.6] 3.3 [2.8, 3.7]	0.98 (0.88, 1.1) p=0.784 0.96 (0.88, 1.04) p=0.279	0.94 (0.84, 1.05) p=0.250 0.97 (0.89, 1.05) p=0.441	0.684	0.96 (0.87, 1.05) p=0.391 0.96 (0.90, 1.03) p=0.282	0.955
18	Plasminogen (U/d	L) 2 hours post-PCI (h))						
19 20 21	TIMI flow ≤2 TIMI 3 flow	95.0 [88.3, 101.0] 96.0 [87.0, 104.5]	91.0 [81.5, 100.8] 88.0 [80.0, 98.0]	83.5 [74.8, 92.0] 84.0 [77.0, 92.0]	-2.66 (-8.56, 3.25) p=0.378 -6.90 (-11.20, -2.66) p=0.002	-10.88 (-16.52, -5.25) p<0.001 10.49 (-14.73, -6.25) p<0.001	0.378	-7.16 (-12.23, -2.09) p=0.006 -8.74 (-12.45, -5.03) p<0.001	0.623
22	Fibrin D-dimer (n	g/mL) 2 hours post-Po	CI (a)						
23 24 25	TIMI flow ≤2 TIMI 3 flow	101.0 [69.5, 138.3] 117.0 [74.8, 169.0]	319.5 [215.5, 633.0] 354.0 [224.0, 593.0]	513.5 [266.8, 831.5] 421.0 [275.5, 641.5]	3.64 (2.53, 5.22) p<0.001 3.15 (2.43, 4.09) p<0.001	4.91 (3.48, 6.93) p<0.001 3.88 (3.00, 5.03) p<0.001	0.563	4.29 (3.15, 5.83) p<0.001 3.50 (2.80, 4.39) p<0.001	0.299
26	Prothrombin frag	ment F ₁₊₂ (pmol/L) 2 h	ours post-PCI (a)						
27 28	TIMI flow ≤2 TIMI 3 flow	165.0 [134.0, 220.8] 155.5 [124.1, 267.0]	161.1 [124.9, 260.8] 200.3 [144.0, 328.2]	201.5 [147.4, 303.0] 199.1 [153.2, 303.0]	1.20 (0.92, 1.57) p=0.183 1.26 (1.04, 1.53) p=0.019	1.22 (0.94, 1.57) p=0.136 1.19 (0.98, 1.44) p=0.078	0.909	1.21 (0.96, 1.52) p=0.103 1.23 (1.04, 1.45) p=0.017	0.925
29 30	Tissue plasminog	en activator (ng/mL) 2	hours post-PCI (a)						
31 32	TIMI flow ≤2 TIMI 3 flow	11.0 [8.3, 13.0] 11.0 [9.0, 13.0]	14.0 [11.0, 16.0] 13.0 [11.0, 17.0]	15.0 [12.0, 19.3] 14.0 [12.0, 16.5]	1.26 (1.00, 1.59) p=0.056 1.30 (1.10, 1.54) p=0.003	1.45 (1.16, 1.82) p=0.001 1.48 (1.25, 1.76) p<0.001	0.977	1.36 (1.11, 1.66) p=0.003 1.39 (1.20, 1.61) p<0.001	0.869
33 34	Fibrinogen (g/L)	24 hours post-PCI (a)							
34 35 36	TIMI flow ≤2 TIMI 3 flow	3.6 [3.0, 4.5] 3.8 [3.3, 4.6]	3.6 [3.1, 4.4] 3.5 [2.8, 4.3]	3.6 [3.0, 4.4] 3.5 [3.0, 4.1]	1.03 (0.92, 1.16) p=0.576 0.94 (0.86, 1.02) p=0.143	0.99 (0.89, 1.11) p=0.927 0.92 (0.85, 1.00) p=0.063	0.384	1.01 (0.92, 1.12) p=0.791 0.93 (0.87, 1.00) p=0.052	0.176
37	Plasminogen (U/d	L) 24 hours post-PCI	(b)						
38 39 40	TIMI flow ≤2 TIMI 3 flow	91.0 [86.0, 102.0] 96.0 [83.0, 107.0]	91.6 [84.8, 99.3] 88.0 [77.0, 99.3]	86.0 [77.0, 94.0] 90.0 [80.0, 96.0]	0.14 (0.00, 45.15) p=0.506 0.00 (0.00, 0.07) p=0.002	0.00 (0.00, 0.34) p=0.021 0.00 (0.00, 0.16) p=0.005	0.230	0.01 (0.00, 1.85) p=0.086 0.00 (0.00, 0.06) p<0.001	0.519
41 42					CONT			20	
43				htt	ps://mc.manuscriptcentral.co	IDENTIAL – EMBARGC) APPLIES	28	

https://mc.manuscriptcentral.com/heart

1									
3	Fibrin D-dimer ((ng/mL) 24 hours post-l	PCI (a)						
4 5 6	TIMI flow ≤2 TIMI 3 flow	103.0 [59.0, 150.0] 130.0 [80.5, 201.5]	162.0 [112.0, 371.8] 190.0 [112.8, 379.0]	224.0 [151.0, 344.0] 224.0 [133.0, 325.0]	2.05 (1.46, 2.87) p<0.001 1.44 (1.13, 1.85) p=0.004	2.11 (1.51, 2.94) p<0.001 1.56 (1.23, 1.99) p<0.001	0.205	2.08 (1.55, 2.78) p<0.001 1.50 (1.22, 1.85) p<0.001	0.078
7	Prothrombin fra	ngment F ₁₊₂ (pmol/L) 24	hours post-PCI (a)						
8 9	TIMI flow ≤2 TIMI 3 flow	197.0 [145.0, 262.2] 226.0 [153.6, 334.0]	191.7 [129.7, 297.3] 226.8 [173.5, 324.6]	204.0 [155.0, 321.0] 234.0 [166.4, 327.7]	1.04 (0.80, 1.36) p=0.750 1.09 (0.89, 1.32) p=0.404	1.21 (0.93, 1.58) p=0.159 1.08 (0.89, 1.31) p=0.416	0.643	1.13 (0.89, 1.42) p=0.319 1.08 (0.92, 1.28) p=0.336	0.802
10 11	Tissue plasmino	gen activator (ng/mL) 2	4 hours post-PCI (a)						
12 13	TIMI flow ≤2 TIMI 3 flow	10.0 [8.0, 12.0] 9.0 [7.0, 11.5]	11.0 [8.8 12.0] 10.0 [8.0 12.0]	10.0 [8.0, 13.0] 10.0 [8.0, 12.0]	1.02 (0.84, 1.24) p=0.829 1.04 (0.91, 1.20) p=0.549	1.05 (0.87, 1.28) p=0.594 1.14 (0.99, 1.31) p=0.068	0.803	1.04 (0.88, 1.23) p=0.666 1.09 (0.97, 1.23) p=0.152	0.627
14	Ratio of fibrinog	gen at 24 hours relative	to baseline (a)						
15 16 17	TIMI flow ≤2 TIMI 3 flow	1.12 [1.00, 1.26] 1.20 [1.00, 1.33]	1.17 [1.10, 1.35] 1.10 [0.90, 1.35]	1.16 [1.00, 1.37] 1.11 [1.00, 1.25]	1.08 (0.99, 1.17) p=0.077 0.95 (0.89, 1.01) p=0.101	1.05 (0.96, 1.14) p=0.296 0.95 (0.89, 1.00) p=0.071	0.040	1.06 (0.99, 1.14) p=0.107 0.95 (0.90, 1.00) p=0.044	0.013
18	Change in plasm	ninogen (U/dL) at 24 ho	urs relative to baseline	(b)					
19 20 21	TIMI flow ≤2 TIMI 3 flow	1.0 [-4.0, 5.5] 2.0 [-3.0, 6.0]	-3.0 [-9.0, 4.0] -6.5 [-10.3, 0.0]	-6.0 [-11.5, -2.3] -7.0 [-11.8, -0.3]	-2.57 (-6.46, 1.32) p=0.197 -7.52 (-10.36, -4.67) p<0.001	-7.05 (-10.89, -3.21) p<0.001 -7.22 (-10.04, -4.40) p<0.001	0.074	-4.87 (-8.25, -1.49) p=0.005 -7.37 (-9.81, -4.93) p<0.001	0.239
22	Ratio of fibrin D	-dimer at 24 hours rela	tive to baseline (a)						
23 24	TIMI flow ≤2 TIMI 3 flow	1.1 [0.8, 1.3] 1.3 [0.9, 1.7]	1.8 [1.2, 3.3] 1.7 [1.0, 2.5]	1.6 [1.0, 2.7] 2.2 [1.4, 3.4]	2.01 (1.46, 2.77) p<0.001 1.26 (1.00, 1.59) p= 0.055	1.67 (1.22, 2.30) p=0.002 1.76 (1.40, 2.22) p<0.001	0.019	1.83 (1.38, 2.42) p<0.001 1.49 (1.22, 1.83) p<0.001	0.249
25 26	Ratio of prothro	mbin fragment F_{1+2} at 2	24 hours relative to bas	seline (a)					
27 28	TIMI flow ≤2 TIMI 3 flow	1.2 [1.0, 1.6] 1.4 [0.9, 1.9]	1.5 [13.9, 2.0] 1.4 [1.0, 1.6]	1.3 [1.0, 1.9] 1.4 [1.2, 2.1]	1.26 0.93, 1.71) p=0.134 0.87 (0.70, 1.09) p=0.219	1.23 (0.91, 1.66) p=0.173 1.16 (0.93, 1.45) p=0.182	0.520	1.25 (0.96, 1.62) p=0.103 1.01 (0.83, 1.22) p=0.937	0.200
29 30	Ratio of tissue pl	lasminogen activator at	24 hours relative to ba	aseline (a)					
31 32	TIMI flow ≤2 TIMI 3 flow	1.1 [0.9, 1.3] 0.9 [0.8, 1.2]	1.2 [1.0, 1.3] 1.0 [0.8, 1.2]	1.1 [0.9, 1.3] 1.1 [0.8, 1.4]	1.05 (0.78, 1.41) p=0.761 0.84 (0.68, 1.05) p=0.121	0.98 (0.73, 1.32) p=0.894 0.95 (0.76, 1.18) p=0.635	0.454	1.01 (0.78, 1.31) p=0.926 0.89 (0.74, 1.08) p=0.240	0.444

(a) Data analysed on a logarithmic scale. Treatment effect estimates reported as relative difference between groups.

(b) Treatment effect estimates reported as mean differences between groups.

The p values and 95% CI have not been adjusted for multiplicity, therefore these analyses should be interpreted as exploratory and not definitive.

Heart

Heart

rs 2 hours post-PCI (n=75); coagula. to baseline (n=97). partile range; MI, myocardial infarction; TIMI, Thromboy. *Missing data: coagulation parameters 2 hours post-PCI (n=75); coagulation parameters 24 hours post-PCI (n=71); change in coagulation parameters at 24 hours relative to baseline (n=97).

Abbreviations: IQR, inter quartile range; MI, myocardial infarction; TIMI, Thrombolysis in Myocardial Infarction.

CONFIDENTIAL – EMBARGO APPLIES https://mc.manuscriptcentral.com/heart

References

1. TIMI Study Group. The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. The N Engl J Med 1985;312(14):932-936.

Heart

- 2. Gibson CM, Murphy SA, Rizzo MJ, et al. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Thrombolysis In Myocardial Infarction (TIMI) Study Group. Circulation 1999;99(15):1945-1950.
- Gibson CM, de Lemos JA, Murphy SA, et al. Combination therapy with abciximab reduces angiographically evident thrombus in acute myocardial infarction: a TIMI 14 substudy. Circulation 2001;103(21):2550-2554.
- 4. Ellis SG, Vandormeal MG, Cowley MJ et al. Coronary morphologic and clinical determinants or procedural outcome with angioplasty for multivessle coronary disease, implications for patient selection. Multivessel Angioplasty Prognosis Study Group. Circulation 1990; 82:1193-1202.
- 5. Keeley EC, Mehran R, Brener et al. Impact of multiple complex plaques on short- and long-term clinical outcomes in patients presenting with ST-segment elevation myocardial infarction (from the harmonising outcomes with revascularisation and stent in acute myocardial infarction [HORIZONS-AMI trial). Am J Cardiol 2014; 113(0):1621-1627.
- 6. Sorensson P, Heiberg E, Saleh N, et al. Assessment of myocardium at risk with contrast enhanced steady-state free precession cine cardiovascular magnetic resonance compared to single-photon emission computed tomography. J Cardiovasc Magn Reson 2010;12:25.
- Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001;22(23):2171-2179.

Page 79 of 81

Heart

<text> 8. Carrick D, Haig C, Ahmed N, et al. Myocardial hemorrhage after acute reperfused ST-segment-elevation myocardial infarction: relation to

CONFIDENTIAL – EMBARGO APPLIES

Confidential: For Review Only

Heart

CONSOR

CONSORT 2010 checklist of information to include when reporting a randomised trial*

Title and abstract	1a	Identification as a randomised trial in the title	Randomised trial is not stated in title, because the
	1a	Identification as a randomised trial in the title	not stated in title, because the
			because the
			oubmitted monucori
			submitted manuscrip is a substudy of a
			randomised trial.
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for	Page 4 main
		abstracts)	manuscript
Introduction			!
Background and	2a	Scientific background and explanation of rationale	Page 8 main
objectives	20		manuscript
	2b	Specific objectives or hypotheses	Pages 8 & 9 main
			manuscript
Methods			
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	Page 10 to 12 mair
0			manuscript, and pa
			15 supplement.
	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons	Page 14 supplemer
Participants	4a	Eligibility criteria for participants	Pages 3 – 5
			supplement
	4b	Settings and locations where the data were collected	Page 10 main
1. I	-		manuscript
Interventions	5	The interventions for each group with sufficient details to allow replication, including how and when they	Page 11 main
Outcomes	6a	were actually administered Completely defined pre-specified primary and secondary outcome measures, including how and when	manuscript Page 9 main
	ua	they were assessed	manuscript
	6b	Any changes to trial outcomes after the trial commenced, with reasons	Page 10 main
		,	manuscript
Sample size	7a	How sample size was determined	Page 10 main
-			manuscript
	7b	When applicable, explanation of any interim analyses and stopping guidelines	Page 14 supplement
CONSORT 2010 checklist		https://mc.manuscriptcentral.com/heart	Pag

Page 82 of 81

Heart

Randomisation:	0		
Sequence generation	8a	Method used to generate the random allocation sequence	Pages 10 and 11 main manuscript
0	8b	Type of randomisation; details of any restriction (such as blocking and block size)	Pages 10 and 11 main manuscript
Allocation concealment mechanism	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	Pages 10 and 11 main manuscript
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions	Pages 10 and 11 main manuscript
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those assessing outcomes) and how	Pages 10 and 11 main manuscript
	11b	If relevant, description of the similarity of interventions	n/a
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	Pages 13 and 14 main manuscript
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses	Pages 13 and 14 main manuscript
Results			
Participant flow (a diagram is strongly	13a	For each group, the numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome	Page 37 main manuscript
recommended)	13b	For each group, losses and exclusions after randomisation, together with reasons	Page 37 main manuscript
Recruitment	14a	Dates defining the periods of recruitment and follow-up	Page 10 main manuscript
	14b	Why the trial ended or was stopped	Page 14 supplement
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	Pages 27 to 28 main manuscript
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups	Pages 32 to 36 main manuscript
Outcomes and estimation	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval)	Pages 32 to 36 main manuscript and pages 16 to 26 supplement
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended	Pages 32 to 36 main manuscript and pages 16 to 26 supplement
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from exploratory	Pages 32 to 36 main manuscript and pages 16 to 26 supplement
Harms	19	All important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	These were detailed
CONSORT 2010 checklist		https://mc.manuscriptcentral.com/heart	Page 2

Heart

		Chridentia	in the original publication of the T- TIME randomised trial. McCartney P et al. JAMA. 2019 321(1):56-68. doi: 10.1001/jama.2018. 19802. The manuscript submitted to Heart is a substudy of the T-TIME trial.
Discussion Limitations	20	Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses	Page 21 main
Generalisability	21	Generalisability (external validity, applicability) of the trial findings	manuscript Page 21 main
Interpretation	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	manuscript Pages 19 to 21 main manuscript
Other information Registration	23	Registration number and name of trial registry	Page 8 main manuscript
Protocol	24	Where the full trial protocol can be accessed, if available	Page 10 main manuscript
Funding	25	Sources of funding and other support (such as supply of drugs), role of funders	Page 2
recommend reading CON	SORT e	g this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal intervention oming: for those and for up to date references relevant to this checklist, see <u>www.consort-statement.org</u> .	
CONSORT 2010 checklist		https://mc.manuscriptcentral.com/heart	Page