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Abstract
We derive the equations of nonlinear magnetoelastostatics using several variational formulations involving the mechanical
deformation and an independent field representing the magnetic component. An equivalence is also discussed, modulo
certain boundary integrals or constant integrals, between these formulations using the Legendre transform and proper-
ties of Maxwell’s equations. Bifurcation equations based on the second variation are stated for the incremental fields as
well for all five variational principles. When the total potential energy is defined over the infinite space surrounding the
body, we find that the inclusion of certain terms in the energy principle, associated with the externally applied magnetic
field, leads to slight changes in the Maxwell stress tensor and associated boundary conditions. Conversely, when the
energy contained in the magnetic field is restricted to finite volumes, we find that there is a correspondence between
the discussed formulations and associated expressions of physical entities. In view of a diverse set of boundary data
and the nature of externally applied controls in the problems studied in the literature, along with an equally diverse list
of variational principles employed in modelling, our analysis emphasises care in the choice of variational principle and
unknown fields so that consistency with other choices is also satisfied.
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1. Introduction
Magnetoelastostatics concerns the analysis of suitable phenomenological models for a physical description
of the equilibrium in a certain type of deformable solid associated with multifunctional processes involving
magnetic and elastic effects. The main property characterising these solids is the coupling between elastic
deformation and magnetisation that they experience in the presence of externally applied mechanical and mag-
netic force fields [1–4]. The so-called magnetoelastic coupling is known to occur in response to a phenomenon
involving reconfigurations of small magnetic domains while a continuum vector field is borne out of an aver-
aging of microscopic and distributed subfields [5, 6]. Thus, an imposition of the magnetic field also induces a
deformation of the material specimen in addition to the magnetic effects caused by the traditional mechanical
forces [7].
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With a history of more than five decades [8–14], the mathematical modelling of magnetoelasticity continues
to be a vibrant area of research. The presence of strong magnetoelastic coupling in some manufactured mate-
rials, such as magnetorheological elastomers (MREs) [1], allows the subject to be relevant for a large number
of potential engineering and technological applications. Magnetorheological elastomers are composites made
of ferromagnetic particles embedded in a polymer matrix. Magnetisation of the ferromagnetic domains in the
presence of an external magnetic field, and the resulting interactions, leads to a change in macroscopically
observable mechanical properties. As a result, MREs find applications in microrobotics [15, 16], sensors and
actuators [17, 18], active vibration control [19], and waveguides [20, 21]. Constitutive modelling of MREs has
been undertaken by appropriately considering the micromechanics and derivation of coupled field equations
using homogenisation [5, 22], consideration of energy dissipation as a result of the viscoelasticity of the under-
lying matrix [23–26] and consideration of anisotropy as a result of ferromagnetic particle alignment [4, 27,
28].

The derivation of a consistent set of partial differential equations and boundary conditions that describe equi-
librium, the analysis of the stability of equilibrium and the solution of the relevant partial differential equations
via numerical techniques, such as the finite-element method, require development of appropriate variational
principles. In this paper, we shall be concerned with the variational principles that have been postulated for the
materials under the magnetoelastostatics assumptions and ignore any dynamic or dissipative effects. Current
variational principles of magnetoelastostatics typically fall into two classes: principles based on the magnetic
field or the magnetic induction as independent variables [29, 30] and principles based on a variant of the mag-
netisation as an independent variable [13, 31]. The typical starting point, definition of the total potential energy,
is different in all these cases, while it results in certain correspondence between the Euler–Lagrange equations
derived.

The twofold motivation of this paper is the study of equations for the statics problem as well as of the coun-
terparts of bifurcation equations within the several variational formulations. Within the magnetisation-based
principles, we discuss three different formulations that utilise, respectively, magnetisation field per unit volume,
magnetisation per unit mass and another adaptation of magnetisation field as an independent entity. In fact,
one of these variational principles analysed in this paper was postulated originally, very early, by Brown [32],
while another one has been utilised in the work of Kankanala and Triantafyllidis [13] for a specific instability
problem. In addition to these three magnetisation-based principles, two more formulations are presented, which
are analogues of electroelastostatics as derived in [33]. For each of these variational principles, we derive the
equation of equilibrium as well as the equation for the description of a state at the bifurcation point. As part of
the analysis based on the first variation, we find that the expression for the Maxwell stress is susceptible to the
inclusion of certain integral terms that define suitable magnetic energy over an infinite space; the peculiar situ-
ation is, however, completely different from those formulations in which energy is defined over a finite domain
of space. Moreover, we present certain arguments based on the Legendre transform as well as an application
of the divergence theorem (using the properties of Maxwell fields) that suggest a direct equivalence between
seemingly different formulations.

1.1. Outline

This paper is organised as follows. After briefly introducing the mathematical preliminaries, we introduce the
system under study and present the basic equations of nonlinear magnetoelastostatics in Section 2. In Sections 3
to 5, we present the first variation of the potential energy functional corresponding to three different magnetisa-
tion vectors,�,� and�, respectively, and then derive or state the equations for the critical point by linearising
the equilibrium equations. Some auxiliary details are presented in the Appendix B. In Appendices C and D, we
present the derivations of the first and second variations of the potential energy functionals corresponding to the
magnetic induction � and the magnetic field�, respectively.

1.2. Notation

We use the direct notation of tensor algebra and tensor calculus throughout the paper. The scalar product of two
vectors a and b is denoted a · b = [a]i[b]i where a repeated index implies summation according to Einstein’s
summation convention. The vector (cross) product of two vectors a and b is denoted a ∧ b with [a ∧ b]i =
εijk[a]j[b]k , εijk being the permutation symbol. The tensor product of two vectors a and b is a second-order
tensor H = a ⊗ b with [H]ij = [a]i[b]j. Operation of a second-order tensor H on a vector a is given by
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Figure 1. Representation of the problem; the body is depicted in its reference and current configurations embedded in a volume V .

[Ha]i = [H]ij[a]j. The scalar product of two tensors H and G is denoted H · G = [H]ij[G]ij. The notation
‖·‖ represents the usual (Euclidean) norm for the mentioned vector entity. A list of key variables employed
throughout this manuscript is presented in Appendix A.

For tensor calculus and the variational method, we refer to [34, 35] and [36], respectively, whereas the
notation and definitions of physical entities in continuum mechanics typically follow [37].

2. Nonlinear magnetoelastostatics: fundamental entities and equations
Consider a deformable body, the boundary or interior of which does not possess any distributed dipoles, occupy-
ing a three-dimensional region B lying inside another region V , as schematically depicted in Figure 1. We denote
the region exterior to the body, relative to V , by B′ so that B′ = V \(B ∪ ∂B). We assume that the body occupies
a region B0 in its reference configuration while V0 is the referential region corresponding to V , as explained
next. The points in regions B0 and B corresponding to the same material point of the body are naturally mapped
into each other by the deformation function

χ : B0 → B . (1)

To make sense of the referential (Lagrangian) description of fields in the current region V , but exterior to the
body, in a meaningful manner, we also define an extension of the deformation function χ to the part of the region
exterior to the body, such that sufficient continuity requirements are maintained; the latter region is denoted by

B′
0 = V0 \(B0 ∪ ∂B0).

Thus, by an abuse of notation, we assume an extension of mapping χ on a larger region, also denoted by χ , i.e.,

χ : V0 → V . (2)

In typical situations in practice, it is assumed that ∂V0 and ∂V coincide (for instance, this is the scenario depicted
in Fig. 1).

Following the standard notation in continuum mechanics, we define the deformation gradient for points in
the reference configuration B0 and on its exterior relative to V0 as

F : = Gradχ .

The extension of the natural definition of deformation and its gradient associated with χ on B0 to V0 permits
us later to perform some useful manipulations on the reference configuration, as well as on the exterior of the
body B′

0 in the reference configuration.
The magnetic field vector, magnetic induction vector and magnetisation vector are denoted in the reference

configuration as (�,�,�), respectively, and in the current configuration as (�,�,�), respectively. These three
vector fields are related by the well-known constitutive relation

� = μ0 �+�. (3)



Sharma and Saxena 1427

Further, the vector fields (�,�,�) must satisfy the Maxwell’s equations

div� = 0 and curl� = 0 in B ∪B′ . (4)

The divergence-free and curl-free conditions (equation (4)) for � and �, respectively, lead to the existence of
a magnetic potential (vector) field � and a magnetic potential (scalar) field φ on B ∪B′; the corresponding
expressions of � and � are given by

� = curl�, � = − grad φ . (5)

Following tradition in continuum mechanics [37], let J denote the determinant of the deformation gradient, i.e.,
J = det F (note that J > 0 on B0 as well as on B′

0). The referential (Lagrangian) counterparts of � and �,
defined by

� = JF−1
�, � = F�

�, (6)

naturally satisfy the Maxwell’s equations (equation (4)) in the reference configuration as

Div� = 0 and Curl� = 0 in B0 ∪B′
0 . (7)

Suitable referential (Lagrangian) counterparts of the magnetic vector potential and magnetic scalar potential
(equation (5)) on B0 ∪B′

0, based on the referential equations (equation (7)), are given by

� = Curl	, � = − Grad� . (8)

Concerning notational issues, a typical point in B0 (as well as B′
0) is denoted by X , which is related (after

deformation) to the point in B (or B′) by the deformation function χ , assumed to be a sufficiently smooth
mapping, such that x = χ (X) and X = χ−1(x) [37], i.e.,

X 	→ x, x 	→ X . (9)

It can be shown using tensor algebra and calculus that

	(X) = F�(X )�(x), �(X ) = φ(x), (10)

for all X ∈ B0 ∪B′
0. On substituting the transformations (equations (6)) into the constitutive relation (equation

(3)), we obtain the relation
J−1C� = μ0�+�, (11)

where� denotes the referential (Lagrangian) magnetisation (per unit volume) vector field. Clearly,� is related
to the current (spatial, Eulerian) magnetisation (per unit volume) vector field� by the definition (recall equation
(9))

�(X ) : = F�(X )�(x), (12)

for all X ∈ B0 ∪B′
0 (as � is zero in B′, we also get vanishing � in B′

0). From the point of view of practical
applications motivated by physics-oriented models, it is also useful to define the magnetisation (per unit mass)
� : B → 
3. It is easy to see that the defining relation is

�(x) : = ρ(x)−1
�(x), x ∈ B, (13)

where ρ stands for the mass density, i.e., a scalar field on B. The referential (Lagrangian) counterpart of the
spatial field� is denoted by�, which is defined by

�(X) : = J−1(X)F�(X)�(x), X ∈ B0 . (14)

Remark 1. When the density ρ0 in the reference configuration is a constant, in particular for a homogeneous
body, it is easy to see that� and� are simply proportional (i.e.,� = ρ0� as ρ0 = ρJ).
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Holding the viewpoint of several practical applications where magnetoelastic materials are involved, in cer-
tain situations it is quite convenient to distinguish the externally applied fields and the fields generated as a
result of the presence of the magnetoelastic body. In such a typical scenario, an external magnetic field �e is
applied that results in the generation of a magnetic flux density �e with the relation

�
e = μ0�

e, (15)

where μ0 is the (constant) magnetic permeability of vacuum. The presence of the magnetoelastic body cre-
ates a perturbation (sometimes described as the self-field) in the magnetic field that is denoted by �s and a
corresponding self-field for the magnetic flux vector denoted by �s [7].

Remark 2. In general, in this paper the decoration with superscript ‘s’ denotes the self-field or stray field while
the superscript ‘e’ denotes the externally applied entity.

Thus, the total magnetic field and induction vector field are given by the sums

� = �e + �s, � = �e + �s. (16)

The relationship between the three magnetic vector fields �s,�s and the magnetisation per unit volume � is
naturally given by

�
s = μ0 �

s +�, (17)

which holds on account of equations (15) and (16).

Remark 3. Concerning the units of the magnetisation vector�, we note that the definition of the magnetisation
vector is not standardised in the literature and, depending on the choice of units, either one of� and μ0� have
been used. Thus, the constitutive equation relating the three magnetic variables is also sometimes written as
�

s = μ0[�s +�] for a different set of units. A detailed discussion on this topic can be found in [11].

3. First formulation based on magnetisation
Consider the body B0 in its reference configuration (lying inside a containing space V0). Noting that � =
− Grad� by equation (8), it is assumed that the total potential energy of the system is a functional of the
deformation χ (equations (1) and (2)) and the referential magnetisation � (equation (12)) with the explicit
expression given by [31]

EI[χ ,�] : =
∫
B0

�(F,�)dv0 + μ0

2

∫
V0

J‖F−� Grad�‖2dv0−
∫
B0

f̃
e · χdv0 −

∫
∂B0

t̃e · χds0+
∫
∂V0

φe n0 ·�ds0,

(18)

where� is the (magnetoelastic) stored energy density per unit volume that depends on the deformation gradient
F and the referential magnetisation vector �. The second term denotes the energy stored in the space due
to the externally applied magnetic field � = − F−� Grad�. Integrals in equation (18) are defined on the
reference configuration and the spatial fields are mapped to the reference configuration by using the mapping χ
as placement. In this expression of the potential energy functional, it is assumed that φe stands for the externally
applied magnetic potential on the boundary of the containing region V0. Note that f̃

e
is the body force (vector)

field per unit volume while t̃e is the applied traction (vector) field due to dead loads at the boundary of the body
in its current configuration; here, also recall the notation described in Remark 2.

3.1. Equilibrium: first variation

To describe the state of magnetoelastic equilibrium, the particular deformation χ and magnetisation � at such
an equilibrium corresponds to an extremum point of E1, that is, when the first variation of the potential energy
functional vanishes. In other words, it is assumed that χ and� satisfy

δEI ≡ δEI[χ ,�; (δχ , δ�)] = 0, (19)
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for arbitrary but admissible variations δχ and δ�. The variation of the potential energy functional EI up to the
first order is given by

δEI = EI[χ + δχ ,�+ δ�] − EI[χ ,�]

=
∫
B0

[�,F · δF +�,� · δ�]dv0 −
∫
B0

f̃
e · δχdv0 −

∫
∂B0

t̃e · δχds0

+
∫
V0

[−P̂m · δF − J μ0

[
C−1

�
] · Grad δ�

]
dv0 +

∫
∂V0

φe n0 · δ�ds0 , (20)

where P̂m is a tensor field defined by

P̂m = μ0 J

[
−1

2

[
F−�

�
] · [F−�

�
]
I + [

F−�
�
]⊗ [

F−�
�
]]

F−�, (21)

where I is the identity tensor. We are able to understand the physical nature of P̂m by noticing that, in the region
B′

0 exterior to the body, the magnetisation � = 0; this results in P̂m = Pm, where Pm denotes the well-known
Maxwell stress tensor defined by

Pm : = 1

μ0 J

[
[F�] ⊗ [F�] − 1

2
[F�] · [F�]I

]
F−�. (22)

To further simplify the first variation expression (equation (20)), we apply the divergence theorem on the
last term and use the condition from a variation of equation (7) that Div(δ�) = 0 to get∫

∂V0

n0 · φ δ�ds0 =
∫
V0

Div (φ δ�) dv0 =
∫
V0

Grad(φ) · δ�dv0

= −
∫
V0

� · δ�dv0. (23)

At this point, we recall several identities for variations of C, J , etc., from Appendix B. Using the constitutive
relation (equation (11)), an increment of magnetic induction � up to first order can be written as

δ� = [[
F−� · δF] I − C−1 [δF]� F − F−1 [δF]

]
�− μ0 JC−1 Grad δ�+JC−1δ�. (24)

On substituting equations (23) and (24) in the last term of equation (20), we thus obtain

δEI =
∫
B0

[
�,F · δF +�,� · δ�− f̃

e · δχ
]

dv0 −
∫
∂B0

t̃e · δχds0 +
∫
V0

[[
P̊m − P̂m

]
· δF − JC−1

� · δ�
]

dv0,

(25)

where we have defined the tensor

P̊m : = [−[� ·�]I + [F�] ⊗ [
F−�

�
]+ [

F−�
�
]⊗ [F�]

]
F−�

= 2P̂m + J
[− [C−1

� ·�] I + [
F−�

�
]⊗ [

F−�
�
]+ [

F−�
�
]⊗ [

F−�
�
]]

F−�. (26)

As observed, � = 0 in the region B′
0, which leads to P̊m = 2Pm.

On splitting the (third term) integral over V0 in equation (25) to a sum of the integrals on disjoint regions B0
and B′

0, we obtain

δEI =
∫
B0

[[
�F + P̊m − P̂m

]
· δF − f̃

e · δχ + [
�,� − JC−1

�
] · δ�

]
dv0 −

∫
∂B0

t̃e · δχds0 +
∫
B′

0

Pm · δFdv0.
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This is rewritten with the use of the divergence theorem as

δEI =
∫
B0

[
−
[
Div

(
�,F + P̊m − P̂m

)
+ f̃

e
]

· δχ + [
�,� − JC−1

�
] · δ�

]
dv0

+
∫
∂B0

[[[
�,F + P̊m − P̂m

] ∣∣∣∣
−

− Pm

∣∣
+

]
n0 − t̃e

]
· δχds0

−
∫
B′

0

Div Pm · δχdv0 +
∫
∂V0

Pmn0 · δχds0.

Following the traditional definition, at this point, by virtue of inspection of the form of the first variation of the
potential energy functional, we define the first Piola–Kirchhoff stress in the body as

P : =�,F + P̊m − P̂m, in B0, (27)

while we have the natural stress tensor, i.e., the Maxwell stress, P = Pm defined by equation (22) exterior to the
body, i.e., in B′

0.
Remark 4. The Cauchy stress σ in the body is related to the first Piola–Kirchhoff stress P by the Piola transform
as σ cof(F) = P; this is also sometimes referred to as Nanson’s relation. On using equation (6) and the tensor
field stated as equation (22), the counterpart σm of the Cauchy stress σ in B′ (vacuum) is given by the expression

σ = σm = 1

μ0

[
�⊗�−1

2
[� ·�]I

]
in B′ .

On applying equation (19) to the first variation, the coefficients appearing with the arbitrary variations δχ
and δ� should also vanish for the requirement that δEI must be zero at equilibrium (i.e., χ ,� corresponding
to an extremum point of E). Vanishing of the coefficients of δ� results in the following constitutive relation
between � and�:

� = J−1C�,� in B0 . (28)

On substituting this expression for � in equations (21), (26) and (27), the total first Piola–Kirchhoff stress can
be rewritten in terms of the independent quantities F and� as

P = �,F + P̊m − P̂m (29)

= �,F + μ0 J−1

[
−1

2
�,� · [C�,�

]
I + F�,� ⊗ [

F�,�

]]
F−�

+ [−[� ·�,�

]
I + F−�

�⊗ F�,� + F�,� ⊗ F−�
�
]

F−�. (30)

Also
P = J

(
J−1�,FF� + �⊗�−μ0

2
(� ·�)I + {�⊗ �−(� · �)I}

)
F−� ,

which differs from that given by [13] (see their equation (2.26) and Section 6.3 of this paper), owing to the
presence of the terms in the curly brackets. Vanishing of the coefficients of δχ results in the following equations:

Div P + f̃
e = 0 in B0, (31a)

Div P = 0 in B′
0, (31b)

�P�n0 + t̃e = 0 on ∂B0, (31c)

Pn0 = 0 on ∂V0 . (31d)

Here, �{·}� = {·}+ − {·}− with the plus sign representing that side of the boundary (surface) that is reached
along the unit outward normal vector.
Remark 5. We note that in this formulation based on the magnetisation vector, we have to a-priori use both
the Maxwell’s equations (equation (7)) to impose conditions on � and � unlike the two formulations based
on � and � presented in Appendices C and D, in which one condition is imposed and the other is derived.
Also, unlike those two formulations, stress does not have a simple expression of being a derivative of the stored
energy density with respect to the deformation gradient tensor. The procedure implies the constitutive relation
(equation (28)) between � and�.
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3.2. Perturbation of equilibrium equation at critical point

In terms of the variations �χ and ��, we find the perturbation in the first Piola–Kirchhoff stress using equation
(30) as

�P = �,FF�F + 1

2
[�,F� +�∗

F�]��

− μ0 J−1
[
F−� · �F

] [−1

2
�,� · [C�,�

]
I +�,� ⊗ [

C�,�

]]
F−�

− μ0 J−1

[
−1

2
�,� · [C�,�

]
I +�,� ⊗ [

C�,�

]]
F−�[�F]�F−�

+ μ0 J−1

[
−
[

F�,� ·
[
�F�,� + F

[
�,����+ 1

2
�,�F�F + 1

2
�∗
�F�F

]]]
I

+
[
�,����+ 1

2
�,�F�F + 1

2
�∗
�F�F

]
⊗ [

C�,�

]
+�,� ⊗

[
C

[
�,����+ 1

2
�,�F�F + 1

2
�∗
�F�F

]
+ [

[�F]�F + F��F
]
�,�

]]
F−�

−
[

− [
� ·�,�

]
I +�⊗�,� +�,� ⊗�

]
F−�[�F]�F−�

+
[

−
[
�� ·�,� +� ·

[
�,����+ 1

2
�,�F�F + 1

2
�∗
�F�F

]]
I

+ ��⊗�,� +�⊗
[
�,����+ 1

2
�,�F�F + 1

2
�∗
�F�F

]
+
[
�,����+ 1

2
�,�F�F + 1

2
�∗
�F�F

]
⊗�+�,� ⊗�

]
F−�, (32)

where we have defined two third-order tensors �∗
F� and �∗

�F, which have the following property:

[�∗
F�u] · U = [�,�FU] · u, [�∗

�FU] · u = [�,F�u] · U, (33)

where u is an arbitrary vector and U is an arbitrary second-order tensor. For the bifurcation analysis of critical
point (χ ,�), using equation (31), the perturbations �χ and �� in the equilibrium state need to satisfy the
following partial differential equations and boundary conditions:

Div �P = 0 in B0, (34a)

Div �P = 0 in B′
0, (34b)

��P�n0 = 0 on ∂B0, (34c)

�Pn0 = 0 on ∂V0 . (34d)

This set of equations needs to be solved for the nontrivial unknown functions (�χ , ��) describing the onset
of bifurcation.

Remark 6. Perturbation in the Maxwell stress �Pm in B′
0 in terms of �F and �� is given by equation (162).

The boundary condition (equation (34c)) connects �P (equation (32)) and �Pm (equation (162)) through the
constitutive relation (equation (28)) for �.

Remark 7. In the context of the first variation, as well as of the critical point perturbation, these expressions and
equations are similar to those obtained in two other formulations based on � and �. These are summarised in
Appendices C and D, where the derivations provided in [13] for the case of electroelastic materials are closely
followed.
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4. Second formulation based on magnetisation
Suppose that the physical space exterior to B is the entire space outside; in other words, we assume that

V = 
3. (35)

We consider that scenario when the potential energy functional depends on the magnetic energy stored in the
entire space, due to the so-called stray field �s, and also includes a contribution of the work done by an external
magnetic field �e on the magnetisation induced in the body. As a consequence of this, unlike the formulation
presented in Section 3 and in Appendices C and D, we do not have any contribution from those terms that involve
an integral on the boundary of the region exterior to the body, i.e., on ∂V . In particular, the total (magnetoelastic)
stored energy E in the considered system is the sum of the energy stored in the body and the stray magnetic field
energy of the entire space. The explicit mathematical expression of the energy, as a functional of the deformation
χ (equations (1) and (2)) and the spatial magnetisation � (equations (13) and (14)), is given (per unit mass) by

E(χ ,�) : =
∫
B
ρ�̂(F,�)dv +

∫
�3

1

2
μ0�

s · �sdv, (36)

where we have defined �̂ as the Helmholtz energy (per unit mass). Following the physical nature of the stray
fields, also by convention, it is assumed that the stray magnetic field �s decays (in a suitable manner) far
away from the body, that is ‖�s ‖ → 0 as ‖x‖ → ∞ (recall that x denotes the position vector in the current
configuration).

The work done on the magnetoelastic body (the same as the negative of the potential energy of the applied
dead loading) by externally applied mechanical and magnetic forces is given by [13]∫

B
ρ�e ·�dv +

∫
B
ρf e · χdv +

∫
∂B

te · χds, (37)

where f e denotes the body force (per unit mass) and te denotes the mechanical traction (per unit area of the
current configuration), while the first term is identified as the Zeeman energy [38]. It is emphasised that f e, te

and �e are external dead loads.
Using equations (36) and (37), the potential energy EII of the system comprising the body and the

surrounding space is then given by E minus the magnetoelastic work done, i.e.,

EII(χ ,�) : =
∫
B

[
ρ�̂(F,�) − �e · (ρ�) − ρf e · χ]dv−

∫
∂B

te · χds + 1

2
μ0

∫
B
�

s ·�s dv + 1

2
μ0

∫
B′
�

s ·�sdv.

(38)

Remark 8. We emphasise that even though the Eulerian expression of the potential energy EII is the same as
that provided by Kankanala and Triantafyllidis [13], our formulation is markedly different from theirs, since we
consider the mechanical deformation χ and the magnetisation in the body � as the only two unknown fields
of the problem. Moreover, our referential formulation is quite different from that of [13], as discussed next. In
terms of χ and �, the magnetic vector field �s can be found by employing the Maxwell’s equations stated in
Section 2. As

�
s = μ0 �

s +ρ� (39)

and �s = − gradφs by equations (17) and (13), while φs is found from the condition (equation (4)), i.e.,
div�s = 0, that �s satisfies.

It is preferable to write the potential energy in equation (38) in the reference (Lagrangian) configuration,
i.e., all field variables are functions of the reference position vector X instead of the current position vector x
(= χ (X)).

The Helmholtz energy function �̂(F,�) in equation (38) is mapped to �̂(F,�) (recall equation (9)), i.e.,

�̂
(
F
(
χ−1(x),�(x)

) = �̂
(
F(X),�(X )

)
, X ∈ B0 .
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It is emphasised that the field �e depends directly on the spatial location x (unlike f e) and is therefore explicitly
mentioned as such.

Recall equation (13) and Remark 1, and in particular the relations

� = ρ� = ρJF−�
� = ρ0F−�

� = F−�
� and � = ρ0�.

Using these transformations, we can redefine the expression of the potential energy functional (equation (38))
in a referential description as

EII

(
χ ,�

)
: =

∫
B0

ρ0

[
�̂(F,�) − J�e(χ (X )) · F−�

�
]
dv0 −

∫
B0

f̃
e · χdv0 −

∫
∂B0

t̃e · χds0

+ 1

2
μ0

∫
B0

JF−�
�

s · F−�
�

sdv0 + 1

2
μ0

∫
B′
�

s · �sdv, (40)

where t̃e is the force per unit area of the current configuration placed on the reference configuration, i.e.,
t̃e(X )ds0 = te(x)ds, X ∈ ∂B0. Also, the body force per unit volume f̃

e
on the reference configuration is related

to f e by f̃
e
(X )dv0 = ρf e(x)dv, X ∈ B0. In the first term of equation (40), we have highlighted the dependence

on X for additional clarity.
Recall that the extension of χ to B′

0 is also denoted by χ and that the mapping χ is sufficiently smooth and
it maps ∂B0 to ∂B such that it identifies with χ in that region and its gradient F identifies with the deformation
gradient F of χ on the common boundary ∂B0. In vacuum far from ∂B0, the deformation gradient F can very
well be assumed to be identity for convenience. We can rewrite the last term of the potential energy in equation
(40) so that the entire expression becomes

EII(χ ,�) =
∫
B0

ρ0

[
�̂(F,�) − J�e(χ(X )) · F−�

�
]
dv0 −

∫
B0

f̃
e · χdv0 −

∫
∂B0

t̃e · χds0

+ 1

2
μ0

∫
B0

JC−1
�

s ·�sdv0 + 1

2
μ0

∫
B′

0

JC−1
�

s ·�sdv0. (41)

4.1. Equilibrium: first variation

On using the expressions for increments,

EII(χ + δχ ,�+ δ�) − EII(χ ,�) = δEII(χ ,�)[δχ , δ�] + 1

2
δ2EII(χ ,�)[δχ , δ�] + o2[δχ , δ�], (42)

where o2[δχ , δ�] are the terms of order higher than two in δχ and δ�; δEII and δ2EII are the first and the second
variations of EII, respectively.

The first variation δEII[δχ , δ�], written simply as δEII, is given by

δEII =
∫
B0

ρ0

[
�̂,F · δF + �̂,� · δ�−J(grad�

�
e)F−�

� · δχ−J�e · F−�δ�−J�e · δF−�
�−δJ�e · F−�

�
]

dv0

−
∫
B0

f̃
e · δχdv0−

∫
∂B0

t̃e ·δχds0 + μ0

∫
B0

JC−1
�

s · δ�sdv0 + 1

2
μ0

∫
B0

[
JδC−1

�
s ·�s + δJC−1

�
s ·�s

]
dv0

+ μ0

∫
B′

0

JC−1
�

s · δ�sdv0 + 1

2
μ0

∫
B′

0

[
JδC−1

�
s ·�s + δJC−1

�
s ·�s

]
dv0. (43)

Using the identities for variations of C, J from Appendix B,

1

2
μ0

∫
B0

[
JδC−1

�
s ·�s + δJC−1

�
s ·�s

]
dv0 =

∫
B0

[−P̌m · δF]dv0, (44)

where

P̌m : =μ0J

[
�

s ⊗�s − 1

2
[�s ·�s]I

]
F−�. (45)
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Remark 9. P̌m resembles the tensor Pm as defined in equation (22) in the region exterior to the body B0. Indeed,

1

2
μ0

∫
B′

0

[
JδC−1

�
s ·�s + δJC−1

�
s ·�s

]
dv0 =

∫
B′

0

[− P̌m · δF]dv0,

which leads to

P̌m = μ0J

(
�

s ⊗�s −1

2
(�s ·�s)I

)
F−� ,

which can be compared with the Maxwell stress tensor

Pm = μ0J

(
�⊗�−1

2
(� ·�)I

)
F−�

from equation (22), exterior to the body B0. Thus, it is not the same as that obtained by the other three formu-
lations; in particular, P̌m decays as ‖X‖ → ∞. This anomaly is due to the presence of an applied external field
in infinite space, which corresponds to a non-vanishing ‘external’ Maxwell stress.

We write a first-order variation of the magnetic induction vector using the constitutive relation (equation
(11)) (with� = ρ0�, δ�s = − Grad δ�s) as

δ�s = δ(JC−1)(μ0�
s + ρ0�) + JC−1δ(μ0�

s + ρ0�)

=
[
[F−� · δF]I − C−1δF�F − F−1δF

]
�

s

− μ0JC−1 Grad δ�s +ρ0JC−1δ�. (46)

We use the divergence theorem and use the condition from a variation of equation (7) that Div(δ�s) = 0 to get

−
∫
B0

�
s · δ�sdv0 =

∫
∂B0

n0 ·�s δ�sds0, (47)

−
∫
B′

0

�
s · δ�sdv0 =

∫
∂B′

0

n0 ·�s δ�sds0

= −
∫
∂B0

n0 ·�s δ�sds0. (48)

Also, owing to equation (46),

−μ0

∫
B0

JC−1
�

s · δ�sdv0 =
∫
B0

−P̊m · δFdv0 +
∫
B0

�
s · (ρ0JC−1δ�− δ�s)dv0, (49)

where P̊m is defined by

P̊m : = 2P̌m + ρ0J
(− (C−1

� ·�s)I + (F−�
�) ⊗ (F−�

�
s) + (F−�

�
s) ⊗ (F−�

�)
)
F−�. (50)

Similarly,

−μ0

∫
B′

0

JC−1
�

s · δ�sdv0 =
∫
B′

0

−2P̌m · δFdv0 +
∫
∂B′

0

n0 ·�s δ�sds0, (51)

where ∫
∂B′

0

n0 ·�s δ�sds0 = −
∫
∂B0

n0 ·�s δ�sds0 .

On changing the derivatives from the current to the reference configuration, we get

grad�e = [
Grad�e]F−1. (52)
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Using these expressions, the first variation δEII can, therefore, be rewritten as

δEII =
∫
B0

ρ0

[
�̂,F · δF + �̂,� · δ�− JF−�(Grad�

�
e)F−�

� · δχ

− J�e · F−�δ�− J�e · δF−�
�− δJ�e · F−�

�

]
dv0

−
∫
B0

f̃
e · δχdv0 −

∫
∂B0

t̃e · δχds0

+
∫
B0

(−P̌m · δF)dv0 +
∫
B′

0

(−P̌m · δF)dv0

+
∫
B0

P̊m · δFdv0 −
∫
B0

�
s · (ρ0JC−1δ�)dv0 −

∫
∂B0

n0 ·�s δ�sds0

+
∫
B′

0

P̊m · δFdv0 +
∫
∂B0

n0 ·�s δ�sds0. (53)

Assuming the continuity of �s, i.e.,�s |+ −�s |− on the boundary ∂B0, the two terms involving �s and δ�s

cancel; the latter is obtained by using the variation of the condition

��s� · n0 = 0. (54)

Apply the divergence theorem on the terms containing gradients of δχ to get

δEII =
∫
B0

(
− (

Div(ρ0�̂,F + Pm + P̊m − P̌m) + f̃
e + ρ0JF−�(Grad�

�
e)F−�

�
) · δχ

+ ρ0

(
�̂,� − JF−1

�
e − JF−1

�
s) · δ�

)
dv0

+
∫
∂B0

(
(ρ0�̂,F + Pm + P̊m − P̌m)−n0 − (P̊m − P̌m)+n0 − t̃e) · δχds0

−
∫
B′

0

Div(P̊m − P̌m) · δχdv0, (55)

where Pm is defined by

Pm : = ρ0

(
JF−�

�⊗ �e − (
JF−�

� · �e)I)F−�

= ρ0

(
JF−�

�⊗ F−�F�
�

e − (
JF−1F−�

� · F�
�

e)I)F−�, (56)

and we have used the assumptions that χ and δχ are continuous across ∂B0; and �s → 0 as ‖X‖ → ∞. Note
that

P̊m + Pm = 2P̌m + ρ0J
(

− (
C−1

� · F�(�s +�e)
)
I + (

F−�
�
)⊗ F−�F�(�s +�e)

+ (
F−�

�
s
)⊗ (

F−�
�
))

F−�. (57)

In vacuum, � = 0, which leads to
P̊m + Pm = P̊m = 2P̌m.

With the defining expression

P = ρ0�̂,F + Pm + P̊m − P̌m, (58)

the tensor P can be identified as the total first Piola–Kirchhoff stress tensor and P� = P = P̌m can be identified
as the Maxwell stress tensor in vacuum.
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Corresponding to the equilibrium condition of vanishing of the first variation δEII of the potential energy EII,
using the classical methods in the calculus of variations [36], i.e.,

δEII(χ ,�)[δχ , δ�] = 0, (59)

since the increment δ� is arbitrary, we arrive at the constitutive relation

�̂,� = JF−1[�s + �e] = JC−1[�s +�e], (60)

which is, remarkably, the same as equation (28).

Remark 10. In particular, inside the body P is given by (as � = J−1F�̂,�)

P = ρ0�̂,F + ρ0J
(−(C−1

� · F�
�
)
I + (

F−�
�
)⊗ F−�F�

�+�s ⊗(F−�
�
))

F−�

+
[
μ0J �s ⊗�s − μ0J

2
[�s ·�s]I

]
F−�

= ρ0�̂,F + μ0J−1

[
− J2

2
[�s ·�s]I + J2

�
s ⊗�s

]
F−�

+ ρ0

[−(� · �̂,�

)
I + (

F−�
�
)⊗ F�̂,� + J �s ⊗(F−�

�
)]

F−�, (61)

which differs from equation (30) by the following term:

PN = μ0J

[
− 1

2
[�e ·�e]I + �e ⊗�e

]
F−� + μ0J

[
− [�s ·�e]I + �s ⊗�e + �e ⊗�s

]
F−�

+ ρ0J �e ⊗(F−�
�)F−�. (62)

With

ψ(a) = −1

2
(a · a)I + a ⊗ a ,

the first and second line in PN can be written as ψ(�e +�s) − ψ(�s). The difference between the two defini-
tions of the stress tensor is not surprising. It is known that these could be different expressions, yet physically
equivalent, as they depend on the formulation, see for example Hutter and van de Ven [39], who presented this
aspect of the Maxwell stress tensor while analysing several formulations of electromagnetism in the theory of
deformable media.

Since the increment δχ is arbitrary, we arrive at the following equations of equilibrium in magnetoelasto-
statics (for a system of a magnetoelastic body and its surrounding vacuum):

Div P +̃f
e + ρ0JF−�[Grad�

�
e]F−�

� = 0 in B0, (63a)

Div P̌m = 0 in B′
0 (63b)

[P −P̌m]n0 = t̃e on ∂B0 . (63c)

4.2. Perturbation of equilibrium equation at critical point

For the analysis of the critical point (χ ,�), the perturbations �χ and δ� in the equilibrium state need to satisfy
certain incremental equations and boundary conditions. They are derived by a perturbation of equation (63) and
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are stated next. Recalling from equation (60) that �s = J−1F�̂,�−�e, perturbation in the first Piola–Kirchhoff
stress can be written using equation (61) as

�P = ρ0

[
�̂,FF�F + 1

2

[
�̂,F� + �̂

∗
F�

]
��

]
− μ0J−1

[
F−� · �F

][− J2

2
[�s ·�s]I + J2

�
s ⊗�s

]
F−�

+ μ0J−1

[
− J2

[[
F−� · �F

]
[�s ·�s] + �s ·��s

]
I + 2J2

[
F−� · �F

]
�

s ⊗�s

+ J2
[��s ⊗�s + �s ⊗��s]]F−�

− μ0 J−1

[
− J2

2
[�s ·�s]I + J2

�
s ⊗�s

]
F−�[�F]�F−�

+ ρ0

[
−
[
�� · �̂,� +� ·

[
1

2

[
�̂,�F + �̂

∗
�F

]�F + �̂,����
]]

I

+ [− F−��FF−�
�+ F−���]⊗ F�̂,�

+ F−�
�⊗

[
�F�̂,� + 1

2
F
[
�̂,�F + �̂

∗
�F

]�F + F�̂,����
]

+ [
J
[
F−� · �F

]
�

s +J��s]⊗ [
F−�

�
]+ J �s ⊗ [

F−���− F−�[�F]�F−�] ]F−�

− ρ0

[
− (
� · �̂,�

)
I + (

F−�
�
)⊗ F�̂,� + J �s ⊗(F−�

�
)]

F−�[�F]�F−�, (64)

where we can obtain the expression for ��s from equation (60) as

��s = J−1F
[
�̂,�F�F + �̂,����]− J−1

[
F−� · �F

]
F�̂,� + J−1�F�̂,�. (65)

We have also introduced two second-order tensors �̂
∗
�F and �̂

∗
F� with the property[

�̂
∗
�FU

]
u =

[
�̂,F�u

]
· U,

[
�̂

∗
F�u

]
· U =

[
�̂,�FU

]
· u. (66)

for arbitrary vector u and arbitrary second-order tensor U. The expression for �P̌m is obtained from equation
(45) as

�P̌m = μ0J
[
F−� · �F

][
�

s ⊗�s − 1

2
[�s ·�s]I

]
F−� + μ0J

[
�

s ⊗��s +��s ⊗�s −[�s ·��s ]I]F−�

− μ0J

[
�

s ⊗�s − 1

2
[�s ·�s]I

]
F−�[�F]�F−�. (67)

Finally, this leads to the following partial differential equations and boundary conditions:

Div �P +ρ0JF−�[Grad�
�

e]F−���
+ρ0J

[
F−� · �F

]
F−�[Grad�

�
e]F−�

�

−ρ0JF−�[�F]�F−�[Grad�
�

e]F−�
�

−ρ0JF−�[Grad�
�

e
]
F−�[�F]�F−�

� = 0 in B0, (68a)

Div �P̌m = 0 in B′
0 (68b)[�P −�P̌m

]
n0 = 0 on ∂B0 . (68c)
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5. Third formulation based on magnetisation
In the backdrop of the two formulations provided thus far based on the magnetisation, we investigate in this
section the expressions provided by [13], which also assume that the stored energy density depends on the mag-
netisation as the additional field besides the deformation gradient. Following [13], in this case, the magnetisation
per unit mass pulled back to the reference configuration (recall equation (9)), i.e.,

�(X ) : =�(x) = J(X )F−�(X )�(X ), X ∈ B0, (69)

is itself treated as a material field. In particular, note that the direction of the referential vector field� on B0 is
the same as that of the spatial vector field � on B, while it differs from the choice of the referential field �,
owing to the presence of the cofactor map for F (Nanson’s relation). The total potential energy of the system is
written as

EIII(χ ,�) : =
∫
B0

ρ0

[
�̃(F,�) − �e(χ (X )) ·�]dv0 −

∫
B0

f̃
e · χdv0 −

∫
∂B0

t̃e · χds0

+ 1

2
μ0

∫
B0

JC−1
�

s ·�sdv0 + 1

2
μ0

∫
B′

0

JC−1
�

s ·�sdv0. (70)

Here, f̃ e represents the body force (per unit volume) and t̃e denotes the mechanical traction. In contrast to
equation (37), the term corresponding to the Zeeman energy is written differently. Note from equation (17) that
J−1F�s = μ0F−�

�
s + ρ�, i.e., �s = μ0JC−1

�
s + ρ0F−1

�, so that

δ�s = δ
(
JC−1

)
[μ0�

s] + ρ0δ
(
F−1
�
)
,

=
[ [

F−� · δF] I − C−1δF�F − F−1δF
]
μ0JC−1

�
s − ρ0F−1δFF−1

�− μ0JC−1 Grad δ�s +ρ0F−1δ�,

=
[ [

F−� · δF] I − C−1δF�F
]
μ0JC−1

�
s − F−1δF�s − μ0JC−1 Grad δ�s +ρ0F−1δ�. (71)

Using this relation, we can rewrite the following integral, which occurs in the first variation of potential energy:

−μ0

∫
B0

JC−1
�

s · δ�sdv0 =
∫
B0

−P̃m · δFdv0 +
∫
B0

�
s · (ρ0F−1δ�− δ�s

)
dv0, (72)

where the integrand of the first term on the right-hand side, i.e., −P̃m · δF, can be expanded as

−P̃m · δF = μ0J
(
F−� · δF)C−1

�
s ·�s − μ0JC−1δF�FC−1

�
s ·�s − F−�

�
s ⊗�s · δF

= (− 2P̌m − ρ0 �
s ⊗�F−�) · δF. (73)

Thus,
P̃m − P̌m = P̌m + ρ0 �

s ⊗�F−� = P̌m + J �s ⊗�F−�. (74)

From equation (44), we already know a part of the expression of the first variation of the stray field energy
term. Therefore, we write the first variation of the potential energy (equation (70)) as

δEIII(χ ,�) =
∫
B0

ρ0

[
�̃,F · δF + �̃,� · δ�− F−�(Grad�

�
e)
� · δχ − �e · δ�] dv0 −

∫
B0

f̃
e · δχdv0

−
∫
∂B0

t̃e · δχds0 +
∫
B0

(− P̌m · δF)dv0 +
∫
B′

0

(− P̌m · δF)dv0 +
∫
B0

P̃m · δFdv0

−
∫
B0

�
s · (ρ0F−1δ�

)
dv0 −

∫
∂B0

n0 ·�s δ�sds0 +
∫
B′

0

P̃m · δFdv0 +
∫
∂B0

n0 ·�s δ�sds0. (75)

On applying the divergence theorem on the terms containing the gradient of δχ , we get

δEIII =
∫
B0

(
−
[
Div

(
ρ0�̃,F + P̃m − P̌m

)+ f̃
e + ρ0F−�(Grad�

�
e)
�

]
· δχ + ρ0

[
�̃,� − �e − �s ] · δ�

)
dv0

+
∫
∂B0

((
ρ0�̃,F + P̃m − P̌m

)
−n0 − (̃

Pm − P̌m

)
+n0 − t̃e

)
· δχds0 −

∫
B′

0

Div
(̃
Pm − P̌m

) · δχdv0. (76)
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Since the increments δχ and δ� are arbitrary, we arrive at the following Euler–Lagrange equations for this
variational problem:

Div P +̃f
e + ρ0F−�(Grad�

�
e)
� = 0 in B0, (77a)

�P�n0 + t̃e = 0 on ∂B0, (77b)

Div P = 0 in B′
0 (77c)

� = �̃,� in B0, (77d)

where we have recognised the total first Piola–Kirchhoff stress tensor in the body and in vacuum as

P = ρ0�̃,F + P̃m − P̌m in B0, (78a)

P = P̃m − P̌m in B′
0 . (78b)

Remark 11. From equations (45) and (74) (recall Remark 4), we can write the total Cauchy stress on B as

σ = J−1 P F� = ρ�̃,FF� + �s ⊗�s − 1

2
μ0(�s ·�s)I. (79)

6. Correspondence between variational principles
Thus far, we have presented three different magnetisation-based formulations, where the difference between
these variational principles occurs as a result of the choice of particular magnetisation field. In addition to these,
we also present two other formulations in Appendices C and D, where, in place of the magnetisation field, the
stored energy density depends on � and �, respectively. Since the mechanical work terms involving the body
force and the surface traction are the same in all these formulations (in the referential description), i.e.,

WM : =−
∫
B0

f̃
e · χdv0 −

∫
∂B0

t̃e · χds0,

(which also equals its spatial description − ∫B ρf e·χdv−∫
∂B te·χds), we sometimes compare only the remaining

terms. Using the constitutive relation (equation (11)) and the fact that� vanishes outside the body B0, we get

1

2
μ0

∫
V0

J‖F−�
�‖2dv0 −

∫
V0

� ·�dv0 = −1

2
μ0

∫
V0

J‖F−�
�‖2dv0 −

∫
B0

JC−1
� ·�dv0. (80)

In a similar manner, we find that

1

2
μ0

∫
B′

0

J‖F−�
�‖2dv0 −

∫
B′

0

� ·�dv0 = −1

2
μ0

∫
B′

0

J‖F−�
�‖2dv0. (81)

At this point, it is useful to recall Remark 2. Using equations (7) and (8),

−
∫
∂V0

��e · n0ds0 = −
∫
V0

Div(��e)dv0 = −
∫
V0

[�Div�e + Grad� ·�e]dv0

=
∫
V0

� ·�edv0. (82)

In general, we have ∫
V0

� ·�dv0 = −
∫
∂V0

n0 ·��ds0,∫
V0

� ·�edv0 = −
∫
∂V0

n0 ·��eds0,∫
V0

�
e ·�dv0 = −

∫
∂V0

n0 ·�e
�ds0. (83)
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Also, these relations can be rewritten further, for example,∫
V0

� ·�edv0 = −
∫
∂V0

n0 ·��eds0 = −μ0

∫
∂V0

n0 ·� JC−1
�

eds0 .

6.1. Potential energy functionals based on�, � and �

The variational formulations based on � and � can be related by applying a Legendre-type transform on the
energy functions �̊ and �̌ as �̊(F,�) = �̌(F,�) + � · � [14]. Moreover, we note that the three variational
formulations based on�, � and � can be mutually related by a set of Legendre-type transforms on the stored
energy density functions �, �̊ and �̌, respectively, so that

�(F,�) = �̊(F,�) − 1

2
μ0JC−1

� ·�

= �̊(F,�) + 1

μ0
� ·�− 1

2μ0
JC−1

� ·�− 1

2μ0
J−1C� ·�, (84)

�(F,�) = �̌(F,�) +� ·�− 1

2
μ0JC−1

� ·�

= �̌(F,�) + JC−1
� ·�+ 1

2
μ0JC−1

� ·�, (85)

�̊(F,�) = �̌(F,�) +� ·�. (86)

By a direct calculation, it can be verified that these relations result in the magnetic constitutive relations
(equations (126), (143) and (28)); in particular,

�̊,� = �, �̌,� = −�, �,� = JC−1
� in B0 .

As such, these relations lead to different convexity properties for �̊(F,�), �̌(F,�) and �(F,�) in general.
As a consequence, it is natural to establish the relationship between the three variational formulations based

on �, � and �. Recall that the total potential energy (equation (18)) is a functional of the deformation χ
(equations (1) (2)) and the referential magnetisation � (equation (12)). Indeed, the variational formulation
(equation (18)) can be expressed as

EI[χ ,�] + WM =
∫
B0

�(F,�)dv0 + 1

2
μ0

∫
V0

J‖F−� Grad�‖2dv0 +
∫
∂V0

�e n0 ·�ds0

=
∫
B0

�(F,�)dv0 + 1

2
μ0

∫
V0

J‖F−�
�‖2dv0 −

∫
V0

�
e ·�dv0

=
[∫

B0

�(F,�)dv0 + 1

2
μ0

∫
B0

J‖F−�
�‖2dv0

]
+ 1

2
μ0

∫
B′

0

J‖F−�
�‖2dv0 −

∫
V0

�
e ·�dv0,

(87)

which can be written as

EI[χ ,�] + WM = EIV[χ ,	] + WM . (88)

This is the exact relationship between the variational principles analysed in Section 3 and Appendix C. Recall
that the total potential energy (equation (119)) is a functional of the deformation χ (equations (1) and (2)) and
the referential counterpart � of � (via the referential magnetic vector potential 	 (equation (8))). Also,

1

2
μ0

∫
V0

J‖F−�
�‖2dv0 −

∫
V0

� ·�dv0 = −1

2
μ0

∫
V0

J‖F−�
�‖2dv0 −

∫
B0

JC−1
� ·�dv0,
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so that

EI[χ ,�] + WM =
∫
B0

�(F,�)dv0 − 1

2
μ0

∫
V0

J‖F−�
�‖2dv0 +

∫
V0

(�−�e) ·�dv0 −
∫
B0

JC−1
� ·�dv0

=
∫
B0

(
�(F,�) − JC−1

� ·�− 1

2
μ0J‖F−�

�‖2

)
dv0 − 1

2
μ0

∫
B′

0

J‖F−�
�‖2dv0

+
∫
V0

(�−�e) ·�dv0. (89)

Hence, equation (87) can be written as

EI[χ ,�] + WM = EV[χ ,�] + WM −
∫
V0

� ·�edv0 +
∫
V0

(�−�e) ·�dv0, (90)

which is the relationship between the variational principles analysed in Section 3 and Appendix D. Here, we
recall that the total potential energy (equation (141)) is a functional of the deformation χ (equations (1) and (2))
and the referential magnetic field vector � (via the referential magnetic scalar potential � (equation (8))).

Remark 12. On using equations (122), (7) and (8), we can write∫
∂V0

[
�

e ∧	] · n0ds0 =
∫
V0

Div
[
�

e ∧	] dv0

=
∫
V0

[
Curl�e ·	−[Curl	] ·�e

]
dv0 = −

∫
V0

� ·�edv0. (91)

Hence, the total potential energy functional (equation (119)) can be rewritten as

EIV[χ ,	] + WM =
∫
B0

�̊(F,�)dv0 + 1

2μ0

∫
B′

0

J−1‖F�‖2dv0 −
∫
V0

�
e ·�dv0

=
∫
B0

�̊(F,�)dv0 + 1

2μ0

∫
B′

0

J−1‖F�‖2dv0 +
∫
∂V0

n0 ·�e
�ds0. (92)

In the variational formulation for the total potential energy functional (equation (141)), we have

EV[χ ,�] + WM =
∫
B0

�̌(F,�)dv0 − 1

2
μ0

∫
B′

0

J‖F−�
�‖2dv0 +

∫
V0

� ·�edv0

=
∫
B0

�̌(F,�)dv0 − 1

2
μ0

∫
B′

0

J‖F−�
�‖2dv0 −

∫
∂V0

n0 ·��eds0. (93)

Hence,

EV[χ ,�] + WM =
∫
B0

�̌(F,�)dv0 + 1

2
μ0

∫
B′

0

J‖F−�
�‖2dv0 −

∫
B′

0

� ·�dv0 +
∫
V0

� ·�edv0

=
∫
B0

(�̌(F,�) +� ·�)dv0 + 1

2μ0

∫
B′

0

J−1‖F�‖2dv0 −
∫
V0

� · (�−�e)dv0, (94)

which can be written as

EV[χ ,�] + WM = EIV[χ ,	] + WM +
∫
V0

�
e ·�dv0 −

∫
V0

� · (�−�e)dv0

= EIV[χ ,	] + WM +
∫
V0

� ·�edv0 −
∫
V0

(�−�e) ·�dv0. (95)
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Also, ∫
V0

� ·�edv0 = μ0

∫
V0

� · JC−1
�

edv0

=
∫
V0

(
J−1C�−��B0

) · JC−1
�

edv0

=
∫
V0

(
�− JC−1

��B0

) ·�edv0

=
∫
V0

�
e ·�dv0 −

∫
B0

JF−�
� · F−�

�
edv0. (96)

Hence,

EV[χ ,�] + WM =
∫
B0

(
�̌(F,�

)+� ·�)dv0 + 1

2μ0

∫
B′

0

J−1‖F�‖2dv0 −
∫
V0

(�−�e) ·�dv0

−
∫
B0

F−�
�

e · JF−�
�dv0. (97)

6.2. Potential energy functionals based on�,� and �

Following the arguments in Section 4, we assumed that

V = V0 = 
3, (98)

for the formulation presented in Section 3. This needed some changes in equation (18). Clearly, the only term
that needs to be rewritten is the last term in equation (18). Using the nature of a magnetic field in vacuum we
have, by equation (83), ∫

∂V0

φe n0 ·�ds0 = −
∫
V0

�
e ·�dv0 .

Hence, based on equations (18) and (41), we get

EI − EII = EI[χ ,�] − EII[χ ,�]

=
∫
B0

[
�(F,�) − ρ0�̂(F,�) + ρ0J�e(χ (X )) · F−�

�
]
dv0 + μ0

2

∫
V0

JC−1
� ·�dv0 −

∫
V0

�
e ·�dv0

− 1

2
μ0

∫
B0

JC−1
�

s ·�sdv0 − 1

2
μ0

∫
B′

0

JC−1
�

s ·�sdv0. (99)

The first term in the second line can be rewritten in view of equation (16) as

μ0

2

∫
V0

JC−1
� ·�dv0 = μ0

2

∫
V0

JC−1

[
�

e ·�e + 2�e ·�s +�s ·�s

]
dv0. (100)

On substituting this back into equation (99), we get

EI − EII =
∫
B0

[
�(F,�) − ρ0�̂(F,�) + ρ0J�e(χ (X )) · F−�

�
]
dv0 + μ0

∫
V0

JC−1
�

e ·�sdv0

+ μ0

2

∫
V0

JC−1
�

e ·�edv0 −
∫
V0

�
e ·�s dv0 − μ0

∫
V0

JC−1
�

e ·�e dv0 (101)

=
∫
B0

[
�(F,�) − ρ0�̂(F,�) + ρ0J�e(χ (X )) · F−�

�
]
dv0 −

∫
B0

J C−1
�

e ·� dv0

− μ0

2

∫
V0

JC−1
�

e ·�e dv0. (102)
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Since� = ρ0� and �e = F�
�

e, this can be rewritten as

EI − EII =
∫
B0

[
�(F,�) − ρ0�̂(F,�)

]
dv0 − μ0

2

∫
V0

JC−1
�

e ·�e dv0. (103)

Thus, the two potential energies differ not only by the definition of the respective stored energy density functions
but also by an extra term; the latter term, clearly, is a constant term, though it could be infinite for�e �= 0 while
the former can be made zero by naturally identifying the stored energy density functions.

From equations (41) and (70) (using equation (69)), we get

EII[χ ,�] − EIII[χ ,�] =
∫
B0

ρ0

[
�̂(F,�) − �̃(F,�)

]
dv0. (104)

These two potential energies differ only by the definition of the respective stored energy density functions,
which can be naturally identified to achieve an equivalence.

6.3. Comparison with the expressions provided by [13] using a modified potential energy functional

Since �e is the gradient of a potential, and in view of equation (15), by a direct calculation, we have∫
�3 �

e · �sdv = 0, as a result of which we get∫
B0

ρ0�
e ·�dv0 =

∫
B
�

e ·�dv =
∫
�3
�

e · (�s − μ0�
s)dv = −μ0

∫
�3
�

e · �sdv. (105)

Note that μ0

∫
�3 �

e · �sdv is nonzero; indeed, with �s = − grad φs, μ0�
e = �e and Br ⊂ 
3 as a ball of radius

r, we find it to be equal to

−
∫
�3
�

e · grad φs dv = lim
r→∞

[ ∫
Br

div�e φs dv −
∫
∂Br

φs
�

e · n0ds

]
,

where div�e = 0 in the first term but φs may not necessarily go to zero in the second term as r = ‖x‖ → ∞.
Thus, an equivalent potential energy functional is

EIII(χ ,�) +
∫
B0

ρ0�
e ·�dv0 + μ0

∫
�3
�

e · �sdv,

in addition to which by including the constant term 1
2μ0

∫
�3 �

e · �edv too, we get (recall equation (36))

EIII(χ ,�) =
∫
B
ρ�̂(F,�)dv + WM + 1

2
μ0

∫
B
� ·� dv + 1

2
μ0

∫
B′
� ·� dv, (106)

with its referential form (to be compared with equation (70)) as

ÊIII(χ ,�) =
∫
B0

ρ0�̃(F,�)dv0 + WM + 1

2
μ0

∫
B0

JC−1
� ·�dv0 + 1

2
μ0

∫
B′

0

JC−1
� ·�dv0. (107)

This expression coincides with the potential energy functional of equation (18) except for the last term (which
is absent in the present scenario as V = 
3) and, more importantly, a different measure of magnetisation; note
that

�(X ) = �(x) = ρ−1(x)F−�(X)�(X )

by equations (12) and (13). Like equation (71), we have

δ� =
[[

F−� · δF]I − C−1δF�F
]
μ0JC−1

�− F−1δF�− μ0JC−1 Grad δ�+ρ0F−1δ�, (108)
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and like equation (48) we have (with BR ⊂ 
3 as a ball of radius R)

−
∫
B′

0

� · δ�dv0 =
∫
B′

0

Grad� ·δ�dv0

= lim
R→∞

(∫
∂BR

�n0 · δ�ds0 −
∫

BR

� divδ�dv0

)
−
∫
∂B0

n0 ·�δ�ds0

= −
∫
∂B0

n0 ·�δ�ds0, (109)

assuming that δ� · n0 vanishes as R = ‖X‖ → ∞ in a suitable manner. By carrying out the first variation
analysis, similar to that presented earlier in this section, we get

δÊIII(χ ,�) =
∫
B0

ρ0

[
�̃,F · δF + �̃,� · δ�]dv0 −

∫
B0

f̃
e · δχdv0 −

∫
∂B0

t̃e · δχds0 +
∫
B0

(− P̂m · δF)dv0

+
∫
B′

0

(− P̂m · δF)dv0 +
∫
B0

P̊m · δFdv0 −
∫
B0

�
s · (ρ0F−1δ�

)
dv0 −

∫
∂B0

n0 ·�s δ�sds0

+
∫
B′

0

P̊m · δFdv0 +
∫
∂B0

n0 ·�s δ�sds0, (110)

where P̂m is defined by equation (21) and P̊m is defined by equation (26). The Euler–Lagrange equations by
setting δÊIII = 0 are derived as

Div (P) + f̃
e = 0 in B0, (111a)

�P�n0 + t̃e = 0 on ∂B0, (111b)

Div (P) = 0 in B′
0, (111c)

F�s = �̃,� in B0, (111d)

by recognising that, for this potential energy functional, the first Piola–Kirchhoff stress is given by

P = ρ0�̃,F + P̊m − P̂m in B0, (112a)

P = P̊m − P̂m in B′
0 . (112b)

On a direct comparison of these equations with equations (77) and (78), we note that, owing to the inclusion
of extra terms with �e, the expressions for first Piola–Kirchhoff stress and the Maxwell stress in vacuum are
different. This leads to the vanishing of the equivalent of electromagnetic body force term in equation (111a)
and a modified constitutive equation (equation (111d)).

7. Concluding remarks
In this paper, we present five variational formulations of nonlinear magnetoelastostatics that differ from each
other with respect to the independent field variable for the magnetic effect. The formulations based on the
magnetic field �, the magnetic induction � and the referential magnetisation vector per unit volume � are
analogous to the variational formulations of electroelastostatics presented by Saxena and Sharma [33]. Varia-
tional formulation based on referential magnetisation per unit mass� was originally postulated by Brown [32]
and that based on a pull-back of the magnetisation per unit mass to reference configuration � was given by
Kankanala and Triantafyllidis [13]. A direct equivalence between all five principles by means of the Legendre
transform and the properties of Maxwell equations is the highlight of Section 6 of this paper.

The principles can broadly be divided into two categories. For the first kind, based on�,� and�, the total
energy is defined over a bounded domain V , with the external magnetic loading being specified by means of the
potential on the boundary ∂V . For the second kind, based on � and �, the integral is defined over an infinite
space and the notion of an external field becomes necessary to supply external loading. The choice to include
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Table 1. Summary of the five variational formulations.

Total potential Independent magnetic Euler–Lagrange (equilibrium) Maxwell stress
energy variable Domain equations equations

EI � V (28), (31) (22)
EII � �

3 (60), (63) (45)
EIII � �

3 (77) (45), (74)
EIV � V (125)–(128) (22)
EV � V (146), (147) (22)

this (constant) external field in the total energy can lead to a different definition of the Maxwell stress, and
result in changes in the body force and traction terms. A summary of these principles is presented in Table 1 for
easy reference. Our analysis suggests caution with the choice of variational principle appropriate to the physical
problem and control variables.

The analysis presented in this paper can be easily extended to the special case of incompressibility. For this
purpose, see Remark 4 in the recent exposition and formulation for the electroelastic counterpart [33]. Further
extension of the present analysis to include mixed boundary conditions and discontinuities in the magnetoelastic
body or free space can shed further light on the issues around correspondences between the five principles.
Inclusion of kinetic energy and the effect of time-dependent boundaries is another possible interesting area for
extension of the analysis presented here. We have restricted our analysis to nonlinear deformation and coupling.
A linearised analysis to study deformation close to the reference configuration may lead to simplifications and
influence the equivalence analysis presented in Section 6. These avenues are currently under investigation and
shall appear in suitable form elsewhere.
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Appendix A . Notation
	 magnetic vector potential (referential)
� magnetic vector potential (spatial)
� magnetic induction vector (referential)
� magnetic induction vector (spatial)
F Gradχ
� magnetic field vector (referential)
� magnetic field vector (spatial)
J det F
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� JF−�
�

� magnetisation vector per unit volume (referential)
� magnetisation vector per unit mass (referential)
� magnetisation vector per unit volume (spatial)
� magnetisation vector per unit mass (spatial)
n unit outward normal (spatial)
n0 unit outward normal (referential)
P first Piola–Kirchhoff stress tensor
Pm Maxwell stress tensor
X position vector (referential)
x position vector (spatial)
ρ mass density (spatial)
ρ0 mass density (referential)
σ Cauchy stress tensor
� magnetic scalar potential (referential)
φ magnetic scalar potential (spatial)
Curl curl (referential)
curl curl (spatial)
Div divergence (referential)
div divergence (spatial)
Grad gradient (referential)
grad gradient (spatial)
{·},G partial derivative with respect to G
�{·}� jump of a quantity {·} across a boundary �{·}� = {·}+ − {·}−

Appendix B . Variation of some relevant kinematic quantities
We list the first and second variations of key kinematic variables (see, for example, [33] for detailed derivations).
On a perturbation χ → χ + δχ , we get F(χ + δχ) = Gradχ + Grad(δχ) ⇒ δF = Grad(δχ), δ2F = 0. The right
Cauchy–Green deformation tensor changes as

C(χ + δχ ) = C + δC + δ2C + · · · , with δC = F�δF + [δF]�F, δ2C = [δF]�δF. (113)

For the determinant J = detF, we get J(χ + δχ ) = J + δJ + δ2J + · · · with

δJ = JF−� · δF, δ2J = F · cof(δF). (114)

As δF = Grad(δχ ), the second of these expressions, δ2J , is written in component form as δ2J =
1
2εimnεjpqFij[δχm,p][δχ n,q]. Here, εijk is the third-order permutation tensor. It can also be shown that

δ2J = 1

2
J
[[

F−� · δF][F−� · δF]− F−�[δF]�F−� · δF] . (115)

Taylor’s expansion for the inverse of determinant J−1 is J−1(χ + δχ) = J0 + J1 + J2 + · · · , where

J0 = J−1 ,

J1 = −J−1F−� · δF ,

J2 = −J−2F · cof(δF) + J−1
[
F−� · δF]2 .

Using equation (115), we rewrite J2 as J2 = (2J )−1[[F−� · δF]2 + F−�[δF]�F−� · δF]. For the inverse tensors,
[F(χ + δχ)]−1 = F−1 + D1F−1 + D2F−1 + · · · , with

D1F−1 = −F−1[δF]F−1, D2F−1 = F−1[δF]F−1[δF]F−1. (116)

and [C(χ + δχ)]−1 = C−1 + D1C−1 + D2C−1 + · · · with

D1C−1 = −C−1[δF]�F−� − F−1[δF]C−1, (117)

D2C−1 = C−1[δF]�F−�[δF]�F−� + F−1[δF]C−1[δF]�F−� + F−1[δF]F−1[δF]C−1. (118)
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Appendix C . Variational formulation based on magnetic induction
Using the fact that � is found in terms of 	 by equation (8), i.e., � = Curl	, the total potential energy of the
system, i.e., the body B0 and its exterior B′

0, is written as a functional depending on the deformation χ and 	
as [40]

EIV[χ ,	] : =
∫
B0

�̊(F,�)dv0 + 1

2μ0

∫
B′

0

J−1[F�] · [F�]dv0 +
∫
∂V

[
�

e ∧�] · nds

−
∫
B0

f̃
e · χdv0 −

∫
∂B0

t̃e · χds0, (119)

where �̊ is the (scalar) total (magnetoelastic) stored energy density per unit volume, �e is the externally applied
magnetic (vector) field whose tangential component is prescribed on ∂V . The integral terms in equation (119)
involve the reference configuration as the spatial fields are mapped to the reference configuration, with the
exception of the third term, which is written in terms of the current region V . It assumed that the bound-
ary (typically, infinitely far away) is fixed (i.e., it does not change in space between the reference and spatial
descriptions), so that the third term in equation (119) is also rewritten in the reference configuration simply as∫
∂V0

[
�

e ∧	] ·n0ds0. Notice that n0 and n are used to denote the respective outward unit normals for the region
V0 and V (as well as B0 and B).

C.1. Equilibrium: first variation

To describe the deformation χ and the referential magnetic vector potential 	 when the body is in a state of
equilibrium, the first variation of the potential energy functional should vanish, that is, using the functional
(equation (119)), δEIV ≡ δEIV[χ ,	; (δχ , δ	)] = 0. An expansion of the functional EIV up to the first order,
owing to a variation of its arguments χ and 	, is given by

EIV[χ + δχ ,	+δ	] =
∫
B0

�̊(F + δF,�+ δ�)dv0

+ 1

2μ0

∫
B′

0

[J + δJ]−1 [[F + δF] [�+ δ�]] · [[F + δF] [�+ δ�]] dv0

+
∫
∂V0

[
�

e ∧ [	+δ	]
] · n0ds0 −

∫
B0

f̃
e · [χ + δχ ]dv0 −

∫
∂B0

t̃e · [χ + δχ ]ds0.

(120)

Taking advantage of the referential description, noting that δD = Curl δ	, while using expressions for first-
order variations as derived in [33], we simplify further the expression of EIV[χ + δχ ,	+δ	] stated before.
Thus, it is found that the first variation (equation (19)) of EIV is given by

δEIV = EIV[χ + δχ ,	+δ	] − EIV[χ ,	]

=
∫
B0

[
�̊,F · δF + �̊,� · Curl δ	

]
dv0

+ 1

2μ0

∫
B′

0

[
− J−1

[
F−� · δF] [F�] · [F�] + 2J−1[[F�] ⊗�] · δF + 2J−1[C�] · Curl δ	

]
dv0

+
∫
∂V0

[
n0 ∧�e

] · δ	 ds0 −
∫
B0

f̃
e · δχdv0 −

∫
∂B0

t̃e · δχds0. (121)

Using an elementary identity for vector fields u and v, namely,

v · Curl u = Div[u ∧ v] + [Curl v] · u, (122)
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we expand the expression for δEIV as

δEIV =
∫
B0

[
�̊,F · δF + [Curl�̊,�] · δ	

]
dv0 +

∫
∂B−

0

n0 ·
[
�̊,� ∧ δ	

]
ds0 − 1

μ0

∫
∂B+

0

n0 · [C� ∧ δA] ds0

+ 1

2μ0

∫
B′

0

[
− J−1

[
F−� · δF] [F�] · [F�] + 2J−1[[F�] ⊗�] · δF + [Curl(J−1C�)] · δ	

]
dv0

+
∫
∂V0

[
n0 ∧

[
�

e − 1

μ0
C�

]]
· δ	 ds0 −

∫
B0

f̃
e · δχdv0 −

∫
∂B0

t̃e · δχds0. (123)

Inspection of this equation leads to consideration of the definition of a tensor field given by equation (22). Using
equation (22), we rewrite the first variation δEIV of the total potential as

δEIV =
∫
B0

[
−
[
Div

(
�̊,F

)
+ f̃

e
]

· δχ + [
Curl�̊,�

] · δ	
]

dv0

+
∫
∂B0

[[[
�̊,F|− − Pm|+

]
n0 − t̃e

]
· δχ +

[
n0 ∧ [�̊,�|− − 1

μ0
C�|+

]] · δ	
]

ds0

+
∫
B′

0

[
− Div Pm · δχ + 1

2μ0

[
Curl

(
J−1C�

) ] · δ	
]

dv0

+
∫
∂V0

[
Pmn0 · δχ +

[
n0 ∧

[
�

e − 1

μ0
C�

]]
· δ	

]
ds0. (124)

The total (first Piola–Kirchhoff) stress P in the body is P = �̊,F, in B0, and the (Maxwell) stress exterior to the
body is given by equation (22), i.e., P = Pm, in B′

0 .
On applying equation (19) to the first variation (equation (124)) calculated, the coefficients of arbitrary

variations δχ and δ	 should vanish for δEIV to vanish. As a consequence, the vanishing of the coefficients of
δχ results in the following equations

Div P + f̃
e = 0 in B0, (125a)

Div P = 0 in B′
0, (125b)

�P�n0 + t̃e = 0 on ∂B0, (125c)
Pn0 = 0 on ∂V0 . (125d)

We thus obtain the magnetic field� in the body as

� = �̊,� = 1

μ0

[
J−1C�−�] in B0, (126)

and exterior to the body as

� = 1

μ0
J−1C� in B′

0, (127)

because the magnetisation � vanishes in B′
0 and use has been made of the constitutive relation (equation (11)).

Since the body B0 and the normal to the boundary n0 can be chosen arbitrarily, we get the following relations
from the vanishing of the coefficients of δ	:

Curl(�) = 0 in B0 ∪B′
0, (128a)

n0 ∧ ��� = 0 on ∂B0, (128b)

n0 ∧ [�e −�] = 0 on ∂V0 . (128c)

Remark 13. We note that in this formulation based on the magnetic induction vector, we have a-priori assumed
that the first part of equation (7) is satisfied by � and have recovered the second part of equation (7) for the
magnetic field � as the Euler–Lagrange equation for the variational (potential energy minimisation) problem.
This procedure implies the constitutive assumption � = �̊,�.
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C.2. Critical point: second variation

For the analysis of critical point (χ ,	), we need to find the functions �χ and �	 such that the bilinear
functional defined next vanishes at the critical point, that is δ2EIV ≡ δ2EIV[χ ,	; (δχ , δ	), (�χ , �	)] = 0.
On using the expressions derived in [33], the bilinear functional associated with the second variation of EIV is
expanded into the form

δ2EIV =
∫
B0

[[
�̊,FF�F + 1

2
�̊,F���+ 1

2
�̊

∗
F���

]
· δF +

[
�̊,����+ 1

2
�̊,�F�F + 1

2
�̊

∗
�F�F

]
· δ�

]
dv0

+ 1

2μ0

∫
B′

0

J−1[F�] · [F�]

[[
F−� · �F

][
F−� · δF]+ F−�[�F

]�
F−� · δF

− 2
[
[�F�] · [F�] + [F��] · [F�]

]
F−� · δF

− 2
[
[δF�] · [F�] + [Fδ�] · [F�]

]
F−� · �F

+ 2[δF��+ �Fδ�] · [F�] + 2δF� · F��+ 2�F� · Fδ�

+ 2[�F�] · [δF�] + 2[F��] · [Fδ�]

]
dv0. (129)

In this expression, we have defined the third-order tensors �̊
∗
F� and �̊

∗
�F according to the following property:

[
�̊

∗
F�u

] · U = [
�̊,�FU

] · u,
[
�̊

∗
�FU

] · u = [
�̊,F�u

] · U, (130)

which holds for arbitrary u and U, while u is a vector and U is a second-order tensor. Using equation (129) for
δ2EIV, in the region B′

0, the terms containing δ� can be written in the form v0 · δ�, where the vector field v0 is
defined by

v0 : = 1

μ0 J

[− [
F−� · �F

]
F�F�+ [�F]�F�+ F��F�+ F�F��]. (131)

Since equation (11) gives � = J−1 μ0
−1 C� in B′

0, it is easy to see that v0 = ��. Also, in equation (129) for
δ2EIV, in the region B′

0, the terms containing δF can be written in the form T · δF, where the second-order tensor
T is defined by

T : = 1

2μ0 J

[
[F�] · [F�]

[[
F−� · �F

]
F−� + F−�[�F]�F−�

]
− 2

[[
�F�

]
· [F�]+

[
F��

]
· [F�]]F−� − 2

[
F−� · �F

]
[F�] ⊗�

+ 2[F�] ⊗ ��+ 2[F��] ⊗�+ 2[�F�] ⊗�
]

. (132)

By expanding the expression stated in equation (22), to first-order perturbation, it is seen that T = �Pm.
Based on a repeated application of the triple product identity involving the curl operator (equation (122)) and
the divergence theorem, while observing that the variations δχ and δ	 are arbitrary, the equation δ2EIV = 0
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(equation (129)) finally leads to the following partial differential equations:

Div

(
�̊,FF�F + 1

2

[
�̊,F� + �̊

∗
F�

]��) = 0 in B0, (133)

Curl

(
�̊,����+ 1

2

[
�̊,�F + �̊

∗
�F

]�F

)
= 0 in B0, (134)[[

�̊,FF�F + 1

2

[
�̊,F� + �̊

∗
F�

]��] ∣∣∣
−

− T
∣∣∣
+

]
n0 = 0 on ∂B0, (135)[

�̊,����+ 1

2

[
�̊,�F + �̊

∗
�F

]�F|− − v0|+
]

∧ n0 = 0 on ∂B0, (136)

Div T = 0 in B′
0, (137)

Curl v0 = 0 in B′
0, (138)

Tn0 = 0 on ∂V0, (139)
v0 ∧ n0 = 0 on ∂V0 . (140)

Remark 14. Note that since we have proved T = �Pm and v0 = ��, it follows that this set of equations
for the variations �� and �F in B′

0 can alternatively be obtained by perturbing the corresponding equations
of equilibrium (equations (125a) to (128c)). However, perturbation of the equilibrium equations in B0 does
not result in these equations, owing to the presence of the [�̊,F� + �̊

∗
F�]/2 and [�̊,�F + �̊

∗
�F]/2 terms. This

general argument can be relaxed in cases when the energy density function �̊ is at least a twice continuously
differentiable function, as has been considered, for example, by Bustamante and Ogden [29].

Appendix D . Variational formulation based on magnetic field
Noting that � = − Grad�, the total potential energy of the system is written as [40]

EV[χ ,�] : =
∫
B0

�̌(F,�)dv0 − 1

2
μ0

∫
B′

0

J
[
F−�

�
] · [F−�

�
]

dv0 −
∫
∂V
φ �e ·nds −

∫
B0

f̃
e · χdv0

−
∫
∂B0

t̃e · χds0, (141)

where �̌ is the stored energy density per unit volume that depends on the deformation gradient F and the
referential magnetic field vector �. The third term in equation (141) is in the current configuration but the
same argument as that following equation (119) allows it to be rewritten in the reference configuration as
− ∫

∂V0
��e · n0ds0.

D.1. Equilibrium: first variation

At a state of equilibrium, χ and � are such that the first variation of the potential energy functional vanishes,
satisfying an analogue of equation (19), i.e., δEV ≡ δEV[χ ,�; (δχ , δ�)] = 0. The variation of the functional
EV up to the first order in (δχ , δ�) is given by

δEV = EV[χ + δχ ,�+δ�] − EV[χ ,�]

=
∫
B0

[
�̌,F · δF − �̌,� · Grad δ�

]
dv0

− 1

2
μ0

∫
B′

0

[
JF−� · δF[F−�

�
] · [F−�

�
]− 2J

[
F−�[δF]�F−�

�
] · [F−�

�
]+ 2J

[
F−�

�
] · [F−�δ�

]]
dv0

−
∫
∂V0

δ��e · n0ds0 −
∫
B0

f̃
e · δχdv0 −

∫
∂B0

t̃e · δχds0. (142)
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We define the first Piola–Kirchhoff stress P and magnetic induction � in the body as

P = �̌,F, � = −�̌,� in B0, (143)

the (Maxwell) stress Pm exterior to the body as stated earlier in equation (22) and recall the relation J−1F� =
μ0 F−�

� in vacuum from equation (11). Using equation (143), we rewrite the first variation (equation (142)) as

δEV =
∫
B0

[
Div

(
P� δχ

)−
[
Div P +̃f

e
]

· δχ + Div (δ��) − δ�Div�
]

dv0

+
∫
B′

0

[
Div

(
P�

m δ
χ
)− [Div Pm] · δχ + Div (δ��) − δ�Div�

]
dv0 −

∫
∂V0

δ��e · n0ds0 −
∫
∂B0

t̃e · δχds0.

(144)

After an application of divergence theorem to equation (144), we get

δEV =
∫
B0

[
−
[
Div(P) + f̃

e
]

· δχ − δ�Div�
]

dv0

+
∫
∂B0

[[
[P |− − Pm|+]n0 − t̃e] · δχ + δ�[�|− −�|+] · n0

]
ds0

+
∫
B′

0

[−[Div Pm] · δχ − δ�Div�]dv0 +
∫
∂V0

[Pmn0 · δχ + δ�[�−�e] · n0]dv0. (145)

Since the two variations δχ and δ� are arbitrary, their coefficients in each of the integrals must vanish.
Accordingly, using the coefficient of δχ in equation (145), we get

Div P + f̃
e = 0 in B0, (146a)

Div P = 0 in B′
0, (146b)

�P�n0 + t̃e = 0 on ∂B0, (146c)
Pn0 = 0 on ∂V0, (146d)

while the coefficient of δ� in equation (145) leads to the equations

Div� = 0 in B0, (147a)

Div� = 0 in B′
0, (147b)

��� · n0 = 0 on ∂B0, (147c)
��� · n0 = 0 on ∂V0 . (147d)

Remark 15. Parallel to Remark 13 at the end of Section C.1., we note that in this formulation based on the
magnetic field (equivalently, the magnetic scalar potential), we have a-priori assumed the second part of equation
(7) that � should satisfy and have recovered the first part of equation (7) for the magnetic induction � as an
Euler–Lagrange equation of this minimisation problem. This procedure also implies the constitutive assumption
� = −�̌,�, which has also been independently derived earlier [14].

D.2. Critical point: second variation
For the analysis of critical point (χ ,�), we need to find �χ and �� such that a certain bilinear functional based
on the second variation vanishes at the critical point, that is δ2 EV ≡ δ2 EV[χ ,�; (δχ , δ�), (�χ , ��)] = 0. The
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second variation of the functional in equation (141) based on the magnetic field� is given by

δ2EV =
∫
B0

[
Div

([
�̌,FF�F + 1

2
�̌,F���+ 1

2
�̌

∗
F���

]�
δχ

)
− Div

(
�̌,FF�F + 1

2
�̌,F���+ 1

2
�̌

∗
F���

)
· δχ

− Div

([
1

2
�̌

∗
�F�F + 1

2
�̌,�F�F + �̌,����

]
δ�

)
+ Div

(
1

2
�̌

∗
�F�F + 1

2
�̌,�F�F + �̌,����

)
δ�

]
dv0

+
∫
B′

0

[
Div

(
T̃�δχ

)− Div T̃ · δχ + Div (̃v0δ�) − Div ṽ0δ�
]

dv0, (148)

where we have introduced the tensor T̃ and the vector ṽ0 as

T̃ : =Jμ0

[
F−�[�F]�F−�

�⊗ F−1F−�
�+ F−�

�⊗ F−1�FF−1F−�
�

− F−���⊗ F−1F−�
�− F−�

�⊗ F−1F−���
+ F−�

�⊗ F−1F−�[�F]�F−�
�− [

F−� · �F
]
F−�

�⊗ F−1F−�
�

+
[

− [
F−� [�F]� F−�

�
] · [F−�

�
]+ [

F−�
�
] · F−�[��]]F−�

− 1

2

[
F−�

�
] · [F−�

�
][[

F−� · �F
]
F−� − F−�[�F]�F−�

]
, (149)

ṽ0 : =Jμ0

[
F−1�FF−1F−� + F−1F−�[�F

]�
F−� − [

F−� · �F
]

F−1F−�
]
�− J μ0 F−1F−���, (150)

while we have also utilised the definitions of two third-order tensors �̌
∗
F� and �̌

∗
�F, according to the relations

[�̌
∗
F�u] · U = [�̌,�FU] · u, [�̌

∗
�FU] · u = [�̌,F�u] · U, (151)

where u and U are an arbitrary vector and an arbitrary second-order tensor, respectively.
An application of the divergence theorem to equation (148) gives

δ2 EV =
∫
B0

[
− Div

(
�̌,FF�F + 1

2
�̌,F���+ 1

2
�̌

∗
F���

)]
· δχ

+ Div

(
1

2
�̌

∗
�F�F + 1

2
�̌,�F�F + �̌,����

)
δ� dv0

+
∫
∂B0

[[
�̌,FF�F + 1

2
�̌,F���+ 1

2
�̌

∗
F���

]
|− − T̃|+

]
n0 · δχds0

−
∫
∂B0

[[
1

2
�̌

∗
�F�F + 1

2
�̌,�F�F + �̌,����

]
|− − ṽ0|+

]
· n0δ� ds0

+
∫
B′

0

[
− Div T̃ · δχ − Div ṽ0δ�

]
dv0 +

∫
∂V0

[
T̃n0 · δχ + ṽ0 · n0δ�

]
ds0. (152)
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Since the variations δχ and δ� are arbitrary, we arrive at the following equations for the unknown functions
(�χ , ��) :

Div

(
�̌,FF�F + 1

2
�̌,F���+ 1

2
�̌

∗
F���

)
= 0 in B0, (153)

Div

(
1

2
�̌

∗
�F�F + 1

2
�̌,�F�F + �̌,����

)
= 0 in B0, (154)[[

�̌,FF�F + 1

2
�̌,F���+ 1

2
�̌

∗
F���

] ∣∣∣
−

− T̃|+
]

n0 = 0 on ∂B0, (155)[[
1

2
�̌

∗
�F�F + 1

2
�̌,�F�F + �̌,����

] ∣∣∣
−

− ṽ0|+
]

· n0 = 0 on ∂B0, (156)

Div T̃ = 0 in B′
0, (157)

Div ṽ0 = 0 in B′
0, (158)

T̃n0 = 0 on ∂V0, (159)

ṽ0 · n0 = 0 on ∂V0, (160)

describing the onset of bifurcation.

Remark 16. Note that a variation of the relation � = J μ0 C−1
� from equation (11) gives �� = ṽ0, since

�� = J μ0

[
F−1F−���− F−1�FF−1F−�

�− F−1F−�[�F]�F−�
�
[
F−� · �F

]
F−1F−�]. (161)

A variation of the Maxwell stress (equation (22)) (after writing it in terms of � using equation (11)) gives
�Pm = T̃, since

�Pm = J μ0

[
F−���⊗ F−1F−�

�+ F−�
�⊗ F−1F−���

+ [
F−� · �F

]
F−�

�⊗ F−1F−�
�− F−�[�F]−�

�⊗ F−1F−�
�

− F−�
�⊗ F−1F−�[�F]�F−�

�− F−�
�⊗ F−1[�F]F−1F−�

�

+ 1

2

[
F−�

�
] · [F−�

�
] [

F−�[�F]�F−� − [
F−� · �F

]
F−�]

+
[
−[F−�[�F

]�
F−�

�
] · [F−�

�
]+ [

F−�
�
] · F−�[��]

]
F−�

]
. (162)

Alternatively to the statements ṽ0 = �� and T̃ = �Pm, it can also be shown that this set of equations for the
perturbations �� and �F can be obtained by linearising the equations of equilibrium ((146a) to (147d)).


