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Evidence that neural information flow is reversed
between object perception and object
reconstruction from memory
Juan Linde-Domingo1, Matthias S. Treder2, Casper Kerrén1 & Maria Wimber1

Remembering is a reconstructive process, yet little is known about how the reconstruction of

a memory unfolds in time in the human brain. Here, we used reaction times and EEG time-

series decoding to test the hypothesis that the information flow is reversed when an event is

reconstructed from memory, compared to when the same event is initially being perceived.

Across three experiments, we found highly consistent evidence supporting such a reversed

stream. When seeing an object, low-level perceptual features were discriminated faster

behaviourally, and could be decoded from brain activity earlier, than high-level conceptual

features. This pattern reversed during associative memory recall, with reaction times and

brain activity patterns now indicating that conceptual information was reconstructed more

rapidly than perceptual details. Our findings support a neurobiologically plausible model of

human memory, suggesting that memory retrieval is a hierarchical, multi-layered process

that prioritises semantically meaningful information over perceptual details.
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When Rocky Balboa goes back to his old gym in the
movie Rocky V, the boxing ring and the feeling of the
dusted gloves in his hands trigger a flood of vivid

images from the past. Like in many other movies featuring such
mnemonic flashbacks, the main character seems capable of
remembering what the room looked like years ago, who was there
at the time, and even an emotional conversation with his old
friend and coach Mickey. Perceptual details like colours, however,
are initially missing in the scene, like in a faded photograph, and
only gradually saturate over time. This common way of depicting
memories in pop culture nicely illustrates that the memories we
bring back to mind are not unitary constructs, and also not
veridical copies of past events. Instead, it suggests that remem-
bering is a reconstructive process that prioritises more mean-
ingful components of an event over other, more shallow
aspects1,2. We here report three experiments that shed light onto
the temporal information flow during memory retrieval. Once a
reminder has elicited a stored memory trace, are the different
features of this memory reconstructed in a systematic, hier-
archical way?

Surprisingly little is known about the time course of memory
recall, considering our vast knowledge about the information
processing hierarchy during visual perception. Visual object
recognition is generally assumed to progress from low-level
perceptual features, processed in early visual areas, to increasingly
higher levels of integration and abstraction along the inferior
temporal cortex3–8. What if a mental representation is re-created
from memory, without much external stimulation? Retrieving a
scene from Rocky V will elicit semantic knowledge about the film
(e.g. the actor being Sylvester Stallone), but also mental images
that can include fairly low-level details (e.g. whether the scene was
in colour or in grey scale). How the brain manages to bring back
each of these features when reconstructing an event from mem-
ory remains an open question. The present series of experiments
tested our central working hypothesis that the stream of infor-
mation processing is reversed during memory reconstruction
compared with the perception of an external stimulus.

Over the last years, multivariate neuroimaging methods have
made it possible to isolate brain activity patterns that carry
information about externally presented stimuli, but also about
internally generated mnemonic representations. Importantly, it
has been shown that parts of the neural trace that an event
produces during its initial encoding are reinstated during its later
retrieval9–14. Most studies focused on the reactivation of abstract
information, including a picture’s category11,13,14 or the task
context in which it was encoded10. Evidence also exists for the
reactivation of low-level perceptual details in early visual
areas15,16. Moreover, a growing literature using electro-
physiological methods is beginning to shed light onto the timing
of such reinstatement, typically demonstrating neural reactivation
within the first second after a reminder12,17–19, and sometimes
very rapidly16,20. However, because all existing studies focused on
a single feature of a memory representation (e.g., its semantic
category), the fundamental question whether memory recon-
struction follows a hierarchical information processing cascade,
similar to perception, has not been investigated.

We hypothesise that such a processing hierarchy does exist,
and that the information flow is reversed during memory retrieval
compared with perception. That is, based on the widely accepted
idea that memory reconstruction depends on back-projections
from the hippocampus to neo-cortex21,22, we expect that those
areas that are anatomically closer to the hippocampus (i.e., high-
level conceptual processing areas along the inferior temporal
cortex) are involved in the reactivation cascade faster than rela-
tively remote areas (i.e., low-level perceptual processing areas).
Therefore, we assume that once a reminder has initiated the

reactivation of an associated event, higher-level abstract features
will be reconstructed before lower-level perceptual features, pro-
ducing an inverse temporal order of processing compared with
perception.

We tested this reverse reconstruction hypothesis in a series of
two behavioural and one electroencephalography (EEG) experi-
ment. All studies used a simple associative memory paradigm
where participants learn arbitrary associations between word cues
and everyday objects, and are later cued with the word to recall
the object. In order to test for a processing hierarchy, it was
important to independently manipulate the perceptual and con-
ceptual contents of these objects. Therefore, objects varied along
two orthogonal dimensions: one perceptual dimension, where the
object was either presented as a photograph or a line drawing;
and a semantic dimension where the object represents an animate
or inanimate entity (Fig. 1a). The two behavioural experiments
measure reaction times (RTs) while participants make perceptual
or semantic category judgments for objects that are either visually
presented on the screen, or reconstructed from memory. The
EEG experiment uses a similar associative recall paradigm toge-
ther with time-series decoding techniques3,4,23, allowing us to
track at which exact moment in time perceptual and semantic
components of the same object are reactivated, and to create a
temporal map of semantic and perceptual features during per-
ception and memory reconstruction. Our behavioural and elec-
trophysiological findings consistently support the idea that
memory reconstruction is not an all-or-none process, but rather
progresses from higher-level semantic to lower-level perceptual
features.

Results
Behavioural experiments. Our two behavioural experiments used
RTs to test our central hypothesis that the information processing
hierarchy reverses between the visual perception of an object and its
reconstruction from memory. We assumed that the time required
to answer a question about low-level perceptual features (photo-
graph vs. drawing) compared to high-level semantic features (ani-
mate vs. inanimate) of an item reflects the speed at which these
types of information become available in the brain. If so, reaction
time patterns should reverse depending on whether the object is
visually presented or reconstructed from memory: during percep-
tion, RTs should be faster for perceptual compared with semantic
questions reflecting a forward processing hierarchy; during retrieval,
RTs should be faster for semantic compared with perceptual
questions if there is a reversal of that hierarchy.

Both experiments used a 2 × 2 mixed design (Fig. 1b, c), where
all participants answered perceptual and semantic questions
(factor question type, within-subjects) about the objects. Impor-
tantly, one group of participants was visually presented with the
objects while answering these questions, whereas the other group
recalled the objects from memory (factor task, between-subjects).
The main difference between the two experiments was that in
Experiment 1, both types of features were probed for each object;
and in Experiment 2, objects were presented on background
scenes (not of interest for the present purpose; see Methods
section).

Overall accuracy in both experiments was near ceiling for the
visual reaction time task (Experiment 1: M= 96.88%; SD=
2.40%; Experiment 2: M= 97.19%, SD= 2.99%), and high for the
memory reaction time task (Experiment 1: 83.15%; SD= 0.92;
Experiment 2: M= 66.23%, SD= 15.35%). Note that Experiment
2 was more difficult because participants had to memorise
background scenes in addition to the objects’ semantic and
perceptual features. In both experiments, only correct trials were
used for all further RT analyses.
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RTs show the expected perception-to-memory reversal. To
directly test for a reversal of the reaction time pattern between
visual perception and memory reconstruction, we used general-
ised linear mixed-effect models (GLMM). GLMMs are ideal for
modelling single trial (e.g. RT) data, without assumptions about
the underlying distribution. They are able to capture variance
explained by fixed and random variables, including the experi-
mental manipulations of interest24. We used single trial RTs as
target (dependent) variable. Fixed effects were the kind of task

(visual vs. memory), question type (perceptual vs. semantic) and
the interaction between task and question type. Participant IDs
and slopes were included as random factors (including intercept).

Consistent with the reverse reconstruction hypothesis, we
found that the interaction between task (visual vs. memory) and
question type (perceptual vs. semantic) significantly predicted
RTs in Experiment 1 (F1,9020= 18.027, P < 0.001) and Experiment
2 (F1,3280= 10.588, P= 0 .001). To test whether the interaction
was produced by differences in the expected direction (perceptual
< semantic during encoding, and semantic < perceptual during
retrieval), planned comparisons were then performed for the
visual and memory task independently, with question type as
fixed effect. We found a significant effect of question type in the
visual task (Experiment 1: B=−0.042, t=−3.973, P < 0.001;
Experiment 2: B=−0.048, t=−2.457, P= 0.014), where the
negative coefficient indicates that the model indeed predicted
lower RTs for perceptual compared to semantic questions. A
significant effect of question type was also found in the memory
task, following the opposite pattern: positive coefficients now
indicate significantly faster RTs during semantic than perceptual
questions (Experiment 1: B= 0.156, t= 2.551, P= 0.011; Experi-
ment 2: B= 0.165, t= 2.523, P= 0.012).

For descriptive proposes, Fig. 2 also illustrates the distribution
of participant-averaged RTs (Fig. 2a, b). During the visual task,
participants on average were faster at answering perceptual
(Experiment 1: M= 795 ms; SD= 235 ms; Experiment 2: M=
733 ms; SD= 211 ms) than semantic (Experiment 1: M= 842 ms,
SD= 185 ms; Experiment 2: M= 797 ms, SD= 235) questions.
When performing the same task on objects reconstructed from
memory, they were now slower responding to perceptual
(Experiment 1: M= 2502 ms; SD= 561; Experiment 2: M=
3348 ms, SD= 754) than semantic (Experiment 1: M= 2334 ms;
SD= 534; Experiment 2: M= 3133 ms, SD= 660 ms) questions.

Reaction time analyses thus support our central hypothesis that
the speed of information processing for different object features
reverses between perception and memory, a pattern replicated
between Experiments 1 and 2.

Accuracies support a reversal between perception and memory.
Next we investigated if a similar pattern was present in terms of
accuracy (Fig. 2d, e). We used a GLMM with a logistic link
function and a binary probability distribution for our target
variable (accuracy, correct or incorrect on a given single trial).
Fixed effects were the type of task (visual vs. memory), question
type (perceptual vs. semantic), and the interaction between the
two factors. Participant IDs and slopes were selected as random
factors, including intercept.

In both experiments, the interaction between task (visual vs.
memory) and question type (perceptual vs. semantic) signifi-
cantly predicted participants’ accuracy (Experiment 1: F1,11260=
12.215, P < 0.001; Experiment 2: F1,4124= 8.383, P= 0.004).
When running planned comparisons separately for the visual
and the memory task in Experiment 1, results for the visual task
revealed that question type significantly predicted accuracy
(F1,5886= 5.066, P= 0.024; B=−0.420, t=−2.251, P= 0.024),
suggesting that accuracy for perceptual questions (M= 97.42%;
SD= 2.68%) was higher compared to semantic questions (M=
96.33%; SD= 1.99%;). In the memory task, question type also
predicted accuracy (F1,5374= 5.374, P= 0.001; B= 0.251, t=
3.222, P= 0.001), with negative coefficients indicating that
participants were more likely to give a correct answer in response
to semantic (M= 85.83%; SD= 7.57%) than perceptual (M=
82.63%; SD= 8.79%) questions, in line with a reversed processing
stream. Experiment 2 showed a similar trend in accuracy profiles.
GLMM analyses for the visual task indicated that question type
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Fig. 1 Stimuli and design of the behavioural experiments. a Illustration of the
orthogonal design of the stimulus set. In all experiments, objects (a total of
128) varied along two dimensions: a perceptual dimension where objects
could be presented as a photograph or as a line drawing; and a semantic
dimension where objects could belong to the animate or inanimate
category. b In the visual reaction time task, participants were prompted on
each trial to categorise the upcoming object as fast as possible, either
according to its perceptual category (photograph vs. line drawing) or its
semantic category (animate vs. inanimate). c During the encoding phase of
a memory reaction time task, participants were asked to create word-object
associations (a total of eight per block). Reaction times were then
measured during the retrieval phase, where subjects were presented with a
reminder word, and asked to recall and categorise the associated object
according to its perceptual (photograph vs. line drawing) or semantic
(animate vs. inanimate) features. Button press symbols indicate at which
moment in a trial RTs were collected
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significantly predicted accuracy (F1,2062= 4.371, P= 0.037; B=
−0.585, t=−2.091, P= 0.037), with better performance for
perceptual (M= 97.97%; SD= 2.77%) than semantic questions
(M= 96.41%; SD= 3.07%). In contrast, for the memory task we
found evidence for the prioritisation of higher-level information
(semantic accuracy M= 69.57%; SD= 15.17%) over low-level
details (perceptual accuracy M= 62.89%; SD= 15.09%). Here,

question type again predicted accuracy in the expected direction
(F1,2062= 6.707, P= 0.010), with more accurate answers to
semantic than perceptual questions (B= 0.319, t= 2.590, P=
0.010).

Altogether, the findings from our two behavioural experiments
support our main hypothesis that during retrieval of a complex
visual representation, the temporal order in which perceptual and
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semantic features are processed reverses compared with the initial
perception. The results suggest that RTs can be used as a proxy to
probe neural processing speed, as previously argued25. In the next
sections, we report the findings from an EEG study that more
directly taps into the neural processes that we believe are
producing the behavioural pattern.

EEG experiment. While the existing literature25 suggests that
RTs tap into neural processing speed, we wanted to obtain a more
direct signature of feature activation from brain activity. We
therefore applied multivariate pattern analysis to EEG recordings,
with the goal to pinpoint when in time, on an individual trial, the
perceptual and semantic features of an object could be decoded
from brain activity. We expected that perceptual information
becomes available before semantic information when an object is
visually presented on the screen, and expected the order of these
peaks to reverse when the object is recalled from memory. The
design closely followed the behavioural experiments, with the
important difference that each participant now carried out a
visual encoding phase that served to probe visual (forward)
processing, and a subsequent recall phase used to probe mne-
monic (backward) processing. The trial timing was optimised for
obtaining a clean signal during object presentation and recall,
rather than for RTs (Fig. 3). We therefore presented the per-
ceptual and semantic questions only during the recall phase, and
at the end of each trial, such that the questions would not bias
processing towards perceptual or semantic features.

Accuracy in the EEG study. In the retrieval phase of the EEG
experiment, subjects were again cued with a word and asked to
retrieve the associated object. They on average declared to retrieve
the object on 93.60% of the trials (SD= 5.89%), with an average
reaction time of 3046 ms (SD= 830 ms; minimum= 1369 ms;
maximum= 5124 ms). We then asked two questions at the end of
each trial, one perceptual and one semantic, which participants
answered with an overall mean accuracy of 86.37% (SD= 6.6).
Mirroring the behavioural experiments, average hit rates were
87.65% (SD= 6.57%) for semantic questions, and 85.08% (SD=
6.53%) for perceptual questions. A GLMM showed that the fixed
factor question type predicted accuracy (F1,5374= 7.706, P=
0.006), with perceptual questions showing a significantly lower hit
rate than semantic questions (B=−0.225, t=−2.776, P=
0.006). Note that EEG participants were instructed to prioritise
accuracy over speed, such that no meaningful RT measures could
be obtained in this experiment.

Evidence for a reversal in single-trial classifier fidelity. To
determine the temporal trajectory of feature processing on a

single trial level, we carried out a series of time-resolved decoding
analyses. Linear discriminant analysis (LDA, see Methods sec-
tion) was used to classify perceptual (photograph vs. drawing)
and semantic (animate vs. inanimate) features of an object based
on the EEG topography at a given time point, either during object
presentation (encoding) or during object retrieval from memory
(cued recall).

Our first aim was to confirm that there was a forward stream
during encoding. Two separate classifiers were trained and tested
to classify the perceptual (photograph vs. drawing) and the
semantic category (animate vs. inanimate) of the to-be-encoded
object, respectively, in each trial and time point per participant
(see Fig. 3). Decoding was performed in separate time windows
from 100 ms before stimulus to 500 ms post-stimulus. Our main
interest was to determine the specific moment in each trial at
which the perceptual and semantic classifiers showed the highest
fidelity (Fig. 3b, c). For the encoding data, we thus identified the
absolute d value peak per trial within 500 ms of stimulus onset.
This approach allowed us to compare, within each trial, whether
the classification peak for perceptual features occurred earlier
than the peak for semantic features. Similarly, we used the cued
recall time series to find the time points of maximum decodability
of perceptual and semantic features during memory retrieval.
Retrieval analyses are time-locked to the button press, i.e. the
moment when participants declared that they retrieved the
associated object from memory. The time window used in this
analysis covered 3 s prior to participants’ responses, based on
average RTs.

The first single-trial peak analysis was similar to the analysis
conducted on RTs in the behavioural studies. A GLMM was used
to test if the relative timing of d value peaks from the perceptual
and semantic classifiers reverses between encoding and retrieval.
The interaction between type of classifier and type of task
significantly predicted the timing of d value peaks (F1,5504=
8.632, P= 0.003). Planned comparisons between perceptual and
semantic classifiers, run separately for encoding and retrieval,
revealed that type of classifier did not significantly predict the
timing of d value peaks during encoding (F1,4326= 0.328, P=
0.567), but it did so during retrieval (F1,1178= 3.879, P= 0.049).
Beta coefficients showed that semantic peaks were predicted
significantly earlier than perceptual peaks (B= 112.944, t= 1.969,
P= 0.049), as expected if there is a reversed processing cascade.

We followed up this GLMM with a clustered Wilcoxon sign-rank
test26 specifically analysing the relative order of semantic and
perceptual peaks on each individual trial. At encoding (Fig. 4c), we
found a significant difference (T=−9.764, P= 0.036) between the
timing of perceptual and semantic peaks. Figure 4c shows that
this difference was caused by a tendency of the single trial
differences to be negative (leaning towards the blue side),

Fig. 2 Behavioural RT and accuracy results. a Box plots representing reaction times in Experiments 1 and 2 (b) for perceptual (blue) and semantic (pink)
questions when an object was physically presented on the screen (visual task, left) or cued by a reminder (memory task, right). We found that RTs were
significantly predicted by an interaction between question type and kind of task (P < .001). For illustrative purposes the Y-axis in (a) and (b) is
logarithmically scaled. c In Experiment 1, both types of questions were asked for each object representation. This allowed us to measure the difference in
RTs between perceptual and semantic questions (X-axis) on a trial-by-trial level (Y-axis) during the visual task (left panel) and the memory task (right
panel). Curved lines represent an expected normal distribution. The solid horizontal lines indicate the 50% point of the distribution (i.e., half of the trials),
and dashed horizontal lines indicate the trial with a value closest to zero, where the perceptual–semantic difference is flipping from positive (pink) to
negative (blue). If differences were normally distributed, the solid and dashed lines would be on top of each other. d Accuracy results in Experiment 1 for
perceptual (blue) and semantic questions (pink) when the object was presented on the screen (visual task) or had to be recalled (memory task).
Behavioural analyses showed that an interaction between type of task (i.e. visual or memory) and question type (i.e. perceptual or semantic) significantly
predicted accuracy. e Box plots representing accuracy in Experiment 2 during the visual and memory task, where the significant interaction effect between
type of task and question type was replicated. In all box plots, the line in the middle of each box represents the median, and the tops and bottoms of the
boxes the 25th and 75th percentiles of the samples, respectively. Whiskers are drawn from the interquartile ranges to the furthest minimum (bottom) and
maximum (top) values. Crosses represent outliers
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suggesting that fidelity peaks for perceptual classification
occurred earlier than those for semantic classification. This result
validates our peak method, and confirms that low-level features
are processed before high-level features during visual percep-
tion3–6,8. The results also suggest that an analysis that takes into
account the paired difference between the classifier maxima from
each single trial is more sensitive than a GLMM that uses the
distributions of all single trials (not revealing a robust difference
at encoding).

Importantly, following the same procedure, we next analysed
the differences between the perceptual and semantic classifier
peaks during memory reactivation, to test if the order reversed
during retrieval compared with encoding. The single-trial
approach ensured that the relative temporal order of perceptual
and semantic peaks within a trial would be preserved even if the
retrieval process was set off with varying delays across trials. A
one-tailed clustered Wilcoxon signed rank test26, revealed a
significant difference (T= 34.602, P < .001) when comparing
perceptual with semantic d value peaks (leaning towards the red
side in Fig. 4c). Critically, the one-tailed test in this case confirms
our central hypothesis that during memory retrieval, semantic
information can be classified in brain activity significantly earlier
than perceptual information, suggesting that memory recall
prioritises semantic over perceptual information.

ERP results are consistent with a reversed processing. In a final
step, we sought to corroborate our classifier-based findings by
conventional event-related potential (ERP) analyses. If the

differences picked up by the LDA classifier were produced by a
signal that is relatively stable across trials and participants, these
signal differences would also be visible in the average ERP time
courses. A comparison of the ERP peaks during encoding and
retrieval would then reveal the same perception-to-memory
reversal as found in our multivariate analyses.

Firstly, a series of cluster-based permutation tests (see
Methods) was performed during object presentation to test for
ERP differences between perceptual and semantic categories. A
perceptual contrast of the waveforms for photographs and line
drawings revealed a significant positive cluster (Pcorr= 0.008)
between 136 ms and 232 ms after stimulus onset, with a
maximum difference based on the sum of T values at 188 ms,
and located over occipital and central electrodes (see Fig. 5a).
Contrasting objects from the different semantic categories
(animate and inanimate) revealed a later cluster over frontal
and occipital electrodes (Pcorr= 0.001) from 237 ms until 357 ms
after stimulus presentation, with a maximum difference at 306 ms
(see Fig. 5a). The peak semantic ERP difference for encoding thus
occurred ~120 ms after the peak perceptual difference, consistent
with the existing ERP literature27.

Similar contrasts between perceptual and semantic categories
were then carried out during retrieval, again aligning trials to the
button press. We found a significant perceptual cluster distin-
guishing the recall of photographs and line drawings over
occipital electrodes (Pcorr= 0.046) between 1390 and 1336 ms
before participants’ responses, with a maximum difference at
1360 ms prior to response (see Fig. 5b). Comparing ERPs for the
different semantic categories, we found a significant cluster
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distinguishing the recall of animate from inanimate objects over
frontal electrodes (Pcorr= 0.032) between 1781 and 1735 ms
before object retrieval, with a maximum difference at −1770 ms
(see Fig. 5b). Therefore, during memory retrieval, the peak
semantic ERP difference occurred ~400 ms before the peak
perceptual difference. Note that the timing of these effects is well
aligned with the timing of the classifier results (see Fig. 4).
Qualitatively, the ERP results thus mirror the results of our
multivariate analyses, again supporting the reversal hypothesis.

An additional analysis was carried out to statistically test for an
interaction on the ERP level between type of task (encoding vs.
retrieval) and representational features (perceptual vs. semantic).
In each participant, we identified the time point of the maximum
ERP difference in each of our four comparisons of interest
(i.e. photographs/drawings during encoding/retrieval; and ani-
mate/inanimate objects during encoding/retrieval). A 2 × 2
within-subjects ANOVA revealed a significant interaction
between type of task and type of representational feature
(F1,42= 7.798, P= 0.011).

A final follow-up suggests that these ERP differences are not
driven by a specific combination of perceptual and semantic
features. For each of the clusters identified in the above ERP
analysis, we ran a 2 × 2 within-subjects ANOVA, averaging the
signal separately for the four types of sub-categories (animate-
photographs, animate-line drawings, inanimate-photographs,
inanimate-line drawings, see Supplementary Figure 1). We did
not find a significant interaction between semantic and perceptual
categories in any cluster during encoding (perceptual cluster:
F1,23= 1.106, P= 0.304; semantic cluster: F1,23= 0.640, P=
0.432) or retrieval (perceptual cluster: F1,20= 2.125, P= 0.160;
semantic cluster: F1,20= 0.403, P= 0.533), and thus no evidence
indicating that our main ERP clusters were produced by a
difference in one of the sub-categories that constitute the
orthogonal dimension.

Altogether, the ERP results confirm that perceptual aspects are
coded in brain activity earlier than semantic aspects during visual
processing, but semantic differences dominate the EEG signal
earlier than perceptual ones during retrieval.
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Fig. 4 EEG multivariate analysis results. For illustrative purposes, box plots show group peak distributions of d values for perceptual and semantic
categories during encoding (a; Perceptual peaks: M= 259 ms, SD= 24 ms; Semantic peaks: M= 267 ms, SD= 43 ms) and retrieval (b; Perceptual peaks:
M=−1646 ms, SD= 247 ms; Semantic peaks:M=−1772 ms, SD= 177 ms) after averaging peaks within participants. All box plot elements represent the
same metrics as in Fig. 2. c Measuring classifier fidelity in terms of d value peaks on a single-trial level allowed us to measure the pairwise time distance
between perceptual and semantic peaks during encoding (left panel) and retrieval (right panel). Y-axis represents each individual trial, with trials
accumulated across participants. The time distance between classifier peaks (time of perceptual peak minus time of semantic peak on a given trial) is
represented on the X-axis. The curved line represents an expected normal distribution. The solid horizontal line indicates the 50% point (half of the trials),
and the dashed horizontal line indicates the point where the temporal distance values change sign from perceptual < semantic (blue) to semantic <
perceptual (pink)
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Discussion
How does the neural fingerprint of a memory unfold in time
when triggered by a reminder? While it is widely accepted that
visual object recognition starts with low-level perceptual followed
by high-level abstract processing3,4,6,8, much less is known about
the mnemonic feature processing cascade. Here we demonstrate
that the reconstruction of a visual memory does depend on a
hierarchical stream too, but this mnemonic stream follows the
reverse order relative to visual processing. Across three experi-
ments, we found highly converging evidence from RTs and
accuracy (Experiments 1 and 2), multivariate classification ana-
lyses, and from univariate ERP analyses (Experiment 3), all
indicating that conceptual information is prioritised during
retrieval.

In the behavioural studies, participants were significantly faster
at detecting low-level perceptual than abstract, conceptual dif-
ferences during a visual classification task, while the object was
presented on the screen. Critically, when probing the features of
objects recalled from memory, the reverse effect was found:
subjects required significantly less time to correctly retrieve
semantic information about the object compared to perceptual
details (see Fig. 2a, b). This reversal was corroborated by a sig-
nificant interaction between the kind of feature (perceptual or
semantic) and the kind of task (visual perception or memory
recall task). Based on signal-detection models28,29, the RT find-
ings suggest that during memory reconstruction, the decision
threshold to identify abstract information of a mnemonic repre-
sentation is reached before sufficient low-level information is
available. The response latency pattern therefore supports our
central hypothesis that the temporal order in which features come
online is reversed when retrieving a stored representation of an
object, relative to its perception. In addition to RTs, the same
reversal pattern was present in accuracy profiles in both experi-
ments (see Fig. 2d, e). These findings suggest a prioritisation of
abstract semantic information over perceptual details of a mne-
monic representation, consistent with hierarchical memory sys-
tem models30.

The EEG results fully support the conclusions drawn from the
behavioural studies. We used temporally resolved multivariate
decoding analyses to observe when in time, during object per-
ception and retrieval, the perceptual and semantic features of an
object are maximally decodable from brain activity patterns.

These analyses were carried out such that the relative temporal
order of the perceptual and semantic classifier peaks could be
directly compared in each single trial. When an object was
visually presented during encoding, the maximum fidelity in
classifying perceptual information (photograph vs. drawing)
occurred ~100 ms earlier than the maximum for semantic
information (animate vs. inanimate) (see Fig. 4a). This finding is
consistent with a predominantly feed-forward processing as
described previously3–6,8. Note that perceptual and semantic
peaks during visual perception only differed statistically when
comparing their relative timing on a single trial level, suggesting
that such an analysis is more sensitive to detecting relatively small
timing differences in noisy data. When we asked participants to
reactivate an object’s representation from memory, semantic
peaks were found ~300 ms earlier than perceptual peaks (see
Fig. 4b). Like in the behavioural experiments, a consistent reversal
between perception and memory was supported by a significant
interaction between the type of feature that was probed (per-
ceptual or semantic), and the type of task participants were
engaged in (encoding or retrieval). Finally, we also found the
same reversal pattern in the ERP peaks when comparing the
maximum ERP difference between perceptual and semantic
object classes. During object perception, the largest perceptual
ERP cluster occurred ~100 ms before the semantic ERP cluster,
whereas during retrieval the perceptual cluster followed the
semantic one with a lag of about 400 ms (see Fig. 5). In summary,
our results provide robust evidence for our main prediction that
semantic features are prioritised over perceptual features during
memory recall, in the opposite direction of the well-known for-
ward stream of visual-perceptual processing. Follow-up studies
will need to test whether this reversed stream is robust under
different conditions, for example in tasks that explicitly vary the
encoding demands to emphasise perceptual over semantic aspects
of an event. If semantic information is always prioritised,
this would suggest a hardwired characteristic of the output
pathways from the hippocampus back to neocortex. Alternatively,
and maybe more likely, the retrieved representation will to some
degree also depend on what Marr22 called the “internal descrip-
tion” of a stimulus during encoding, including the rememberer’s
goals and attentional state.

In our studies, the behavioural data were acquired separately
from the EEG data, in a setting that was optimised for measuring
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Fig. 5 Univariate analysis results. a Left panels represent ERP group differences (T values) across time in those electrodes that formed a significant cluster
during object presentation, locked to the onset of the stimulus. Top left panel shows the contrast of photographs vs. line drawings, and the bottom left
panel differences between animate vs. inanimate objects. Scalp figures next to each contrast illustrate the maximum cluster’s topography, averaged across
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RTs. Studies simultaneously measuring RTs and neural activity
suggest that a meaningful relationship exists between EEG clas-
sifier fidelity values and human behaviour. In line with signal
detection models28,29, it has been argued that the distance
between two or more categories in a neural representational space
serves as decision boundary that guides behavioural categorisa-
tion25. For example, Carlson et al. 31 used fMRI-based activation
patterns in late visual brain regions in an object animacy task.
They found that the faster the RT on a given trial, the further
away in neural space the object was represented relative to the
boundary between semantic categories. Similarly, an MEG
study25 showed that the decision values during time points of
maximum decodability, derived similar to our EEG decoding
peaks, were strongly correlated with RTs for visual categorisation.
Both studies thus suggest that during object vision, single-trial
decoding measures reflect a distance between categories in neural
space that translates into behaviour. Our findings indicate that
this brain–behaviour relationship extends to mental object
representations during memory reconstruction.

How does the reverse reconstruction hypothesis fit with
existing knowledge about the neural pathways involved in
memory reconstruction? It is generally accepted that during
memory formation, information flows from domain-specific
sensory modules via perirhinal and entorhinal cortices into the
hippocampus. Recent evidence suggests that during visual pro-
cessing, the coding of perceptual object information is preserved
up to relatively late perirhinal processing stages7. The hippo-
campus is considered a domain-general structure21,32,33 whose
major role is the associative binding of the various elements that
constitute an episode34–36. The hippocampal code later allows a
partial cue to trigger the reconstruction of these different ele-
ments from memory. This memory process likely depends on
back-projections from the hippocampus to neocortical areas,
causing the reactivation of memory patterns in (a subset of) the
areas that were involved in perceiving the original event. Such
reactivation has consistently been reported in higher-order sen-
sory regions related to processing of complex stimulus and task
information10–12,14, but also in relatively early sensory cortex15,16,
suggesting that in principle, higher-level and lower-level infor-
mation can be reconstructed from memory. Recent evidence,
however, suggests that the structure of complex naturalistic
events (movies) is transformed from perceptual to mnemonic
codes during retrieval9. This finding is in line with the idea that
remembering prioritises higher-order meaningful information
over lower-level details.

While the reverse reconstruction hypothesis is neurobiologi-
cally plausible and has strong intuitive appeal, direct empirical
evidence so far has been lacking. Indirect evidence comes from an
fMRI study showing that within the medial temporal lobe, regions
involved in visual object and scene processing are also activated
when retrieving objects and scenes from memory, but with a
delay relative to perception, consistent with a reversed informa-
tion flow37. Intracranial EEG recordings have shown that con-
nectivity between the entorhinal cortex and the hippocampus
changes directionality between encoding and retrieval38, which
could provide the functional basis for cortical reinstatement.
Studies in rodents indicate that the hippocampus is in principle
capable of replaying the neural code that represents a certain
spatial memory in reverse order, in particular when the animal is
awake and resting39. Finally, work using MEG-based decoding
suggests that it is mainly the later visual processing stages that are
reactivated during retrieval and mental imagery, consistent with a
prioritisation of higher-level information23,40. Our proposal of a
reverse processing hierarchy is thus plausible based on functional
anatomy and the existing literature, even though it has never been
explicitly tested so far.

We regard our reverse reconstruction hypothesis as com-
plementary to existing models that address the nature and timing
of different retrieval processes, including the influential dual
process model (for a review see ref. 41). Dual process models focus
on recognition rather than recall tasks, and on the cognitive
processes and operations required to access a stored memory
rather than the reactivated features of a memory. Successful
recognition presumably can be based on a sense of familiarity, or
on the recollection of contextual information from the initial
encoding, an influential idea since the introspective analyses of
William James42. While the original model does not explicitly
address the time course of these processes, the EEG literature
suggests that familiarity signals occur earlier (~300 ms) than
recollection signals (starting from 500 to 600 ms)43–46. In con-
trast, all our experiments probed memory via cued recall, where
successful recall strongly depends on the recollection of associa-
tive information. Our results suggest that within this recollection
process, the semantic “gist” of a memory is accessed before per-
ceptual details. Assuming that familiarity signals reflect a more
gist-like and less detailed stage of the retrieval process than
recollection signals (an assumption that some find controversial,
see ref. 47), the hierarchical progression from an early global
semantic signal to more fine-grained recollection might thus be a
fundamental principle of retrieval that is shared between recall
and recognition memory.

Interesting parallels also exist between our findings and visual
learning phenomena like the Eureka effect48. The general idea
that perception is shaped by stored representations has been
proposed over a century ago by von Helmholtz49. A wealth of
findings support the idea that previous exposures to a stimulus
can exert a strong top-down influence on subsequent perception
(for a review see ref. 50). Reminiscent of our present findings,
Ahissar and Hochstein51 suggest that such visual learning is a
top-down process that progresses from high-level to low-level
visual areas. Specifically, they argue that improvements in visual
discrimination (e.g. identifying a tilted line among distractors) are
guided by high-level information (e.g. “the gist of the scene”)
during earlier stages of learning, and increasingly by low-level
information (e.g. line orientations or colours) at later stages. If
abstract information is reactivated more easily during earlier
stages of visual learning, it will influence performance more than
detailed information. Even though speculative, the reverse
reconstruction framework might thus have explanatory value for
findings in related fields.

How our brain brings back to mind past events, and enriches
our mental life with vivid images or sounds or scents beyond the
current external stimulation, is still a fascinating and poorly
understood phenomenon. Our results suggest that memories,
once triggered by a reminder, unfold in a systematic and hier-
archical way, and that the mnemonic processing hierarchy is
reversed with respect to the major visual processing hierarchy.
We hope that these findings can inspire more dynamic frame-
works of memory retrieval that explicitly acknowledge the
reconstructive nature of the process, rather than simply con-
ceptualising memories as reactivated snapshots of past events.
Such models will help us understand the heuristics and systematic
biases that are inherent in our memories and memory-guided
behaviours.

Methods
Participants. A total of 49 volunteers (39 female; mean age 20.02 ± 1.55 years) took
part in behavioural Experiment 1. Twenty-six of them (19 female; mean age
20.62 ± 1.62 years) participated in the memory reaction time task. Five out of these
26 participants were not included in the final analysis due to poor memory per-
formance (<66% general accuracy) compared with the rest of the group (t24= 6.65,
P < .01). Another group of 23 participants (20 female; mean age 19.35 ± 1.11 years)
volunteered to participate in the visual reaction time task. In a second behavioural
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experiment (Experiment 2), 48 participants were recruited (42 female; mean age
19.25 ± .91 years). Twenty-four of them performed the memory reaction time task
and another group of 24 took part in the visual reaction time task. For the elec-
trophysiological experiment we recruited a total of 24 volunteers (20 female; mean
age 21.91 ± 4.68 years). The first three subjects we recorded performed a slightly
different task during retrieval blocks (i.e., they were not asked to mentally visualise
the object for 3 s, and they had to answer only one of the perceptual and semantic
questions per trial), and were therefore not included in any of the retrieval analyses.
Since our paradigm was designed to test for a new effect, we did not have priors
regarding the expected effect size. Behavioural piloting of the memory task showed
a significant difference in RTs in a sample of n= 14. We therefore felt confident
that the effect would replicate in our larger samples of n= 24 per group in each in
the two behavioural experiments and the EEG experiment.

All participants reported being native or highly fluent English speakers, having
normal (20/20) or corrected-to-normal vision, normal colour vision, and no history
of neurological disorders. We received written informed consent from all
participants before the beginning of the experiment. They were naïve as to the goals
of the experiments, but were debriefed at the end. Participants were compensated
for their time, receiving course credits or £6 per hour for participation in the
behavioural task, or a total of £20 for participation in the electrophysiological
experiment. The University of Birmingham’s Science, Technology, Engineering and
Mathematics Ethical Review Committee approved all experiments.

Stimuli. In total, 128 pictures of unique everyday objects and common animals were
used in the main experiment, and a further 16 were used for practice purposes. Out of
these, 96 were selected from the BOSS database52, and the remaining images were
obtained from online royalty-free databases. All original images were pictures in
colour on a white background. To produce two different semantic object categories,
half of the objects were chosen to be animate while the other half was inanimate.
Within the category of inanimate objects, we selected the same amount of electronic
devices, clothes, fruits and vegetables (16 each). The animate category was composed
of an equivalent number of mammals, birds, insects and marine animals (16 each).
With the objective of creating two levels of perceptual manipulation, a freehand line
drawing of each image was created using the free and open source GNU image
manipulation software (www.gimp.org). Hence a total of 128 freehand drawings of
the respective 128 pictures of everyday objects were created. Each drawing was
composed of a white background and black lines to generate a schematic outline of
each stimulus. For each subject, half of the objects were pseudo-randomly chosen to
be presented as photographs, and half of them as drawings, with the restriction that
the two perceptual categories were equally distributed across (i.e. orthogonal with
respect to) the animate and inanimate object categories. All photographs and line
drawings were presented at the centre of the screen with a rescaled size of 500 × 500
pixels. For the memory reaction time task and the EEG experiment, 128 action verbs
were selected that served as associative cues. Experiment 2 also used colour back-
ground scenes of indoor and outdoor spaces (900 × 1600 pixels) that were obtained
from online royalty-free databases, which are irrelevant for the present purpose.

Procedure for Experiment 1—Visual reaction time task. Before the start of the
experiment, participants were given oral instructions and completed a training
block of four trials to become familiar with the task. The main perceptual task
consisted of four blocks of 32 trials each (Fig. 1b). All trials started with a jittered
fixation cross (500–1500 ms) that was followed by a question screen. On each trial,
the question could either be a perceptual question asking the participant to decide
as quickly as possible whether the upcoming object is shown as a colour photo-
graph or as a line drawing; or a semantic question asking whether the upcoming
object represents an animate or inanimate object. Two possible response options
were displayed at the two opposite sides of the screen (right or left). The options for
“animate” and “photograph” were always located on the right side to keep the
response mapping easy. The question screen was displayed for 3 s, and an object
was then added at the centre of the screen. In Experiment 2, this object was
overlaid onto a background that filled large parts of the screen. Participants were
asked to categorise the object in line with the question as fast as they could as soon
as the object appeared on the screen, by pressing the left or right arrow on the
keyboard. RTs were measured to test if participants were faster at making per-
ceptual compared to semantic decisions.

All pictures were presented until the participant made a response but for a
maximum of 10 s, after which the next trial started. Feedback about participants’
performance was presented at the end of each experimental block. There were 256
trials overall, with each object being presented twice across the experiment, once
together with a perceptual and once with a semantic question. Repetitions of the
same object were separated by a minimum distance of two intervening trials. In
each block, we asked the semantic question first for half of the objects, and the
perceptual question first for the other half.

The final reaction time analyses only included trials with correct responses, and
excluded all trials with an RT that exceeded the average over subjects by
±2.5 standard deviations (SDs).

Procedure for Experiment 1—Memory reaction time task. The memory version
was kept very similar to the visual reaction time task, but we now measured RTs for

objects that were reconstructed from memory rather than being presented on the
screen, and we thus had to introduce a learning phase first. At the beginning of the
session, all participants received instructions and performed two short practice
blocks. Each of the overall 16 experimental blocks consisted of an associative
learning phase (eight word–object associations) and a retrieval phase (16 trials,
testing each object twice, once with a perceptual and once with a semantic ques-
tion). The associative learning and the retrieval test were separated by a distractor
task. During the learning phase (Fig. 1c), each trial started with a jittered fixation
cross (between 500 and 1500 ms) that was followed by a unique action verb dis-
played on the screen (1500 ms). After presentation of another fixation cross
(between 500 and 1500 ms), a picture of an object was presented on the centre of
the screen for a minimum of 2 s and a maximum of 10 s. Participants were asked to
come up with a vivid mental image that involved the object and the action verb
presented in the current trial. They were instructed to press a key (up arrow on the
keyboard) as soon as they had a clear association in mind; this button press
initiated the onset of the next trial. Participants were made aware during the initial
practice that they would later be asked about the object’s perceptual properties, as
well as its meaning, and should thus pay attention to details including colour and
shape. Within a participant, each semantic category and sub-category (electronic
devices, clothes, fruits, vegetables, mammals, birds, insects, and marine animals)
was presented equally often at each type of perceptual level (i.e. as a photograph or
as a line drawing). The assignment of action verbs to objects for associative
learning was random, and the occurrence of the semantic and perceptual object
categories was equally distributed over the first and the second half of the
experiment in order to avoid random sequences with overly strong clustering.

After each learning phase, participants performed a distractor task where they
were asked to classify a random number (between 1 and 99) on the screen as odd
or even. The task was self-paced and they were instructed to accomplish as many
trials as they could in 45 s. At the end of the distractor task, they received feedback
about their accuracy (i.e., how many trials they performed correctly in this block).

The retrieval phase (Fig. 1c) started following the distractor task. Each trial
began with a jittered fixation cross (between 500 and 1500 ms), followed by a
question screen asking either about the semantic (animate vs. inanimate) or
perceptual (photograph vs. line drawing) features for the upcoming trial, just like in
the visual perception version of the task. The question screen was displayed for 3 s
by itself, and then one of the verbs presented in the directly preceding learning
phase appeared above the two responses. We asked participants to bring back to
mind the object that had been associated with this word and to answer the question
as fast as possible by selecting the correct response alternative (left or right
keyboard press). If they were unable to retrieve the object, participants were asked
to press the down arrow. The next trial began as soon as an answer was selected. At
the end of each retrieval block, a feedback screen showing the percentage of
accurate responses was displayed.

Throughout the retrieval test, we probed memory for all word–object
associations learned in the immediately preceding encoding phase in
pseudorandom order. Each word–object association was tested twice, once together
with a semantic and once with a perceptual question, with a minimum distance of
two intervening trials. In addition, we controlled that the first question for half of
the associations was semantic, and perceptual for the other half. Like in the visual
RT task, the response options for “animate” and “photograph” responses were
always located on the right side of the screen. In total, including instructions, a
practice block and the 16 learning-distractor-retrieval blocks, the experiment took
~60 min.

For RT analyses we only used correct trials, and excluded all trials with an RT
that exceeded the average over subjects by ±2.5 SDs.

Procedure for Experiment 2—Visual reaction time task. Experiment 2 was very
similar in design and procedures to Experiment 1, and we therefore only describe
the differences between the two experiments in the following.

The second experiment started with a familiarisation phase where all objects
were presented sequentially. In each trial of this phase, a jittered fixation cross
(between 500 and 1500 ms) was followed by one screen that showed the
photograph and line drawing version of one object simultaneously, next to each
other. During the presentation of this screen (2.5 s) participants were asked to
overtly name the object. After a jittered fixation cross (between 500 and 1500 ms),
the name of the object was presented.

After this familiarisation phase, the experiment followed the same procedures as
the visual reaction time task in Experiment 1 except for the following changes.
Objects were overlaid onto a coloured background scene (1600 × 900 pixels). Also,
each object (286 × 286 pixels) was probed only once, either together with a
perceptual question, a semantic question (like above), or a contextual question
asking whether the background scene was indoor or outdoor. For the current
purpose we only describe the RTs to object-related questions in the Results section.
Another minor difference to Experiment 1 was that in this version of the task, the
question screen was displayed for 4 s, and the two options to answer during
stimulus presentation were removed from the screen as soon as the reminder
appeared.

Procedure for Experiment 2—Memory reaction time task. The memory
reaction time task in Experiment 2 also included, during the associative learning
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phase, a background scene (1600 × 900 pixels) that was shown on the screen
behind each object (286 × 286 pixels), and participants were asked to remember the
word–background–object combination. In this version of the task, each word–object
association was tested only once, together with either a perceptual question about the
object, a semantic question about the object, or a contextual question regarding the
background scene (indoor or outdoor). Therefore, one-third of the objects were tested
with a semantic question, one-third with a perceptual question, and one-third with a
contextual question. Again, context was not further taken into account in the present
analyses.

Procedure for Experiment 3—EEG. Following the EEG set-up, instructions were
given to participants and two blocks of practice were completed. The task proce-
dure of the EEG experiment was similar to the memory task in Experiments 1 and
2 except for the retrieval phase (Fig. 3a). Each block started with a learning phase
where participants created associations between overall eight action verbs and
objects. After a 40 s distractor task, participants’ memory for these associations was
tested in a cued recall test. In total, the experiment was composed of 16 blocks of
eight associations each.

Each trial of the retrieval test started with a jittered fixation cross (500–1500ms),
followed by the presentation of one of the action verbs presented during the learning
phase as a reminder. Participants were asked to visualise the object associated with
this action verb as vividly and in as much detail as possible while the cue was on the
screen. To capture the moment of retrieval, participants were asked to press the up-
arrow key as soon as they had the object back in mind; or the down-arrow if they
could not remember the object. This reminder was presented on the screen for a
minimum of 2 s and until a response was made (maximum 7 s). Immediately
afterwards, a blank square with the same size as the original image was displayed for
3 s. During this time, participants were asked to “mentally visualise the originally
associated object on the blank square space”. After a short interval where only the
fixation cross was present (500–1500ms), a question screen was displayed for 10 s or
until the participant's response, asking about perceptual (photograph vs. line drawing)
or semantic (animate vs. inanimate) features of the retrieved representation, like in the
behavioural tasks. However, in this case both types of questions were always asked on
the same trial, and they were asked at the end of the trial rather than before the
appearance of the reminder. The first question was semantic in half of the trials, and
perceptual in the other half. Therefore, each retrieval phase consisted of eight trials
where we tested all verb–object associations learned in the same block in random
order.

Data collection (behavioural and EEG). Behavioural response recording and
stimulus presentation were performed using Psychophysics Toolbox Version 353

running under MATLAB 2014b (MathWorks). For response inputs we used a
computer keyboard where directional arrows were selected as response buttons.

EEG data was acquired using a BioSemi Active-Two amplifier with 128 sintered
Ag/AgCl active electrodes. Through a second computer the signal was recorded at a
1024 Hz sampling rate by means of the ActiView recording software (BioSemi,
Amsterdam, the Netherlands). For all three experiments it was not possible for the
experimenters to be blind to the conditions during data collection and analysis.

GLMM analyses. Generalised linear mixed models (GLMMs) were used to test our
alternative hypotheses for accuracy (all experiments), RTs (Experiments 1 and 2),
and the relative timing of EEG classifier fidelity (d value) peaks (Experiment 3). We
chose GLMMs instead of more commonly used GLM-based models (i.e., ANOVAs
or t-tests) because they make fewer assumptions about the distribution of the data,
are better suited to model RT-like data24 including our d-value peaks, and can
accurately model proportional data that are bound between 0 and 1 (like memory
accuracy). Our conditions of interest were modelled as fixed effects in the GLMM.
Unless otherwise mentioned, these were the type of task (visual perception vs.
memory retrieval) and the type of feature probed (perceptual vs. semantic). Our
central reverse processing hypothesis was tested by an interaction contrast between
the factors type of task and question type. Two further planned comparisons were
then conducted to test if an interaction was driven by effects in the expected
direction (e.g., RTs perceptual < semantic during visual perception, and semantic <
perceptual during memory retrieval). For all analyses, participant ID (including
intercept) was modelled as a random factor. Wherever possible, we also included
slope as a random factor because GLMMs that do not take into account this factor
tend to overestimate effects (that is, they are overly liberal54). In all cases, we used a
compound symmetry structure based on theoretical assumptions and AIC and BIC
values. We would like to emphasise that all of the effects reported as significant in
the Results section remain significant (with a tendency for even stronger effects)
when excluding the random factor slope, but we chose to report the results from
the more conservative analysis.

Due to the data structure (specifically, the Hessian matrix not being positive
definite), slope as a random effect could not be modelled in two of the analyses in
Experiment 3: (i) when analysing the interaction between type of task and type of
classifier as predictive factor for EEG classifier peaks; and (ii) when testing
behavioural accuracy. In these two cases, the results are reported for GLMMs that
do not include slope as a random factor. For the interaction analysis in (i), we also
had to apply a linear transformation to the data, because the d-values during

encoding and retrieval (which are compared directly in the interaction contrast)
differed too much in scale. Data was thus z-scored to avoid errors calculating the
Hessian matrix, and a constant value of 1000 ms was added to each value to avoid
negative values in our target variable.

For all accuracy analyses we used a binomial distribution with a logistic link
function. All models for analysing RTs and d value peaks used a gamma probability
distribution and an identity link function. The choice of a gamma distribution was
justified because in all cases it fit our single trial distributions better than alternative
models, for example inverse Gaussian or normal distributions (evidence from AIC
and BIC available on request).

Clustered Wilcoxon signed rank test. To compare the pairwise differences
between perceptual and semantic d value peaks in each encoding or retrieval trial
(Experiment 3), and test whether the median of these differences deviates from
zero in the expected direction (that is, perceptual < semantic during encoding, and
semantic < perceptual during retrieval), we used a one-tailed Wilcoxon signed rank
test that clustered the data per participant, using random permutations (2000
repetitions). This analysis was run using the R package “clusrank”26.

EEG pre-processing. EEG data was pre-processed using the Fieldtrip toolbox
(version from 3 August, 2017) for MATLAB55. Data recorded during the asso-
ciative learning (encoding) phase was epoched into trials starting 500 ms before
stimulus onset and lasting until 1500 ms after stimulus offset. The resulting signal
was baseline corrected based on pre-stimulus signal (−500 ms to onset). Retrieval
epochs contained segments from 4000 ms before until 500 ms post-response. Since
the post-response signal during retrieval will likely still contain task-relevant (i.e.,
object specific) information, we baseline-corrected the signal based on the whole
trial. Both datasets were filtered using a low-pass filter at 100 Hz and a high-pass
filter at 0.1 Hz. To reduce line noise at 50 Hz we band-stop filtered the signal
between 48 and 52 Hz. The signal was then visually inspected and all epochs that
contained coarse artefacts were removed. As a result, a minimum of 92 and a
maximum of 124 trials remained per participant for the encoding phase, and a
range between 80 and 120 trials per subject remained for retrieval. Independent
component analysis was then used to remove eye-blink and horizontal eye
movement artefacts; this was followed by an interpolation of noisy channels.
Finally, all data was referenced to a common-average-reference (CAR).

Time-resolved multivariate decoding. First, to further increase the signal to noise
ratio for multivariate decoding, we smoothed our pre-processed EEG time courses
using a Gaussian kernel with a full-width at half-maximum of 24ms. Time-resolved
decoding via LDA using shrinkage regularisation56 was then carried out using
custom-written code in MATLAB 2014b (MathWorks). Two independent classifiers
were applied to each given time window and each trial (see Fig. 3b): one to classify the
perceptual category (photograph or line drawing) and one to classify the semantic
category (animate or inanimate). In both decoding analyses, we used undersampling
after artefact rejection (i.e. for the category with more trials we randomly selected the
same number of trials as available in the smallest category). The pre-processed raw
amplitudes on the 128 EEG channels, at a given time point, were used as features for
the classifier. LDA classification was performed separately for each participant and
time point using a leave-one-out cross-validation approach. This procedure resulted
in a decision value (d value) for each trial and time point, where the sign indicates in
which category the observation had been classified (e.g., − for photographs and + for
line drawings in the perceptual classifier), and the value of d indicates the distance to
the hyper-plane that divided the two categories (with the hyper-plane being 0).
This distance to the hyper-plane provided us with a single trial time-resolved value
that indicates how confident the classifier was at assigning a given object to a given
category. In order to use the resulting d values for further analysis, the sign of the
d values in one category was inverted, resulting in d values that always reflected
correct classification if they had a positive value, and increasingly confident classifi-
cation with increasingly higher values.

Our main intention was to identify the specific moment within a given trial at
which each of the two classifiers showed the highest fidelity, and to then compare the
temporal order of the perceptual and semantic peaks. We thus found the maximum
positive d value in each trial, separately for the semantic and perceptual classifiers. The
time window used for d value peak selection covered 3 s prior to participants’
response and, based on behavioural RTs, only trials with an RT≥ 3 s were included
(rejecting a total of 1459 trials on a group level). For all further analyses we only used
peaks with a value exceeding the 95th percentile of the classifier chance distribution
(see section on bootstrapping below), such as to minimise the risk of including
meaningless noise peaks. The resulting output from this approach allowed us to track
and compare the temporal “emergence” of perceptual and semantic classification
within each single-trial. When a peak for a given condition did not exceed the 95th
percentile threshold, we did not include the trial in further analyses. For encoding
trials, including all participants, we excluded 1.77 per cent of the trials based on this
restriction. In the case of retrieval trials, all maximum peaks found exceeded the value
of the threshold. In addition to this single-trial analysis, we also calculated the average
d value peak latency for perceptual and semantic classification in each participant to
compare the two average temporal distributions. Note, however, that many factors
could obscure differences between semantic and perceptual peaks when using this
average approach, including variance in processing speed across trials, e.g. for more or
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less difficult recalls. We therefore believe that the single trial values are more sensitive
to differences in timing between the reactivated features. We used these single trial
classifier peaks as dependent variables in a GLMM to test for an interaction between
two fixed effects: the type of feature (perceptual vs. semantic) and the type of task
(encoding vs. retrieval). Significant interaction results were followed up by planned
comparisons to test for a significant effect of feature (perceptual vs. semantic)
separately for encoding (expecting an earlier timing of perceptual than semantic
peaks) and retrieval (expecting an earlier timing of semantic than perceptual peaks).
Clustered Wilcoxon signed rank tests were then carried out to further corroborate the
relative timing of the single-trial classifier peaks.

Generating an empirical null distribution for the classifier. Previous work has
shown that the true level of chance performance of a classifier can differ sub-
stantially from its theoretical chance level that is usually assumed to be 1/number
of categories57–59. A known empirical null distribution of d values would allow us
to determine a threshold for considering only those d value peaks as significant
whose values are higher than the 95th percentile of this null distribution. We
generated such an empirical null distribution of d values by repeating our classifier
analysis with randomly shuffled labels a number of times, and combined this with a
bootstrapping approach, as detailed in the following.

As a first step, we generated a set of d value outputs that were derived from
carrying out the same decoding procedure as for the real data (including the leave-
one-out cross-validation), but using category labels that were randomly shuffled at
each repetition. This procedure was carried out independently per participant. On
each repetition, before starting the time-resolved LDA, all trials were randomly
divided into two categories with the constraint that each group contained a similar
number of photographs and line drawings, and approximately the same amount of
animate and inanimate objects (the difference in trial numbers was smaller than
8%). The output of one such repetition per participant was one d value per trial and
time-point, just as in the real analysis. This procedure was conducted 150 times per
participant for object perception (encoding) and retrieval, respectively, with a new
random trial split and random label assignment on each repetition. For each
participant we thus had a total of 151 classification outputs, one using the real
labels, and 150 using the randomly shuffled labels.

Second, to estimate our classification chance distribution for the random-effects
(i.e., trial-averaged) peak analyses, we used the 151 classification outputs from all
participants in a bootstrapping procedure60. On each of the bootstrapped
repetitions, we randomly selected one of the 151 classification outputs (150 from
shuffled labels classifiers and one from a real labels classifier) per participant, and
calculated the d value group average based on this random selection for each given
time point. The real data was included to make our bootstrapping analyses more
conservative, since under the null hypothesis, the real classifier output could have
been obtained just by chance. This procedure was repeated with replacement
10,000 times. To generate different distributions for the perceptual and semantic
classifiers, we ran this bootstrapping approach two times: once where the real labels
output from each subject came from the semantic classifier, and once where the
real d values came from the perceptual classifier.

Univariate ERP analysis. A series of cluster-based permutation tests (Monte
Carlo, 2000 repetitions, clusters with a minimum of two neighbouring channels
within the FieldTrip software) was carried out in order to test for differences in
ERPs between the two perceptual (photograph vs. line drawing) and the two
semantic (animate vs. inanimate) categories, controlling for multiple comparisons
across time and electrodes. First, we contrasted ERPs during object presentation in
the encoding phase in the time interval from stimulus onset until 500 ms post-
stimulus. We then carried out the same type of perceptual and semantic ERP
contrasts during retrieval, in this case aligning all trials to the time of the button
press. We used the full time window from 3000 ms before until 100 ms after the
button press, but we further subdivided this time window into smaller epochs of
300 ms to run a series of T tests, again using cluster statistics to correct for multiple
comparisons across time and electrodes. For all four contrasts, we reported the
cluster with the lowest P value.

We were mainly interested in the temporal order of the ERP peaks that
differentiated between perceptual and semantic classes during encoding and
retrieval. The above procedure resulted in four statistically meaningful clusters
across subjects: one each differentiating perceptual categories during encoding,
semantic categories during encoding, perceptual categories during retrieval, and
semantic categories during retrieval. To statistically test for an interaction in this
timing of these clusters, we extracted the time point of the maximum ERP
difference for each individual participant, restricted to the electrodes showing an
overall cluster effect but over the entire time window for encoding and retrieval.
These time points were entered into a 2 × 2 within-subjects ANOVA with the
factors type of feature (perceptual or semantic), and type of task (encoding or
retrieval), with the only planned comparison in this analysis being the interaction
contrast.

Code availability. The custom code used in this study is available in https://doi.
org/10.17605/OSF.IO/327EK.

Data availability
The data and that support the findings of this study are in [https://doi.org/
10.17605/OSF.IO/327EK].
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