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Abstract  9 

Effective wind power prediction will facilitate the world’s long-term goal in sustainable development. However, a 10 

drawback of wind as an energy source lies in its high variability, resulting in a challenging study in wind power forecasting. 11 

To solve this issue, a novel data-driven approach is proposed for wind power forecasting by integrating data pre-processing & 12 

re-sampling, anomalies detection & treatment, feature engineering, and hyperparameter tuning based on gated recurrent deep 13 

learning models, which is systematically presented for the first time. Besides, a novel deep learning neural network of Gated 14 

Recurrent Unit (GRU) is successfully developed and critically compared with the algorithm of Long Short-term Memory 15 

(LSTM). Initially, twelve features were engineered into the predictive model, which are wind speeds at four different heights, 16 

generator temperature, and gearbox temperature. The simulation results showed that, in terms of wind power forecasting, the 17 

proposed approach can capture a high degree of accuracy at lower computational costs. It can also be concluded that GRU 18 

outperformed LSTM in predictive accuracy under all observed tests, which provided faster training process and less 19 

sensitivity to noise in the used Supervisory Control and Data Acquisition (SCADA) datasets.  20 

 21 
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CV     Cross-Validation 31 

DT     Decision Tree 32 

ET     Extra Trees 33 

GB     Gradient Boost 34 

GRNN    Gated Recurrent Neural Networks 35 

GRU    Gated Recurrent Unit 36 

IEC     International Electrotechnical Commission 37 

IF     Isolation Forest 38 

KNN    K-Nearest Neighbours 39 

LSTM    Long Short-term Memory 40 

MSE    Mean Square Error  41 

NAG    Nesterov’s Accelerated Gradient  42 

NWP    Numerical Weather Predictions 43 

ORE    Offshore Renewable Energy 44 

PMG    Permanent Magnet Synchronous Generator 45 

RF     Random Forest 46 

RFE    Recursive Feature Elimination 47 

RMSProp   Root Mean Square Propagation 48 

RNN    Recurrent Neural Networks  49 

SCADA    Supervisory Control And Data Acquisition 50 

SGD    Stochastic Gradient Descent 51 

SVM    Support Vector Machine  52 

SVR    Support Vector Regressor 53 

1. Introduction 54 

In the past few decades, a growing emphasis has been placed on sustainable developments of natural resources and 55 

slowing down climate change which triggered revolutions in the energy sector. This led to a surge in interest for integrating 56 

carbon-free electrical energy production into energy portfolios. As part of this transition, wind power is considered an 57 

appealing alternative to replace conventional energy resources, mainly fossil fuel power plants. Although the integration of 58 

wind power offers great potential, it also faces great operational and planning challenges due to the intermittent nature of the 59 
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wind resource [1], which can result in financial losses to both grid operators and consumers. Several studies have been 60 

conducted in the areas of aerodynamic optimization of wind turbines [2], blade shapes [3], power curves [4], and optimizing 61 

of wind turbine position in a wind farm [5]. An essential part of effective integration of wind energy lies in the accurate 62 

forecasting of wind energy production, which is crucial to all stakeholders for avoiding overproduction by coordinating 63 

energy supply and demand [6] as well as enabling maintenance to be scheduled under power predictions [7]. 64 

1.1 Motivation and incitement 65 

Even countries with the most advance renewable energy sectors, such as Scotland or Germany, face difficulties in fully 66 

relying on renewable sources. Today, grid operators are forced to resort to conventional power stations under certain weather 67 

conditions, which then need to quickly drop their output if the conditions change to avoid wasting power or overloading the 68 

grid, which may result in failures. These adjustments, however, bear significant costs as it was estimated that German 69 

consumers had to pay about $553 million to cover the costs of compensating utility firms for adjustments to their inputs in 70 

2016 [8]. One of the solutions is to use available weather data as well as historical turbine data to predict wind power [9] 71 

ahead of actual generation. This is crucial as it not only relieves pressure on grid operators and reduces the output required 72 

from conventional power stations, but also due to the higher value of energy sources that can be scheduled in advance. 73 

1.2 Literature review 74 

Wind power forecasting models are by most scholars categorized as statistical and physical models. Both methods are 75 

capable of predicting wind power generation effectively, but they are profoundly different in approach [10]. Physical models 76 

use mathematical expressions to model highly complex and nonlinear dynamics of the atmospheric flow to produce 77 

numerical weather predictions (NWPs). The obtained NWPs are adapted to local flow conditions and then used as inputs in 78 

the wind power forecasting systems [11]. On the other hand, statistical methods rely on relevant historical data to predict 79 

future power generation, traditionally using models such as autoregressive (AR) or autoregressive moving average model 80 

(ARMA). In recent years, the wealth of data supplied by the built-in Supervisory Control And Data Acquisition (SCADA) 81 

systems have given rise to excessively large and complex datasets, which exceed the capabilities of traditional prediction 82 

methods and therefore have been processed using machine learning techniques such as artificial neural networks (ANNs) and 83 

support vector machine (SVM) [10]. 84 

In recent years, ANNs emerged as one of the most commonly used machine learning algorithms in the field of wind 85 

power forecasting [12]. ANNs are complex structures that attempt to resemble the structure of the human brain based on a set 86 

of replicated processing units called neurons, which are interlinked and pass information via weighted connections that are 87 

adjusted during the training process. Developments in initialization algorithms and neuron activation functions enhanced the 88 
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capabilities of ANN and made it possible to solve complex non-linear problems by training models consisting of a large 89 

number of hidden layers, which is often referred to as “deep learning” [12]. The increasing complexity of wind turbine 90 

systems and the ensuing demand for improvements in reliability [13], maintenance [14], investments [15], and forecasting 91 

[16] prompted rising adoption of deep learning [17] in the wind energy sector. 92 

Recurrent Neural Network (RNN) is a class of ANNs, in which the connection between its neurons form loops, allowing 93 

information to persist. This means it is capable of handling non-linear dependencies between past time series values and the 94 

estimate of values to be predicted via the inherent dynamic memory created by recurrent connections in the hidden layers. 95 

Despite its superiority over conventional ANNs, RNN suffers from a phenomenon referred to as vanishing or exploding 96 

gradients caused by error signals flowing backwards, which leads to oscillating weights or loss of long-term dependencies 97 

due to the rapid decay (vanishing) or increase (exploding) in the norm of gradient during training [18]. Amongst the 98 

numerous methods proposed to address vanishing and exploding gradients, the introduction of gating mechanisms to control 99 

the flow of information between layers has shown promising results and practical applications. Notable examples of RNN 100 

architectures adopting this principle are Gated Recurrent Unit (GRU) introduced by Cho et al. [19] and Long-short Term 101 

Memory (LSTM) proposed by Hochreiter et al. [20] 102 

1.3 Objective and methodology 103 

The major objective of this study is to explore the use of state of art machine learning techniques to construct and 104 

optimize deep learning models based on Gated Recurrent Neural Networks (GRNNs), namely GRU and LSTM, to predict 105 

wind power outputs from historical turbine data collected from the target wind turbine, a 7MW Offshore wind turbine 106 

situated in Levenmouth, Scotland. This study applies advanced data filtering, feature engineering, and model optimizing to 107 

deliver improvements in terms of predictive accuracy, generalization ability as well as computational performance for wind 108 

power prediction models. The methodology of this study and the used machine learning algorithm processing flowchart is 109 

summarised in Fig. 1 and Fig. 2, respectively. 110 
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 111 

Fig. 1 – Diagram of applied methodology.  112 

 113 

Fig. 2 – Machine learning algorithm processing flowchart.  114 

1.4 Contribution and paper organization 115 

The key contributions of this paper to the current knowledge gaps can be summarised as follows:  116 

! Existing studies on wind power forecasting using neural networks have mainly been based on mid-fidelity methods, 117 

such as LSTM, for which the entire variability of actual wind power may not be fully realised. Furthermore, the 118 
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nature of wind has the feature of stochastic distributions and high variability. In recent years, GRNNs have been 119 

proven to be superior to traditional ANNs and vanilla RNNs for long-input time series sequences, which implies its 120 

great potential for wind power forecasting. There has been an increasing amount of investigations of GRNN in other 121 

fields, such as speech recognition [20] and traffic flow prediction [21]. However, to date, no such comparison has 122 

been made in the field of wind power forecasting. Therefore, in this paper, a novel deep learning method, using 123 

GRU, has been applied in predicting the power output for an offshore wind turbine and its validity in wind power 124 

forecasting has been comprehensively assessed by comparisons with the LSTM.  125 

! In modern wind turbines, several essential components, such as yaw-control system, pitch-control system, generator, 126 

gearbox, and rotor, can strongly impact power generation. However, these integral features within wind energy 127 

conversion systems were not widely studied in previous literature. In this paper, feature engineering was carried out 128 

by Recursive Feature Elimination (RFE) along with Extra Trees Classifier (ETC) in wind power prediction. The 129 

benefits of these methods are bi-fold by determining not only the explained variance of individual variables but also 130 

the optimal number of features to use to maintain a balance between computational cost and predictive accuracy. 131 

The application of RFE and ETC ensure effective feature selection by removing bias that arises from the varying 132 

contribution of individual variables to the explained variance as the pool of features is reduced. 133 

! In this study, Isolation Forest (IF) was used to detect and remove outliers in the target SCADA database, before 134 

feeding it to deep learning models for offshore wind power forecasting. IF is an outlier detection algorithm that is 135 

fundamentally different from its alternatives, applying explicit isolation of outliers rather than profiling normal data 136 

points through the use of density and distance measures. In the absence of any distributional assumptions, IF ensures 137 

efficient and effective operation with datasets of high-dimensionality, which makes it highly suitable for wind power 138 

application and enhance models by reducing computation time and costs [20].  139 

The remainder of this paper is organized as follows. Section 2 provides a detailed description of the target wind turbine 140 

as well as the used SCADA datasets, including how the dataset was treated in pre-processing, resampling, and outlier 141 

detection. Section 3 introduces how features were engineered through RFE & ETC to identify the optimal subset of features 142 

to be used in the designed deep learning model. Section 4 introduces the theoretical background of GRU and LSTM. Section 143 

5 presents the key observations and simulation results attained from final wind power predictive models, which were trained 144 

using GRNN. Section 6 concludes this study by summarizing key findings and contributions of this paper. 145 

2. SCADA data pre-processing 146 

2.1 Target wind turbine 147 
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The target wind turbine is a 7 MW demonstration offshore wind turbine situated in Levenmouth, Fife, Scotland, UK. It is 148 

a three-bladed upwind turbine mounted on a jacket support structure with a total height of 196 m, from the blade tip to the sea 149 

level. Fig. 3 shows the configuration and major parameters of the wind turbine, which has a rotor diameter of 171.2 m and a 150 

hub height of 110.6 m. In terms of operating regions, the designed cut-in, rated and cut-out speeds are 3.5, 10.9 and 25 m/s, 151 

respectively. The wind turbine is based upon a Permanent Magnet Generator (PMG) that is driven via a medium speed (400 152 

rpm) and connects to a full-power converter, allowing the wind turbine to achieve the maximum power coefficient at a wide 153 

range of wind speeds. The target wind turbine is owned by Offshore Renewable Energy (ORE) Catapult [21]. 154 

 155 

Fig. 3 - Schematic and main properties of Levenmouth offshore wind turbine [22].  156 

2.2 Data description 157 

The investigated SCADA datasets were recorded over a nine-month period from 1st July 2018 to 31st March 2019. The 158 

time-series data signals were collected by the built-in SCADA system at 1 Hz (1-second intervals), generating 574 data points 159 

at any given timestamp. The collected dataset was split into six-month training and three-month testing/validation datasets in 160 

the modelling phase. Before processing the datasets, an initial data selection was conducted to limit the size of the applied 161 

dataset by excluding redundant variables to manage computation costs. At this stage, data units were selected to ensure a high 162 

degree of explained variance for the target variable (active power). This was achieved through the representation of:  163 
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! independent inputs (i.e. meteorological factors), including wind speeds at various heights, wind direction 164 

represented by a combination of nacelle orientation & yaw error, and ambient temperature;  165 

! aerodynamic factors affecting wind energy capture, such as average blade pitch angle;  166 

! key parameters in mechanical power transmission systems, such as instantaneous & averaged rotor speeds, 167 

generator temperature and gearbox temperature. 168 

Based on the above criteria, the following 12 features were selected at the initial stage: wind speed at the hub height of 169 

110.6 m, wind speeds at heights of 25 m, 67 m and 110 m, respectively, generator temperature, gearbox temperature, nacelle 170 

orientation, yaw error, average blade pitch angle, instantaneous and averaged rotor speed, and ambient temperature. The 171 

statistical description of count, mean, percentile and standard deviation of selected features were presented in Table 1. 172 

Table 1 – Statistical descriptions of the raw SCADA datasets. 173 
 Count Mean Standard	deviation Minimum 25% Median 75% Maximum 

Wind speed (25 m), m/s	 2.32E+07	 7.44E+00	 3.98E+00	 -3.32E-02	 4.63E+00	 6.83E+00	 9.71E+00	 4.32E+01	
Wind speed (67 m), m/s	 2.32E+07	 -7.95E+11	 2.71E+15	 -9.22E+18	 4.83E+00	 7.00E+00	 9.79E+00	 4.31E+01	
Wind speed (110 m), m/s	 2.32E+07	 7.48E+00	 3.84E+00	 -1.50E+01	 4.82E+00	 6.97E+00	 9.69E+00	 4.16E+01	
Wind speed (110.6 m),	m/s 2.32E+07 7.48E+00 3.84E+00 -1.50E+01 4.82E+00 6.97E+00 9.69E+00 4.16E+01 
Generator	temperature,	�C 2.32E+07 5.04E+01 2.24E+01 -6.01E+01 3.26E+01 4.55E+01 6.27E+01 1.29E+02 
Gearbox	temperature,	�C 2.32E+07 -1.19E+12 3.32E+15 -9.22E+18 4.72E+01 5.20E+01 5.53E+01 1.27E+04 
Nacelle	orientation,�	 2.32E+07	 2.11E+02	 7.23E+01	 7.10E-04	 1.80E+02	 2.32E+02	 2.54E+02	 3.60E+02	
Measured	yaw	error,�	 2.32E+07	 -1.53E-02	 4.53E-01	 -3.14E+00	 -1.21E-01	 3.12E-03	 1.27E-01	 3.18E+00	
Average	blade	pitch	angle,� 2.32E+07 3.90E+01 3.74E+04 -1.00E+03 -1.56E-01 8.43E-01 8.91E+01 1.27E+08 
Instantaneous	rotor	speed,	rpm 2.32E+07 5.09E+00 4.49E+00 -1.86E+00 1.50E-02 5.33E+00 9.15E+00 5.01E+03 
Averaged	rotor	speed,	rpm 2.32E+07 5.33E-01 4.71E-01 -5.90E-02 1.59E-03 5.57E-01 9.44E-01 5.12E+02 
Ambient	temperature,�C 2.32E+07 1.09E+01 4.36E+00 0.00E+00 7.60E+00 1.05E+01 1.42E+01 2.55E+01 

 174 
2.3 Obvious outlier removal 175 

Closer examination of individual parameters highlights certain obvious errors in the SCADA dataset. Although 176 

physically possible, negative values of active power, wind speed and highly negative blade pitch angles (defined as below -177 

10°) carry no practical meaning in wind power generation in general and have thus been removed along with the 178 

corresponding parameters belonging to the same timestamp. Similarly, timestamps with missing values have also been 179 

removed from the time series to avoid their negative influence on the predictive models. Such erroneous data points are often 180 

the results of sensor malfunction, system processing errors or even sensor degradation, which make it essential to pre-process 181 

SCADA data before using them to build models [23].  182 

Fig. 4 presents the data distribution of selected input and output features after the obvious outlier detection and removal. 183 

It can be noted that the mean and median of wind speed at hub height are 7.86 and 7.17 m/s (see Fig. 4b), respectively, which 184 

is lower than the rated wind speed (10.9 m/s). This implies that the wind turbine spends the majority of its operating time 185 

below the rated power (7 MW), which is well illustrated in Fig. 4a. The mean of the average blade pitch angle was measured 186 
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to be 3.42° (see Fig. 4e), while the mean of Nacelle orientation, which is representative of the prevailing wind conditions, is 187 

measured to be 197.85° (see Fig. 4g). The mean ambient temperature for the investigated period is measured to be 12.2°C, 188 

with minimum and maximum values of 2.2 and 25.5°C (see Fig. 4h), respectively. The scatterings of wind speed (see Fig. 189 

4b, k, l and m), ambient temperature (see Fig. 4h), yaw error (see Fig. 4j), generator temperature (see Fig. 4c), and gearbox 190 

temperature (see Fig. 4d) can be considered a normal distribution, whereas the scattering of nacelle orientation showed a 191 

bimodal distribution (see Fig. 4g), which indicated that the local wind conditions can be split into two dominant wind 192 

directions.  193 

 194 

Fig. 4 - Histograms of selected input and output parameters after obvious outlier detection.  195 

2.4 Data re-sampling 196 

One of the key challenges preventing wind energy from increasing its penetration in energy markets arises from the 197 

strong volatility of wind caused by turbulence. To account for the effects of turbulence, aerodynamic models typically 198 

characterize wind flow using a combination of steady-flow mean wind speed and a variation factor describing the fluctuations 199 

caused by the embedded turbulent eddies (i.e. turbulence intensity). The effect of turbulence in the case of horizontal axis 200 

wind turbines is bi-fold, causing the wind hitting the swept blade rotors to rapidly vary both in terms of speed and direction 201 

within a three-dimensional space. This presents a significant issue, whereby wind speed measurements taken by the installed 202 

anemometers are not necessarily coherent with the speed of wind flow hitting rotor blades, resulting in reduced correlations 203 

between the measured wind speed and the power output, which present itself as scatters in the power curve. This effect could 204 

be curbed by averaging the obtained data samples over an appropriate averaging period dependent on the size of the actual 205 

turbine [24]. The international standard for power performance measurements of electricity producing wind turbines (IEC 206 
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61400-12-1) stipulates an averaging time of 10 minutes for large wind turbines [25], which coincides with the averaging time 207 

standards of most meteorological institutions and the wind power spectral gap. To this end, it is of key importance to tailor 208 

available input data to the overall needs of the forecasting model through high-frequency data acquisition and, where 209 

required, appropriate averaging. In this study, the original dataset that was collected at 1 Hz frequency was averaged over 10 210 

minutes averaging periods following IEC 61400-12-1. Fig. 5a and Fig. 5b displays the wind power curves constructed from 211 

the original 1-sec and the resampled 10-min SCADA datasets, respectively. It can be noted that, due to the stochastic nature 212 

of wind, both wind power curves presented a certain degree of scattering, which is particularly prominent in the 10-min 213 

power curve and is caused by the non-linear and multidisciplinary dynamics associated with offshore wind turbine systems 214 

[26]. Fig. 5b (10-min SCADA dataset) presented a smoother sigmoidal shaped power curve. Therefore, the resampled 215 

SCADA dataset with a sampling rate of 10-min was used for this study to limit the impact of turbulence and noise on the 216 

overall turbine performance. 217 

 218 

Fig. 5 - Wind power curve under 1-second (a) and 10-minute (b) sampling rates.  219 

2.5 Anomalies detection and treatment 220 

SCADA datasets often contain erroneous data points, which may be caused by several reasons, including maintenance, 221 

operational planning, breakdown and even sensor degradation. These erroneous data are detrimental to the performance of 222 

wind power prediction models and therefore need to be removed using appropriate outlier detection methods. Closer 223 

inspection of the wind turbine power (see Fig. 6) highlights three common types of anomalies present in the available wind 224 

turbine SCADA dataset: 225 

! Type 1 anomalies are represented in the scatter plot by a horizontally dense data cluster, whereby the wind speed is 226 

larger than the cut-in speed (3.5 m/s), but the generated power is zero. This type of anomalies is normally the result 227 

of turbine downtime [27], which can be cross-referenced using operating logs [21].  228 
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! Type 2 anomalies are represented by a dense data cluster that falls below the ideal power curve of the wind turbine. 229 

This type of anomalies can be caused by wind curtailment, whereby the power output of the turbine is artificially 230 

constrained by its operator below its operating capacity. Wind curtailment can be imposed by wind farm operators 231 

for several reasons, including lack of demand at given times, difficulties in storing large capacity wind power and 232 

finally the unstable nature of electric energy generated by wind turbines at times of volatile wind conditions.  233 

! Type 3 anomalies are randomly distributed around the curve and are normally caused by sensor malfunction, 234 

degradation or noise during signal processing [28,29]. It can also be noted that a fraction of Type 2 and 3 anomalies 235 

can also be described by the dispersion created due to incoherent wind speed measurements taken as a result of 236 

turbulence. 237 

 238 

Fig. 6 – Observed anomalies along wind power curve under 10-minute sampling rates.  239 

Given the paramount importance of wind power curves as a wind turbine performance metric, the outliers pose 240 

significant challenges in its vital applications. In this study, the IF algorithm is used to detect and remove various outliers 241 

from the 10-min SCADA dataset, which has been considered as one of the most effective algorithms for novelty and outlier 242 

detection in wind power prediction [21,30]. IF is an ensemble learning method based on a binary tree structure, consisting of 243 

a set of isolation trees. It works by isolating all instances in a given dataset through iterative partitioning to achieve a random 244 

tree structure. In this context, the number of splitting required to isolate an instance corresponds to its path length from the 245 

root node to the terminating node, which is averaged over a number of trees. The results of the iterative application of 246 

different contamination ratios (2 - 8%) through IF are presented in Fig. 7. In the current study, 4% contamination ratio was 247 
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determined to be most suitable for the given task as it best represents the ideal shape of the wind power curve, taking into 248 

account the cut-in, rated and cut-off wind speeds of the target wind turbine, whilst preserving a wide range of wind speeds.  249 

 250 

Fig. 7 – Outlier detection and treatment along with isolation forest.  251 

3. Feature engineering 252 

Feature engineering aims to transform raw data, herein time series, into an optimal subset of features that best represent 253 

the underlying concept of the given dataset. In this study, a combination of two algorithms was used, namely RFE and ETC. 254 

3.1 RFE with Cross Validation 255 

The RFE works by recursively removing features in a stepwise manner based on their feature importance and a measure 256 

of their relevance to the overall output until a specified number of features is attained. At each recursion, it uses model 257 

accuracy to eliminate a feature or a group of features that contributes least to predicting the desired output. The final ranking 258 

of the features is compiled based on the inverse order of their elimination [31]. Given that the current optimal number of 259 

features is not known, RFE was used in conjunction with cross validation to evaluate the performance of the model at each 260 

stepwise elimination stage against the validation data. 261 

3.1.1 Algorithm identification 262 

An estimator algorithm needs to be trained through RFE to obtain feature importance coefficients for each variable, 263 

which can be used to rank and recursively eliminate features. To ensure a high degree of accuracy, six estimator algorithms 264 
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were evaluated based on their performance on the given SCADA dataset. The six algorithms are K-Nearest Neighbours 265 

(KNN), Support Vector Regressor (SVR), Extra Tree (ET), Decision Tree (DT), Random Forest (RF), and Gradient Boost 266 

(GB), respectively. As presented in Fig. 8, it is clear that SVR is unsuitable for the current task. However, all other 267 

alternatives are comparable in terms of their performances. Amongst all options, ET Regressor (also referred to as Extremely 268 

Randomized Trees) showed marginally superior performance and was thus chosen as the estimator algorithm for the current 269 

RFE process. The ET algorithm is similar to other tree-based algorithms and works by building an ensemble of unpruned 270 

decisions or regression trees, depending on applications as a classifier or a regressor. As opposed to other tree-based methods, 271 

ET splits nodes by selecting cut-points fully at random and grows trees using the entire learning sample instead of bootstrap 272 

replicas [32].  273 

 274 

Fig. 8 – Estimator algorithm selection of RFE.  275 

3.1.2 Recursive Feature Elimination (RFE) 276 

RFE was conducted by splitting the training dataset into the target variable (active power) and independent variables, 277 

which were fed into the model whilst applying a 10-fold cross validation using testing dataset. The R-squared (R2) statistical 278 

measure was used as the scoring function of the model due to its direct representation of the proportion of the target 279 

variable’s variance explained by the set of features, which simplifies the interpretation of the results. The R2 scoring function 280 

can be expressed as: 281 
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!2=1−"=1#($"−$)2($"−$)2 (1) 

where # refers to the number of data points, $" is the "th actual value, $ is the mean value of $ and $ is the predicted 282 

value of $. 283 

As shown in Fig. 9, six parameters offered an ideal compromise between model accuracy and computation time. Using 284 

additional parameters would only enhance the cumulative explained variance marginally (<0.1%), whilst increasing the 285 

computational expense proportionally. It has been concluded that the six best features for the current task are wind speed at 286 

hub height, generator temperature, gearbox temperature, blade pitch angle, instantaneous rotor speed in RPM and nacelle 287 

orientation. 288 

 289 
Fig. 9 – Cross validation score variation along with numbers of selected features.  290 

3.2 Extra Tree Classifier (ETC) 291 

To validate the findings from the RFE process, an ETC (also referred to as Extremely Randomized Trees Classifier) was 292 

implemented to compute the relative importance of features. ETC is an ensemble learning technique, which fits randomized 293 

decision trees onto various sub-samples of a given dataset to improve model accuracy and fit via averaging. As Fig. 10 294 

suggested, the six most significant features coincide with the findings from RFE, thus concluding its validity and confirming 295 

the feature selection of wind speed at hub height, generator temperature, gearbox temperature, blade pitch angle, 296 

instantaneous rotor speed in RPM and nacelle orientation in the order of their significance. 297 
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 298 

Fig. 10 – Feature importance derivate from ETC.  299 

4. Deep learning configuration 300 

Whilst vanilla RNNs proved to be an advance from traditional ANNs, given their inherent dynamic memory, they still 301 

suffered a significant drawback from the unregulated backpropagation of error signals leading to vanishing or exploding 302 

gradients. GRNN solved this problem by using gating mechanisms which regulate the flow of information between layers 303 

and thus track long-term dependencies [33]. This characteristic is key to the wind power application given the high volatility 304 

of wind and the set of underlying physical factors, which influence its variance at different frequency ranges [34]. In this 305 

study, GRNN, in particular GRU and LSTM, is used and critically compared in wind power forecasting, using historical wind 306 

turbine data. 307 

4.1 Long-Short Term Memory (LSTM)  308 

LSTM is built based on memory cells, which contains a recurrently self-connected linear unit, referred to as the Constant 309 

Error Carousel (CEC). CECs resolve the vanishing/exploding gradient problem as their local error back flow remains 310 

constant until the cell is exposed to new inputs or error signals. By introducing input and output gates, the CEC is protected 311 

from both forward flowing activation and backwards flowing error. Besides, a third forget gate is used to control the amount 312 

of information to forget from the historical data [20]. A typical structure of the LSTM unit is presented in Fig. 11. In practice, 313 

LSTM [35] is capable of learning and remembering long-term dependencies, which makes it suitable for time-series 314 

forecasting with long input sequences [36].  315 
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 316 

Fig. 11 – LSTM Unit Structure. 317 

Eq. (2) ~ Eq. (7) summarized the computational process for any individual activation of the LSTM cell: 318 

In Eq. (2) ~ (4), input, forget and output gate activation vectors of "%, &% and '% were calculated through the assigned 319 

weights of (&, (", (', )&, )", )' and the bias of *&, *", *' along with corresponding activation functions +,. Additionally, 320 

-% is the input of neuron at time step % and ℎ%−1 is the cell state vector for time step %−1.  321 

&%=+,((&-%+)&ℎ%−1+*&) (2) 

"%=+,(("-%+)"ℎ%−1+*") (3) 

'%=+,(('-%+)'ℎ%−1+*') (4) 

In Eq. (5), the newly assessed value of state .% is calculated in a similar mothed along with corresponding activation 322 

functions +..  323 

.%=+.((.-%+).ℎ%−1+*.) (5) 

In Eq. (6), the cell state .% is obtained from the previous cell state .%−1 and the newly assessed value of state .%.  324 
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.%=&%∘.%−1+"%∘.% (6) 

In Eq. (7), the overall output ℎ% is generated from the Hadamard product (∘) of the output gate control signal '% and the 325 

cell state .% of the LSTM unit across the activation function +,ℎ.  326 

ℎ%='%∘+,ℎ(.%) (7) 

Based on the above dependencies, the described functions can be deduced for input, forget and output gates [36] as: 327 
 328 
! Input gate ("%) controls the extent to which .% (i.e. estimate of new cell state value) flows into the memory; 329 

! Forget gate (&%) controls the extent to which .%−1 (i.e. previous state) is kept in the memory; 330 

! Output gate ('%) controls the extent to which .% (i.e. current state) contributes to the output (ℎ%).  331 

4.2 Gated Recurrent Unit (GRU) 332 

GRU was firstly proposed by Cho et al. [19] as a more compact and simpler to implement hidden unit inspired by the 333 

LSTM unit. GRUs [37] contain a reset and an update gate, which adaptively control how much each hidden unit remembers 334 

or forgets during training without having separate memory cells. This means each hidden unit is able to adaptively capture 335 

dependencies over different time scales, depending on the activity frequency of its gating mechanisms. For example, short-336 

term dependencies will be captured via frequent reset gate activity and long-term dependencies via frequent update gate 337 

activity [19,38]. A classical structure of the GRU unit is presented in Fig. 12. 338 

 339 

Fig. 12 – GRU Unit Structure. 340 
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Eq. (8) ~ Eq. (11) showed the governing equations of a GRU unit: 341 

In Eq. (8) and (9), the update gate /% and the reset gate 0% were computed from the assigned weights of (/, (0 )/, )0 342 

and the bias of */, *0 along with corresponding activation functions +1. In addition, -% is the input of neuron at time step % 343 

and ℎ%−1 is the cell state vector for time step %−1.  344 

/%=+1((/-%+)/ℎ%−1+*/) (8) 

0%=+1((0-%+)0ℎ%−1+*0) (9) 

Then, the obtained reset gate 0% is used to initiate a new memory content ℎ% in Eq. (10). The Hadamard (elementwise) 345 

product is calculated between )ℎℎ%−1 and the reset gate 0%, which is operated to determine what information to eliminate 346 

from previous time steps. Afterwards, the activity function of +1ℎ is applied to produce the new cell state vector ℎ%. 347 

ℎ%=+1ℎ((ℎ-%+(0%∘)ℎℎ%−1)+*ℎ) (10) 

To end, the current cell state vector ℎ% is obtained through passing down the hold information to the next unit. To do so, 348 

the update gate (/%) is involved in Eq. (11):  349 

ℎ%=/%∘ℎ%−1+(1−/%)∘ℎ% (11) 

The above relationships outline the exact nature of the operation for the two gates in GRU [36]: 350 
! Update gate (/%) controls how much of the previous hidden state ℎ%−1 will be carried over to the current hidden 351 

state (i.e. how much of the previous hidden state and output candidate of the current hidden state is to be used to 352 
calculate the output ℎ%);  353 

! Reset gate (0%) controls how much of the previous hidden state ℎ%−1 is to be used to compute the output candidate 354 

(ℎ%).  355 

4.3 Deep learning optimization   356 

Model selection and optimization play a pivotal role in the design and implementation of any neural network given their 357 

direct impact on the overall performance of predictive models. The evolution of deep learning neural networks has greatly 358 

improved the overall accuracy of implemented models, which in turn increased their complexity. This, however, introduced 359 

new challenges which arise from the great number of hyperparameters that are required to be optimized to maximize the 360 

performance and minimize the training time. The key to overall success in this process lies in the trade-off between 361 
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underfitting and overfitting, which can be balanced using the optimal set of hyperparameters for a given dataset and the 362 

respective model. 363 

In this study, grid search was used to tune hyperparameters to optimize the model performance taking into account both 364 

GRU and LSTM units. Grid search works by implementing a given estimator and evaluating combinations from a grid of 365 

parameters based on a user-defined set of metrics when fitting the estimator on a certain dataset. Cross validation is used to 366 

evaluate and identify the combinations of hyperparameters that perform well across data points in each fold of the dataset. 367 

This process aims to find the combination of hyperparameters that perform best on average across all folds, which will then 368 

be used to train the given model. Furthermore, R2 score was used again to evaluate each hyperparameter combination. In this 369 

paper, the type of model, number of hidden layers and neurons in each hidden layer were optimized using manual search 370 

conducted by testing various network configurations, whereas other hyperparameters were tuned using the GridSearchCV 371 

algorithm, including batch size, number of epochs, optimizer, activation function and kernel initializer. Table 2 summarized 372 

the hyperparameters considered during the grid search optimization. 373 

Table 2 - Hyperparameters optimization through grid search. 374 

Hyperparameter Grid Optimization 
Batch size 10, 20, 40, 60, 80, 100 20 
Number of epochs 5, 10, 15, 20, 25 25 
Optimizer  SGD, RMSProp, Adagrad, Adadelta, Adam, Adamax, Nadam Nadam 
Activation function Sigmoid, tanh, ReLu, softmax, softplus, softsign, hard_sigmoid, linear Softsign 
Kernel initializer uniform, lecun_uniform, normal, zero, glorot_normal, glorot_uniform, he_normal, 

he_uniform he_uniform 

 375 

 Batch size and number of epochs 376 

Batch size refers to the size of the data batch introduced to the network before the weights are updated, whereas the 377 

number of epochs is the number of iterations completed over the entire dataset during training. Both hyperparameters have a 378 

significant impact on the overall computational cost as well as the ability of the network to generalize well across unseen data 379 

domains. Intuitively, the ideal scenario is to train the model using the smallest possible batch size and for as many iterations 380 

as long as the model does not begin to overfit, which can be observed from the increase in testing/validation errors. Through 381 

grid search, the ideal batch size and number of epochs were identified as 20 and 25, respectively.  382 

 Optimizer 383 

The objective of any machine learning algorithm is to use inductive learning to learn general concepts from a training 384 

dataset, where it is used to predict an output that is as close as possible to the actual output. This is achieved by using 385 

optimizers, which iteratively update weight parameters (represented by ( and ) in Eq. (2) ~ Eq. (5) and Eq. (8) ~ Eq. (10)). 386 
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It is used to minimize the loss function, which represents the difference between predicted and actual values. Through grid 387 

search, Nesterov-accelerated Adaptive Moment Estimation (Nadam) was identified as the ideal optimizer algorithm. Nadam 388 

is based on Adaptive Moment Estimation (Adam), which is widely used given its computational efficiency, low memory 389 

requirement and superior performance for a wide range of cases [39]. It differs in its use of Nesterov’s Accelerated Gradient 390 

(NAG) in conjunction with RMSprop (Root Mean Square Propagation) instead of AdaGrad (Adaptive Gradient Algorithm). 391 

The superiority of Nadam lies in its use of NAG, which is able to achieve advanced step direction, compared to classical 392 

momentum by applying the momentum vector to parameters before computing the gradient [40]. On the other hand, 393 

RMSProp adapts individual learning rates based on the average of recent gradients for the weight, which is ideal for non-394 

stationary datasets, such as wind turbine power outputs [41]. In summary, Nadam outperforms other optimizers in the current 395 

scenario given that it combines the best properties of both RMSProp and NAG. 396 

 Activation function 397 

Activation functions are mathematical functions (represented by +(-) in Eq. (2) ~ Eq. (5), Eq. (7), and Eq. (8) ~ Eq. 398 

(10)) attached to neurons that define its output based on the calculated weighted sum of its inputs and the additional bias. 399 

Activation functions are key components for training and optimizing ANNs as they manipulate and propagate information 400 

through gradient processing, whilst introducing non-linearities. Through the grid search, the optimal activation function was 401 

found to be softsign [42]. Softsign is a non-linear activation function based on quadratic polynomial, which is often 402 

considered as an alternative to the classic hyperbolic tanh function given their similarities. Softsign and its derivative can be 403 

expressed as: 404 

&-=--+1 (12) 

&′-=&-(1+-)2 (13) 

where - and - represent the input and its absolute value, respectively. Softsign, similar to tanh, ranges between 1 and -1 405 

and its output is centred at 0, which improve the networks back-propagation capability. Smoother asymptotes resulting from 406 

its polynomial convergence mean softsign does not saturate easily and is able to be trained faster [42]. 407 

 Kernel initializer 408 

In this study, the he_uniform variance scaling initializer was used to initialize the weights of inter-neural connections 409 

based on its superior performance in the grid search. He_uniform draws values from a uniform distribution bounded by a 410 

limit defined as:  411 
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,"2"%=±6&34_"4 (14) 

where &34_"4 denotes the number of input units in the weight tensor [43]. 412 

5. Results and discussions 413 

5.1 Performance evaluation 414 

This section presents the results and key observations attained from the final output of wind power prediction models 415 

trained using GRU and LSTM. The models were trained using selected input features (hub height wind speed, generator 416 

temperature, gearbox temperature, blade pitch angle, instantaneous rotor speed (RPM), nacelle orientation) and the desired 417 

output (active power). The training phase of the deep learning neural networks was conducted by feeding it with a training 418 

dataset, consisting of both input and output data. Afterwards, the model is presented with testing/validation data based on 419 

which it made predictions for the output (active power). The predictive accuracy of the model is evaluated by using the loss 420 

function of Mean Square Error (MSE). 421 

Both GRU and LSTM neural networks were hyperparameter tuned using grid search to ensure their optimal performance 422 

and implementation under identical architectures. Both models have been trained and validated using identical training and 423 

testing/validation datasets, which have been subjected to the same methods of sampling and filtering. Fig. 13 showed the 424 

MSE profiles of the constructed deep learning predictive models along training and validation loops. It suggested that the use 425 

of IF filtering improved and accelerated the convergence of both predictive models, presenting quicker stabilizations of these 426 

models. The deep learning models trained using raw datasets did not converge and stabilize within the designated 25 epoch 427 

training period, implying significant training and validation losses. Fig. 13 also clearly showed that GRU initializes at lower 428 

errors and later demonstrates quicker and more effective stabilization of losses, which serves as a sign of its robustness. 429 

Overall, all filtered configurations stabilized within 16-17 epochs, indicating that the networks were sufficiently ‘deep’ and 430 

optimized to converge efficiently under relatively short training time. 431 
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 432 

 Fig. 13 – Convergence of training and validation loops in the deep learning models of GRU and LSTM.    433 

5.2 Model benchmarking  434 

Table 3 showed the summary of modelling accuracies attained through the constructed GRU and LSTM. In terms of 435 

accuracy, it can be seen that GRU outperformed LSTM in each individual test. Their performance was comparable after 436 

filtering with the recorded discrepancy in accuracy being 1.32%. With regards to training time, it has been observed that 437 

GRU trains on average 38% faster compared to LSTM, which is credited to its simpler structure and fewer parameters as 438 

mentioned in section 4.2. The low accuracy of the LSTM model trained using the raw dataset indicates the algorithm’s 439 

sensitivity to noise, which makes it underperform in wind power forecasting. 440 

 441 

Table 3 - Model performance evaluation of GRU and LSTM.  442 

Raw dataset Dataset after Outlier filtering (IF)  
 

GRU LSTM GRU LSTM 

MSE 0.01014 0.07096 0.003532 0.005272 

Accuracy (%) 89.93 73.36 94.06 92.74 

Training time (s) 131.29 207.54 96.25 159.48 

 443 
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Fig. 14 showed the measured and the predicted wind power curves obtained from each individual GRU and LSTM deep 444 

learning models. As can be seen, the proposed method of IF filtering is highly effective, as these models predicted the shape 445 

of wind power curves ((Fig. 14c and Fig. 14d)) significantly more closely than the raw dataset (Fig. 14a and Fig. 14b). This 446 

underlies improvement in the model’s ability to generalize well to unseen data as a result of removing certain noises 447 

presented in the dataset. Again, GRU provided better adaptability to the sigmoidal shape of the wind power curve, which is 448 

advantageous to the overall performance of the neural network modelling. 449 

 450 

Fig. 14 – Comparisons of measured and predicted wind power curves from GRU and LSTM deep learning models.  451 

As shown in Fig. 15, the applied filtering techniques reduced the prediction errors significantly compared to the raw 452 

training dataset. The time-series analysis shows that in the raw data scenario, GRU responds better to the high-fluctuating 453 

nature of the signal, showing less sensitivity to the noise, compared to LSTM. A common source of error in all models occurs 454 

around 15th March when the power output of the wind turbine is significantly curtailed for operational reasons. 455 
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 456 

Fig. 15 – Comparisons of measured and predicted wind power over January ~ March 2019.  457 

The investigations above evaluated several deep-learning-based wind power forecasting models to compare their 458 

predictive accuracy and training time. The use of Recursive Feature Elimination and grid-search-based hyperparameter 459 

optimization, both novelties in the field of offshore wind power prediction, has proven to have direct and positive impact on 460 

the performance of predictive models. The results also shown that the use of filtering techniques is essential to creating 461 

accurate wind power forecasting for offshore wind turbines due to the high-fluctuating and the noisy nature of the SCADA 462 

datasets. Both the accuracy and the training time of predictive models are enhanced significantly through the applications of 463 

outlier filters, reaching relatively high accuracy in all individual test cases. 464 

5.3 Summary 465 

5.3.1 Resampling and outlier detection 466 

The results above indicated that filtering data and removing erroneous measurements are imperative for monitoring and 467 

assessing a wind turbine’s performance, as these seriously skewed power outputs. By cleaning outliers and removing 468 

anomalous values, such as negative powers arising from sensor malfunction and null power caused by turbine downtime, the 469 

value of the mean wind power output increased by 1 MW, which is more representative of the actual operational 470 

performance. Moreover, it has been shown that reducing the sampling rate through periodical averaging does filter out some 471 

of the noise and better reveals the shape of the power curve, providing a comprehensive performance assessment, as it 472 

prevented the skewed statistical distribution of the raw datasets.  473 

5.3.2 Qualitative comparison between GRU and LSTM 474 

It is clear that GRU and LSTM share certain key similarities but operate in significantly different ways. Both of them 475 

have an additive characteristic, whereby new content is added on top of historical information from previous activations as 476 
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opposed to hidden units found in traditional recurrent neural networks, which always replace the content of its units in the 477 

absence of memory. In this case, the new state is the product of the previous hidden state and the input. The additive 478 

characteristic of GRU and LSTM makes them superior to traditional vanilla RNNs, as it ensures information deemed 479 

important (by the forget gate in the case of LSTM or update gate for GRU) is propagated instead of being replaced and it also 480 

creates links across multiple temporal steps to allow errors to be back-propagated. This, in practice, minimizes the effects of 481 

vanishing or exploding gradients and ensure the tracking of long-term dependencies [38,44].  482 

 However, arising from their different gating mechanisms, GRU and LSTM have inherently different characteristics in 483 

terms of:  484 

! Cell State Exposure: LSTM controls the exposure of its cell state and memory content using its output gate, 485 

whereas GRU exposes its entire cell state;  486 

! Gate Control: In LSTM, input and forget gates work independently, which means that the amount of new 487 

information added via the input gate is controlled independently from the forget gate. In contrast, GRU controls the 488 

amount of information retained from the previous activation but is not able to independently control the addition of 489 

new information via candidate activation. 490 

As discussed by Chung et al. [38] and Bahdanau et al. [45], the superiority of GRU and LSTM over traditional vanilla is 491 

evident. Also, as proven by the results in section 5.1 and 5.2, GRU’s simpler cell structure, and subsequently fewer training 492 

parameters, result in shorter training time and the ability to train with fewer samples in wind power forecasting. 493 

6. Conclusions 494 

In this study, wind power prediction was explored in-depth by using historical turbine data collected from the target 7 495 

MW Samsung offshore wind turbine situated in Levenmouth, Fife, Scotland, where a wide breadth of machine learning 496 

techniques was employed to build optimized predictive models using GRU and LSTM deep learning neural networks. This 497 

was achieved in several stages defined by the adopted methodology, which involved pre-processing raw database to ensure 498 

high-quality datasets, applying IF filter to minimize the number of erroneous measurements and identifying the optimal 499 

subset of features to best represent the underlying concept of the used datasets. To maximize performance, both GRU and 500 

LSTM deep learning models were hyperparameter tuned via a combination of manual and grid search. In this paper, the 501 

developed wind power forecasting approach is independent of turbine properties, and therefore can be applied for any types 502 

of wind turbine or wind farms. To sum up, the following conclusions have been reached: 503 
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! Before input features were used for training in GRU and LSTM deep learning models, advanced data filtering 504 

algorithm IF was applied to input features of the current study. When training with filtered data, deep learning 505 

predictive models have an outstanding performance in wind power forecasting. IF filtering enhanced the 506 

performance of both GRU and LSTM in terms of accuracy, achieving over 92% for both cases. When combining 507 

with IF, the gated recurrent deep learning neural network displayed its full advantages.  508 

! The adoption of feature dimension reductions resulted in a cut of six features in the selected SCADA datasets, 509 

which have been validated and confirmed by both RFE and ETC. The other six more significant features have been 510 

identified as wind speed at hub height, generator temperature, gearbox temperature, blade pitch angle, instantaneous 511 

rotor speed and nacelle orientation in the order of their significance.  512 

! The approach developed in this paper has the advantage of high degree of accuracies while retaining low 513 

computational costs. The proposed GRU deep learning neural network can reach a higher forecasting accuracy and 514 

lower training time compared with LSTM. The internal design of GRU offers a simpler cell structure and 515 

subsequently requires fewer training parameters in deep learning models of wind power forecasting. It can be 516 

concluded that GRU outperformed LSTM in predictive accuracy under all observed tests, whilst training 38% faster 517 

and showing robustness as well as less sensitivity to noise in the SCADA datasets.  518 
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