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Abstract— The non-contact continuous monitoring of biomarkers
comprising breathing detection and heart rate are essential vital
signs to evaluate the general physical health of a patient. As com-
pared to existing methods that need dedicated equipment (such as
wearable sensors), the radio frequency (RF) signals can be syn-
thesised to continuously monitor breathing rate in a contact-less
setting. In this paper, we proposed the contact less breathing rate
detection using universal software radio peripheral (USRP) platform
without any wearable sensor. Our system leverage on the channel
state information (CSI) to record the minute movement caused by
breathing over orthogonal frequency division multiplexing (OFDM)
in multiple sub-carriers. We presented a comparison of our breath-
ing rate detection with wearable sensor (ground truth) results for
single human subject. In this paper, we used wireless data to train,
validate and test different machine learning (ML) algorithms to classify USRP data into normal, shallow and elevated
breathing depending on the breathing rate. Although different ML models were developed using the K-Nearest Neighbor
(KNN), Discriminant Analysis (DA), Naive Bayes (NB) and Decision Tree (DT) algorithms, however results showed KNN
based model provided the highest accuracy for our data ( 91%) each time the trial was made. DT (17.131%), DA (59.72%)
and NB (48.99%). Results presented in this paper showed that USRP based breathing rate is comparable to the wearable
sensor demonstrating the potential application of our method to accurately monitor breathing rate of patients in primary
or acute setting.

Index Terms— Vital Signs, university software radio peripherals USRPs, channel state information, software defined
radios, healthcare application.

I. INTRODUCTION

THERE is a growing interest in the development of
universal, contact-less and wireless sensing technologies

to monitor daily activities. Several approaches for tracking
human health and vital signs including breathing detection
have been developed recently. Some of them include the use
of smartphones and wearable sensor [1], [2], doppler radar
[3], [4], Wi-Fi [5], ultra-wideband radar [6] and frequency
modulated carriers [7]. Traditional techniques such as the
received signal strength (RSS) provide a single frequency
carrier power measurement with regards to full available
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frequency bandwidth. Amongst other traditional ways methods
to monitor vital signs include wearable sensors, accelerometers
(e.g. smartphones) or imaging sensors [8], [9]. Wearable
sensor and accelerometers require physical contact with the
body and have particularly slow response time whereas the
imaging sensors are parasitical of particularity [10] and have
issues to penetrate through walls, and darkness [11]. Radio
frequency (RF) based systems offer non-invasive breathing
rate monitoring through analysis of RF signal reflected off
the human body. RF based monitoring systems which use
frequency modulated continuous wave radar [12], [13] or
doppler radar [4] are complex and expensive. Breath-tracking
using RSS wireless devices are discussed in [15], have limited
bandwidth around 7 Ghz and 60 Ghz millimetre wave signal
which leads to false detection in long distance and require high
gain directional antenna to covered. Mechanisms such as the
USRP, frequency-modulated continuous-wave (FMCW), radar
sensor and passive radar sensor [12], [13], [14] offer low-
cost, long-term non-invasive breathing rate monitoring without
requiring hospital visits or a physical contact. However, these
systems need dedicated software and hardware setup operated
at higher frequency range.
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Recent work by Patwari et al. [15] and Kaltiokallio et al.
[16] used RSS and CSI data obtained using Wi-Fi signals to
detect human breathing. This approach requires extra wireless
sensor nodes to be deployed in indoor settings. Another
study by Nasser, et al. [17] utilised WiFi RSS for breathing
rate estimation and is capable of monitoring breathing for
multiple people in parallel. Channel state information (CSI)
is temporally more stable as compared to RSS as it presents
both amplitude information and phase information. Recently,
Wang, et al. [18] exploited CSI phase differences from the
Wi-Fi router. The channel state information based wireless
sensing systems have been also used for detecting respiration
rate of people. For example, the author in [19] shown breathing
detection based on CSI that extracted from WiFi. The achieved
accuracy of this system reaches 94%. Moreover, the work
shown in [21] use the CSI amplitude information to measure
respirator rate when the person is asleep, this system requires
the person to remain asleep. CSI based detection systems
have numerous advantages; they do not require any wearable
devices and also preserve user privacy. Although, the CSI-
based method is efficient for activity detection in indoor
settings, the main limitation of using Wi-Fi routers is their
scalability, flexibility, and under-reporting of subcarriers. Net-
work interface card (NIC) used by CSI systems only exploit
30 subcarriers and not revealing all 56 frequency channels
transmitted by Wi-Fi router which accounts for 42% of loss in
frequency carriers. Also, NIC based systems do not have the
flexibility to increase/decrease frequency subcarriers, power
level of transmitter signal, remove noise, and change operating
frequency [22], [20].

By extracting the CSI data using USRPs transceiver model,
our system allows custom configuration transmitted and re-
ceived power and the operating frequency swing. In addition,
it offers easy implementation of signal processing algorithms
and the ability to reuse hardware (e.g. self-designed antennas).
In this paper, we propose a flexible and scalable wireless
sensing driven by USRP in conjunction with machine learning
algorithm to detect human breathing. Our system designed
using a MATLAB Simulink model, exploits 64 OFDM sub-
carriers to receive all the transmitted sub-carriers and detect
breathing rate of single person. Thy system we have proposed
overcomes all these challenges as USRP operating frequency
is flexible, number of subcarriers can be changed in real time
with low-noise figure. We have used USRP by transmitting
and receiving N number of multiple OFDM subcarriers as
compared to the counterpart where only limited numbers
are available. Our algorithms provide real-time classification
on the collected data from human breathing activities and
high-classification accuracy for empirical results. The results
obtained using USRP based wireless sensing for activities of
respiration are highly accurate as compared to off-the-shelf
wireless devices each time when activities and experiments
are performed. Our system can also be used to detect large
scale body movements of a person.

In the rest of this paper, we explain the design of SDR based
human activity detection platform and signal propagation.
We describe the experimental setup and system parameter
and evaluate the performance of the system followed by the

conclusion.

A. Contribution and Novelty

Numerous studies have demonstrated CSI based on Wi-Fi
signal to recognise human movement exploiting lowcost small
wireless devices such as Wi-Fi router, network interface card
[20][22]. The main limitation of using these devices is the
scalability, flexibility, and under-reporting all group of subcar-
riers. The Wi-Fi sensing for human activity recognition only
report limited number of sbucarriers. The software defined
radio allows us to change various parameters such as number
of frequency carriers, power level and radiation pattern in real-
time. In addition, systems based on SDR are also flexible,
scalable and delivers desired result reliably and accurately.

II. METHOD

In this part, we discussed the design of simulink project and
generating RF signal through the USRP.

A. System Overview

In the transmitter operation, we designed a MATLAB
Simulink program to generate the OFDM signal for transmitter
and receiver process over multiple subcarriers based on uni-
versal software radio peripheral USRPX300. Random data bits
were generated from work space with probability of 0.75. then
QPSK modulation scheme were carried out to convert these
bits to symbols, each two bits represent one symbol. Then the
symbols were connected to single subcarrier are plugged into
the converter to transform it serial to parallel to by applying
Inverse Fast Fourier Transform (IFFT) operation and transfer
the symbols from frequency domain to time domain. After that
a cyclic prefix are then given into the system between each
symbol to mitigate the effect of co-channel interference of the
collected signal at the receiver side. Then the received signal
is up-converted through Digital-to-Analog converter (DAC)
using USRP platform.

At the receiver end, the OFDM signal was collected by the
received antenna that equipped on the second USRPX310, then
the USRP convert the OFDM signal from analogue to digital
and next down converting it to the original base band signal,
Afterwards a low-pass filter was used in the USRP to generate
the I/Q base-band wave form and remove the effect of high fre-
quencies. Besides, OFDM bits are normally sorted into frames
so that the received signal needs to be synchronised in time and
frequency to obtain the start of the OFDM symbol and then
Fast Fourier Transform (FFT) algorithm used to convert the
based-band signal from time to frequency domain. Also, the
guard interval removed through retrieving the original signal.
The block diagram of the transceiver operation can be shown
in figures 1.

B. Signal Model

The proposed system used CSI signal for the transmitter and
receiver operation. The CSI represent the channel frequency
response (CFR) for each OFDM subcarrier includes amplitude
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Fig. 1. Simplified OFDM Simulink Model for Transceiver Operation.

information and phase information. This system has been de-
veloped and implemented only to extract the wireless channel
state information amplitude response for human activities. The
CSI phase information is inapplicable due to presence of
random noise, that is why it was not considered. Equation
(1) presented the received CSI signal.

H (fi) = H (fi) e
j∠H(fi) (1)

In this expression, H(fi) describes the information of am-
plitude and ∠ H(fi) explains the phase information for CSI
signal. The measured OFDM subcarriers contain the values of
CSI packets and it can be shown in equation (2). [23].

H = (h1, h2, h3, . . . . . . ., hN ) (2)

In this system, IFFT and FFT blocks measure the response
of amplitude and phase. By performing IFFT at transmitter
side and FFT at receiver side. The channel response can be
expressed as following. [24].

H(f) =
x(f)

Y (f)
(3)

Where X(f ) refers to the response of the OFDM transmitted
signal, H(f ) describe the system channel response and Y(f )
represent the response of the OFDM received signal.

C. Collection of data
The collection of three breathing events carried out in lab

environment using single subject. The experiment consists of
two USRPs X300/310 and the distance between the subject
and USRPs antenna keep it as 0.4 meters. The volunteer
started breathing normal, Shallow, and heavy and the reflected
signal from human body once performing breathing activities
is stored as wireless channel state information WCSI data.

D. Data extraction
At the receiver side. The OFDM signal utilized for fine

grained wireless channel state information extraction then the
amplitude frequency response for each breathing activity will

Fig. 2. Flowchart of the proposed System for collecting channel state
information using USRPs.

Fig. 3. Simulated Bit error rate analysis of OFDM system.

Fig. 4. Hardware design of System Setup .

be observed constantly for 10 seconds. And each collected
signal consists several OFDM samples and subcarriers. Time
and samples can be represented as the received number of
samples in a unit time.
The obtained data from CSI is in the row form and needs

processing to provide meaningful information using three
following steps.
I- Cleaning the data by eliminating the terrible CSI data.
II- Applying low pass filter for removing the noise.
III- The grouping technique is performed to detect the corre-
lation between the CSI values.
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E. Additive White Gaussian Noise
The Additive white Gaussian noise channel (AWGN) was

considered for simulated result. This wireless medium model
has been widely exploited in identifying the most feasible
modulation scheme. The main advantages of this wireless
channel model is it’s least complexity in terms of test and
deployment and represents the real man-made noise with
regards to other multi-user interference [25].

F. Bit Error Rate of the USRP Model
Bit error rate (BER) gives the number of bits in error per

unit time and the most important parameters to analyse the
performance of any robust, efficient and accurate wireless
medium system. Figure 3 shows BER versus SNR (Eb/No in
dB) performance analysis of various modulation techniques.
The additive white gaussian noise wireless channel was used to
obtain simulated results. It is clear from the figure that BPSK
has lower BER than QPSK and QAM. For instance, at SNR 10
BER for BPSK is 0 but for QPSK and 16 QAM is greater than
10−4. Also, at SNR 14 BER for QPSK is 0 whereas for 16
QAM is approximate 10−3. Therefore, Quadrature amplitude
modulation (16-QAM) has greater Bit Error Rate (BER) as
compared with lower order Binary Phase Shfit Keying (BPSK).
This is also proven for our proposed model as well.

G. Feature extraction
CSI information represent fine-grained data and feature

extraction is used for transferring the CSI data into mean-
ingful information. Several feature in the time domain are
implemented. (1) the normalized standard division indicate the
dispersion degree among sampling points of the CSI signal.
(2) the root mean square (RMS) is used to calculate the
magnitude of CSI information. (3) peak to peak value is
used to calculate the differences between the maximum and
minimum amplitudes values of the collected CSI signal. (4)
the peak factor indicates if there is influence on the CSI
information. (5) waveform factor is used to represent the ratio
of the root mean squire value to the average value. (6) FFT is
used to excerpt the frequency component with peak to peak
values of the signal. (7) spectrum probability and signal energy
are unique and essential for extraction of frequency domain
analysis.

III. EVALUATION
Our experiments were carried out to test human vital signs

monitor the respiratory rates and identify anomalies. This
section describes the hardware and software setup involves
the parameters used in the designed system.

A. Experimental method
The experiment is performed in lab environment using two

NI USRPX300/310 platforms that have been built for real
time data acquisition. The USRPs is fitted with two omni
directional antennas for the transmit and receive operation.
The antenna has frequency range from 2.4 GHz to 5.9 GHz.
The key advantage of using omni-directional antenna is that

it can detect human activities in LOS and NLOS. Besides,
directional antennas, yagi antennas have also been tested on
our system and provided similar results.the experiment was
conducted at 5.32 GHz,With the increase in frequency, the
range resolution increases and vice versa. The respiratory rate
will be best detected when the USRP transceiver model is
tuned at higher frequencies. However, the distance in terms of
monitoring person will be decreases and signal will be highly
susceptible to external noise. Furthermore, two PCs was used
to implement the trial and a 1 GB Ethernet cable was used to
transmit the data to the centralize personal computer to process
the acquired USRP data and classify normal respiratory rate
against abnormal breathing rate. The trial were processed
using MATLAB SIMULINK software. For the demonstration,
the experiment carried out in lab environment, which was a
large room with office environment. Also, the volunteer was
positioned 0.4 m away from the antenna, in order to achieve
optimum performance. The experiment was undertaken to cap-
ture the changes occurred in CSI data due to chest movement
cause by respiratory patterns. Also, we used wearable sensor
(Ground truth) to ensure that the collected data from USRP
is working properly.The breathing sensor used as a reference
was SA9311M – manufactured by Though Tech. The reference
wearable sensor is a highly sensitive to chest movements and
abdominal expansion/contraction and outputs the respiration
waveform. Finally, four algorithms such as KNN, DA, NB
and DT were applied to process and classify the collected
data. In the same scenario, we have performed experimental
campaign ask the volunteers to perform normal breathing,
shallow breathing, and elevated breathing while they were
under test. the experimental setup is shown in figure 4.

TABLE I
SOFTWARE CONFIGURATION AND PARAMETERS SELECTION

Parameters Values
Input random bits round(0.75*rand(104,1))
Sample time rate 132/104*(1/132e4)
Modulation type QPSK
Bit per symbol M 2 bits
Used Subcarrier 64 subcarriers
Used Null subcarrier 12
Used Pilot subcarrier 4
Samples per frame Used subcarrier log2 (M)

NFFTpoints 64,128,256,512,1024 and 2048
Cycle prefix NFFT-data subcarrier

B. System Parameters Selection
In this part, we introduce the system parameters selected for

software and hardware system setup. Firstly, Simulink model
was implemented in MATLAB based on QPSK modulation
scheme and OFDM signal. The parameters values used in our
software as shown in Table I. We tested the hardware param-
eters by running QPSK transmitter and receiver examples on
MATLAB, then we applied our own hardware parameters of
the USRPs X300/310 to capture the wireless CSI of small
body movement. The trial was conducted at 5.32 GHz for
USRP platform and the sample rate chosen in this experiment
was 80. Configuration for the hardware parameters is shown
in Table II.
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TABLE II
HARDWARE CONFIGURATION AND PARAMETERS SELECTION

Platform USRP X300/310

TX serial number 192.168.10.1
RX serial number 192.168.11.1
Channel mapping 1, 2
Gain (dB) 70
Master clock rate 120 Mhz
Centre frequency of USRP 5.32Ghz
Sample time rate 1/80e4
Local oscillator offset Dialog
Interpolation factor 500
PPS source Internal
Decimation factor 500

Clock source Internal
Transport data type Int16

IV. RESULTS AND DISCUSSIONS

In this section, we evaluated the overall performance of the
breathing rate under three different regimes; normal breathing,
shallow breathing, and elevated breathing. The three breathing
regimes were measured by two devices USRPs and wearable
sensor (ground-truth) after acquiring ethical approvals from
University of Glasgow. Firstly, the volunteer was asked to
breath normally followed by shallow breathing and the ele-
vated breathing for 10 seconds each. We collected the data
from sensor and the USRP simultaneously. The wearable
sensor was attached to the participant body’s chest. While
testing our experiment and recording of the data, multiple
factors were considered in real-time environment such as the
physical objects that could affect the wireless received signal.
First, we tested our system with QPSK transmitter and receiver
examples with USRP to ensuring that there is no error acquired
for the device configuration and whether working properly.
Then we used our own Simulink model to captivate the
wireless signal for small scale body movement of the human.
The number of packets characterise the number of subcarriers
of the OFDM signal. Figure 5 shows Wireless channel state
information (WCSI) waveform of normal breathing for both
USRP and wearable sensor.We have used The Breathing Rate
Belt and Pressure Sensor ‘product code 3190 as reference
sensor. The human started sitting in front of the USRP and
kept the distance as 0.4 meters. Also covered the sensor around
his body and started breathing normally and recorded the data
of both the USRP and sensor. We noticed that the amplitude
changes were normally based on the habitual breathing of the
human. In this case, the practice was repeated several times
with same amplitude differences detected.
During recording of the wireless data from human respiration,
we set the time to 10 seconds. Transmitted packets were
10000 and received 8642 out of 10000 packets for 10 second
time duration. We repeated the normal breathing activity 10
times and received same number of packets of each activity
performed. We used the wearable sensor as reference. As the
measured data of wearable sensor are reliable and presents
the ground truth of the breathing detection. The wireless
value is close to the wearable value. This ensures that the
system can measure the human breathing without wearing

any sensor and it can be alternative of wearable devices.
Figure 6. shows the results when of shallow breathing. The
figure illustrates the prominent changes in the amplitude. The
time duration in this practice was also set for 10 seconds
including the same number of send and received packets of
the previous activity of normal breath. In this work, we have
used software-defined-radio model University Software Radio
Peripherals (USRP) by transmitting and receiving N number
of multiple OFDM subcarriers as compared to its counterpart
where limited numbers are available. In our experiment, The
Orthogonal Frequency Division Multiplexing (OFDM) with
64-subcarriers is used to extract the Wireless Channel State
Information of breathing activities.

Fig. 5. WCSI during Normal Breathing for USRP and Sensor.

Fig. 6. WCSI during shallow Breathing for USRP and Sensor.

Figure 7 represents the results of the elevated breathing.
It can be seen that the signal increased in the cycle of the
amplitude compared to the waveform of normal breathing.
Also, comprised the similar number of the transmitted and
received packets for 10 seconds time duration. Besides, the
referenced signal is reliable and has less noise compared with
the signal obtained from the SDR or is effected by any physical
factors as a result of performing the breathing activities.

A. Machine Learning Classification

This section provided details on the discussion of four
different machine learning algorithms used to classify three
breathing events and evaluate the suggested system based on
percentage accuracy. The dataset performance was obtained
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TABLE III
FEATURE EXTRACTION EQUATIONS FOR DATA CLASSIFICATION

NO Feature Expression

1 normalized standard division Ysd=

√√√√ 1
N−1

N∑
i=1

(xi-ym)2

2 the root mean square (RMS) YRMS=

√√√√ 1
N

N∑
i=1

xi2

3 Peak to peak value Yppv =Ymax - Ymin (i =1,2...,N )
4 Peak factor YP = max(xi)

YRMS
(i =1,2...,N )

5 Waveform factor Yw = N∗YRMS∑N
i=1 Xi

(i =1,2...,N )

6 FFT YFFT =
N∑

n=−N

x(n)e−j 2π
N

nd

7 Spectrum probability YSE =
N∑

n=−N

p(d)2

8 Signal energy YM =
N∑

n=−N

p(d)ln p(d)

Fig. 7. WCSI during elevated breathing for USRP and Sensor.

using different ML techniques as listed above. A 10-fold cross
validation technique was used on the USRP data containing
different respiratory patterns.

The accuracy is calculated as an average of the 10 sets
of testing data used in each of the 10 cross fold validation
process. The below Figures 8-9 shows the confusion matrix
of KNN and DT algorithms. It can be seen from Confusion
matrix in figure 8-9 that the y axis represents the predicted
classes and x axis symbolizes the true class of the algorithm.

The machine learning algorithms were run using the follow-
ing parameters. KNN is configured using 3 K-samples using
the Euclidean distance. Discriminant Analysis DA was config-
ured as linear. Naive Bayes NB used the normal distribution
method. DT algorithm is set up to use 50 splits in the decision
tree.

The KNN classifier provide the best classification accuracy
among other algorithms. The value for KNN algorithms was
selected as 3. The confusion matrix in figure 8 represent a
total of 1075851 samples were received over a period for
all breathing events. For a combined activity of elevated
breath, 15.4598% were correctly classified as elevated breath.
While 1.3388% samples were incorrectly classified as breath
normal and 0.3538% samples as shallow breath activity.

Fig. 8. Confusion matrix for KNN classifier.

TABLE IV
FOLLOWING PARAMETERS WERE USED FOR KNN AND DT CLASSIFIER

Classification Al-
gorithm

Parameters Setup

Decision Tree Maximum number of
dataset splits. Split
Criterion

4 Gini’s diversity in-
dex

K–Nearest
Neighbour

Number of
Neighbours. Distance
Metric

2 Euclidean

Almost similar number of samples were correctly identified
as breath normal and 1.4372% samples were determined as
elevated breath besides 5.3134% CSI samples as shallow
breath. 40.84745% samples were predicted as shallow breath
while a combine of nearly 0.5765% were unclassified as other
remaining activities. The overall percentage accuracy using
KNN classifier was obtained as 91.0105%

DT algorithm performed worse, providing overall accuracy
of only 71.131%. It can be seen in Figure 9 that for first
activity, there were 5.7335% classified correctly. 4.5800%
CSI samples were identified as breath normal activity (false
negative) and 6.8390% samples as shallow breathing. The clas-
sification of normal breathing samples slightly more accurate.
1.4247% and 14.7483% samples were classified incorrectly as
elevated breath and shallow breath, this leaves the remaining
25.2507% breath normal samples as being correctly classified.
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Fig. 9. Confusion matrix for DT classifier.

For the shallow breath activities, 40.1471% samples were
classified correctly, then 0.3909% and 0.8858% samples were
misclassified. The other algorithms tested were discriminant
analysis (DA) and native bayes (NB) which produced poor
results compared to KNN and DT algorithms with accuracy
of only 59.72% for DA and 48.99% for NB. Table V shows
the accuracy comparison for all used classifiers.

TABLE V
PERCENTAGE ACCURACIES OF EACH CLASSIFIER

Classifier models Classification Accuracy %

Nearest Neighbor (KNN) 91.0105
Decision Tree (DT) 71.131
Discriminant Analysis (DA) 59.72
Naive Bayes (NB) 48.99

V. CONCLUSION

In this paper, we presented tracking breathing rate detec-
tion based on wireless signals. In particular, we designed a
MATLAB Simulink model based on universal software radio
peripheral (USRP) to capture small scale body movement.
Our algorithms grounded on channel state information (CSI)
information in time domain can detect the breathing rate
for individual non invasively. In this work, we studied three
breathing scenarios; normal , shallow and elevated breathing.
We compared our results with a data harvesting sensor as
the ground truth. Our results show high correlation between
the two methods. Machine learning algorithm were applied
for processing and classifying the data to provide excellent
performance and robustness on breathing rate. For future
work, we will increase complexity of the data collection
by monitoring multiple people simultaneously, increase other
movements in the surrounding and so on. our aim is to make
this system more generalize, acquiring data in elderly care
centre or hospitals in different geometrical settings. The CSI
at heterogenous environment varies also, we will develop an
algorithm for calibration in future work that in independent of
geometrical structure.

ACKNOWLEDGMENT

Aboajeila Milad studentship is funded by Libyan Govern-
ment. This work is supported in parts by Zayed Health Center
at UAE University under Fund code G00003476, EPSRC
EP/T021020/1 and EP/T021063/1.

REFERENCES

[1] D. Aranki, G. Kurillo, P. Yan, D. M. Liebovitz, R. Bajcsy, ”Real-
Time Tele-Monitoring of Patients with Chronic Heart-Failure Using
a Smartphone”: Lessons Learned,” IEEE Transactions on Affective
Computing, vol. 7, pp. 206-219, 2016.

[2] T. Hilbel, S. Feilner, M. Struck, C. Hofmann, A. Heinig, H. A. Katus,
”Cor/log BAN BT a wearable battery powered mHealth data logger and
telemetry unit for multiple vital sign monitoring,” 2016 Computing in
Cardiology Conference (CinC), pp. 273-276, 2016.

[3] Droitcour, A. D., Boric-Lubecke, O., and Kovacs, G. T. Signal-to-
noise ratio in doppler radar system for heart and respiratory rate
measurements.MicrowaveTheoryandTechniques,IEEETrans.(2009).

[4] Fletcher, R., and Han, J. Low-cost differential front-end for doppler radar
vital sign monitoring. In IEEE MTT (2009).

[5] Kaltiokallio, O. et. Al. Non-invasive respiration rate monitoring using a
single cots tx-rx pair. In ACM/IEEE IPSN (2014).

[6] de Chazal, P., O’Hare, E., Fox, N., and Heneghan, C. Assessment of
sleep/wake patterns using a non-contact biomotion sensor. In IEEE
EMBS (2008).

[7] Balakrishnan, G., Durand, F., and Guttag, J. Detecting pulse from head
motions in video. In IEEE CVPR (2013).

[8] C. A. Kushida, M. R. Littner, T. Morgenthaler, C. A. Alessi, D. Bailey,
J. Coleman Jr, L. Friedman, M. Hirshkowitz, S. Kapen, M. Kramer
et al., “Practice parameters for the indications for polysomnography
and related procedures: an update for 2005,” Sleep, vol. 28, no. 4, pp.
499–521, 2005.

[9] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, ”Smart Homes
that Monitor Breathing and Heart Rate,” CHI. ACM, pp 837-846, Seoul,
Republic of Korea, April 18-23, 2015.

[10] Kelly caine et al. The effect of monitoring by camera and robots on the
privacy enhancing behaviours of older adults. In Proc. of HRI, 2012.

[11] O. Kaltiokallio et al. Follow @grandma: Long-term device-free local-
ization for residential monitoring. In Proc. of LCN Workshops, 2012.

[12] F. Adib, Z. Kabelac, and D. Katabi, “Multi-person motion tracking via
RF body reflection ,MIT technical report,

[13] F. Adib, Z. Kabelac, H. Mao, D. Katabi, and R. C. Miller, “Demo: Real-
time breath monitoring using wireless signals,” in MobiCom, 2014.

[14] Wenda Li, Bo Tan and Robert J. Piechocki. Non-Contact Breathing
Detection Using Passive Radar

[15] N.Patwari,, Wilson, J., Ananthanarayanan, S., Kasera, S., Westen-
skow, D. Monitoring Breathing via Signal Strength in Wireless Net-
works. IEEE Transactions On Mobile Computing, 1774-1786. doi:
10.1109/tmc.2013.117.2014.

[16] O. J. Kaltiokallio, H. Yigitler, R. J¨antti, and N. Patwari, “Non-invasive
respiration rate monitoring using a single cots tx-rx pair,” in IPSN, 2014,
pp. 59–70.

[17] H. Abdelnasser, K. A. Harras, and M. Youssef. 2015. Ubibreathe: A
Ubiquitous non-invasive WiFi-based Breathing Estimator. In Proc. IEEE
MobiHoc’15. ACM, Hangzhou, China, 277–286.

[18] X. Wang, Yang, C., Mao, S. TensorBeat. ACM Transactions On
Intelligent Systems And Technology, 9(1), 1-27. doi: 10.1145/3078855.
2017.

[19] Sangyoun Lee, Young-Deok Park, Young-Joo Suh. Design and Imple-
mentation of Monitoring System for Breathing and Heart Rate Pattern
using WiFi Signals. e36net, ydpark, yjsuh@postech.ac.kr 978-1-5386-
4790-5/18/2018.

[20] S.A.Shah, S.A.; Ren, A.; Fan, D.; Zhang, Z.; Zhao, N.; Yang, X.; Luo,
M.; Wang, W.; Hu, F.; Rehman, M.U.; Badarneh, O.S.; Abbasi, Q.H.
Internet of Things for Sensing: A Case Study in the Healthcare System.
Appl. Sci. 2018, 8, 508.2018.
C. A. Kushida, M. R. Littner, T. Morgenthaler, C. A. Alessi, D. Bailey,
J. Coleman Jr, L. Friedman, M. Hirshkowitz, S. Kapen, M. Kramer
et al., “Practice parameters for the indications for polysomnography
and related procedures: an update for 2005,” Sleep, vol. 28, no. 4, pp.
499–521, 2005.

[21] J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, J. Cheng, ”Tracking Vital
Signs During Sleep Leveraging Off-the-shelf WiFi,” MobiHoc. ACM,
pp 267-276, Hangzhou, China, June 22-25, 2015.

[22] S. A. Shah and F. Fioranelli, ”RF Sensing Technologies for As-
sisted Daily Living in Healthcare: A Comprehensive Review,” in IEEE
Aerospace and Electronic Systems Magazine, vol. 34, no. 11, pp. 26-44,
1 Nov. 2019, doi: 10.1109/MAES.2019.2933971.2019.

[23] X. Yang, Shah SA, Ren A, et al. Freezing of gait detection considering
leaky wave cable. IEEE Transactions on Antennas and Propagation.
2019,67(1):554-561. https://doi.org/10.1109/TAP. 2878081. 2018.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3035960, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL

[24] M. B.Khan, , Yang, X., Ren, A. , Al-Hababi, M. A. M., Zhao, N., Guan,
L., Fan, D. and Shah, S. A. Design of software defined radios based
platform for activity recognition. IEEE Access,7, pp. 31083-31088.2019.

[25] N. Karimian. Design and Analysis of OFDM System for Powerline
Based Communication. University of Central Lancashire. 2011.

[26] D. Haider et al., “An efficient monitoring of eclamptic seizures in
wireless sensors networks,” Comput. Electr. Eng., vol. 75, pp. 16–30,
2019.

Aboajeila Milad Ashleibta was born in 1987
Banwalid, Libya. He has received his M.S. de-
gree in electronic and electrical engineering from
university of huddersfield. Untited kingdom in
2016. He is currently pursuing the PhD degree
with university of Glasgow UK. His research
interests involve wireless communication net-
works and electronics circuits.

Qammer H. Abbasi (SM 16) received the B.Sc.
and M.Sc. degrees in electronics and telecom-
munication engineering from the University of
Engineering and Technology (UET), Lahore,
Pakistan, and the Ph.D. degree in electronic
and electrical engineering from the Queen Mary
University of London (QMUL), U.K., in 2012. In
2012, he was a Postdoctoral Research Assistant
with the Antenna and Electromagnetics Group,
QMUL. He is currently a Senior Lecturer (As-
sociate Professor) with the James Watt School

of Engineering, University of Glasgow, U.K and researcher investigator
with Scotland 5G Center. He has contributed to over 250 leading interna-
tional technical journal and peer reviewed conference papers, and eight
books. He received several recognitions for his research, which include
appearance on BBC, STV, dawnnews, local and international newspa-
pers, cover of MDPI journal, most downloaded articles, U.K. excep-
tional talent endorsement by Royal Academy of Engineering, National
Talent Pool Award by Pakistan, International Young Scientist Award by
NSFC China, URSI Young Scientist Award, National Interest Waiver
by USA, four best paper awards, and best representative image of an
outcome by QNRF. He is an Associate Editor for the IEEE JOURNAL
OF ELECTROMAGNETICS, RF AND MICROWAVES IN MEDICINE
AND BIOLOGY, the IEEE SENSORS JOURNAL, IEEE OPEN ACCESS
ANTENNA AND PROPAGATION, IEEE ACCESS and acted as a guest
editor for numerous special issues in top notch journals.

Syed Aziz Shah received the Ph.D. degree from
Xidian University, China, in June 2018. He was a
Postdoctorate Research Associate with the Uni-
versity of Glasgow and an Assistant Professor
(lecturer) with Manchester Metropolitan Univer-
sity, U.K. He is currently Associate Professor of
mobile health, centre for Intelligent Healthcare,
Coventry University. He has (co)authored over
45 technical articles in top-rank crossdisciplinary
journals, including IEEE and IET.His research
interests include machine learning in wireless

sensing, radar technology, software defined radios, antennas and prop-
agation, and healthcare and agriculture technologies.

Muhammad Arslan Khalid holds a Ph.D. in
Biomedical Engineering and a BEng. (Hons.)
Electronics and Electrical Engineering from the
University of Glasgow. Dr. Khalid specialised in
the development of low-cost digital health and
mobile health platforms working in close collabo-
ration with University of California, Los Angeles.
Dr. Khalid won numerous national entrepreneur-
ship awards to commercialise a smartphone-
based stroke diagnostic platform through a spin-
out company (iVisco), for which he also has

three pending patents. He is currently a Healthcare Management
Consultant at Deloitte and an affiliate at the James Watt School of
Engineering, University of Glasgow.

Najah Abu Ali is currently a Professor at the
Faculty of Information Technology in the United
Arab Emirates University (UAEU). She received
her Ph.D. from the Department of Electrical and
Computer Engineering at Queen’s University in
Kingston, Canada; specializing in resource man-
agement in computer networks. Her MSc and
BSc were both attained in Electrical Engineering
at the University of Jordan. Her general research
interest includes modeling wireless communica-
tions, resource management in wired and wire-

less networks, and reducing the energy requirements in wireless sensor
networks. More recently, she has strengthened her focus on the Internet
of Things, particularly at the nano-scale communications, in addition,
vehicle-to-vehicle networking. Her work has been consistently published
in key publications venues for journals and conference. She’s further
co-authored a Wiley book on 4G and beyond cellular communication
networks. She has also delivered various seminar and tutorials at
flagship IEEE Communication Societies. She is an associate editor of
the IEEE access Journal, She has also served as a reviewer for many
noted journals, a TPC member and reviewer in several conferences
(including ICC and Globecom), and contributed to the organization of
several SIs and workshops. She also served as the Publication co-chair
of IEEE GC’18.

Muhammad Ali Imran (SM 12) received the
M.Sc. (Hons.) and Ph.D. degrees from Imperial
College London, U.K., in 2002 and 2007, re-
spectively. He is Dean Glasgow College UESTC
and a Professor of communication systems with
the James WatSchool of Engineering, University
of Glasgow. He is an Affiliate Professor at the
University of Oklahoma, USA, and a Visiting
Professor at the 5G Innovation Centre, Univer-
sity of Surrey, U.K. He is leading research in
University of Glasgow for Scotland 5G Center.

He has over 18 years of combined academic and industry experience,
working primarily in the research areas of cellular communication sys-
tems. He has been awarded 15 patents, has authored/co-authored over
400 journal and conference publications, and has been principal/co-
principal investigator on over £6 million in sponsored research grants
and contracts. He has supervised 40+ successful Ph.D. graduates. He
has an award of excellence in recognition of his academic achievements,
conferred by the President of Pakistan. He was also awarded the IEEE
Comsoc’s Fred Ellersick Award 2014, the FEPS Learning and Teaching
Award 2014, and the Sentinel of Science Award 2016. He was twice
nominated for the Tony Jean’s Inspirational Teaching Award. He is a
shortlisted finalist for The Wharton-QS Stars Awards 2014, the QS Stars
Reimagine Education Award 2016 for innovative teaching, and VC’s
Learning and Teaching Award from the University of Surrey. He is a
Senior Fellow of the Higher Education Academy, U.K. He is the editor/co-
editor of 8 books.


