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Abstract 

Pyruvate kinase catalyses the final step of the glycolytic pathway in central energy metabolism. 

The monomeric structure comprises three domains: a catalytic TIM-barrel, a regulatory domain 

involved in allosteric activation, and a lid domain that encloses the substrates. The lid domain is 

thought to close over the TIM-barrel domain forming contacts with the substrates to promote 

catalysis and may be involved in stabilising the activated state when the allosteric activator is 

bound. However, it remains unknown whether the lid domain is essential for pyruvate kinase 

catalytic or regulatory function. To address this, we removed the lid domain of Escherichia coli 

pyruvate kinase type 1 (PKTIM+Reg) using protein engineering. Biochemical analyses demonstrate 

that, despite the absence of key catalytic residues in the lid domain, PKTIM+Reg retains a low-level of 

catalytic activity and has a reduced binding affinity for the substrate phosphoenolpyruvate. The 

enzyme retains allosteric activation, but the regulatory profile of the enzyme is changed relative to 

the wild-type enzyme. Analytical ultracentrifugation and small-angle X-ray scattering data show 

that, beyond the loss of the lid domain, the PKTIM+Reg structure is not significantly altered and is 

consistent with the wild type tetramer that is assembled through interactions at the TIM and 

regulatory domains. Our results highlight the contribution of the lid domain for facilitating 

pyruvate kinase catalysis and regulation, which could aid in the development of small molecule 

inhibitors for pyruvate kinase and related lid-regulated enzymes. 

 (234 words) 

Keywords: pyruvate kinase, analytical ultracentrifugation, protein engineering, glycolysis, enzyme 

evolution, enzyme kinetics. 
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Introduction 

Glycolysis is the central energy-generating pathway in most organisms (Van Schaftingen 1993). 

The pathway catalyses the breakdown of glucose into pyruvate and this is coupled to energy 

generation via the synthesis of reduced nicotinamide adenine dinucleotide (NADH) and adenosine 

triphosphate (ATP) that are then used to drive further biosynthetic processes (Ainscow and Brand 

1999; Xie and Wang 1996). The final step of glycolysis is catalysed by the enzyme pyruvate kinase 

and this reaction is often allosterically regulated by one or more effectors. 

In Escherichia coli, the pyruvate kinase type 1 monomer consists of three domains (Zhu et al. 

2010). The catalytic domain (residues 1–70, 171–351) is a typical TIM barrel (also known as a 

(β/α)8-barrel), a common structural fold found in a diverse selection of enzymes that has a variety 

of functions (Sterner and Höcker 2005). The catalytic domain contains many of the active site 

residues needed for binding the substrates (phosphoenolpyruvate and adenosine diphosphate), as 

well as binding cations (K+, Mg2+) that interact with the substrates and are essential for catalysis 

(Mattevi et al. 1995). The lid domain (residues 71–170) folds over the active site of the catalytic 

domain and consists of a small intertwined β-barrel assembly (Mattevi et al. 1995). Finally, the C-

terminal regulatory domain (residues 352–470) binds the allosteric activator, fructose-1,6-

bisphosphate, which induces a conformational shift to the active R-state (Mattevi et al. 1995). In 

solution, E. coli pyruvate kinase forms a stable tetramer (Zhu et al. 2010), which enables co-

operative activation between monomers upon the binding of the substrate phosphoenolpyruvate 

(Valentini et al. 2000). The tetramer is formed through two interfaces, the first between the 

catalytic domains forming a dimer, and the second interface lies between the regulatory domains 

to form a dimer of dimers (PDB: 4YNG) (Donovan et al. 2016b; Mattevi et al. 1995). The face-to-

face assembly forms an oblate structure with a hole in the centre that resembles a ring doughnut 

from a side on view. 

As a central metabolic pathway, glycolysis is highly regulated. This includes allosteric regulation by 

phosphofructokinase in the early stage of the pathway, and by pyruvate kinase in the final step 

(Fenton and Reinhart 2002; Reeves and Sols 1973; Valentini et al. 2000). Although the allosteric 

modulator varies between species, in E. coli, pyruvate kinase type 1 is regulated through two 

activators: fructose-1,6-bisphosphate, an early pathway substrate of glycolysis that binds 

allosterically at the regulatory domain; and phosphoenolpyruvate, the enzyme substrate, which 
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cooperatively binds at the active site (Mattevi et al. 1995). Activation of pyruvate kinase plays a 

role in increasing flux through the glycolytic pathway (Mattevi et al. 1995; Pearce et al. 2001). The 

mechanism of allosteric activation of E. coli pyruvate kinase type 1 is thought to occur via 

conformational changes upon binding fructose-1,6-bisphosphate and has been discussed in detail 

elsewhere (Mattevi et al. 1996; Schormann et al. 2019). Briefly, binding of fructose-1,6-

bisphosphate stabilises a 20-40° rotation at the regulatory domain (Schormann et al. 2019; 

Valentini et al. 2000), which increases dynamic movement in the TIM domain around the active 

site (Donovan et al. 2016b), and places the lid domain near the opposing monomer, increasing 

interaction to close the lid (Mattevi et al. 1995). 

One aspect of the pyruvate kinase enzyme that has not been extensively investigated is the 

function of the lid domain. The domain is a distinct β-barrel fold with six anti-parallel beta strands 

that belongs to the pyruvate kinase β-barrel domain family (SCOP ID: 4002474). The domain is 

well-conserved, appearing in all three phylogenetic domains of life, with a high degree of similarity 

between evolutionary distinct organisms (Johnsen et al. 2003; Pendergrass et al. 2006; Schormann 

et al. 2019). This suggests that the lid domain of pyruvate kinase is likely to be both ancient and 

important. The domain has been documented to be highly mobile, a characteristic that underpins 

its expected function within catalysis and regulation. It is proposed that after metal cations 

coordinate in the active site, the lid domain rotates to allow substrate binding, after which it 

moves to cover and dehydrate the active site cleft (Li et al. 2012; Naithani et al. 2015). The 

position and amount of movement seen in the lid is known to vary depending upon substrate 

binding within the active site and whether fructose-1,6-phosphate is bound at the regulatory 

domain (Li et al. 2012; Valentini et al. 2000). However, experiments that have provided these 

insights are generally focused on catalysis (Oria-Hernández et al. 2005), regulation (Valentini et al. 

2000), or deficiencies in human pyruvate kinase mutants (Valentini et al. 2002; van Wijk et al. 

2009), and only involve site directed mutagenesis studies. As such, implications for the ubiquitous 

and structurally distinctive lid domain have not been reported. Therefore, it remains unknown 

whether the lid domain is essential for pyruvate kinase catalytic or regulatory function. 

Thus, to determine whether the lid domain is essential for catalytic and regulatory function of E. 

coli pyruvate kinase type 1, we removed this domain from the protein to create a pruned enzyme 

consisting of the catalytic TIM barrel and regulatory domains (PKTIM+Reg). We found that the 

PKTIM+Reg enzyme binds the substrates phosphoenolpyruvate and adenosine diphosphate and is 
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catalytically active, but that enzyme activity is severely attenuated. Thermal stability assays show 

that the activator, fructose-1,6-bisphosphate, still binds to PKTIM+Reg, while solution studies show 

that the cleaved enzyme retains its doughnut-shaped tetramer assembly, similar to the wild-type 

structure. These data show that the lid domain is not essential for structural formation or enzyme 

function, but it is necessary for the high-levels of catalytic turnover that are expected for a 

glycolytic enzyme.
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Materials and methods 

Cloning, expression and purification 

A truncated pyruvate kinase enzyme was generated using a nucleotide sequence synthesised by 

Genscript (Korea). The PKTIM+Reg construct consisted of sequence corresponding to aa 1–70 and 

171–470 (catalytic and regulatory domains) of wild-type pyruvate kinase from E. coli strain REL606 

(Accession number: AY849930.1), with a proline to alanine substitution at residue 70 (P70A). The 

construct was ligated into expression vector pET-26b+ using the Ndel and BamHI restrictions sites 

to add a thrombin cleavage site and a 6×-histidine tag to the C-terminal end of the construct. The 

resulting vector was then transformed into chemically-competent E. coli BL21(DE3) cells.  

Protein expression and purification were carried out as described previously for the wild-type 

enzyme (Donovan et al. 2016a). Briefly, recombinant E. coli containing the mutant construct were 

cultured at 37 °C in 1 L of Luria-Bertani broth supplemented with 30 mg of kanamycin to an optical 

density at 600 nm of 0.6. Expression was induced by the addition of 1 mM isopropyl β-d-1-

thiogalactopyranoside and the culture was incubated at 26 °C overnight. Cells were collected by 

centrifugation at 10,000 × g for 10 min in a Thermo Sorvall RC-6-Plus centrifuge and the 

supernatant was discarded. The collected cells were then resuspended in Buffer A (20 mM Tris-

HCl, 500 mM NaCl, 20 mM imidazole, pH 8) and lysed using a Hielscher UP200S Ultrasonic 

Homogenizer at 70% with a 0.5 s on/off cycle for 7 min. The lysate was centrifuged at 10,000 × g 

for 40 min in an Eppendorf 5810R centrifuge and the supernatant recovered before being applied 

to a GE Healthcare HisTrap FF Crude 5-mL column pre-equilibrated with five column volumes of 

Buffer A. A gradient (0%–100%) of Buffer B (20 mM Tris-HCl, 500 mM NaCl, 500 mM imidazole, pH 

8) was then applied over 18 column volumes. Peak fractions were determined based on the 

ultraviolet (UV) intensity at 280 nm and sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) analysis. The fractions were then applied to a HiLoad 16/60 Superdex 

column pre-equilibrated with Buffer C (20 mM Tris-HCl, 150 mM NaCl, pH 8). Peak fractions were 

again determined by 280 nm UV intensity and SDS-PAGE analyses. Fractions were then pooled, 

flash-frozen and stored at −80 °C. Steps performed at 4°C, except when noted otherwise. 

Kinetic assays 

The kinetic parameters of the PKTIM+Reg enzyme were determined using a lactate dehydrogenase 

coupled assay, as described previously (Malcovati and Valentini 1982). Initial rates were 
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determined from the decrease in NADH concentration, as measured at 340 nm using a CARY 100 

Bio UV-Visible spectrophotometer (Agilent Technologies). The 1-mL reaction volumes contained 

10 mM HEPES (pH 7.5), 50 mM KCl, 10 mM MgCl2, 2 mM fructose-1,6-bisphosphate, 120 μM 

NADH, 22 units of lactate dehydrogenase (Sigma-Aldrich) and 280 nM purified PKTIM+Reg. When 

varying the concentration of either adenosine diphosphate or phosphoenolpyruvate, the other 

substrate was kept at 2 mM. Curve fitting for kinetic parameters was performed in Origin 

(OriginPro, version 8.5). 

Differential scanning fluorimetry 

Differential scanning fluorimetry was performed using the BioRad IQ5 Multicolor RealTime PCR 

Detection System based on a previously described method (Niesen et al. 2007). Briefly, protein (50 

μL, 1 mg/mL), SYPRO orange dye (1 μL) (Thermo Fisher Scientific) and varying concentrations of 

ligand were added to the wells of a 96-well plate. Each reaction was made up to a final volume of 

100 μL with a buffer consisting of 20 mM Tris-HCl and 150 mM NaCl, pH 8. The reaction 

temperature was increased from 20 °C to 100 °C in 1 °C increments, with each temperature held 

for 20 s prior to measuring. The unfolding temperature was determined by the dRFU/dt.  

Homology model building and molecular dynamic simulation 

An atomic model of the PKTIM+Reg mutant protein was constructed using SWISS-MODEL (Arnold et 

al. 2006) with E. coli pyruvate kinase (PDB: 4YNG) as a template. Additional residues in the 

polyhistidine region were manually built using the COOT model software package (Emsley et al. 

2010). Molecular dynamics simulations were conducted with Gromacs (version 5.0.6) (Abraham et 

al. 2015) using a simplified protocol based upon pyruvate kinase simulations, preformed 

elsewhere (Naithani et al. 2015). Specifically, the simulation used a 1.0-Ȧ hydrated cubic 

environment, all force fields and a neutral environment with 12 sodium ions at 25 °C for 10 ns.  

Analytical ultracentrifugation 

Analytical ultracentrifugation studies were performed in a Beckman model XL-I analytical 

ultracentrifuge with conventional double-sector charcoal-epon centrepieces with quartz windows 

in a four-hole An60-Ti rotor at 20 °C. An absorbance optical system was used at a wavelength of 

280 nm. Solvent density (1.005 g/mL), solvent viscosity (0.0102 poise) and an estimate of the 

partial specific volume (0.7392) for PKTIM+Reg were computed using SEDNTERP (Laue et al. 2007). 
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For sedimentation velocity experiments, 400 μL of reference buffer (20 mM Tris-HCl and 150 mM 

NaCl, pH 8) and 380 μL of sample (1 mg/mL PKTIM+Reg in reference buffer) were centrifuged at 

50,000 rpm. Data were collected at a single wavelength at 6 min intervals using a 0.003 cm step 

size in continuous mode. Sedimentation velocity data at multiple time points were fitted to a 

continuous size distribution c(s) model using SEDFIT and regularized with the maximum entropy 

method (set at 0.95), standard for continuous distribution model fitting (Schuck et al. 2002). For 

sedimentation equilibrium experiments, reference and sample sectors were loaded with 120 μL of 

reference buffer and 100 μL of protein sample, respectively. Samples were centrifuged at 8,000 

and 11,500 rpm, with the two speeds used to ensure that the resulting data is sufficiently to 

estimate the mass of an ~200 kDa protein. Data were collected every 4 h until sedimentation 

equilibrium was attained, at 280 nm, using a 0.001 cm step size in step mode and an average of 10 

measurements. Sedimentation equilibrium and velocity data were globally fitted to a to a single 

discrete species with mass conservation model using SEDPHAT (Vistica et al. 2004). Theoretical 

sedimentation coefficient for the molecular dynamics model and wild-type crystal structure (PDB: 

4YNG) using HYDROPRO (Ortega et al. 2011). The models were analysed at the residue level with a 

4.8 Ȧ shell calculation and simulating the experimental conditions, all other options were 

automated.  

Small-angle X-ray scattering and ab initio model building 

Small-angle X-ray scattering (SAXS) data were collected at the Australian Synchrotron (Melbourne, 

Australis) on the SAXS/WAXS beamline. The X-ray beam size at the sample was 250 µm horizontal 

and 80 µm vertical, and data were collected using a Pilatus 1M detector positioned 900 mm from 

the sample, giving a q-range of 0.01–0.6 Å−1 (wavelength, 1.0332 Å). The protein sample was 

subjected to in-line size exclusion chromatography on a Superdex 200 5/150 GL gel filtration 

column (GE Healthcare) equilibrated with buffer. The PKTIM+Reg (50 µl, 12 mg/mL) fractionated 

sample was passed through a 1.5-mm quartz capillary, where it was exposed to the X-ray beam. A 

total of 600 detector images, consisting of sequential 5-s exposures, were collected. Averaged 

background buffer scattering was subtracted from the peak scattering using Scatterbrain (version 

2.82). Scattering error was halved, as Scatterbrain outputs at twice the value of the standard error 

(Trewhella et al. 2017). Guinier plots were analysed using SAS ATSAS data analysis software 

package (version 2.8) (Franke et al. 2017) and P(r) distribution analysis was performed using 

GNOM (Svergun 1992). Theoretical scattering curves were generated from atomic coordinates and 

compared with experimental scattering curves using CRYSOL (Svergun et al. 1995). DAMMIF was 
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used to generate bead models that fit the scattering pattern of the experimental data, selecting a 

tetramer with P222 symmetry (Franke and Svergun 2009). The DAMAVER suite of software was 

used to average 20 of the bead models to generate the most probable model (Volkov and Svergun 

2003). SUPCOMB was then used to superimpose the 3D bead model onto the crystal structures 

(Kozin and Svergun 2001). Finally, GASBOR was used to produce 10 chain-like ensemble bead 

models, selecting P222 symmetry, reciprocal space fit and 373 dummy residues options 

(Petoukhov and Svergun 2003). 
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Results and Discussion 

Engineering and purifying a recombinant, lidless pyruvate kinase 

To examine the role of the lid domain and to assess whether it is essential for catalytic function, a 

pyruvate kinase variant was engineered without a lid domain (PKTIM+Reg). We did this by 

engineering the gene such that the lid domain (residues 71-170) was removed and replaced with a 

hairpin loop to link residues 70 and 171, which required a mutational change from P70 to A70. 

This strategy was chosen because in the wild-type structure, the lid domain is installed in a C-

terminal loop of the TIM barrel between β-strand 3 and α-helix 3 (PDB:4YNG), and the residues 

that attach the lid domain are in close proximity (5.9 Å) (Fig. 1a). 

 [INSERT FIGURE 1] 

Soluble expression and purification of PKTIM+Reg was assessed using SDS-PAGE. Based on the amino 

acid sequence of the PKTIM+Reg construct, the protein was estimated have a monomeric mass of 

42.8 kDa. In line with this estimate, a large band consistent with PKTIM+Reg overexpression was 

visible at approximately 43 kDa. Both chromatography steps increased protein purity and the final 

sample was estimated to be >95% pure (Fig. 1b). That the protein was easily overexpressed and 

purified suggests that removal of the lid domain does not significantly destabilise the protein. 

Importantly, using immobilised nickel affinity strategy for purification negated the possibility of co-

purifying endogenous wild-type enzyme, which would confound the kinetic results. 

PKTIM+Reg is catalytically active 

Next, we examined whether removal of the lid domain affected the catalytic function of the 

protein using a lactate dehydrogenase coupled assay. We found that the recombinant PKTIM+Reg 

enzyme is catalytically active, with a measurable decrease in 340 nm absorbance demonstrating 

that NADH was consumed in the coupled assay. To confirm that the catalytic activity measured 

was due to PKTIM+Reg, rather than endogenous pyruvate kinase from the expression strain, the 

protein expression and purification steps described above were repeated using a control E. coli 

strain containing only the empty pET-28b+ vector and catalytic activity measured. There was no 

enzymatic activity measured in any of the bound fractions, suggesting that the PKTIM+Reg enzyme is 

the only catalytically active species in the sample. 
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The kinetic parameters of PKTIM+Reg were then determined by collecting initial rate data against 

increasing substrate concentration. Initial rates were dependent on the concentrations of both 

substrates, adenosine diphosphate and phosphoenolpyruvate, confirming that pyruvate (used in 

the coupled assay) is produced and that both substrates are used by PKTIM+Reg. The initial rate data 

versus increasing adenosine diphosphate concentration was fitted to a Michaelis-Menten kinetic 

model that gave an apparent KM
adenosine diphosphate of 1.0 ± 0.2 mM (Fig. 2). The data for increasing 

phosphoenolpyruvate concentration was fitted to an allosteric sigmoidal model that gave an 

apparent S0.5
phosphoenolpyruvate of 0.33 ± 0.01 mM (Fig. 2). The apparent KM

adenosine diphosphate is 

unchanged relative to the wild-type enzyme (KM
adenosine diphosphate = 1.0 ± 0.1 mM (Zhu et al. 2010)), 

but the apparent S0.5
phosphoenolpyruvate is significantly different (S0.5

phosphoenolpyruvate = 0.06 ±0.002 mM 

(Zhu et al. 2010)), which further demonstrates that the activity measured is not from 

endogenously purified pyruvate kinase. The values are generally similar to those of other 

characterised pyruvate kinases, for which KM
adenosine diphosphate values ranging from 0.03–2.3 mM 

and S0.5
phosphoenolpyruvate values ranging from 0.02–1.2 mM have been reported (Feksa et al. 2004; 

Oria-Hernández et al. 2005; Pizzuto et al. 2010; Saito et al. 2008; Susan-Resiga and Nowak 2004). 

The kcat value for PKTIM+Reg was 0.0031 ±0.0004 min−1, which is 106–108-fold lower than the kcat 

values reported for other characterised pyruvate kinases (range, 2,800–71,000 min−1) (Feksa et al. 

2004; Oria-Hernández et al. 2005; Pizzuto et al. 2010; Saito et al. 2008; Susan-Resiga and Nowak 

2004). Therefore, we have shown that while PKTIM+Reg can bind both substrates effectively, the 

absence of the lid region attenuates the catalytic function of the enzyme. 

 [INSERT FIGURE 2] 

We next compared the values obtained in the current study with pyruvate kinase variants 

investigated in previous studies aimed at defining the catalytic mechanism. In the lid domain 

(residues 71–170), D127 and E71 (E. coli numbering) have been implicated in the catalytic process 

(Morgan et al. 2010). For pyruvate kinase from Leishmania mexicana, the residue equivalent to 

D127 coordinates Mg2+, which binds to adenosine diphosphate when the lid is closed for catalysis 

(Morgan et al. 2010) (Fig. S1). Coordination between D127 and Mg2+ is likely to increase the 

nucleophilicity of adenosine diphosphate to enhance the phosphate transfer from 

phosphoenolpyruvate. Additionally, the residue corresponding to E71 in L. mexicana pyruvate 

kinase was shown to interact with K+, which in turn interacts with Mg2+ and phosphoenolpyruvate 

(Morgan et al. 2010) (Fig. S1). Interestingly, the residue at this position tends to be a glutamate in 

K+-dependent pyruvate kinases, including those from E. coli, while a lysine residue is usually found 
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in K+-independent pyruvate kinases (Oria-Hernández et al. 2005; Oria-Hernández et al. 2006). 

Substitution experiments in the K+-dependent human pyruvate kinase demonstrated that 

changing the glutamate to lysine facilitates K+-independent catalysis (Oria-Hernández et al. 2005). 

However, the resulting substituted enzyme had a lower kcat value than the wild-type K+-dependent 

enzyme (9,600 min−1 vs. 71,000 min−1) and a slightly increased KM
phosphoenolpyruvate (0.13 mM vs. 0.24 

mM) (Oria-Hernández et al. 2005). Together, these comparisons demonstrate that D127 is 

important for catalysis, and that E71 is important for catalysis and phosphoenolpyruvate 

association. Therefore, absence of both residues could largely be responsible for the decreased 

catalytic function of PKTIM+Reg. 

Our kinetic studies also demonstrate that the allosteric features of pyruvate kinase are altered by 

removing the lid domain. Firstly, in the absence of fructose-1,6-bisphosphate, no activity is 

observable. This confirms that PKTIM+Reg retains allosteric activation by fructose-1,6-bisphosphate, 

which is expected since the activator binds at the regulatory domain of PKTIM+Reg distal from the 

removed lid domain. Secondly, in the presence of the allosteric activator fructose-1,6-

bisphosphate (2 mM), PKTIM+Reg is cooperatively activated by the substrate phosphoenolpyruvate 

(nH = 1.7), whereas for the wild-type enzyme nH = 1.0 (Valentini et al. 2000). E. coli pyruvate kinase 

is proposed to follow a ‘rock and lock’ model for allosteric activation, where fructose-1,6-

bisphosphate binding locks the enzyme into the activated R-state (Donovan et al. 2016b; Morgan 

et al. 2010). The R-state conformation is thought to be locked into this active R-state through the 

interaction of D127 from the lid domain and R292 from the opposing subunit (Mattevi et al. 1995). 

Therefore, destabilisation of the R-state of PKTIM+Reg is expected to be consistent with the absence 

of the lid domain, and the utilisation of the rock and lock model for allosteric activation for E. coli 

pyruvate kinase. 

In summary, PKTIM+Reg is considerably less active than the wild-type enzyme, although it is still able 

to catalyse the reaction. Removing the lid domain also increases the S0.5 for phosphoenolpyruvate, 

but has little effect on the KM for adenosine diphosphate, consistent with the known catalytic roles 

of residues in the lid domain. Moreover, the regulation profile of the enzyme is subtly altered: 

PKTIM+Reg retains allosteric activation by fructose-1,6-bisphosphate, but is co-operatively activated 

by phosphoenolpyruvate even in the presence of fructose-1,6-bisphosphate, unlike the wild-type 

enzyme. 

The PKTIM+Reg structure retains a tetrameric configuration 
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To assess whether the removal of the lid domain has compromised catalytic activity through 

destabilisation of the structure, we performed thermal denaturation studies of PKTIM+Reg and 

determined its solution structure. The thermal stability profiles of PKTIM+Reg and the wild-type 

enzyme revealed an 11 °C decrease in unfolding temperature (Fig. S2a, b) and indicates that 

absence of the lid domain has destabilised the protein. The reasons for the observed decrease in 

melting temperature is not immediately apparent. The wild-type enzyme is larger, which could be 

a factor that increases stability, but as the lid region is not part of the protein core and 

compactness is thought to be a leading factor influencing melting temperature (Kumar et al. 

2000), size alone is not thought to explain the lower thermal stability of PKTIM+Reg. Potentially, the 

lower melting point may reflect that the engineered hairpin loop is not ideal, as compared to the 

wild-type lid linker region, and PKTIM+Reg is missing a coevolved property that stabilises the TIM 

barrel. Loss of stabilisation could contribute to the decreased catalytic function of the mutant 

enzyme. 

The thermal denaturation assay was also used to investigate binding of fructose-1,6-bisphosphate, 

which is responsible for the allosteric activation of pyruvate kinase by binding in the regulatory 

domain (residues 352–470) (Mattevi et al. 1995). This was of interest because while the kinetic 

data demonstrates that fructose-1,6-bisphosphate is an activator of PKTIM+Reg catalytic activity, but 

it does not completely stabilise the R-state (nH = 1.7), and is different than wild-type enzyme (nH = 

1.0) (Valentini et al. 2000). In the thermal shift assay, addition of fructose-1,6-bisphosphate 

decreased the melting temperature of wild-type pyruvate kinase from 59 °C to 56 °C (Fig. S2a), 

with a similar decrease in melting temperature observed for PKTIM+Reg (48 °C to 44 °C) (Fig. S2b). 

This similarity, alongside the kinetic data, suggests that the regulatory domain of PKTIM+Reg is 

correctly folded to facilitate binding of fructose-1,6-bisphosphate and interaction is likely to be 

similar.  

Wild type pyruvate kinase has a tetrameric configuration, which is known to be important for 

catalysis and allosteric regulation (Mattevi et al. 1995). To investigate the oligomeric properties of 

PKTIM+Reg analytical ultracentrifugation sedimentation experiments were conducted. Sedimentation 

velocity scan data presents with a steep absorbance boundary that is consistent with the sample 

containing a single dominant species (Fig. 3a). When fitted to a c(s) model, as implemented in 

SEDFIT (Schuck 2000), there is a main peak (92% of absorbance signal) at 7.1 S and a short 

distributed peak (5% of absorbance signal) at approximately 11 S (Fig. S3). The mass of the 

components was then examined SEDPHAT using species analysis with mass conservation 
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constraints (Vistica et al. 2004) with global fitting of the velocity and equilibrium data (Fig. 3b). The 

buoyant mass of the 7.1 S molecule was determined to be 170.4 kDa, which closely matches the 

calculated tetrameric mass (171.2 kDa), indicating that the PKTIM+Reg is a tetramer. The 11 S 

component was over 1.3 kDa, which is likely to be some aggregate as no large components were 

visible on the SDS PAGE gel. No monomeric or dimeric species were observed indicating that the 

main oligomeric state is stable as a tetramer, which is consistent with the solution structure of 

wild-type pyruvate kinase (Zhu et al. 2010). Retention of the tetrameric form suggests that the 

tetrameric interfaces at both the TIM catalytic domain and the C-terminal regulatory domain 

remain intact, and that PKTIM+Reg folds similarly to the wild-type. 

[INSERT FIGURE 3] 

Analytical ultracentrifugation data was compared with structural data to investigate the potential 

size and shape of PKTIM+Reg.  The sequence of PKTIM+Reg is 77 aa shorter and the tetrameric mass is 

expected to be 31.7 kDa lower than wild type pyruvate kinase (171.2 vs. 202.9 kDa). The 

sedimentation experiments for PKTIM+Reg (above), and for the previously tested wild type enzyme 

(Zhu et al. 2010), are consistent with these masses. The sedimentation coefficients have a similar 

difference, PKTIM+Reg 7.1 S vs. wild type 8.5 S (Zhu et al. 2010), with the coefficient value of globular 

proteins largely influenced by the difference in particle mass (Laue and Stafford III 1999). A 

molecular dynamic simulated structure of PKTIM+Reg based upon the wild type tetrameric 

configuration and the wild type crystal structure were used to model the sedimentation 

coefficients with HYDROPRO (Ortega et al. 2011). The modelled sedimentation coefficient for 

PKTIM+Reg is 7.5 S, and the wild type value is 8.5 S, which are both close to the corresponding 

experimental values (7.1 and 8.5 S). Therefore, the overall size and shape of PKTIM+Reg is largely 

consistent with the wild-type tetrameric structural configuration, except for the absence of the lid 

domain.  

Small-angle X-ray scattering was then used to investigate the solution structure of PKTIM+Reg. The 

Guiner plot was linear, indicating that the sample was clear of aggregates and interparticle 

interference (Fig. 4a, inset). Analysis of the scatter calculated Dmax at 129 Å and Rg at 41.5 Å. A 

homology model was then built and solvated using molecular dynamic simulations for comparison 

with the small-angle X-ray scattering data. The final model for PKTIM+Reg resembles the wild-type 

template, but without the lid domain. Analysis of the structure by HullRad (Fleming and Fleming 

2018) revealed a Dmax of 126 Å and anhydrous Rg of 39.8 Å, which is consistent with the solvated 
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experimental values (Dmax of 129 Å and Rg of 41.5 Å). This demonstrates that PKTIM+Reg is the same 

size as the wild-type enzyme structure with the lid domain removed. 

 [INSERT FIGURE 4] 

The wild-type pyruvate kinase tetramer assembles as a dimer of dimers, with the dimers formed 

through an association between the TIM barrel domains and the final tetramer formed via 

association of the regulatory domains (Donovan et al. 2016a). To investigate the oligomeric form 

of PKTIM+Reg, we first compared the experimental scatter with the theoretical scatter of PKTIM+Reg 

models. Theoretical scatter for the wild-type pyruvate kinase, the homology model and the 

molecular dynamics-simulated model was overlaid with the scattering data (Fig. 4a). For the wild-

type enzyme, the theoretical scatter sits above the scattering data for PKTIM+Reg at the low q range, 

which is consistent with the wild-type enzyme being larger, and at the mid-ranges (0.5-0.2 Å-1) the 

wild-type has a pattern that is more linear, which is consistent with the expectation that the wild-

type enzyme is more asymmetric than PKTIM+Reg (Fig. 4b) (Mertens and Svergun 2010). Examination 

of the PKTIM+Reg molecular dynamics model theoretical scatter in the same ranges reveals no 

significant divergence in the low and mid-ranges, indicating that the molecular dynamics model is 

a good fit for the size and shape of PKTIM+Reg. Quantitative comparison of the theoretical scatter 

with the experimental data revealed χ2 values of 25.3 for the wild-type protein, 5.8 for the 

homology model, and 1.1 for the model that had been relaxed using molecular dynamics 

simulations. This confirms that the solution scatter of PKTIM+Reg strongly correlates with the 

constructed homology model, which was subsequently improved through molecular dynamic 

simulations 

To further investigate the oligomeric form of PKTIM+Reg, ab initio bead models were constructed 

from the experimental scattering data. As previously discussed, the molecular dynamics model is 

likely to provide a representation of the size and shape of PKTIM+Reg, but as the simulation uses the 

wild-type structure as a template it can be biased. Ab initio modelling using the experimental data 

was therefore used to provide a model that was not predisposed to the wild-type configuration. 

First, models were constructed using P1 symmetry, this gave low χ2 values indicating good 

correlation with the experimental scatter but had shapes that did not appear to be built using four 

monomeric subunits and was unlikely to be representative of the PKTIM+Reg tetramer. P2 and P222 

symmetry options were then trialled, P222 had lower χ2 values indicating it was more 

representative and was used for subsequent model building. Class-averaged models were 

produced by DAMMIF and DAMAVER (Petoukhov and Svergun 2003) and have an oblate twisted 
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octagonal discoid shape that neatly fits the volume of the PKTIM+Reg molecular dynamics model (Fig. 

4c). Ten single models were constructed using Gasbor to produce a high-resolution model from 

the small-angle X-ray scattering data, then each was rated for correlation with the experimental 

data based on χ2 values using CRYSOL (Svergun et al. 1995). The best model (χ2 = 1.3) had a twisted 

oblate shape with no central density, and closely matched the PKTIM+Reg molecular dynamics model 

when overlaid (Fig. 4d). Combined, the comparisons show that the solution structure of PKTIM+Reg is 

similar to the molecular dynamics model that is assembled from a dimer of dimers with a hole at 

the centre, and therefore highly consistent with the wild-type formation.  

In conclusion, the solution structural studies demonstrate that PKTIM+Reg forms a tetramer in a 

manner consistent with the wild-type pyruvate kinase and that the TIM and regulatory are likely to 

be assembled correctly. Therefore, PKTIM+Reg forms a stable structure, which is not materially 

destabilised by the absence of the lid domain. We conclude that PKTIM+Reg is structurally 

representative of pyruvate kinase without a lid and its absence is the significant factor for 

decreased catalytic activity. 
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Conclusions 

Engineering a lidless pyruvate kinase allowed us to assess the essentiality of the lid domain in 

catalysis. Surprisingly, despite previous studies showing that the lid domain contributes key 

residues to the catalytic site, PKTIM+Reg is able to bind the substrates, phosphoenolpyruvate and 

adenosine diphosphate, although the phosphoenolpyruvate affinity is decreased compared to the 

wild-type enzyme, and is catalytically functional, albeit severely attenuated. Thus, data presented 

in this study demonstrate that the lid domain is not essential for catalytic function but is necessary 

for efficient catalysis. 

The lid domain is highly conserved in pyruvate kinase enzymes, which suggests it plays a key 

functional role. Our data is consistent with the lid domain executing a catalytic role, which is 

proposed elsewhere (Morgan et al. 2010; Oria-Hernández et al. 2005). The lower catalytic rate and 

decreased phosphoenolpyruvate affinity are consistent with the loss of residue E71 at the lid hinge 

region, where this residue has a role in active site K+ binding (Morgan et al. 2010; Oria-Hernández 

et al. 2005). Reduction of the catalytic rate is also consistent with loss of D127 that coordinates to 

active site Mg2+ (Morgan et al. 2010). The lid domain also has a role in regulation, and stabilises 

the activated R-state that is induced by fructose-1,6-bisphosphate binding (Valentini et al. 2000). 

Our results are consistent with this role, as the R-state was not fully stabilised in PKTIM+Reg without 

phosphoenolpyruvate (nH 1.7 vs. wild-type, nH = 1.0). Additionally, the lid may play a substantial 

role in cooperative upregulation through phosphoenolpyruvate binding. The rationale for this is 

that wild-type pyruvate kinase is cooperatively upregulated by phosphoenolpyruvate binding 

when fructose-1,6-bisphosphate is absent and maximum catalytic rates are only slightly reduced 

compared to when fructose-1,6-bisphosphate is present. In contrast, PKTIM+Reg catalytic rates were 

not observable when fructose-1,6-bisphosphate is absent. Therefore, we tentatively suggest that 

activation by cooperative phosphoenolpyruvate binding occurs similarly to allosteric activation by 

fructose-1,6-bisphosphate, but in reverse. Specifically, substrate binding causes the lid domain to 

close and places D127 near R272 from the opposing subunit (as demonstrated by the oxaloacetate 

and ATP bound L. Mexicana structure, PDB: 3HQO), which subsequently unlocks the R-state and 

initiates the reciprocal rotation at the regulatory domain.  

Our data reveals that removing the lid domain does not alter the folding of the protein or the 

formation of the tetrameric structure. Thermal shift assays demonstrate that the presence of 

fructose-1,6-bisphospate decreases the melting temperature of both the wild-type and PKTIM+Reg, 
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which is consistent with the binding of fructose-1,6-bisphosphate inducing an increase in dynamic 

motion, as previously described (Donovan et al. 2016b). Even without the lid domain, analytical 

ultracentrifugation studies show that PKTIM+Reg forms as a tetramer and small-angle X-ray 

scattering indicates that the structure is highly likely to be an oblate twisted ring, very similar to 

that of the wild-type enzyme. The lid domain is therefore not essential for fructose-1,6-

bisphosphate induced activation or formation of the oligomeric assembly. Therefore, we propose 

the differences in catalytic function cannot be attributed to structural destabilisation and reflect 

the engineering of the lidless enzyme. 

Our study allows us to speculate on an evolutionary trajectory that led to the efficient pyruvate 

kinase structure. We propose that a lidless ancestor enzyme had low pyruvate kinase activity, and 

this was perhaps a moonlighting function of the ancestor enzyme. Insertion of the lid domain 

within a C-terminal loop of the TIM barrel domain increased the catalytic activity of the enzyme 

and was subsequently selected for by natural selection, as increased activity would allow 

increased flux through the glycolytic pathway, providing the cell an advantage when utilising 

carbohydrates as a primary energy source.  

Overall, this study sheds light on the catalytic function of pyruvate kinase and provides data that 

may be of use to others seeking to engineer pyruvate kinases to manipulate metabolism in cellular 

engineering, or for those seeking inhibitors of pyruvate kinase in clinical settings.
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Figure Legends 

 

Fig. 1 Engineering and expression of PKTIM+Reg. a Pyruvate kinase has three domains: the catalytic 

TIM barrel, the small β-barrel lid domain and the C-terminal regulatory domain. The lid domain is 

formed as an outcrop from the edge of the TIM barrel domain. The anchor points of lid domain are 

separated by only 5.9 Ȧ (arrow). TIM barrels are common stable structural elements with eight 

interlocking units of antiparallel α-helix and β-sheet domains (Nagano et al. 2002), which allowed 

the construction of PKTIM+Reg by removing the lid residues and replacing the section with a small 

hairpin loop. b Expression of PKTIM+Reg. SDS-PAGE gels showing overexpression of a protein within 

the cell lysate (LYS) at ~43 kDa, which matches the expected mass of PKTIM+Reg. Purification by 

immobilised metal affinity (IMA) and size exclusion chromatography (SEC) resulted in a final 

sample that was >95% pure 
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Fig. 2 Initial rate kinetics of PKTIM+Reg. For phosphoenolpyruvate, the data was fit to an allosteric 

sigmoidal curve giving kinetic parameters; S0.5
phosphoenolpyruvate = 0.33 mM ± 0.01 and 

nH
phosphoenolpyruvate = 1.8 ± 0.1, which significantly different from the wild-type (S0.5

phosphoenolpyruvate = 

0.08 mM and nH = 1.0) (Valentini et al. 2000) and confirms that the activity measured is not from 

endogenously purified pyruvate kinase. For adenosine diphosphate, the data was fit to Michaelis-

Menten curve giving kinetic parameters; KM
adenosine diphosphate = 1.0 ± 0.2 mM and kcat = 0.0031 ± 

0.0004 min-1. The KM
Adenosine diphosphate is not significantly different, but the catalytic rate is severely 

compromised compared to the wild-type (10,000 min-1) (Valentini et al. 2000; Zhu et al. 2010) 
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Fig. 3 Analytical ultracentrifugation data demonstrates that PKTIM+Reg retains it tetrameric state. 

Sedimentation velocity data (left) showing every second scan and third data point with baseline-

subtracted and fitted for radial and time invariant noise.  The profile shows a single step, steep 

absorbance boundary indicating that a single oligomeric species is dominate in the solution. The 

sedimentation velocity and sedimentation equilibrium scan data for PKTIM+Reg  (right) were globally 

fit to a discrete species with mass conservation model, as implemented in SEDPHAT (Vistica et al. 

2004). This gave a mass of 168.7 kDa, which closely corresponds with the predicted mass of the 

PKTIM+Reg tetramer mass (171 kDa). The global reduced χ2 value for the fit was 0.21 
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Fig. 4 Small-angle X-ray scattering and molecular dynamics models. a Small-angle X-ray scattering 

data (circles) compared with theoretical scatter of atomic models. Comparison with wild type 

pyruvate kinase reveals an χ2 of 25.3 (blue), the PKTIM+Reg homology model has an χ2 of 5.8 (not 

shown) and the final molecular dynamics model has an χ2 of 1.1 (red), indicating that the 

molecular dynamics model is likely to resemble the true solution structure. Inset: Guinier plot of 

low-range data points revealed a linear trend, indicating a monodisperse solution suitable for 

molecular analysis. b Wild-type pyruvate kinase tetramer demonstrating the additional footprint 

of the lid domain (blue). Half the tetramer is shown as spheres to illustrate the oblate twist shape 

formed between the TIM and regulatory domains (red). c Group-averaged ab initio models 

produced using DAMMIF and DAMAVER match the PKTIM+Reg model and have the characteristic 

oblate twist shape (Franke and Svergun 2009; Volkov and Svergun 2003). d Single ab initio bead 

model of PKTIM+Reg produced using Gasbor (χ2 = 1.3) (Petoukhov and Svergun 2003). The bead 

model closely resembles the molecular dynamics model (χ2 = 1.1) and has a lack of density at the 

centre, as well as the oblate twist and profile expected for the engineered enzyme 
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