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Abstract
Making sense of a poor auditory signal can pose a challenge. Previous attempts to 
quantify speech intelligibility in neural terms have usually focused on one of two 
measures, namely low-frequency speech-brain synchronization or alpha power 
modulations. However, reports have been mixed concerning the modulation of these 
measures, an issue aggravated by the fact that they have normally been studied sepa-
rately. We present two MEG studies analyzing both measures. In study 1, partici-
pants listened to unimodal auditory speech with three different levels of degradation 
(original, 7-channel and 3-channel vocoding). Intelligibility declined with declin-
ing clarity, but speech was still intelligible to some extent even for the lowest clar-
ity level (3-channel vocoding). Low-frequency (1–7 Hz) speech tracking suggested 
a U-shaped relationship with strongest effects for the medium-degraded speech 
(7-channel) in bilateral auditory and left frontal regions. To follow up on this finding, 
we implemented three additional vocoding levels (5-channel, 2-channel and 1-chan-
nel) in a second MEG study. Using this wider range of degradation, the speech-brain 
synchronization showed a similar pattern as in study 1, but further showed that when 
speech becomes unintelligible, synchronization declines again. The relationship dif-
fered for alpha power, which continued to decrease across vocoding levels reaching 
a floor effect for 5-channel vocoding. Predicting subjective intelligibility based on 
models either combining both measures or each measure alone showed superiority 
of the combined model. Our findings underline that speech tracking and alpha power 
are modified differently by the degree of degradation of continuous speech but to-
gether contribute to the subjective speech understanding.
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1 |  INTRODUCTION

Understanding speech can be challenging in normal acoustic 
environments (e.g. background noise) or due to hearing dam-
age. To compensate for the inferior signal-to-noise ratio of 
the acoustic information reaching the central auditory system, 
an effortful process is necessary. Indeed, subjective listen-
ing effort has been shown to increase with concurrent back-
ground noise or competing speakers for speech sounds with 
fewer acoustic details or lower predictiveness (Wöstmann, 
Herrmann, Wilsch, & Obleser, 2015). “Listening effort” how-
ever, from a conceptual perspective is not so straightforward, 
often describing a combination of cognitive demand (usually 
due to challenging listening situations) and affective–motiva-
tional aspects (Peelle, 2018). A related compensatory process 
may be the allocation of increased attentional resources to the 
incoming (behaviorally relevant) sounds (Wild et al., 2012). 
Interestingly, both the broader concept of listening effort and 
the selective attention have been linked to neural oscillations 
in the alpha (8–12 Hz) frequency range (e.g., Dimitrijevic, 
Smith, Kadis, & Moore,  2019; Frey et  al.,  2014; Obleser, 
Wöstmann, Hellbernd, Wilsch, & Maess, 2012). Most stud-
ies have reported an alpha power increase in response to 
degraded speech. This modulation occurs when short de-
graded stimuli are used (Obleser & Weisz,  2012; Obleser 
et al., 2012). However, in the rare—albeit more naturalistic—
situation where sentences have been used, alpha power seems 
to show the opposite pattern (McMahon et al., 2016; Miles 
et al., 2017).

Besides the induced neuronal responses broadly 
linked to the task demands, listening to speech also elic-
its temporal synchronization of auditory cortical activ-
ity to the speech sound. Different frequency bands have 
been assigned to carry different information with regard 
to speech signal, with a dominance of delta (1–4 Hz) and 
theta frequencies (4–7 Hz) capturing phrasal and syllable 
structure, respectively (Greenberg, 1998; Poeppel, 2003). 
Synchronization between speech and brain signals is often 
called neural speech entrainment or speech tracking (see, 
however, Alexandrou, Saarinen, Kujala, & Salmelin, 2018). 
Different measures can be used for quantification such as 
coherence (Hauswald, Lithari, Collignon, Leonardelli, 
& Weisz,  2018), mutual information (Gross et  al.,  2013; 
Keitel, Gross, & Kayser,  2018), inter-trial correlation 
(Ding, Chatterjee, & Simon,  2014), dissimilarity index 
(Luo & Poeppel,  2007) or temporal response functions 
(TRF, Crosse, Di Liberto, Bednar, & Lalor, 2016; Ding & 
Simon, 2011). Just as alpha power, low-frequency speech 
tracking is modulated by degradation of the speech signal 
with studies providing mixed findings: Reduced synchro-
nization in this frequency range is linked to reduced in-
telligibility either operationalized through vocoding (Ding 

et al., 2014; Luo & Poeppel, 2007), time-reversed presenta-
tion (Gross et al., 2013; Howard & Poeppel, 2010), speech 
in noise (Dimitrijevic et al., 2019) or transcranial electri-
cal stimulation (Riecke, Formisano, Sorger, Başkent, & 
Gaudrain,  2018; Zoefel, Archer-Boyd, & Davis,  2018). 
However, using other measures or experimental pro-
cedures the opposite pattern has also been shown: For 
example, using TRF yields higher M50 and delta synchro-
nization is enhanced for degraded stimuli compared with 
unaltered stimuli in quiet environment (Ding et al., 2014) 
and non-native speakers show higher speech entrainment 
than native speakers (Song & Iverson, 2018). Interestingly, 
the latter observation has also been linked to an increase 
of listening effort. To complicate things further, multi-
speaker and auditory spatial attention studies using sen-
tences or narratives have repeatedly found stronger speech 
tracking (delta and theta band) for attended compared with 
unattended speech (Ding & Simon, 2012; Rimmele, Zion 
Golumbic, Schröger, & Poeppel, 2015; Viswanathan et al. 
2019) in auditory cortices and areas in the vicinity thereof 
(Horton, D'Zmura, & Srinivasan,  2013; Zion Golumbic 
et al., 2013).

Thus, both relevant measures—that is, speech track-
ing and alpha power—are frequently linked with similar 
concepts such as listening effort (Dimitrijevic et al., 2019; 
Song & Iverson,  2018), selective attention (Frey 
et al., 2014; Rimmele et al., 2015) or intelligibility of the 
stimuli (Vanthornhout, Decruy, & Francart, 2019). Despite 
this conceptual overlap, very few studies have investigated 
these measures simultaneously. One study, using a speech-
in-noise task, reported decreasing speech tracking and in-
creasing alpha power in response to increasing listening 
effort in cochlear implant users (Dimitrijevic et al., 2019). 
However, here again, short stimuli (digits) were presented, 
which is a paradigm rather remote from real-life listen-
ing situations and still leaves open the question how de-
graded continuous speech affects speech tracking and 
alpha power. We report findings from two MEG studies 
that together aim at answering this question. Therefore, 
we presented continuous speech with a wide range of 
degradation levels and analyzed both speech tracking and 
alpha power. Derived from the same data set, we show a 
differential modulation pattern of both measures: Speech 
tracking increases the stronger stimuli are degraded as 
long as some intelligibility is still warranted, to then de-
crease beyond this critical point. Alpha power on the other 
hand decreases with increased degradation and stays low 
even when unintelligible. Using linear mixed-effects mod-
els, we show that combining speech tracking and alpha 
power is superior in predicting subjective intelligibility of 
degraded speech, as compared to models based on one of 
the neural measures alone.
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2 |  Study 1

2.1 | Materials and methods

2.1.1 | Participants

Twenty-eight individuals participated in the study (fe-
male = 17, male = 11). Mean age was 23.82 years (stand-
ard deviation, SD  =  3.712), with a range between 19 and 
37  years. We recruited only German native speakers and 
people who were eligible for MEG recordings, that is, with-
out nonremovable ferromagnetic metals in or close to the 
body. Participants provided informed consent and were 
compensated monetarily or via course credit. Participation 
was voluntary and in line with the declaration of Helsinki 
and the statutes of the University of Salzburg. The study was 
preregistered at OSF (https://osf.io/dpt34/). In the preregis-
tration, we aimed at a sample size of 30–34 instead of the 
28 we ended up with. This was due to a technical problem 
that occurred after an upgrade of the Vpixx stimulation soft-
ware, after which the visual stimulation would freeze during 
presentation. We could not run the whole experiment in the 
same way as for the initial 28 subjects and therefore stopped 
after those 28. We also hoped to compare degradation across 
auditory and visual modalities, but realized that the degra-
dation of auditory and visual modality was not comparable. 
Therefore, we focused on the auditory modality and added a 
follow-up study for this modality.

The study was approved by the ethical committee of the 
University of Salzburg.

2.1.2 | Stimuli

For the MEG recording, 12 audio files were created from 
audio–visual recordings of a female speaker reading 
Goethe's “Das Märchen” (1795). Stimulus lengths varied 
between approximately 30  s and 3 min, with two stimuli 
of 15, 30, 60, 90, 120 and 150  s, and 12 of 180  s. Each 
stimulus ended with a two-syllable noun within the last 
four words. In order to keep participants’ attention on the 
stimulation, we asked participants after each stimulus to 
choose from two presented two-syllable nouns the one that 
had occurred within the last four words of a sentence. The 
syllable rate of the stimuli varied between 4.1 and 4.5 Hz 
with a mean of 4.3 Hz.

Noise-vocoding of all audio stimuli was done using the 
vocoder toolbox for MATLAB (Gaudrain, 2016), and we cre-
ated conditions with 7 and 3 channels (Figure 1a). For the 
vocoding, the waveform of each audio stimulus was passed 
through two Butterworth analysis filters (for 7 and 3 chan-
nels) with a range of 200–7,000 Hz, representing equal dis-
tances along the basilar membrane. Amplitude envelope 

extraction was done with half-wave rectification and low-
pass filtering at 250 Hz. The envelopes were then normal-
ized in each channel and multiplied with the carrier. Then, 
they were filtered in the band, and the RMS of the result-
ing signal was adjusted to that of the original signal filtered 
in that same band. Auditory stimuli were presented binau-
rally using MEG-compatible pneumatic in-ear headphones 
(SOUNDPixx, VPixx technologies). The trigger-sound delay 
of 16 ms was measured (The Black Box Toolkit v2) and cor-
rected for during preprocessing.

In the experiment, in addition to the unimodal auditory 
stimuli also unimodal visual stimuli were presented, which 
will not be reported or discussed here as the visual degrada-
tion manipulation was not comparable to the acoustic one. 
The unimodal stimuli were presented to the participants in 
three consecutive audio-only blocks and three consecutive 
video-only blocks via in-ear-phones and a projector system, 
respectively. The order of video and audio blocks was bal-
anced. Each block contained 4 stimuli, which were presented 
either in an unaltered version or in one of the two degraded 
versions. The order of the stimuli was random and did not fol-
low the order of the original story. The assignment of stimuli 
to conditions was controlled in order to obtain similar over-
all length of stimulus presentation (approx. 400 s) for each 
modality and degradation levels. We instructed participants 
to attend to the speech which they would either see or hear. 
In order to keep participants’ attention on the stimulation, a 
behavioral response was required after each stimulus. At the 
end of each stimulus, a target and a distractor word would ap-
pear next to each other. The participants were asked to decide 
which of the words was presented as the last noun and within 
the last four words by pressing the button on the side of the 
response pad that matched the presentation side of the word 
they chose (Figure 1b). Presentation side of target and distrac-
tor words was random. Following the response, they could 
self-initiate the next trial via a button press. Each block was 
followed by a short self-determined break. This procedure 
resulted in only four responses per condition, and therefore, 
we added a behavioral experiment following all six blocks, to 
assess performance. Responses were acquired via a response 
pad (TOUCHPixx response box by VPixx Technologies).

For this additional behavioral experiment, we used a total 
of 24 unimodal audio stimuli of a different female speaker 
reading Antoiné St. Exupery's “The little prince” (1943). 
Each stimulus contained a single sentence (length between 
2 and 15  s) with a two-syllable noun (target word) within 
the last four words. We created a list of different two-sylla-
ble nouns (distractor words), which we also drew from “The 
little prince” but were not presented during the stimulation. 
Similar to the main experiment, participants had to choose 
between two alternatives and the chance level was 50%. The 
behavioral stimuli were manipulated in the same way as the 
stimuli for the MEG experiment. Stimulus presentation was 
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controlled using in-house wrapper (https://gitlab.com/thht/o_
ptb) for the MATLAB-based Psychtoolbox (Brainard, 1997; 
Kleiner et al., 2007; Pelli, 1997).

2.1.3 | Data acquisition and analyses

Extraction of acoustic speech envelope
For calculation of the coherence between speech envelope 
and brain activity, we extracted the acoustic speech enve-
lope from all acoustic stimuli using the Chimera toolbox by 
Delguette and colleagues (http://resea rch.meei.harva rd.edu/
chime ra/More.html) where nine frequency bands in the 
range of 100 to 10,000 Hz were constructed as equidistant on 
the cochlear map (Chandrasekaran, Trubanova, Stillittano, 
Caplier, & Ghazanfar,  2009; Gross et  al.,  2013; Smith, 
Delgutte, & Oxenham, 2002). Sound stimuli were band-pass-
filtered (forward and reverse) in these bands using a 4th-order 
Butterworth filter. For each band, envelopes were calculated 
as absolute values of the Hilbert transform and were averaged 
across bands to obtain the full-band envelope that was used 
for coherence analysis. We did this for all three conditions 

(original, 7-chan and 3-chan) resulting in virtually identical 
envelopes for those conditions (Figure 1a).

MEG acquisition and preprocessing
Data acquisition and analyses closely resemble with minor 
exceptions the one described in Hauswald et al. (2018). MEG 
was recorded at a sampling rate of 1 kHz using a 306-chan-
nel (204 first-order planar gradiometers) Triux MEG system 
(Elekta-Neuromag Ltd.) in a magnetically shielded room 
(AK3B, Vacuumschmelze). The MEG signal was online 
high-pass- and low-pass-filtered at 0.1 Hz and 330 Hz, re-
spectively. Prior to the experiment, individual head shapes 
were digitized for each participant including fiducials (na-
sion, pre-auricular points) and around 300 points on the scalp 
using a Polhemus Fastrak Digitizer (Polhemus). We use 
a signal space separation algorithm provided by the MEG 
manufacturer and implemented in the Maxfilter program 
(version 2.2.15) to remove external noise from the MEG sig-
nal (mainly 16.6, and 50 Hz plus harmonics) and realign data 
to a common standard head position (across different blocks 
based on the measured head position at the beginning of each 
block).

F I G U R E  1  (a) an exemplary audio file 
with the corresponding envelope and with 
the envelopes of the vocoded audio stimuli 
presenting either 7 or 3 channels as used 
in study 1. (b) Example trial of unimodal 
acoustic stimulation. Participants started 
the presentation self-paced and listened to 
the stimulus during the visual presentation 
of a fixation cross. When the stimulus 
ended, participants were presented with 
two nouns of which they had to pick the 
one they perceived in the sentence before. 
(c) Hit rates in the behavioral experiment 
in studies 1 and 2 using acoustic stimuli of 
single sentences (range of 2–15 s). The gray 
curves represent the model-based predicted 
behavioral response (left: model combining 
linear and quadratic term; right: linear 
model). Bars represent 95% confidence 
intervals, pfdr < .05*, pfdr < .01**, 
pfdr < .001***
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Data were analyzed offline using the Fieldtrip toolbox 
(Oostenveld et al. 2011). First, a high-pass filter at 1  Hz 
(6th-order Butterworth IIR) was applied to continuous MEG 
data. Then, trials were defined according to the duration of 
each stimulus and cut into segments of 2 seconds to increase 
signal-to-noise ratio. As we were interested in frequency 
bands below 20 Hz and in order to save computational power, 
we resampled the data to 150  Hz. Independent component 
analysis was applied separately for visual and auditory 
blocks, and we then identified components corresponding to 
blinks and eye movements and cardiac activity and removed 
them. On average, 3.25 (SD: 1.143) components were re-
moved for auditory blocks. Sensor space data were projected 
to source space using linearly constrained minimum variance 
beamformer filters (Van Veen, van Drongelen, Yuchtman, 
& Suzuki, 1997), and further analysis was performed on the 
obtained time series of each brain voxel (http://www.field 
tript oolbox.org/tutor ial/share d/virtu al_sensors in FieldTrip). 
To transform the data into source space, we used a template 
structural magnetic resonance image (MRI) from Montreal 
Neurological Institute (MNI) and warped it to the subject's 
head shape (Polhemus points) to optimally match the indi-
vidual fiducials and head shape landmarks. This procedure is 
part of the standard SPM (http://www.fil.ion.ucl.ac.uk/spm/) 
procedure of canonical brain localization (Mattout, Henson, 
& Friston, 2007).

A 3D grid covering the entire brain volume (resolution 
of 1  cm) was created based on the standard MNI template 
MRI. The MNI space equidistantly placed grid was then 
morphed to individual headspace. Finally, we used a mask to 
keep only the voxels corresponding to the gray matter (1,457 
voxels). Using a grid derived from the MNI template al-
lowed us to average and compute statistics as each grid point 
in the warped grid belongs to the same brain region across 
participants, despite different head coordinates. The aligned 
brain volumes were further used to create single-sphere head 
models and lead field matrices (Nolte,  2003). The average 
covariance matrix, the head model and the lead field matrix 
were used to calculate beamformer filters (regularization fac-
tor of 10%). The filters were subsequently multiplied with 
the sensor space trials resulting in single-trial time series in 
source space. The number of epochs across conditions was 
equalized.

We applied a frequency analysis to the 2-s segments of 
all three conditions (original, 7-chan and 3-chan) calculating 
multi-taper frequency transformation (dpss taper: 1–25 Hz in 
1 Hz steps, 3 Hz smoothing, no baseline correction). These 
values were used for the analyses of alpha and for the coher-
ence calculation between each virtual sensor and the acoustic 
speech envelope. For all three conditions, we used the en-
velopes of the original, nonvocoded acoustic signal. Then, 
the coherence between activity at each virtual sensor and the 
acoustic speech envelope during acoustic stimulation in the 

frequency spectrum was calculated and averaged across tri-
als. We refer to the coherence between acoustic speech enve-
lope and brain activity as speech tracking. As a sanity check, 
we calculated grand averages of the speech tracking of the 
three conditions to see whether they show the expected peak 
around 4 Hz (Figure 2a).

2.1.4 | Statistical analyses

We analyzed the responses from the behavioral experiment. 
Due to technical problems, behavioral measures are miss-
ing for 3 participants and the responses of the remaining 
25 participants were analyzed. We used repeated-measures 
ANOVA to compare across the conditions and then de-
pendent-samples t tests to compare hit rates between condi-
tions and against chance level (50%), which were corrected 
for multiple comparisons by using the false discovery rate 
method (FDR, Benjamini & Hochberg, 1995).

Most studies on speech-brain entrainment report find-
ings of frequencies below 7 Hz; therefore, we analyzed fre-
quencies between 1 and 7 Hz. For alpha power, we analyze 
8–12 Hz. For both MEG alpha power and 1–7 Hz coherence 
data, we applied repeated-measures ANOVA for each fre-
quency within the range (ft_statfun_depsamplesFunivariate 
in FieldTrip, no averaging over frequency band) to test mod-
ulations of neural measures across the different degradation 
levels. To control for multiple comparisons, a nonparamet-
ric Monte Carlo randomization test was undertaken (Maris 
& Oostenveld,  2007). The test statistic was repeated 5,000 
times on data shuffled across conditions, and the largest sta-
tistical value of a cluster coherent in source space was kept 
in memory. The observed clusters were compared against the 
distribution obtained from the randomization procedure and 
were considered significant when their probability was below 
5%. Effects were identified in source space. All voxels within 
the cluster and the corresponding individual coherence and 
power values were extracted and averaged. Post hoc t tests 
between conditions were corrected for multiple comparisons 
by using the FDR method (Benjamini & Hochberg, 1995). 
For visualization, source localizations were averaged across 
the 1–7 Hz and respectively 8–12 Hz frequency bands and 
mapped onto inflated surfaces as implemented in FieldTrip.

We used linear mixed models to further test how our data 
(i.e., behavioral response, speech tracking and alpha power) 
are influenced by the vocoding levels. At the outset, we tested 
a simple linear model [recorded measure = (vocoding levels)] 
and compared it with a more complex (combined) by adding 
a quadratic term [recorded measure = (vocoding levels + (vo-
coding levels)2)]. These two models were compared using an 
ANOVA test. The respective best model was subsequently 
reapplied to the data for each individual, and the average for 
these predicted model outcomes is displayed alongside the 
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actual (grand) average results in the relevant bar graphs (gray 
curves).

2.2 | Results

2.2.1 | Behavioral results

The mean hit rate for original stimuli was 99% (SD: 3.43%) for 
the original sound files, 92.5% (SD: 10.21%) for 7-chan vocoded 
stimuli and 69.44% (SD: 18.75%) for 3-chan vocoded stimuli. A 
one-way ANOVA across the three conditions revealed a main 
effect (F(72) = 37.14, p = 8.28e-12).Comparing the different 

vocoding levels with each other showed higher hit rates for non-
vocoded stimuli than for 7-chan (t(24) = 3.376, pfdr = .0025) or 
3-chan vocoded stimuli (t(24) = 7.632, pfdr = 1.437e-7). 7-chan 
had higher hit rates than 3-chan vocoded stimuli (t(24) = 6.2354, 
pfdr = 2.8733e-6). All conditions also showed significant above-
chance (50%) hit rates (Figure  1c): for nonvocoded stimuli, 
t(24) = 70.787, pfdr = 1.3341e-28, for 7-chan, t(24) = 20.821, 
pfdr  =  2.1531e-16, and for 3-chan vocoded, t(24)  =  5.333, 
pfdr = 2.1494e-5. The linear mixed models revealed significant 
linear decrease across conditions (χ2 = 72.003, p < 2.2e-16). 
Adding a quadratic term to the model benefitted the data pre-
diction (model comparison: χ2  =  7.8982, p  <  .004949; gray 
curve in Figure 1c left).

F I G U R E  2  (a) Frequency spectrum of the speech tracking (coherence) for the three conditions averaged across all voxels. (b) Left: source 
localizations of degradation effects on speech tracking (1–7 Hz) during acoustic stimulation across three conditions (original, 7-chan and 3-chan) in 
bilateral temporal and left frontal regions. Right: individual speech tracking values of the three conditions extracted at voxels showing a significant 
effect contrasted with each other. The gray curve represents the predicted tracking values by the model combining linear and quadratic terms. (c) 
Frequency spectrum of the speech tracking for the six conditions averaged across all voxels. (d) Left: source localizations of degradation effects on 
speech tracking (1–7 Hz) during acoustic stimulation across six conditions (original, 7-chan, 5-chan, 3-chan, 2-chan 1-chan) in bilateral temporal 
and left frontal regions. Right: individual speech tracking values of the six conditions extracted at voxels showing a significant effect contrasted 
with each other. The gray curve represents the predicted tracking values by the model that combines linear and quadratic terms. Bars represent 95% 
confidence intervals, pfdr < .05*, pfdr < .01**, pfdr < .001*** 
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2.2.2 | MEG data

Degradation-related effects
To investigate the effects of reducing the acoustic informa-
tion, we ran a cluster-corrected repeated-measures ANOVA 
for the speech tracking (1–7 Hz coherence; see spectral dis-
tribution in Figure 2a) of the 3 conditions (original, 7-chan 
and 3-chan). An effect of degradation between 1 and 7 Hz 
(p  =  .0009) was yielded with maxima in bilateral middle 
temporal and left frontal regions and right thalamus and 
insula (Figure  2b, left). In these areas, the original audio 
stimuli lead to the weakest speech tracking, while the stimuli 
with the medium degradation (7-chan) elicited the strongest 
speech tracking (Figure  2b, right). Listening to the origi-
nal audio files elicited lower tracking than listening to the 

7-chan (t(27)  =  −7.798, pfdr  =  6.58e-8) or 3-chan version 
(t(27) = −5.593, pfdr = 9.33e-6). The two vocoded stimulus 
classes did not differ significantly (t(27) = 1.139, pfdr = .264). 
The linear mixed models revealed a significant linear pat-
tern across conditions (χ2 = 26.868, p = 2.179e-07). Adding 
a quadratic term to the model benefitted the data prediction 
(model comparison: χ2 = 19.998, p = 7.751e-06; gray curve 
in Figure 2b right).

The same statistical analysis applied to alpha power 
(8–12  Hz, spectral distribution in Figure  3a) over orig-
inal, 7-chan and 3-chan revealed an effect of degrada-
tion (p  =  .0009, Figure  3b), with alpha power during 
unaltered stimuli being higher during than 7-chan voc-
oding (t(27)  =  3.095, pfdr  =  .0045) and 3-chan vocod-
ing (t(27)  =  4.09, pfdr  =  .001). Compared with 7-chan 

F I G U R E  3  (a) Frequency spectrum of the power for the three conditions averaged across all voxels. (b) Left: source localizations of 
degradation effects on alpha power (8–12 Hz) across three conditions (original, 7-chan and 3-chan) with maxima in left angular gyrus and inferior 
parietal lobe, left frontal and inferior temporal regions. Right: individual 8–12 Hz power values of the three conditions extracted at voxels showing 
a significant effect contrasted with each other. The gray curve represents the predicted tracking values by the linear model. (c) Frequency spectrum 
of the power for the six conditions averaged across all voxels. (d) Left: source localizations of degradation effects on alpha power (8–12 Hz) across 
six conditions (original, 7-chan, 5-chan, 3-chan, 2-chan and 1-chan) with maxima in left angular gyrus and inferior parietal lobe. Right: individual 
8–12 Hz power values of the three conditions extracted at voxels showing a significant effect contrasted with each other. The gray curve represents 
the predicted alpha power values by the model that combines linear and quadratic terms. Bars represent 95% confidence intervals, pfdr < .05*, 
pfdr < .01**, pfdr < .01*** 
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vocoding, alpha power during 3-chan vocoding decreased 
even further (t(27) = 3.738, pfdr = .0013). The effect was 
widespread and covered most of the brain (present in 
1,357 of 1,457 voxel) with a clear maximum in the left 
angular/parietal inferior cortex. The linear mixed mod-
els revealed a significant linear pattern across conditions 
(χ2  =  30.292, p  =  3.716e-08). Adding a quadratic term 
to the model did not benefit the data prediction (model 
comparison: χ2 = 0.2185, p = .6402; gray curve Figure 3b 
right).

3 |  Study 2

The findings from study 1 offer two important insights: 
First, the increase in speech-brain coherence and the de-
crease in alpha power with decline in acoustic detail are 
at odds with several previous studies (e.g. Dimitrijevic 
et al., 2019; Obleser et al., 2012). However, those studies 
have usually employed very brief stimuli, which is uncom-
mon in natural listening situations. Second, the findings 
suggest that the relationship between degradation and 
speech tracking might not be linear and possibly behave 
differently than the relationship between degradation and 
alpha power. Therefore, we conducted a second study, to 
replicate the first by using again the previous vocoding lev-
els and further extend it by adding three more vocoding 
levels: First, we added 5-channel vocoding to fill the gap 
between 7- and 3-channel vocoding, where comprehen-
sion is challenging but still possible. Furthermore, we also 
added 2- and 1-channel vocoding to make sure we also pre-
sent unintelligible material.

3.1 | Materials and methods

3.1.1 | Participants

Twenty-four individuals participated in the second MEG 
study (female = 11, male = 13). Mean age was 26.37 years 
(SD  =  5.648), with a range between 18 and 45  years. 
We recruited only German native speakers and people 
who were eligible for MEG recordings, that is, without 
nonremovable ferromagnetic metals in or close to the 
body. Seventeen of these also provided behavioral data 
(female = 8, male = 9, mean age = 27.2, SD = 6.4, age 
range = 18–45 years). Ten additional individuals partici-
pated in the behavioral part only (female = 6, male = 4, 
mean age  =  23.2, SD  =  3.5, age range  =  20–33  years). 
Participants provided informed consent and were compen-
sated monetarily or via course credit. Participation was 
voluntary and in line with the declaration of Helsinki and 
the statutes of the University of Salzburg.

3.1.2 | Stimuli

We used the same auditory stimulus material and experimen-
tal design as in study 1, but expanded the degradation levels 
to include additionally 5-channel, 2-channel and 1-channel 
vocoding. Overall, we had six levels of degradation: original, 
7-channel, 5-channel, 3-channel, 2-channel and 1-channel.

3.1.3 | Data acquisition and analyses and 
statistical analyses

All steps of data acquisition, analysis and statistics were 
identical to study 1.

3.2 | Results

3.2.1 | Behavioral results

The mean hit rate was 99.46% (SD: 2.61%) for the origi-
nal sound files, 86.415% (SD: 13.54%) for 7-chan vo-
coded stimuli, 78.8% (SD: 17.45) for 5-chan, 67.39% (SD: 
17.57%) for 3-chan, 56.52% (SD: 15.01) for 2-chan and 
50% (SD: 13.06%) for 1-chan vocoded stimuli. A one-way 
ANOVA across the three conditions revealed a main ef-
fect (F(156) = 47.83, p = 8.28e-30). Comparing the differ-
ent vocoding levels with each other showed higher hit rates 
for nonvocoded stimuli than any of the other conditions (all 
t > 4.83, all pfdr < .000051). 7-chan vocoded had higher hit 
rates than 3-, 2- and 1-chan vocoded stimuli (all t > 4.96, all 
pfdr < .000055). 5-chan vocoding had higher hit rates than 3-, 
2- and 1-chan vocoded stimuli (all t > 2.62, all pfdr <  .05). 
3-chan vocoding had higher hit rates than 2- and 1-chan vo-
coded stimuli (all t > 2.24, all pfdr < .05). 2-chan had higher hit 
rates than 1-chan vocoded stimuli (t(26) = 2.74, pfdr = .013). 
The nonvocoded stimuli and the 7-chan, 5-chan, 3-chan and 
2-chan vocoded conditions showed significant above-chance 
(50%) hit rates (all t > 3.1, all pfdr < .01, Figure 1c, right). 
The contrast with 1-chan vocoded stimuli did not show a 
difference (t(26)  =  −0.25, pfdr  =  .801). The linear mixed 
models revealed significant linear decrease across conditions 
(χ2 = 282.09, p < 2.2e-16). Adding a quadratic term to the 
model did not result in better prediction of the data (model 
comparison: χ2 = 0.012, p = .9126; gray curve in Figure 1c 
right).

3.2.2 | MEG data

Degradation-related effects
To investigate the effects of reducing the acoustic informa-
tion, we ran a cluster-corrected repeated-measures ANOVA 
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for the speech tracking (1–7 Hz coherence; see spectral dis-
tribution in Figure 2c) of the 6 conditions (original, 7-chan, 
5-chan, 3-chan, 2-chan and 1-chan). An effect of degrada-
tion between 1 and 7 Hz (p = .0009) was located in virtually 
identical regions as in study 1 (bilateral middle temporal and 
left frontal regions). In these areas, the original audio stimuli 
and the most strongly degraded (1-chan) led to the weakest 
speech tracking, while the stimuli with 5-chan degradation 
elicited strongest speech tracking (Figure  2d). Listening 
to the 5-chan vocoded audio files elicited higher tracking 
than listening to any of the other conditions (all t > 2.5, all 
pfdr < .05). Listening to the original nonvocoded audio files 
elicited lower tracking than listening to any of the other con-
ditions (all t > −2.21, all pfdr < .05). Similarly, listening to 
1-chan vocoded audio elicited lower tracking than listening 
to the 7-chan, 5-chan and 2-chan versions (all t > −3.88, all 
pfdr < .01). Further, 3-chan vocoding yielded lower tracking 
than 7-chan (t(23) = −3.64, pfdr = .0026) and 2-chan version 
(t(23) = −2.72, pfdr = .02). The linear mixed models did not 
reveal a linear pattern (χ2 = 0.1588, p =  .6903). Adding a 
quadratic term to the model significantly benefited data pre-
diction (model comparison: χ2 = 23.642, p = 1.16e-06; gray 
curve in Figure 2d right).

Calculating cluster-corrected repeated-measures ANOVA 
for alpha power (8–12  Hz; see spectral distribution in 
Figure 3c) over the six conditions revealed an effect of deg-
radation (p =  .0009, Figure 3d) with maxima analogous to 
study 1, that is, in left angular gyrus and inferior parietal lobe. 
Nonvocoded and 7-chan vocoded stimuli eliciting higher 
alpha power in any of the other conditions (all t > 2.904, all 
pfdr < .05) except 7-chan and 3-chan did not show a conclu-
sive difference (t(23) = 2.243, pfdr = .0653). The linear mixed 
models did reveal a significant linear pattern (χ2 = 22.206, 
p = 2.449e-06). Adding a quadratic term to the model sig-
nificantly benefited data prediction (model comparison: 
χ2 = 6.6019, p = .01019, gray curve in Figure 3d right).

3.2.3 | Using neural measures to predict 
speech intelligibility

Our MEG data, especially using the richer set of degradation 
levels in study 2, indicate a differential impact on our neural 
measures. This should serve as a precaution against simplisti-
cally equating the neural measures to such abstract concepts 
as listening effort. In order to be functionally relevant, one 
would expect that these neural measures predict speech intel-
ligibility. However, based on the previous analysis this is not 
clear. In a last hypothesis generating step of this study, with 
the aim of guiding future research, we postulate alpha to be 
an “activation” proxy of neural ensembles. However, such an 
“activation” may not necessarily lead to activation of veridi-
cal (i.e. intelligible) representations (Griffiths et  al.,  2019) 

especially when the sound becomes increasingly degraded. 
We speculate that speech tracking may reflect the outcome of 
this combination between “activation” and “veridicability.” 
As no continuous time-varying quantification of the latter 
concept is available, behaviorally assessed “intelligibility” 
can serve as a proxy. The basic assumption of this combined 
model can thus be expressed as:

1. Speech Tracking  =  Activation  ×  Intelligibility.

Thus by reordering (1), we obtain a simple model to pre-
dict intelligibility of speech from neural data:

2. Intelligibility  =  Speech Tracking/Activation.

The parameters of the model can be estimated using a 
linear mixed model (using lme4 library implemented in R; 
Bates, Mächler, Bolker, & Walker, 2015), and the model can 
be compared with competing models (see below). Models 
were fit using random intercepts. We used the speech-brain 
coherence and the alpha power of all significant voxels 
during the nonvocoded “effortless” condition to normalize 
the other five challenging (i.e., vocoded) listening conditions. 
For each participant (17 participants who contributed MEG 
and behavioral data), we then used the model to estimate in-
telligibility values for the vocoded conditions. This predicted 
intelligibility was then compared with the observed intelligi-
bility (behavioral response; χ2 = 8.3457, p = .003866).

In order to evaluate whether a combination between 
speech tracking and activation yields a benefit, we compared 
predicted intelligibility with two simpler models either using 
only speech tracking (tracking model).

3. Intelligibility  =  Speech Tracking (χ2  =  4.6476, 
p  =  .0311).

or only activation (activation model).

4. Intelligibility  =  Activation (χ2  =  2.7638, p  =  .09642).

Directly comparing the combined model with the track-
ing model and in a separate step with the activation model 
shows superiority of the combined model (combined model 
vs. tracking model: χ2 = 3.436, p < 2.2e-16; combined model 
vs. activation model: χ2 = 5.2411, p < 2.2e-16). This means 
that speech tracking and alpha power together can better pre-
dict the behavioral response than either of the factors alone.

4 |  DISCUSSION

As shown in previous studies (e.g. Luo & Poeppel,  2007; 
Obleser & Weisz,  2012; Obleser et  al.,  2012), listening to 
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degraded speech modulates speech tracking and alpha power. 
The pattern of this modulation varies across studies, suggest-
ing that it might depend on experimental implementation and 
the two measures are not commonly reported together in the 
field of degraded speech. We advance these previous find-
ings by investigating the effects of degraded speech stimuli 
on speech tracking and on alpha power in two studies using 
continuous speech and various degradation levels. In the first 
study, we used three levels of vocoding. Based on the behav-
ioral results and the MEG findings, we conducted a second 
study expanding the degradation levels with one additional 
intermediate vocoding level (5-channel) and two very low 
vocoding levels (1- and 2-channel). As both studies yield 
very similar results in terms of behavior, speech tracking and 
alpha power, we will discuss them together.

4.1 | Behaviorally assessed intelligibility

To be sure that our manipulation actually affects intelligi-
bility, participants performed a behavioral experiment after 
the MEG experiments. These were in both cases similar to 
the MEG experiment (with identical degradation levels) 
but with shorter stimuli, enabling us to assess more trials. 
The stimuli varied between 2 and 10 s instead of 15 s and 
3 min as during the MEG recording. The data showed that 
participants decline in performance when the stimuli are de-
graded, which is in line with other studies showing a linear 
decline in performance (McGettigan et al., 2012; Strelnikov, 
Massida, Rouger, Belin, & Barone, 2011). The exact number 
of channels needed for high-performance understanding de-
pends on the stimulus material and the specific experimental 
setup (Dorman, Loizou, & Rainey, 1997; Loizou, Dorman, 
& Tu, 1999). For our first study, we conclude that even the 
3-channel condition was challenging yet not completely unin-
telligible given that performance is still higher than expected 
by chance. Therefore, we added the two lower vocoding con-
ditions (2-channel, 1-channel) in the second study. Results 
of study 2 showed again that performance declines with deg-
radation and that complete unintelligibility is reached with 
1-channel vocoding.

4.2 | Speech tracking across degradation 
level follows an inverted U shape

To elucidate whether the intelligibility, measured by deg-
radation level, affects the speech tracking, measured by 
speech-brain coherence, we calculated a repeated-measures 
ANOVA of the low-frequency speech-brain coherence 
(1–7 Hz) across the three (study 1), respectively six (study 
2) conditions. For both studies, this revealed bilateral sources 
in temporal—including auditory—cortex and left frontal 

regions in which higher tracking was associated with a me-
dium level of degradation. The linear mixed models using 
the individual coherence values of the sources identified by 
the ANOVA, suggest with both three and six conditions that 
the relationship between degradation levels and speech track-
ing follows an inverted U shape. These results nicely fit with 
fMRI findings of increased activation of (left) temporal and 
frontal inferior regions for degraded but yet intelligible stim-
uli compared with unaltered and completely unintelligible 
speech as reported by Davis and Johnsrude (2003) and inter-
preted as indicating recruitment of compensatory attentional 
resources. The authors showed that the effect in temporal 
areas was further depending on other acoustic features, while 
the frontal regions did not respond to those suggesting that 
the frontal regions serve a more general executive function 
(Davis & Johnsrude, 2003). Interestingly, those two regions 
(left inferior frontal gyrus and temporal region) exhibited en-
hanced fMRI responses to degraded but intelligible speech 
when attention was directed to the speech again interpreted 
as a marker of effortful listening (Wild et al., 2012) and left 
inferior cortex further plays a role in perceptual learning 
(Eisner, McGettigan, Faulkner, Rosen, & Scott, 2010). This 
is also consistent with a study showing non-native speakers 
produce higher delta/theta speech entrainment than native 
speakers and the authors have also proposed this as reflecting 
the higher effort (Song & Iverson, 2018). Similarly, speech 
tracking is increased during active compared with passive 
listening only for low levels of intelligibility (Vanthornhout 
et al., 2019). Further, the M50 of TRF is enhanced for de-
graded stimuli compared with unaltered ones in quiet envi-
ronments as is delta entrainment, the latter again suggested 
to reflect listening efforts (Ding et  al.,  2014). Although 
studies have also reported decreased theta entrainment for 
degraded speech (Ding et al., 2014; Peelle, 2018; Rimmele 
et  al.,  2015), synchronization with the speech signal in 
both frequency bands is enhanced when attended to: Multi-
speaker and auditory spatial attention studies using sentences 
or narratives have repeatedly found stronger low-frequency 
(1–7 Hz) speech tracking for attended compared with unat-
tended speech (Ding & Simon,  2012; Horton et  al.,  2013; 
Rimmele et al., 2015; Zion Golumbic et al., 2013).

4.3 | Alpha power decreases across 
degradation levels

Another commonly used measure in studies of degraded 
speech—a common operationalization for listening effort—is 
the alpha rhythm (McMahon et al., 2016; Miles et al., 2017; 
Obleser & Weisz, 2012; Obleser et al., 2012). Interestingly, 
we found that alpha power followed a different pattern than 
coherence, which became most obvious in study 2. While 
speech tracking seems to have a U-shaped relationship with 
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degradation level, alpha power shows a widespread decrease 
for the stimuli with less acoustic information compared with 
clear speech. Study 2 suggests that this decrease reaches a 
floor effect already with 5-channel vocoding. Both studies 
show the maximum of this decrease in left angular and parietal 
inferior gyrus. This is a region that has been reported to play a 
crucial role in complex speech comprehension (Van Ettinger-
Veenstra, McAllister, Lundberg, Karlsson, & Engström, 
2016), especially important in successful comprehension of 
degraded but predictable speech (Hartwigsen, Golombek, & 
Obleser, 2015; Obleser, Wise, Dresner, & Scott, 2007) and in 
perceptual learning of degraded speech (Eisner et al., 2010). 
The pattern of decreasing alpha power is further consistent 
with other studies using degradation of complex speech ma-
terial as for example sentences (McMahon et al., 2016; Miles 
et al., 2017). However, studies using short and simple speech 
stimuli such as single words (Becker, Pefkou, Michel, & 
Hervais-Adelman,  2013; Obleser & Weisz,  2012) or digits 
(Obleser et al., 2012; Wöstmann et al., 2015) report enhanced 
alpha for stimuli with more acoustic detail compared with 
degraded sounds. The source localizations of the enhanced 
alpha in those studies show overlapping regions and distinct 
regions compared with our studies, offering the possibility 
that alpha power reflects at least partly different processes 
being recruited in the different studies. However, based on 
the consistent differences regarding the length of the stimulus 
material, one compelling explanation for the enhanced ver-
sus reduced alpha power might be linked to the linguistically 
more complex nature of the longer speech stimuli as also sug-
gested by Miles et al. (2017).

To the best of our knowledge, so far no study investi-
gated the influences of vocoded continuous speech on both 
alpha power and speech tracking. A study on a related topic 
found that cochlear implant (CI) users show alpha power 
to be positively correlated with subjective listening effort, 
while speech-brain coherence showed a negative relation-
ship (Dimitrijevic et  al.,  2019). Besides the differences in 
study groups (participants with normal hearing vs. CI users) 
and operationalization of listening effort (vocoded speech 
vs. speech-in-noise tasks) between our study and the one of 
Dimitrijevicet al.  (2019), they used short auditory stimuli 
(digits) as many of the studies (Becker et al., 2013; Obleser 
& Weisz, 2012; Obleser et al., 2012; Wöstmann et al., 2015) 
reporting the opposite pattern in alpha power than us.

4.4 | Influences of stimulus material

Degrading the speech by vocoding as we did in the pre-
sent study and as done by many other studies (e.g. Miles 
et al., 2017; Obleser et al., 2007) reduces the phonetic fine 
structure while temporal information, for example, segmen-
tation of syllables, is preserved (Shannon, Zeng, Kamath, 

Wygonski, & Ekelid, 1995). Based on our results, it seems 
that for challenging speech (reduced fine structure) peo-
ple have to rely more on the temporal structure of speech 
leading to enhanced tracking in this frequency range (delta, 
theta) and that this process reverses beyond a critical point of 
degradation.

This effect might be amplified by the choice of long 
continuous speech stimuli. Unlike several other studies that 
used degraded single words (Becker et al., 2013; Obleser & 
Weisz, 2012; Obleser et al., 2012; Wöstmann et al., 2015), 
we implemented long stimuli in the MEG studies, between 
30 s and 3 min. The long duration of our stimuli might af-
fect the perception of the different degradation levels differ-
ently via “warming-up” to the stimuli (Dorman et al., 1997). 
Experimental investigation of this warm-up or perceptual 
learning effect shows that indeed speech understanding in-
creased over time for degraded stimuli (e.g. 4-channel vo-
coding: Rosen, Faulkner, & Wilkinson,  1999; 6-channel 
vocoding: Davis, Johnsrude, Hervais-Adelman, Taylor, & 
McGettigan,  2005) and that this increase was bigger for 
sentences than for single words (Hervais-Adelman, Davis, 
Johnsrude, & Carlyon,  2008) and smallest for very strong 
(1-channel) or very little (24-channel) vocoding (Sohoglu & 
Davis, 2016). Similar nonlinear patterns have been reported 
for dual-task measures of listening effort. Reaction times 
(Wu, Stangl, Zhang, Perkins, & Eilers, 2016) and pupil sizes 
(Zekveld & Kramer,  2014) were enhanced for the middle 
range of speech intelligibility. Based on these findings, we 
speculate that the processes underlying listening to degraded 
speech dynamically vary depending on the stimulus length.

4.5 | Can listening effort explain results?

Intuitively, listening effort seems like an easy-to-understand 
concept, and individuals usually can answer without diffi-
culty whether listening to a stimulus was effortful. Stimulus 
degradation (e.g. vocoding) is a common operationalization 
for listening effort (e.g. Obleser & Weisz, 2012). However, 
listening effort combines many dimensions. Peelle (2018) 
proposed a model comprising person-related characteris-
tics (e.g. motivation) and stimulus-related characteristics 
(e.g. signal-to-noise ratio). Various measures exist for 
capturing listening effort, alpha power being one of them 
(e.g. Dimitrijevic et al., 2019; Miles et al., 2017). Speech 
tracking is not classically viewed as a measure of listening 
effort; nevertheless, its modulations when listening to chal-
lenging speech have been interpreted as increased effort 
(Song & Iverson, 2018) and increased attentional demands 
(Rimmele et  al.,  2015). Importantly, it has been shown 
that listening effort is of multidimensional nature with the 
different dimensions being captured by different meas-
ures that do not necessarily correlate (Alhanbali, Dawes, 
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Millman, & Munro, 2019; McGarrigle et  al.,  2014). This 
fits with our findings of degradation levels (across a wide 
range) affecting alpha power and speech tracking differ-
ently and suggests that such measures are not ideal to ex-
plain abstract concepts as listening effort independent of 
circumstances.

4.6 | Beyond listening effort, towards 
intelligibility

Results of the linear mixed models suggest that subjective 
intelligibility (behavioral response) can best be predicted by 
a combination of speech coherence and alpha power: We 
propose that for continuous degraded speech, understand-
ing speech depends on the activation of veridical represen-
tations. Along the lines of a recent framework by Griffiths 
et al. (2019), we propose that this activation is reflected by 
alpha decrease. This process will however only support lis-
tening (e.g. reflected in the ability to track specific features) 
up to a specific (breaking) point, when speech becomes too 
degraded so that no veridical information is activated. This 
interpretation integrates well with the frameworks on alpha 
oscillations in the context of working memory as proposed, 
for example, by van Ede (2018), but also for auditory percep-
tion by Griffiths et al. (2019), and for auditory memory by 
Kraft, Demarchi, and Weisz (2019). Van Ede (2018) puts 
the idea forward that alpha power increases for tasks with 
sensory disengagement, while it decreases for tasks, which 
recruit the sensory representation. Our task of asking par-
ticipants to identify which of two presented words did occur 
within the just heard four last words of a speech stimulus 
will most likely recruit the sensory representation of words, 
thereby leading to a relative alpha decrease. For our results, 
this would imply that the sensory representation is acti-
vated for all conditions of challenging speech as reflected 
by alpha decrease. For challenging conditions, this increased 
engagement is accompanied by increased tracking, which 
decreases again when speech becomes unintelligible even 
though neural activation per se remains high. This fits nicely 
with the ease of language understanding model (Rönnberg 
et al., 2013), which puts the idea forward that the perceived 
phonological signals are tested against the stored phonologi-
cal representation in memory, and when they do not match, 
explicit working memory processes are elicited that aim at 
reconstructing the signal content. Several studies support 
the direct relationship between working memory and speech 
processing (e.g., Eisner et al., 2010; Rönnberg et al. 2010; 
Rudner, Lunner, Behrens, Thorén, & Rönnberg,  2012). 
Within these frameworks, also different findings in the liter-
ature concerning alpha can be unified by taking the specific 
task and the resulting demands into account.

5 |  CONCLUSIONS

In sum, prior research reports mixed results concerning 
the link between degradation and speech-brain coher-
ence and alpha power. We conducted two experiments 
with different levels of degradation, importantly of con-
tinuous speech. The results of these two studies show that 
the level of degradation affects speech tracking and alpha 
power differently: Speech tracking shows a U-shaped pat-
tern with the easiest (original) and hardest (1-channel) to 
understand producing the lowest tracking values and the 
middle degradation level (5-channel) eliciting the high-
est tracking values. On the other hand, alpha power seems 
to overall decline with the declining clarity of speech. 
As study 2 shows, this decline likely reaches a floor ef-
fect also with 5-channel vocoding. Use of EEG signals 
is gaining momentum in the discussion about hearing 
aids improvement (Bech Christensen, Hietkamp, Harte, 
Lunner, & Kidmose,  2018; Fiedler, Obleser, Lunner, & 
Graversen, 2016). In this context, our findings have wider 
implications as they provide insights into more naturalis-
tic, that is, continuous speech compared with single words 
and digits. Importantly, our results indicate that taking 
into account alpha modulations (interpreted in terms of 
neural activation) and neural speech tracking in a com-
bined manner may open up avenues to monitor the (sub-
jective) intelligibility of speech sounds. This perspective 
goes beyond simplistic listening effort accounts and could 
have important applied implications.
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