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Abstract 

 

A machine learning approach for extracting information from organic photovoltaic (OPV) 

solar cell data is presented. A database consisting of 1850 entries of device characteristics, 

performance and stability data is utilised and a sequential minimal optimisation regression 

(SMOreg) model is employed as a means of determining the most influential factors 

governing the solar cell stability and power conversion efficiency (PCE). This is achieved 

through the analysis of the acquired SMOreg model in terms of the attribute weights. 

Significantly, the analysis presented allows for identification of materials which could lead to 

improvements in stability and PCE for each thin film in the device architecture, as well as 

highlighting the role of different stress factors in the degradation of OPVs. It is found that, for 

tests conducted under ISOS-L protocols the choice of light spectrum and the active layer 

material significantly govern the stability, whilst for tests conducted under ISOS-D protocols, 

the primary attributes are material and encapsulation dependent. The reported approach 

affords a rapid and efficient method of applying machine learning to enable material 

identification that possess the best stability and performance. Ultimately, researchers and 

industries will be able to obtain invaluable information for developing future OPV 

technologies so that that can be realised in a significantly shorter period by reducing the need 

for time-consuming experimentation and optimisation. 
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1. Introduction 

 

Organic Photovoltaic (OPV) development has been rapid over the past decades and the need 

to develop cheaper and more efficient renewable energy remains at the forefront of research 

priorities [1]. The nature of OPV research is such that a vast array of results has been 



 

 

gathered, leading to data being generated with a plethora of materials and device structures. 

The body of work has led to substantial improvements in efficiency and stability, even if 

these still remain below those of silicon and other mature thin film technologies.  

The body of available OPV data has now become large enough to enable the use of 

more advanced statistical analysis i.e. machine learning techniques, which potentially could 

provide insights beyond what is provided from individual studies. One of the key metrics for 

a solar cell technology’s commercial potential is stability, which we in this study have 

explored by utilising machine learning (ML) techniques on a large dataset of OPV data. This 

allows interesting trends to be extracted from the underlying patterns within the dataset that 

goes beyond the standard approach of acquiring specific information by directly measuring 

the stability due to one or more changes. By deploying data analytical approaches in this 

manner, it is possible to determine which materials and stress factors have the greatest impact 

on the device stability. In addition, by acquiring an understanding of the materials and 

environmental attributes, which lead to more stable devices, the physical phenomena, which 

lead to degradation, can also be better understood. This represents a potential new paradigm 

in understanding OPV reliability.  

Developing ML models for predicting efficiency and stability of OPV devices based 

on large datasets comes with a number of challenges. One of those are inconsistencies that 

arise from the fact that data comes from multiple authors working in different labs which 

introduces biases and random noise in the data. Others are  inconsistencies in the set of 

materials that result in optimum stability, variability in material properties, and non 

uniformly employed  testing protocols, with the result that the information concerning the 

relative impact of different layers upon the stability may be limited [2, 3]. A final challenge 

is that factors that have a significant impact on device performance simply is not adequately 

described or reported, or simply not yet properly known, and therefore it will not be possible 

to directly incorporate in the ML-models. One of the important questions that arises, and 

which the performance of the ML-models can answer, is to what extent we can understand 

and report the factors that really are important for device performance, and how much still is 

“dark knowledge” or just unknown.      

In this work, we have utilised OV stability data which has been acquired from work 

undertaken between 2011-2019. This dataset contains data from 1850 devices, and is to date 

the most complete OPV stability dataset available.  Using ML methods, we show that trends 

within this OPV dataset can be elucidated and models produced that enable OPV stability 

and performance to be estimated based on the device architecture and environmental testing 



 

 

conditions. This methodology could be used to compare stability studies more fully and to 

analyse the relative significance of various environmental stresses and materials, and to 

ultimately identify key failure mechanisms in devices. 

 

2. Methodology 

 

2.1 Overview of data acquisition and ethics 

The dataset used for this work was mostly obtained from the Danish Technical University 

(DTU) who ran the “lifetime predictor” on the Plastic photovoltaics website from 2011-2017 

[4]. Additional papers between 2017 and 2019 were manually scraped. To source papers, 

‘Web of Science’ was used to identify papers with OPV stability data. Device information 

and device data was subsequently extracted from the papers and added to the dataset. 

Information concerning device architecture and testing conditions was sourced. Device data 

was found in terms of performance and stability, which was extracted from tables or in 

figures; in which case a plot digitizer was employed in order to extract the relevant 

information from the figures. 

Approximately 11% of the final dataset consists of data manually scrapped between 2017 and 

2019. For all data added manually, the style and formatting was consistent with earlier dataset 

such that variability between the two subsets was minimised. In total, data from 1850 devices 

were used for this work. Papers were selected where device stability data is reported. This 

allows for parameters such as the initial efficiency (E0), time taken for the device to reach 

80% of the initial value (T80) and time taken for the device to reach 80% of the stabilised 

value (TS80) to be extracted. Whilst automated scraping using Python or R is possible, all the 

analysed data have been manually extracted from the papers.  

 

2.2 Data acquisition and description of data format and categories 

 

For the analysis methodology used in this paper, consistency in the format is essential and 

data has therefore been modified using the ‘OSEMN’ (Obtain, Scrub, Explore, Model, 

Interpret) process [5]. The “obtain and scrub” phase entails the acquisition and formatting of 

the data in a format suitable for the application of ML algorithms, such as a CSV file with 

consistency of format enforced throughout the dataset.  In the case of the material/structural 

properties, a schematic of the metrics and generic structure of the OPV devices is illustrated 



 

 

in FIG.1(a). Note that the active layer can comprise of both a single layer and a blend. This is 

represented by using two active layers in the dataset, represented by Active1 and Active2.  

Initially, the appropriate attributes are acquired from each paper. The attributes for 

each device include the structure and materials, encapsulation and substrate type, test 

protocols, environmental conditions, light source. In excess of the device related attributes, 

there are also attributes related to measurement conditions such as temperature, light level, 

bias conditions and relative humidity. In total, the dataset we use contains 17 attributes, each 

of which contains a number of categories. Those are detailed in the supplementary 

information (SI-1). Given the number of attributes and the associated categories, the total 

dimensionality, i.e. the number of possible combinations of labelled device attributes, are 

28725. That is far more than the 1850 combinations realised in the dataset, and even if many 

of those will be experimentally inaccessible, this illustrates the potential for extrapolation and 

suggestions for new promising combinations worth exploring experimentally that can came 

out of an analysis of this dataset.  

In addition to the categorical features describing the devices, three lifetime and 

performance metrics have been extracted, namely E0, T80 and TS80, with T80 being focussed 

on primarily since, for OPVs, T80 is commonly used to assess the lifetime of these devices 

(see FIG 1(b)). In the authors’ view, the T50 might be a more meaningful metric to use, but 

many papers do not report this or show graphs that cut off before this metric is reached, 

meaning that extrapolation is required, which can be subjective or misleading. In order to 

ensure consistency of reported data, all stability measurements correspond to tests performed 

under ISOS protocols. These standards are selected since most papers report according to 

these standards with ISOS-L and ISOS-D accounting for more than 96% of reports [4].  

In any body of literature, the factors mentioned in each article may not be complete, 

with common factors being extensively explored and others being rarely investigated, 

resulting in a potentially uneven data distribution. However, this is mitigated to some extent 

for our specific analysis by the use of the large dataset of 1850 OPV devices. As researchers 

have investigated a diverse and complete set of factors in depth in a comprehensive manner, 

the natural consequence is that different factors have been explored  which will naturally 

mitigated the imbalance problem for this research area. There are methods such as re-

sampling [6] to improve the effectiveness of machine learning methods on unbalanced data. 

However, this was not warranted for our OPV dataset because, as stated, it was found to be 

relatively balanced except for some cases where there were found to be some materials which 



 

 

occurred less than 5 times in the dataset. These entries were reclassified as being “Other” 

such that the distribution of instances was uniform for each attribute. 

Once the datasets have been obtained, the ‘scrub’ phase can be implemented whereby, 

the data is cleansed and filtered, thus producing data which possess a consistent format. 

Therefore, careful inspection of the data is required in order to ensure that no unexpected 

values are present which could significantly affect the final result. For example, if the same 

materials are reported with slightly different names, or trade names, then these two quantities 

will be classified as two different features. At the scrub stage, the researcher needs to use 

their judgement to decide the level of detail they wish to apply ML for. For example, our 

approach could easily be used to allow groups to compare the stability of the same material 

from two different suppliers or identify the optimum thickness of a layer. We have not gone 

into this level of detail in this work and a full list of attributes is given in SI-1.  

In addition to the data having an inconsistent format, some data may be missing or 

erroneous. There are several reasons as to why the dataset may contain missing values or 

contain errors made during the construction of the dataset or there could be a valid reason for 

having an empty cell in the dataset. For this work, we adopted a process called “imputation” 

which can be used to infer a missing value from the nature of the other attributes of the 

dataset [7]. There are various techniques to deal with missing data and values in machine 

learning such as using mean values [8], k nearest neighbours [9] and multivariate chained 

equation [10]. In this study, the data was cleansed and manual deductive imputation [11] was 

performed. The analysis also used the machine learning algorithm (SMOreg), whose 

implementation in WEKA of Alex J. Smola and Bernhard Scholkopf's sequential minimal 

optimization algorithm globally replaces all missing values. For example, considering the 

encapsulation or transport layer, a blank or missing entry could signify that this element was 

not present in the device. Therefore, inferring a categorical value of ‘none’ would be a 

suitable imputation for this quantity. In the case that the quantity cannot be inferred, due to 

lack of information concerning the device, the quantity “unknown” was imputed.  

Subsequently, after the dataset has been formatted correctly, exploration and 

modelling can be implemented, whereby patterns and trends in the data can be investigated. 

The best ML algorithm can be chosen and applied for data analysis (discussed in section 2.3). 

An overview of the process adopted by us is shown in FIG. 2. 

 

 

2.3 Machine learning approaches 



 

 

 

Supervised learning has been adopted for this work because this allows a function to be fitted 

to the data in order to determine the response parameter (in this case T80) based on the set of 

attributes. Subsequently, this allows the response parameter to be predicted based on 

combinations of attributes. Several algorithms which utilise supervised learning include 

support vector machine (SVM) [2], random forest [3] and decision trees [12]. Regression can 

be implemented using algorithms such as multilayer perceptron [13], principal component 

regressions [14] and sequential minimal optimisation regression (SMOreg) [15]. Throughout 

this work, SMOreg has been employed as the ML method. SMOreg has been selected since it 

produces an output model that can be analysed in terms of the weights of each attribute and, 

therefore, the significance of each attribute can be understood; this is ideal for this problem as 

we want to find which attributes have the biggest and least impact upon OPV stability. The 

weights of each attribute are obtained through the method of variational calculus using 

Lagrange multipliers to determine an optimum hyperplane, which separates the dataset into 

classes [16]. FIG.3 illustrates the classified data with a linear hyperplane separating the two 

classes, shown in blue and red. Greater detail concerning the theory and application of the 

SMOreg algorithm can be found in SI-2 

The effectiveness of the SMO algorithm in characterising the data can be quantified 

by the correlation coefficient. The correlation coefficient (also known as Pearson Product-

Moment correlation coefficient), 𝑟, determined in statistical regression analysis yields 

information regarding the linear dependence of one variable on the value of another [17]. The 

correlation coefficient can take values between -1 and 1 with 1 corresponding to a perfect 

positive correlation, whilst -1 corresponds to a perfect negative correlation. A value of 0 for 

the correlation coefficient signifies that there is no dependence of one variable on another. 

The strength of the correlation between two variables is given directly by the magnitude of 𝑟. 

Generally, a value of 𝑟 between 0.5 and 1 is considered to be a strong positive correlation. 

The value of 𝑟 can be calculated using equation (7). 

 

𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑖

√∑ (𝑥𝑖−𝑥𝑖̅)
2

𝑖 √∑ (𝑦𝑖−𝑦𝑖̅)
2

𝑖
       (7) 

 

In equation (1) 𝑥𝑖 is the reference 𝑥 value and 𝑥̅ is the mean value of the reference 

values. Similarly, for 𝑦, the predicted response. In the equation above, ∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖  

corresponds to the product of the covariance of 𝑥 and the covariance of 𝑦. The 



 

 

term √∑ (𝑥𝑖 − 𝑥𝑖̅)2𝑖 √∑ (𝑦𝑖 − 𝑦𝑖̅)2𝑖  corresponds to the product of the standard deviations of 𝑥 

and 𝑦 respectively. We have used Waikato Environment for Knowledge Analysis (WEKA 

3.8) for the ML modelling, utilising the built in .ARFF file viewer and ML algorithms. 

 

 

 

 

 

3. Results and Discussion 

 

3.1 Initial data exploration  

 

FIG.4 shows the categorical violin plot for the full distribution of T80, TS80 and E0. These 

plots intuitively show the median, interquartile range and 1.5 × interquartile range. In 

addition, the plot shows the kernel density estimation to illustrate the distribution of each 

parameter. Analysis of this data allows the statistics of each of these variables to be 

determined as shown in TABLE.1. This demonstrates that the T80 and TS80 distributions are 

very similar with the near uniform distribution up to 10 days of stability, whilst E0 displays a 

broad distribution for efficiencies of 3.5%. In addition, the interquartile range of the E0 values 

is significantly less than for both T80 and TS80. 

 

3.2 Using the SMOreg algorithm for understanding stability data 

 

Initially, the SMOreg algorithm has been applied to subsets of the data by considering three 

different testing conditions: the full dataset; data only conducted with light soaking 

(corresponding to ISOS-L test protocols), which relates to photostability; and data only 

conducted with thermal/damp-heat (ISOS-D test protocols), which relates to tolerance of 

oxygen, moisture, and heat. Our reasoning for doing this is that the failure modes in OPVs 

are heavily dependent on the testing conditions of the cells/modules under test. In order to 

effectively analyse the results from the ML algorithm, both the learning method, as well as 

the dataset, require optimisation. This has been performed in order to determine the training 

protocols that yield the highest correlation coefficient. This was achieved by training the ML 

algorithm using percentage split and cross validation.  



 

 

Percentage Split is a re-sampling method that leaves out a random percentage of data 

in the training model for testing. This allows for us to assess the accuracy of the trained data 

based upon the test data. Cross-validation is a resampling procedure for training and testing 

an ML algorithm. Initially the dataset is reorganised and subsequently split into new groups, 

called “folds”.  For each fold in turn, it is taken as a test set and the remaining folds as the 

training set. This is then repeated for each fold in turn. The model performance is then 

summarised for all iterations. In this way each entry in the dataset is assigned to one group, 

where it remains for the entire iteration. 

 

The performance parameters are determined as a function of the proportion of the 

dataset used for training and as a function of the number of folds used for cross validation. 

For the dataset optimisation, this was achieved by varying the minimum value of each 

response parameter in each case. The results of this optimisation procedure are explained in 

greater detail in the supplementary information (SI-3). Low performing data has been 

removed such that noise within the dataset is minimised and, therefore, the algorithm does 

not overfit and make predictions based on this noise. In addition, by removing low 

performance devices, the algorithm will focus primarily on identifying the materials which 

lead to improved performance and stability. 

The regression model predictions for the three subsets of data are shown in FIG.5. 

The algorithm performance metrics for each analysis are summarised in TABLE.2. The 

metrics indicate that the correlation coefficient improves when ‘subsets’ of data are analysed 

(i.e when data is separated into only ISOS-L data or ISOS-D data), rather than the data as a 

whole. The quality of the acquired model can be quantified in terms of the fitting parameters. 

The correlation coefficient can be employed to give a measure of this quality. In addition, the 

overfitting of the algorithm can be verified by comparing the correlation coefficients for 

training and testing; similar values for correlation coefficient for both training and testing are 

acquired, giving confidence that the model is not substantially overfitting. These are given in 

SI-3.  

One of the benefits of using the SMOreg algorithm in this work, as stated, is that 

weightings for each attribute are obtained, which allows us to assess the relative impact each 

attribute has upon performance or stability. A positive SMOreg weighting corresponds to a 

positive influence on stability whilst a negative SMOreg weighting corresponds to a negative 

influence. Whilst the full list of weightings is given in SI-4, the 10 most beneficial and 10 



 

 

most detrimental attributes for each subset of data is shown be found in TABLE.3. Yellow 

shading represents testing conditions. Green represents architectural components. 

Several important features can be identified from the SMOreg weights. For the entire 

dataset, the attributes that most influence the stability positively are materials used in the first 

transport layer (‘TL1’) and the choice of active layer. In addition, the use of an LED light 

source is found to be beneficial for extending T80. This is as expected due to the absence of 

UV light in the LED light sources. Significantly, all of the negative influences correspond to 

the ISOS testing protocol (and weighted by their relative severity) [18] and the light intensity. 

What one would expect a priori that harsher test conditions would have a negative impact on 

stability. This is also what we see, which provides confidence in our approach of using the 

SMOreg algorithm to evaluate how the attributes affect the stability. The effect of thermal 

cycling (ISOS-T-3) is found to be the most detrimental attribute, followed by the ISOS-L and 

then ISOS-D testing protocols. This highlights the importance of not only improving the 

material stability but also making the devices more robust against harsh environmental 

testing conditions. 

Another factor used in the initial data analysis was the ‘year of publication.’ This 

showed a positive weighting for performance and stability; showing that more recent results 

in the dataset possessed better performance and stability. However, this factor was excluded 

from analysis henceforth as the primary aim of this paper is to report how the material and 

device impact stability. 

When considering data only obtained using ISOS-L standards, the most influential 

attributes are also the structural components (i.e. substrate, transport layers, active layer, and 

electrodes), materials and configuration. The choice of light source was also found to play a 

significant role in improving the T80 lifetime.  

When considering data only obtained from ISOS-D standards, the attributes that most 

positively and negatively affecting the degradation are found to be materials, architecture and 

the encapsulation method, illustrating the importance of protecting the device materials from 

environmental conditions during thermal or damp-heat testing. This demonstrates how the 

degradation during dark tests is dominated by the intrinsic stability of the materials used. The 

use of Tandem configuration leads to better dark stability (discussed earlier) along with the 

use of Perylenetetracarboxylic dianhydride (PTCDI) acceptor material and 

Bathophenanthroline (BPhen) as the top transport layer. Several interesting attributes can also 

be identified as being detrimental; the use of PEDOT:PSS, ‘normal’ device configuration and 

unsurprisingly, temperature. 



 

 

To provide a summary of the data, TABLE.4 shows the three materials possessing the 

highest SMOreg weights for each layer within the device, when predicting T80 and 

considering 1) the full dataset, 2) the data from only ISOS-L tests and 3) the data from only 

ISOS-D tests. These top three weights illustrate the three most influential materials governing 

the stability and performance of the OPV devices, as predicted by the SMOreg algorithm. 

Greater insight into the usefulness of ML approaches in elucidating trends and 

identifying key components can be gained from comparison of the highest weighted factors 

and the distribution of the T80 lifetimes for each attribute, shown in FIG.6. Inspection of the 

best electrode 1 components demonstrates that the three highest weighted materials are FTO, 

combined Cr and Al, and Ag. However, FIG.6 would suggest that these materials would not 

yield the greatest stability. Therefore, the ML algorithm has identified potential materials for 

stability enhancement which would not normally have been identified. This ability of the ML 

algorithm stems from the mechanism by which it finds the optimum hyperplane, whereby at 

least two Lagrange multipliers are simultaneously minimised. Inspection of the distributions 

for TL1, Active 1, Active 2 and TL2 illustrates the difficulty in manually identifying key 

components. Except for some high performing devices, very little variation in the T80 

lifetimes can be identified. This is where the ML approaches are most useful; the most 

influential factors can still be extracted, as determined from the greatest SMOreg weights. 

The three materials identified for TL1 can be seen to correspond to experimental results 

which show significant stability.  This is also true for the identified Active 1 and Active 2 

materials, as well as the TL2 materials.  This highlights the usefulness of this approach 

whereby significant features can rapidly and effectively be identified. If we look at the most 

stable devices found in that dataset, we do indeed see that the categories with high weights 

are used.” 

 

 

3.2.1 SMOreg oddities and biases encountered 

 

Using a Tandem configuration plays the most significant part in the T80 improvement 

along with using ZnPc as an active layer material. The former is potentially a limitation 

within our dataset; there are only three reports in our dataset of stability testing using tandem 

configurations and, in all cases, the reported T80 value is high. Tandem devices are also 

primarily targeted by groups that already master the art of single junction devices. Despite the 



 

 

thoroughness of our dataset, a small number of highly stable device will detrimentally bias 

the algorithm in favour of those architectures and testing conditions. This can occur when the 

data is asymmetrically distributed towards certain classes within attributes. For the highly 

stable tandem cells, the algorithm computes that the weightings of the normal or inverted 

configurations attributes to have a negative impact on the T80 time. In addition, testing in 

‘inert conditions’ is found to be a detrimental influence for stability, which is highly 

contradictory of scientific evidence that oxygen and water could degrade materials. However, 

greater inspection of the dataset shows this is associated with poorer performing devices, 

which were tested in early stages of development and where the general foci of the paper is 

not on enhancing major gains in stability. The SMOreg algorithm will yield a large number of 

attribute weights, related to many of the features present in the dataset. Whilst the weightings 

to provide guidance on their impact on stability, discretion must still be exercised when 

identifying the most beneficial and detrimental features, such that the interpretation of the 

weights is meaningful. 

 

 

3.3 Using the SMOreg algorithm for predicting initial stability, E0  

 

Whilst the focus of this work has been on stability data, the same methodology can be applied 

to understanding how different materials/architectures impact the efficiency prior to stability 

tests starting (defined as ‘E0’). The SMOreg algorithm has been applied to the dataset in 

order to predict E0. The regression model prediction is shown in FIG.7 and the algorithm 

performance metrics can be found in TABLE.5. The 10 most influential and 10 most 

detrimental attributes have also been found and are listed in TABLE.6. The full list of 

weightings and the distribution of E0 performances for each attribute can be found in SI-4. 

Inspection of the weights for improving E0 illustrates that all attributes are 

architectural components such as the active layer, the transport layers and the electrodes. 

Similarly, most of the attributes for deteriorating E0 also correspond to architectural 

components. This provides a method of determining the optimum device architecture for 

maximised device performance. 

It can be seen that the choice of active layer has the most significant impact on the 

value for E0 along with using a Tandem configuration. The most commonly used polymer, 

P3HT, is determined to have a negative impact whilst other polymers such as PTB7 and 

PBDTTT-c display a positive impact. By performing the regression to predict E0, the model 



 

 

is being trained to understand which material combinations will result in higher efficiencies. 

However, care must be taken since the model does not, necessarily, know which 

combinations are impractical due to manufacture constraints. Therefore, interpretation of the 

acquired results still requires a certain level of discretion when drawing conclusions. 

 

4 Challenges and perspectives  

 

Historically, the great wealth of scientific knowledge was planned, recorded, and catalogued 

by generations of researchers in scientific articles [19]. The challenge faced today, in the era 

of digitalisation and rapidly progressing research, is the difficulty in processing these big data 

sets in an efficient manner. Applications of machine learning in the general area of material 

discovery is a rapidly growing area of research, with significant work being performed in the 

extraction of knowledge and information from past studies to allow predictions to be made 

years in advance of development [20]. We suggest that the methodology described here can 

be applied more widely in OPV and perovskite solar cell research, enabling the discovery of 

trends in material and device data, and provides guidance for new materials via fast screening 

of unexplored material and device combinations. Work in the application of this methodology 

is already becoming more prevalent. Association rule mining has been employed in order to 

determine factors leading to high efficiency as well as analysis of the heuristics for high 

efficiencies using decision tree classification [21]. In addition Thomas et al. employ ML 

techniques to optimise material composition and predict design strategies and performances 

of perovskite solar cells [22]. The stability of perovskite solar cells has also been analysed in 

[23] where the long – term stability of perovskite solar cells is investigated by determining 

the materials and methods that lead to stable perovskite solar cells.  Therein, the effects of 

manufacturing methods, materials and storage conditions is analysed using association rule 

mining and decision trees. This allowed the optimum fabrication techniques to be highlighted 

as well as the optimum materials for each layer of the device, in order to minimise the 

degradation rates. In addition, studies on best practices for device testing and data reporting 

have been made conducted in order to acquire better quality data to be analysed using ML 

techniques [24, 25]. Such material/device-based inference methods can become an entirely 

new field of research at the intersection between AI/ML, natural language processing and 

material science, providing guidance regarding which aspects should be prioritised in order to 

achieve the biggest overall enhancement in device stability. 



 

 

Our experience in this work highlights some challenges that lie ahead. The success of 

our supervised approach can partly be attributed to the choice of the data acquired. However, 

vastly different performance metrics can be obtained when considering the same structures 

and materials. Key to overcoming this challenge is ensuring publications report to the right 

level of detail and consistent reporting in terms of material details, test conditions and 

material/device processing. The recently published ISOS consensus standards provide some 

discussion about this and state that for approaches set out in the paper to be a greater future 

success, standardised reporting is key [26]. The importance of training data selection was 

demonstrated by comparing the ‘entire dataset’ with the data only obtained from ‘ISOS-L 

testing’. We showed that selection of subsets of data improves the models trained on the 

dataset. 

One of the questions addressed in the introduction is to what extent we understand 

and report the factors that really are important for device performance, and how much still is 

“dark knowledge” or just unknown. The attributes and categories we used in the modelling 

represent a large portion of what commonly goes into describing OPV devices when 

described in the literature. There are more factors we could point out that reasonably are of 

importance, e.g. layer thickness, synthesis temperatures, chemical providers, etc. The 

problem with many of those parameters are twofold. One is that they are often not reported. 

Another is that with too many categories, the number of devices for which the data is 

available is too small to properly train such a model.  

The models we present here have an accuracy of 40.6% and 44.4% with respect to T80 

and E0 prediction, respectively. This is far from perfect and other phenomena which improves 

device performance could thus be attributed to other factors. Given the difference in 

performance of similar devices made at different labs a substantial, but yet unquantified, part 

of the discrepancy between the model and the reality could be attributed to either “dark” 

unreported knowledge or to hidden variables that are unknown. If we look into the future 

where we can expand the training data set with data for more devices and with a more fine 

grained meta-data mechanism, we will likely be able to elucidate more of those parameters.  

 

Conclusion 

 

Machine learning has been applied to a comprehensive OPV dataset as a rapid and effective 

screening technique for identifying the primary attributes in OPV degradation which have a 

positive or negative impact on the initial efficiency as well as the T80 lifetime. Supervised 



 

 

learning and regression have been implemented using the SMOreg ML algorithm and has 

allowed the optimum material for each device layer to be identified as well as highlighting the 

role of the environmental conditions on stability and performance by considering the T80 and 

E0 response based purely on the device architecture and testing conditions. The SMOreg 

algorithm has been applied to the dataset separated for tests conducted under both ISOS-L and 

ISOS-D testing compatibilities for E0 and T80. By separating the data in such a way, the role of 

the different materials and stress attributes on both the operational stability as well as the 

intrinsic material stability can be separately identified. For ISOS-L testing, the choice of light 

spectrum as well as several active materials were found to be vital in order to improve the 

stability. In contrast, for tests conducted under ISOS-D, the primary attributes affecting the 

stability were predominantly material dependent along with the use of encapsulation. 

From inspection of the most promising materials and device architectures identified via 

this methodology, it is hoped that future studies will build on these findings in order to 

experimentally verify and test these predictions. In addition, the materials identified herein will 

provide inspiration for other research groups to develop and enhance the stability of their 

devices. 

Scientific progress relies on the efficient assimilation of results from a plethora of 

research outputs in order to choose the most promising way forward and to minimise re-

invention. The capability of identifying the best material combinations and the role of the 

testing condition in the performance and stability of OPV devices is crucial for identifying the 

priorities of research. In addition, classes of materials that are more robust against 

environmental stresses can be identified whilst classes of materials with lower stabilities can 

be avoided. We hope that this work will pave the way towards making the vast amount of 

information found in scientific literature accessible to individuals in ways that enable a new 

paradigm of machine-assisted scientific breakthroughs. 
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FIG.1: (a) Device architecture employed in dataset [4]. (b) Schematic of typical OPV 

degradation curve, illustrating key lifetime metrics employed in dataset. 
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FIG.2: Schematic illustration of data science life-cycle. 

 
 
 

 
FIG.3: Schematic of classification and regression during SMOreg. 
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FIG.4: Categorical distribution of T80, TS80 and E0 for the full dataset.  

 

 

 T80 

 

TS80 

 

E0 

 

Mean / Days, % 14.9 18.7 2.7 

Median / Days, 

% 

4.6 7.1 2.6 

Max / Days, % 379.2 379.2 9.1 

Range / Days, % 378.8 379.2 9.1 

TABLE.1: Statistics for T80, TS80 and E0 distributions. 

 

 

 

 

 

 

 

 

Metric All data Only ISOS-L data Only ISOS-D data 

Correlation coefficient 0.739 0.819 0.767 

Mean Absolute Error (days) 9.31 7.64 12.1 

Root Mean Squared Error 

(days) 16.2 20.9 23.5 

Relative Absolute Error 59.4% 44.1% 52.9% 

Root Relative Squared Error 69.3% 59.7% 65.1% 

Number of Instances 1149 155 489 

TABLE.2: T80 fit parameters for SMOreg algorithm applied to full dataset, ISOS-L and 

ISOS-D, based upon the training set. 

 

 

 

 



 

 

 

TABLE.3: Best 10 attributes and worst 10 attributes for T80 enhancement for entire dataset, 

ISOS-L and ISOS-D Yellow shading represents testing conditions. Green represents 

architectural components. 

Entire Dataset ISOS-L ISOS-D 

Best 10 Attributes Worst 10 Attributes Best 10 Attributes Worst 10 Attributes Best 10 Attributes Worst 10 Attributes 

Name Weight Name Weight Name Weight Name Weight Name Weight Name Weight 

TL1 = NDP2 

doped PV-TPD 

0.2974 ISOS-T-3 -

0.1033 

Configuration 

= Tandem 

0.3826 Conditions = 

Inert 

 

-

0.2431 

Active2 = 

PTCDI 

0.1954 TL1 = 

PEDOT:PSS 

-

0.1926 

Active2 = 

PTCDI  

0.0823 ISOS-L-1 -

0.1006 

Active1 = 

ZnPc 

0.1873 Configuration 

= Normal 

-

0.1928 

Configuration 

= Tandem 

0.1375 Active2 = 

None 

-

0.1466 

Active1 = 

PBDTTT-c 

0.0571 ISOS-L-2 -

0.0982 

Light Type = 

Xenon 

0.1138 Configuration 

= Inverted 

-

0.1897 

TL2 = BPhen 0.0987 Configuration 

= Normal 

-

0.0864 

Electrode1 = 

FTO 

0.0554 ISOS not 

compatible 

-

0.0902 

Light Type = 

Halogen 

0.1041 Active1 = 

Unknown 

-

0.0576 

Electrode2 = 

Au 

0.0913 Temperature -

0.0745 

TL1 = ZnO 

(Spray coated) 

0.0483 ISOS-D-2 -

0.0891 

Light Type = 

FL 

0.0935 Active1 = 

P3HT 

-

0.0416 

Electrode1 = 

Ag Grid 

0.0737 TL2 = 

PEDOT:PSS 

-

0.0647 

Active1 = ZnPc 0.0308 ISOS-L-3 -

0.0884 

Active2 = 

PCBM (Slot 

die) 

0.0167 Active1 = 

Other 

-

0.0374 

Substrate = 

PEN 

0.0647 TL2 = V2O5 -

0.0594 

Active2 = 

ICBA 

0.0267 ISOS-D-3 -0.088 Electrode1 = 

Ag grid 

(flexible) 

0.0163 TL1 = 

PEDOT:PSS 

-

0.0366 

Encapsulation 

= Glass 

0.0508 Active1 = 

PTB7 

-

0.0539 

TL1 = 

NDP2(Noveled) 

doped DiNPB 

0.0267 ISOS-D-1 -0.087 Substrate = 

Glass 

0.0134 Active2 = 

C60 

-

0.0215 

Encapsulation 

Adhesive = 

Epoxy 

0.0416 Configuration 

= Inverted 

-

0.0511 

Substrate = 

PEN 

0.0214 ISOS-O-1 -

0.0431 

Type = 

Module 

0.0095 Temperature -

0.0185 

Encapsulation 

Adhesive = 

UV curable 

0.0392 Active1 = 

PBTTTz-4 

-

0.0485 

Light Type = 

LED 

0.0205 Intensity -

0.0356 

Electrode2 = 

Ag 

0.0087 TL1 = None -

0.0181 

Active1 = 

Pentacene 

0.0295 Active1 = 

CuPc 

-0.044 



 

 

Data 

set 

Electrode 

1 

TL 1 Active 1 Active 

2 

TL 2 Electrode 

2 

Full FTO NDP2(Novaled) 

doped PV-TPD 

ZnPc ICBA ZnO-np Al 

Cr/Al ZnO- spray-

coated 

PBDTTT-

c 

PCBM ZnO Ag 

Ag NDP2(Novaled) 

doped DiNPB 

PC-TBT-

TQ 

C60 PEDOT:PSS Au  

ISOS-L  Ag grid 

flexible 

BF-DPB ZnPc PCBM 

slot-

dye 

BPhen Al 

Other PEDOT:PSS Other PCBM BaF2 Ag 

ITO Unknown P3HT PCBM 

- 71 

PEDOT:PSS Ag grid  

ISOS-

D  

Ag grid PEDOT:PSS PECz-

DTQx 

PTCDI BPhen Au 

ITO ZnO – spray-

coated 

MDMO-

PPV 

PCBM 

slot-

dye 

AlQ3 Ag 

Other TiOx ZnPc ICBA BCP Other 

TABLE.4 Top three attributes for each layer in device architecture for the full dataset, 

ISOS-L and ISOS-D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

  

 
 

FIG.5: Predicted T80 lifetimes plotted as a function of reference T80 lifetimes for (a) the full 

dataset, (b) ISOS-L testing and (c) ISOS-D testing. The dashed line represents a perfect 

correlation of 1:1. Please not, the data is plotted on a logarithmic scale. 
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FIG.6: Distribution of T80 lifetimes for each class present in dataset. 

 

 

  

 

 



 

 

 

Metric Full Dataset 

  

Correlation Coefficient 0.739 

  

Mean Absolute Error / % 0.605 

  

Root Mean Squared Error / % 0.939 

  

Relative Absolute Error 55.6% 

  

Root Relative Squared Error 63.9% 

  

Number of Instances 1347 

  

 

TABLE.5: E0 fit parameters for SMOreg algorithm applied to full dataset based on training. 

 

 
 

FIG.7 Predicted E0 performance plotted as a function of reference E0 performance for the full 

dataset, plotted on a logarithmic scale. The dashed line represents a perfect correlation of 1:1. 
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TABLE.6: Best 10 attributes and worst 10 attributes for E0 enhancement for entire dataset. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Entire Dataset 

Best 10 Attributes Worst 10 Attributes 

Name Weight Name Weight 

Active1 = PTB7 0.3572 TL1 = MeO-TPD -0.1689 

Configuration = Tandem  0.2315 Active1 = PBbTTT-T -0.1551 

Active1 = PBDTTT-c 0.2097 TL1 = NDP2(Noveled) 

doped PV-TPD 

-0.1522 

Active1 = PCDTBT 0.1769 Active1 = CuPc -0.1372 

Active2 = ICBA 0.1581 TL1 = AZO -0.1262 

Active2 = OXCBA 0.158 Configuration = Inverted -0.1221 

Electrode1 = Ag 0.1445 Intensity -0.1185 

TL1 = Graphene oxide 0.1042 

 

Active1 = P3HT (Slot die) -0.1133 

TL2 = V2O5 0.0889 Electrode1 = Ag grid 

(Inkjet) 

-0.1012 

Electrode2 = Pt 0.0788 Active2 = None -0.0989 
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