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Abstract
Many negotiations (for instance, among political parties or partners in a business) 
are characterized by dynamic bargaining: current agreements affect future bargain-
ing possibilities. We study such situations using bargaining games á la Rubinstein 
(Econometrica 50:97–109, 1982), with the novelty that players can decide how 
much to invest, as well as how to share the residual surplus for their own consump-
tion. Their investment decisions affect the size of the next surplus. In line with the 
existing literature, we focus on Markov Perfect Equilibria, where consumption and 
investment are linear time-invariant functions of capital and show that standard 
results in bargaining theory can be overturned. For instance, a more patient proposer 
may consume less  than his opponent. The intuition is that when capital is produc-
tive, both parties have incentives to invest, however, the most patient party wishes to 
invest significantly more than his opponent. Then, to prioritize investment—which 
affects future bargaining possibilities—the former must make larger concessions and 
let the latter consume more. Another interesting result is that if a player becomes 
more patient, both parties may reduce their investment. The key underlying driver 
of this result is that when counteroffers become cheaper for an impatient party, he is 
able to reduce his investment and consume more. This forces his opponent to make 
larger concessions (and reduce his investment plan). Moreover, extreme demands 
(where a player consumes all the residual surplus) are possible in equilibrium, under 
fairly modest assumptions. Finally, only when bargaining is frictionless, is the equi-
librium efficient.

Keywords Bargaining · Investment · Recursive optimization · Markov perfect 
equilibrium

I wish to thank the editors, two anonymous referees and the participants of the conferences of 
the European Economic Association (Glasgow), the Royal Economic Society (Warwick) and 
Game Theory Society (Maastricht) for useful comments and suggestions. Financial support by the 
Economic and Social Research Council (Grant no. RES-061-23-0084) is gratefully acknowledged. 
All errors remain mine.

 * Francesca Flamini 
 francesca.flamini@glasgow.ac.uk

1 Economics, Adam Smith Business School, University of Glasgow, Glasgow G12 8QQ, UK

http://orcid.org/0000-0001-9816-5302
http://crossmark.crossref.org/dialog/?doi=10.1007/s41412-020-00105-w&domain=pdf


122 Homo Oeconomicus (2020) 37:121–153

1 3

JEL Classification C73 · C78 · D9

1 Introduction

Several bargaining situations, in the most diverse contexts, are dynamic, in that cur-
rent agreement may affect future bargaining possibilities. For instance, partners in a 
business need to negotiate not only over how to split profits among themselves, but 
also over how much profit should be re-invested for the following production period, 
knowing that their level of investment today affects the size of production/profit 
tomorrow. Countries may attempt to find agreements over environmental issues by 
taking into account the fact that current decisions can affect the state of the environ-
ment and therefore future bargaining possibilities. The focus of the paper is on long-
run negotiations in which parties can take actions today to affect the size of future 
potential benefits they could gain from the bargaining relationship.

To address this, we combine bargaining games with dynamic accumulation prob-
lems, that is, players do not simply split a surplus for their own consumption, but can 
also invest part of it and the invested surplus, in turn, affects the size of future sur-
pluses. We modify the classic Rubinstein (1982) game by allowing two (risk-averse) 
players to consume and invest. The problem is complex, since not only do parties 
need to solve a (potentially protracted) bargaining stage, but also a dynamic accu-
mulation problem since the agreement they reach at a specific stage affects future 
bargaining possibilities. Bargaining games which allow parties to make jointly both 
investment and consumption decisions in a dynamic context are almost unexplored 
(a discussion of the related literature is contained in the next section).

With a focus on (stationary) Markov Perfect Equilibria (MPE)—here con-
sumption and investment are linear time-invariant functions of the state—we will 
show that the equilibrium is characterized by immediate agreement and is gener-
ally unique, but different types of equilibria may arise depending on the value of 
the parameters. Haggling cannot be an equilibrium phenomenon in our framework 
because delays are not strategically desirable. A delay in reaching a current agree-
ment implies a delay in realizing not only current mutually beneficial gains but also 
all future gains. Therefore, even if the current cost of a one-period delay is very 
small, the total cost of a rejection can be very high for both parties. Also, a player 
can always avoid a rejection by investing sufficiently.1 Although the equilibrium is 
generally unique, there are three types of outcome that can arise, depending on play-
ers’ characteristics, the rate of return and the depreciation rate. First, when there are 
some frictions in the bargaining process (i.e., both players are sufficiently impatient) 
and the rate of return is sufficiently high (and/or the depreciation rate is sufficiently 

1 Instead, delays are quite common in games with incomplete information, since uncertainty can be par-
tially solved by waiting (see, e.g., Admati and Perry 1987); similarly, for games which include some 
stochastic elements, as the size of the surplus (Merlo and Wilson 1995) or the arrival time of a future 
surplus (Acharya and Ortner 2013). For games with complete information (as ours), Cai (2000) shows 
that delay can arise when one party bargains with two or more other parties. Again not a scenario consid-
ered in this paper.
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low), then both parties extract all the residual surplus (we call this the polar con-
sumption MPE). Second, under certain conditions, there is an (interior) MPE in 
which both parties leave a positive share of the residual surplus to the opponent. 
Third, when parties are sufficiently asymmetric, there is an hybrid version of the 
polar consumption MPE where only one party (the most patient) extracts all the sur-
plus not invested (while the other makes concessions).

In standard bargaining games (without investment), extreme demands are not 
typical, unless the bargaining procedure and/or players’ impatience are also extreme 
(for instance, in ultimatum games and/or when players value any agreement reached 
in the future as little as the disagreement outcome). In our model, extreme demands 
are possible (even in the most interesting case in which a bargaining round is shorter 
than a production stage) as long as responders can be compensated for accepting 
them. In other words, the proposer can invest sufficiently and since a larger invest-
ment implies a larger surplus in the future, he can then extract the entire current 
residual surplus without facing a rejection. We will show that equilibria with polar 
consumption are possible if, first, there are some (not necessarily extreme) frictions 
in the bargaining process and, second, the rate of return is sufficiently high (and/or 
the depreciation rate is sufficiently low).

In our model, a key role is played by an enriched discounting structure. We not 
only assume that players’ have (potentially) different rates of time preference but 
also that in the game there are (potentially) different time intervals across bargain-
ing and production stages. The differential in time preferences has been known to 
lead to significantly different results from the case in which players are homoge-
neous (see, for instance, see Lehrer and Pauzner (1999) in the context of repeated 
games). The assumption of (potentially) different time intervals captures the feature 
that typically the production stage, in which the surplus is generated, is longer than 
a bargaining round, that is the time to make a counteroffer.2 Hence, one of the aims 
of the paper is to investigate the resulting (complex) interplay of incentives in the 
game. We find that while in standard bargaining theory a more patient proposer can 
extract a larger surplus, in our model this may not hold. The patient party may be 
forced to demand little to prioritize his investment plan and avoid (costly) rejections. 
Moreover, when a party becomes more patient, we may have expected that he would 
invest more, instead the MPE investment rates may decrease for both players (when 
there are asymmetries). This is because once counteroffers become cheaper for a 
fairly impatient party, he is able to consume more: investing less and demanding a 
larger share of the residual surplus. This, in turn, forces his (more patient) opponent 
to make larger concessions and invest less. Finally, if a party becomes more patient, 
this may make a rival better off.3 Investment plans can be high enough that the rival 

2 A similar discounting structure has been considered first by Muthoo (1995), which is reviewed in the 
next section. Flamini (2007b, (2007a) study the effects of this enriched discounting structure in the con-
text of an agenda formation problem.
3 This is in accordance with Sorger (2006) and Houba et al. (2000), although the economics underpin-
ning the result is different (see also footnote 23).
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can effectively exploit the prospect of a higher future consumption levels and extract 
a larger share of the current surplus. As a result, he will be better off.

1.1  Related literature

Muthoo (1999, Chapter 10) is the first contribution with a focus on a repeated (non-
cooperative) bargaining game with investment decisions in addition to the standard 
consumption decisions. Muthoo (1999)’s focus (and that of related contributions, 
e.g., Zapal 2018) is on steady-state stationary subgame perfect equilibria (while ours 
is on MPE). As a result, the investment decisions are simplified since parties need 
to invest as much as necessary to have surpluses of the same size. Indeed, Mut-
hoo’s aim is to apply Muthoo (1995), which is a bargaining model without invest-
ment (where parties share an infinite number of surpluses with the same size) to the 
accumulation problem. In this sense, the problem of how much parties invest in a 
strategic framework remains open.4

Subsequently, Flamini (2012) develops an algorithm to identify the (symmetric) 
subgame perfect equilibrium in a dynamic bargaining model significantly simpler 
than in this model (e.g. the number of bargaining stages is finite). In contrast, the 
current paper focuses on a general model of dynamic bargaining with potentially 
an infinite number of bargaining stages and possible asymmetries between play-
ers (hence, one obvious complication is that it is not possible to apply backward 
induction and the asymmetry significantly enriches the interplay of forces within the 
game).

There are also two other literatures, namely, on the hold-up problem and on 
the tragedy of the commons, which are related to the problem considered in this 
paper. However, there are fundamental differences between these problems and our 
dynamic bargaining game with investment. In the hold-up problem, parties have the 
ability to make sunk investments that affect the size of a surplus, before bargaining 
over the division of such a surplus. Since the investor, who bears all the costs of the 
investment, cannot appropriate all the benefits, the resulting investment is lower than 
the efficient level. Typically, only one party is involved in the investment problem, 
moreover, the investment is once and for all (see, for instance, Gibbons 1992; Mut-
hoo 1998; Gul 2001). An exception is in Che and Sákovics (2004), where parties 
keep investing until an agreement has been reached, however, once this is struck, the 
game ends. Differently, the focus of this paper is on parties who jointly and repeat-
edly need to agree on how much to invest and consume.

The second literature, on the tragedy of the commons, considers different par-
ties who can extract part of a surplus for their own consumption and the remaining 
surplus will affect the size of surplus available in the next period (see, for instance, 
Levhari and Mirman 1980; Dutta and Sandaram 1993). The tragedy of the com-
mons rests in the fact that parties consume more than the efficient level and therefore 

4 Indeed, as explained in Muthoo (1999,  p. 330): “The application of dynamic capital investment... 
needs much further work. In particular, the analysis of the Markov SPE of the model awaits characteriza-
tion”.
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the surplus extinguishes quickly (over-exploitation of natural resources is a classic 
example). Although the typical framework analyzing the problem of the tragedy of 
the commons is a dynamic accumulation game, it does not include any negotiation 
(everyone can consume as much as he wishes, given the stock available). Two nota-
ble exceptions, which have introduced bargaining in these dynamic accumulation 
games are Houba et  al. (2000) and Sorger (2006). In Houba et  al. (2000) parties 
can potentially bargain forever (á la Rubinstein), but differently from our framework, 
they need only agree once, since this agreement will be ever-lasting. In contrast, 
Sorger (2006) is closer to our paper, since in each period parties can reach an agree-
ment over the levels of consumption (Sorger 2006, also allows for endogenous threat 
points), however, the bargaining process is not formalized, in that it is given by the 
maximization of Nash products.5 We consider a fully non-cooperative bargaining 
approach and characterize (analytically for some cases) the strategic behavior that 
arises in equilibrium and the incentives that players need to take into account when 
forming their strategies. We show that the interplay of forces in our framework can 
be significantly different from Sorger (2006) and asymmetries can have important 
consequences in the solution of the problem.

The paper is also linked to the large literature on public good provision. A recent, 
very interesting example is Bowen et al. (2014) which investigate two parties who 
have to decide over public spending under a simple bargaining procedure (take-it-
or-leave-it) with the crucial feature that in disagreement they spend nothing (under 
discretionary spending) or must implement the previous policy (under mandatory 
spending). Hence, the status quo is endogenous in the latter. Differently from our 
case, the size of the surplus is the same in every bargaining stage. Instead, we are 
interested in long-run relationships in which current decision can determine the size 
of future surpluses and the bargaining procedure is substantially richer than an ulti-
matum (players can make counteroffers).

The paper is organized as follows. In the next section, we present the model. In 
Sect. 3, we analyze the MPE; first, in a simple case, in which the elasticity of substi-
tution is equal to 2 (in Sect. 3.1.1) then more generally with a focus on interior solu-
tions in Sect. 3.1.2. The cases in which at least a player consumes all the residual 
surplus is in Sect. 3.2. Some final remarks are made in Sect. 4. Most of the proofs 
are contained in the Appendix.

2  The Model

We consider a two-player bargaining game in which bargaining and production 
stages alternate (and each stage can start only after the other has taken place). Time 
is discrete and the horizon is potentially infinite, t = 0, 1,… At the production 
stage, a surplus is generated according to the production function F(kt) = Gkt, 
where G is the constant gross rate of return and kt is the capital stock at period t,   

5 The recursive Nash bargaining equilibrium concept introduced by Sorger (2006) has been applied as an 
equilibrium selection device in Hoof (2018).
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with t = 1, 2… . Production takes place in an interval of time � . Once the surplus, 
F(kt) , is generated, the bargaining stage begins and players attempt to divide this 
surplus. At the beginning of the game, t = 0 , both the capital stock, k0, and the 
first surplus, F(k0) = Gk0 , are given, hence players start the game negotiating. The 
bargaining stage is a classic infinitely-repeated alternating-offer bargaining game 
(Rubinstein 1982) with the novelty that a proposal includes an investment plan. That 
is, a proposal by player i, with i = 1, 2, is a pair (xi,�i) , where �i is the invest-
ment share, with �i ∈ [−(1 − �),G]—parties can disinvest their capital if they wish 
( 𝜑i < 0 ) and, at most, they can invest the entire surplus6—and xi ∈ [0, 1] is the share 
demanded by i over the remaining surplus. Player j can either accept or reject the 
proposal (xi,�i), with i, j = 1, 2 and i ≠ j.

If the proposal is accepted, the level of investment is Iit ≡ Ii(�i, kt) = �ikt and 
the consumption levels are

for the proposer, i, and the responder, j, respectively, with i, j = 1, 2 and i ≠ j . Both 
consumption and investment ( cit and Iit , for player i) are linear time-invariant func-
tions of the state variable, kt , the capital stock.7 In each bargaining round, players’ 
utility function has a CES form8

with i = 1, 2. Also after an acceptance, the bargaining stage ends and a production 
stage takes place. The output available at beginning of the next bargaining stage (at 
t + 1 ) is F(kt+1) , with capital stock kt+1 given by the investment level Iit and the capi-
tal remaining after depreciation (during production)

(1)cit ≡ci(xi,�i, kt) = xi(G − �i)kt

(2)cjt ≡cj(xi,�i, kt) = (1 − xi)(G − �i)kt

(3)ui(cit) =
c
1−�

it

1 − �
for � ∈ (0, 1)

kt+1 = Iit + (1 − �)kt

8 To simplify the exposition we focus only on the case of � ∈ (0, 1). For 𝜂 > 1 and logarithmic utility, it 
can be shown that if MPE strategies exist, they cannot be linear and time-invariant. The derivations are 
as below, except for a normalization (as, for instance, in Lagos and Wright (2005)) to make player’s pay-
offs bounded in disagreement.

6 When players disinvest their capital fully ( kt+1 = 0 ), production is no longer possible and the game 
ends. Also, an alternative, but equivalent, specification of the model would be to allow the investment to 
be a linear function of the surplus (rather than the capital stock), hence, ��

i
= G�i ∈ [−(1 − �)∕G, 1] , 

where the lower bound allows the players to disinvest their capital fully ( kt+1 = 0 ), if they wish to do 
so.
7 The assumption of linear time-invariant consumption and investment is in line with the existing lit-
erature (e.g., Sorger 2006 and Houba et al. 2000, see also the discussion at the end of this section). As a 
result of this assumption, the MPE shares are independent of kt : xi(kt) = xi and �i(kt) = �i for any kt.
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where � is the depreciation rate ( 0 < 𝜆 ≤ 1).9 The player to make the first offer at the 
( n + 1)th bargaining stage, say j, is the player who accepted player i’s division at the 
nth bargaining stage, with i, j = 1, 2, i ≠ j and n = 1, 2,… . At t = 0, player 1 is 
assumed to make the first offer.

If the proposal by player i, (xi,�i), is rejected, player j can make a counterof-
fer after an interval of time Δ . In a one-period disagreement, d, parties receive 
ui(d) = 0 . We assume that the capital stock remains unchanged, kt.10 Players must 
agree on the division of the current surplus, F(kt) , before proceeding to a new pro-
duction stage.11

Player i’s time preference is represented by his discount rate hi (with i = 1, 2). 
Since intervals of time may have different lengths ( Δ for a bargaining round and � for a 
production stage), there are two (potentially) distinct discount factors in our model: the 
between-cake discount factor, �i = exp(−hi�), which captures the friction between 
bargaining stages (that is, the production time �) and the within-cake discount factor, 
�i = exp(−hiΔ), that takes into account the friction within the bargaining stage (that 
is, the interval of time between a rejection and a new proposal, Δ).

The payoff to players depends on how many surpluses they agree to split, N . 
If, for example, N = 0, they perpetually disagree and each player’s utility is 0. If, 
instead, they always agree at the first round in each bargaining stage, then the sum of 
discounted payoffs are

We will show that this is what will happen in equilibrium. If, in a final example, at 
the first bargaining stage, a proposal is accepted after n rejections and, at the sec-
ond bargaining stage, players immediately agree to disinvest their capital. Then, the 
game ends after two bargaining stages and the sum of discounted payoffs is

with i = 1, 2. Table 1 summarizes the actions and per-period payoffs while time 
and state evolve. The capital stock kt does not simply evolve with time, since it is 
affected only by production stages (given the depreciation rate 𝜆 > 0 ) and the agreed 
investment level ( k1 = (1 − � + �2)k0 , in Table 1).

∞∑
t = 0

�t
i
ui(cit)

�n
i
[ui(ci0) + �iui(ci1)]

9 Often for tractability, maximum depreciation is assumed ( � = 1), see for instance Ljungqvist and Sar-
gent (2000), p. 33. However, this is an unrealist assumption. The analytical solutions we can obtain in 
our framework do not rely on the maximum depreciation assumption.
10 Our qualitative results are not affected if, alternatively, we assume that the capital stock, kt , depreci-
ates during the time to make counteroffer(s). As shown in the next session, delays are not profitable in 
our model, even if kt remains unchanged.
11 This is to capture the feature that many long-run relationships are based on the engagement of the two 
parties. In other words, inertia (in the sense that in disagreement the parties keep implementing the old 
agreement) is excluded. Also Britz et al. (2013) assume that no production takes place during disagree-
ment in their two-period model of the firm.
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These examples can then be generalized to capture any pattern of offers and 
responses in the bargaining stages.

The focus is on (stationary) MPE, where the Markov strategies specify play-
ers’ actions, for each time period t,   as a function of the state of the system at the 
beginning of that period, kt . Moreover, the aim of our analysis is to derive (time-
invariant) rules describing the investment and consumption paths as linear functions 
of the state kt . Often the linearity of investment and consumption plans is assumed 
for tractability, or it can be justified by players’ inability to elaborate more complex 
rules (see e.g., Houba et al. 2000 and Sorger 2006). In addition, Muthoo (1999) and 
Flamini (2012) show that in their simplified dynamic bargaining games, the sub-
game perfect equilibrium strategies are linear. Hence, the linear strategies are a natu-
ral candidate for our game (although more complex strategies cannot be excluded).

3  Characterization of the MPE Strategies

Let Vi(kt) (respectively, Wi(kt)) be the sum of discounted payoffs to player i, as a 
proposer (responder) in an arbitrary MPE. Then, the problem can be written in the 
following recursive form,

where V �
i
(kt) and W �

j
(kt) are the sums of discounted payoffs in case of an acceptance, 

that is,

with per-period utility as in (3) and consumption levels as in (1) and (2), while, in 
case of a rejection, the sum of discounted payoffs in (4) and (5) become

with the equation of motion given by

where ri = �i + 1 − �, for i, j = 1, 2 and i ≠ j . The rate ri indicates the gross rate 
of growth in the capital stock ( kt+1∕kt ) once i’s proposal is implemented. Hence, it 

(4)Vi(kt) = max{V �
i
(kt), �iWi(kt)}

(5)Wj(kt) = max{W �
j
(kt), �jVj(kt)}

(6)
V �
i
(kt) = max

xi∈[0,1]

�i∈[−(1−�),G]

ui(xi,�i, kt) + �iWi(kt+1)

(7)s.t. W �
j
(kt) ≥ �jVj(kt)

(8)W �
j
(kt) = uj(xi,�i, kt) + �jVj(kt+1)

(9)Vi(kt) = �iWi(kt) and Wj(kt) = �jVj(kt)

(10)kt+1 =

{
rikt if there is an acceptance

kt otherwise
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is given by the investment rate, �i , plus the non-depreciation rate, 1 − � . As a result, 
when net investment, �i − � , is zero, then ri = 1, while for a positive (negative) 
net investment, ri > 1 ( ri < 1 ). Also, ri ∈ [0, l] , where l = G + 1 − �. In the rest of 
the paper, to simply the notation, we often refer to MPE investment strategies in 
terms of the gross rate of growth ri , rather than the investment rate �i (which, obvi-
ously, coincide in the case of maximum depreciation, � = 1).

Problem (4)–(10) is a recursive constrained problem with a complex structure, 
since not only does (6) have a recursive form, but the constraint in (7) embodies 
another recursive problem (via the value functions W �

j
(kt) and Vj(kt) ). Although, gen-

erally such problems cannot be solved (see Stokey and Lucas 1989 and Ljungqvist 
and Sargent 2000), we can characterize the properties of the equilibrium outcomes 
and we can also obtain an analytical solution under certain conditions.

In the next lemma, we show that in a stationary MPE, delays cannot be sustained. 
The intuition is that not only is haggling never strategically profitable for a proposer, 
but he can always invest an appropriate amount of surplus so that a rejection is 
unprofitable for the responder.

Lemma 1 Assume that 𝛼il1−𝜂 < 1 , for i = 1, 2 . Delays cannot be sustained in 
equilibrium.

Proof In Appendix.   ◻

The condition 𝛼il1−𝜂 < 1 is necessary for the existence of an equilibrium (as 
shown the proof of Lemma  1) and will be assumed henceforth (recall 
l = G + 1 − � ). Following Lemma  1, (4) and (5) become Vi(kt) = V �

i
(kt) and 

Wj(kt) = W �
j
(kt) and the Lagrangian for the optimization problem in (6)–(8) and 

(10) is

(11)Li(kt) = Vi(kt) − mi(�jVj(kt) −Wj(kt))

Table 1  Actions, per-period payoffs and the evolution of the state variable in a game where a proposal 
is accepted, after n rejections, in the first stage and players immediately agree to disinvest, in the second 
bargaining stage

Bargaining round 
|time

Capital Proposal Response Interval Per-period payoff

0 0 k0 x1,�1 No Δ 0
1 1 k0 x2,�2 No Δ 0
2 2 k0 x1,�1 No Δ 0
... ... ... ... ... ... ...
n n k0 x2,�2 Yes − u

i
(c

i
(x2,�2, k0))

− n k1 − − � −
0 n + 1 k1 x1,�1 Yes − u

i
(c

i
(x1,�1, k1))

End 0
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where Vi(kt) and Wj(kt) are in (6) and (8), mi is the (non-negative) Kuhn–Tucker mul-
tiplier (equal to zero when the constraint is slack) and xi (and �i ) are the share con-
sumed (and invested, respectively), with i, j = 1, 2 and i ≠ j.

Given the linearity of the equilibrium consumption and investment plans, the 
value functions have the same functional form as the per-period utility function. 
Therefore, we write the value functions in such a form with coefficients which are 
left to be determined, we then solve the optimization problem and derive the cor-
rect values of such coefficients. Hence, let �i (and �i ) be the undetermined coef-
ficients in player i’s value functions when he proposes (responds, respectively), 
that is

Then, the optimization problem in (6)–(8) and (10) becomes

with ri = �i + 1 − �, i, j = 1, 2 and i ≠ j. Hence, when optimizing, player i will 
take into account that his strategy (xi,�i) will have an impact on �j via (14), while 
will take �j as given.

Intuitively, the problem can be described as follows. On the one hand, player i 
has to decide how much to consume in the current period and how much to invest 
(which generates a larger surplus and therefore affects future consumption levels). 
On the other, he has to consider how to make his proposal acceptable to the oppo-
nent (13). For the latter, there are two possible channels: either keeping enough 
“money on the table” (that is, allowing the opponent to consume a sufficiently 
high share, xi < 1 ) or increasing investment (this gives the opponent a chance to 
propose with a relatively larger surplus next period, given the equation of motion 
(15)). We will show that, differently from the existing literature (e.g., Houba et al. 
2000 and Sorger 2006), if the investment plan is large enough, a player can con-
sume all the residual surplus ( xi = 1 ) without facing a rejection. Moreover, this 
equilibrium can be sustained under realistic parameter constellations. In the rest 
of the paper, we formalize under which conditions the solution can be interior (in 
the next section) or not (in Sect. 3.2).

Vi(kt) ≡ �i

k
1−�
t

1 − �
and Wi(kt) ≡ �i

k
1−�
t

1 − �

(12)�i

k
1−�
t

1 − �
= max

xi∈[0,1]

�i∈[−(1−�),G]

ui(xi,�i, kt) + �i�i

k
1−�

t+1

1 − �

(13)s.t. �j ⩾ �j�j with

(14)�j

k
1−�
t

1 − �
= uj(xi,�i, kt) + �j�j

k
1−�

t+1

1 − �

(15)kt+1 = rikt
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3.1  Interior MPE

To solve the optimization problem (12)–(15), first, we express the controls and 
subsequently the payoff coefficients only in terms of auxiliary variables12 �i and 
Kuhn–Tucker multipliers mi , with i = 1, 2 (aside from the parameters of the model, 
�i , �i and l). Then, we derive the equilibrium conditions to solve for �i and mi , using 
a fixed point argument. Let13

The first order conditions of (11) with respect of xi and �i are as follows (see deriva-
tion in the Appendix),

If there is an interior solution, xi < 1 in (16), it must be that mi > 0 and the con-
straint (18) holds as an equality (the indifference conditions), �j = �j�j, for any 
i, j = 1, 2 and i ≠ j. By the complementary slackness condition, if the constraint 
(18) is not binding, the multiplier mi is zero. The cases implied by mi = 0 (with 
i = 1 or 2 or both) hold under certain conditions and are considered in Sect. 3.2.

Using (16) and (17), the Bellman equation (12) can be re-written as

where

M =

{
(mi,𝜓i)|mi,𝜓i > 0, 0 <

[
l

(
1 −

(1 + m
1∕𝜂

i
)

𝜓i

)]1−𝜂

< min

(
𝛿j

𝛼j
,
1

𝛼i

)
for i, j = 1, 2, i ≠ j

}

(16)xi =
1

1 + m
1∕�

i

(17)�i =
(�i�i + mi�j�j)

1∕�G − (1 + m
1∕�

i
)(1 − �)

(�i�i + mi�j�j)
1∕� + 1 + m

1∕�

i

(18)�j − �j�j ⩾ 0,mi(�j − �j�j) = 0

(19)�i = l1−�
1 + �i�ig

(1−�)∕�

i

�
1−�

i

(20)gi = �i�i + mi�j�j

12 The auxiliary variables �i , with i = 1, 2 , which are defined in (21), will allow us to simplify the 
manipulations and derive the equilibrium conditions in a more compact way.
13 A pair ( mi, �i ), with i = 1, 2 in M characterizes a real and positive MPE proposal. Moreover, the 
transversality condition is satisfied.
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while Eq. (14) becomes

Using the indifference conditions [constraints (13) as equality], then

with i, j = 1, 2 with i ≠ j. This implies that, the indifference conditions, can be writ-
ten as in (25) below, while from the definition of the auxiliary variable �i in (21), or

and using (20) and (22), we obtain

where gi =
(
�i − (1 + m

1∕�

i
)
)�

. The system in (24) and (25) characterizes the 
equilibrium: if there is a solution (�i,mi) ∈ M to (24) and (25), this defines the value 
function coefficients, �i and �i in (22), and the MPE shares consumed, xi in (16), and 
invested, ri as given by

3.1.1  An Example (Symmetry and � = 1∕2)

In this section, we assume that players are symmetric and the intertemporal elastic-
ity of substitution is equal to 2 (i.e., � = 1∕2 , see Thimme (2017) for a justification 
for this value). In this case, the game can be solved analytically, as shown in the fol-
lowing proposition.

(21)�i = g
1∕�

i
+ 1 + m

1∕�

i

�j = l1−�
m

1−�

�

i
+ �j�jg

(1−�)∕�

i

�
1−�

i

(22)�i =
l1−�

�
1−�

i
− �i�il

1−�g

1−�

�

i

and �i =
l1−��im

1−�

�

j

�
1−�

j
�i − �il

1−�g

1−�

�

j

(23)�i = (�i�i + mi�j�j)
1∕� + 1 + m

1∕�

i

(24)gi = l1−�

⎛⎜⎜⎜⎝

�i�im

1−�

�

j

�
1−�

j
�i − �il

1−�g

1−�

�

j

+
�jmi

�
1−�

j
− �j�jl

1−�g

1−�

�

j

⎞⎟⎟⎟⎠

(25)
m

1−�

�

j

�
1−�

j
�i − �il

1−�g

1−�

�

j

=
1

�
1−�

i
− �i�il

1−�g

1−�

�

i

(26)ri = l

(
1 −

(1 + m
1∕�

i
)

�i

)
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Proposition 1 For � = 1∕2, hi = h (i.e.,  �i = � , �i = �  for  i = 1, 2 ), if 
𝛼2l < 1, there is a unique symmetric linear MPE in which each player successfully 
proposes the following consumption and investment plans

where

with 

Hence, the MPE payoff coefficients are

where

Proof In Appendix.   ◻

It can be shown that a proposer consumes more than a responder in a given round 
( x > 1∕2 for � ∈ [0, 1) ). Typically, the investment level is inefficient, unless bargain-
ing is frictionless, as shown below.

Corollary 1 For h1 = h2, at the limit for Δ that tends to 0, the stationary MPE is 
socially optimal

(27)x =
1

1 + m2

(28)r =
(� − m)2

�2(�m − 1)2

(29)m =
−(1 − �2)(1 + �2l) + Γ

1

2

2�(1 − �2l)

Γ =
[
(1 + �2)(1 + �2l)

]2
− 24�2l�2

(30)� =
l1∕2

�1∕2 − ��l1∕2
(
� − (1 + m2)

)1∕2

(31)� =
l1∕2�m

�1∕2� − �l1∕2
(
� − (1 + m2)

)1∕2

(32)� =
(1 + m2)(1 − �m)2�2l

�2l(1 − �m)2 − (m − �)2

(33)lim
Δ→0

x =
1

2

(34)lim
Δ→0

r = (�l)2
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For Δ > 0 , bargaining leads to underinvestment.

Proof At the limit for Δ that tends to 0, the multiplier m in (29) tends to 1, and 
therefore the consumption share x in (27) tends to 1/2. Moreover, given that � tends 
to 2(1 − �2l)−1, then, r in (28) goes to ( �l)2 , hence (34). It can be shown that when 
players are symmetric, a (utilitarian) social planner, maximizing the sum of players’ 
discounted payoffs, would invest a share r = (�l)1∕� (this is in line with the efficient 
consumption path derived in (40)) and would split the remaining surplus equally 
among the two parties (hence x and r,  as in (33) and (34), are socially optimal). For 
Δ > 0 , r in (28) is lower than (34). Hence, there is underinvestment.   ◻

In frictionless bargaining, players with the same rate of time preference consume 
half of the residual surplus and invest a non-negative amount of surplus if suffi-
ciently patient (i.e., if � ≥ (1 − �)1∕2∕l ), otherwise parties disinvest as a social plan-
ner would efficiently choose to do. This result can be generalized for other values 
of �.14 ,15 Instead, bargaining with frictions is inefficient, due to the same incentives 
as in the hold-up problem. Although in our framework a proposer can use a higher 
investment rate to facilitate an acceptance, he would tend to over-consume.

Differently from Muthoo (1995, (1999), where the polar consumption equilib-
rium ( x = 1 ) is sustainable for � ⩾ � , in our dynamic model there will be always 
an interior solution for any �, �, with �, � ∈ [0, 1] and 𝛼2l < 1. Indeed, it is straight-
forward to see that the equilibrium demands (27) and (28) are always interior for any 
value of discount factor �, � ∈ (0, 1).16 This result holds not only for � = 1∕2, but 
can be generalized for other values of � (as shown in the next section and 3.2).

In the rest of this section we highlight the effect of patience on the MPE division.

Corollary 2 The MPE consumption demand x, in (27), is decreasing with � , the 
within-cake discount factor and increasing with � , the between-cake discount fac-
tor. The impact of patience on x can be either positive or negative. Instead, the MPE 
investment r, in (28), is increasing with both � and �.

Proof In Appendix   ◻

In the case of symmetry, the impact of patience on the investment shares is unam-
biguous: more patient players invest more. Instead, the impact of patience on the 
consumption share x can be more complex. Corollary  2 shows that the two dis-
count factors have conflicting effects on the share demanded x. As in the standard 

14 It can be proved that the social optimal, mi = 1 and �i = (2(1 − �l1−�)1∕�)−1 , is a solution of system 
(24)-(25), for � → 1.
15 This result is in accordance with Lockwood and Thomas (2002), which shows that the level of cooper-
ation among players tends to the efficient level at the limit as players become infinitely patient, although 
their framework is quite different from ours, since players cannot bargain (moreover, they cannot reverse 
their actions, while in our model, parties are allowed to disinvest, 𝜑 < 0).
16 Only at the limit for � that tends to 0, the equilibrium strategies are, not surprisingly, extreme [i.e., 
xi = 1 and ri = 0, see also footnote (30)].
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Rubinsteinian game, an increase in the within-cake discount factor, �, reduces the 
share demanded x, since counteroffers can be made more quickly. However, in 
dynamic bargaining, the between-cake discount factor, �, increases the share 
demanded (ceteris paribus). Since production is quicker, a proposer can exploit the 
trade-off between current and future consumption successfully (this is the dominant 
effect when � increases, differently from the case in which � increases).

As a result, the overall impact of patience (h decreases, hence both � and � 
increase) on the share demanded can be either positive (the �-effect dominates) or 
negative (the �-effect dominates) depending on the rate of return, depreciation rate 
(via l = G + 1 − � ) and the length of the production stage (see proof of Corol-
lary 2). For instance, at the limit for l that tends to 0 (or for � that tends to ∞ ) the 
impact of patience on x is negative (the �-effect). Instead when capital is sufficiently 
productive and production is short (with 𝛼2l < 1) , the impact of patience on the 
share consumed x is positive (the �-effect dominates). The simple case of symmetry 
(and � = 1∕2 ) has highlighted a rich interplay of forces in our model. We next 
investigate this further in the more complex environment of (potentially) asymmet-
ric players (and different values of �).

3.1.2  The General Case

We have solved system (24) and (25) for different values of the parameters. A selec-
tion of the numerical results is presented in the following figures and tables, while 
the properties of the equilibrium are highlighted in the following remarks.17 The aim 
of the section is to highlight the effects of the complex interplay of the discounting 
structure, the rate of return G and the depreciation rate � (via l) on the MPE. Typical 
results which hold in bargaining theory can be overturned, as shown next. In the first 
remark, the focus is on the share consumed ( xi for i = 1, 2).

Remark 1 The more patient party, say j, demands to consume a larger share than 
his opponent (xj > xi) , unless l is sufficiently large and the production stage is suf-
ficiently longer than a bargaining round.

Table 2 and Fig. 1 are used to illustrate the remark. Table 2 presents an overview 
of the MPE demands for a range of discount factors18. In the case of symmetric play-
ers, we find the symmetric MPE demands, (x, r), in the diagonal. The table entries 
for the asymmetric cases include player i’s demands (xi, ri) , in the first line, followed 
by player j’s ( xj, rj) , in the second line, with i, j = 1, 2 and i ≠ j.

Table 2 shows the first part of Remark 1, the more patient proposer is able to con-
sume a larger share (that is, in the first column within each non-diagonal table cell, 

17 Unless otherwise specified, the values of the discount factors are consistent (that is, once three of the 
discount factors are fixed, say, �i, �j and �i , the fourth is uniquely defined, �j = exp(ln(�i)ln(�j)∕ln(�i)).
18 The values for �i are omitted since, they correspond to the same values as �j , in the symmetric cases. 
For the first row, for instance,
 �i = exp(ln(0.8)ln(0.4)∕ln(0.9)) = 0.144.
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the first value, xi is lower than the second xj) . This result is in line with standard bar-
gaining theory (without investment). However, we show next that the possibility of 
investing overturns this result, when l is sufficiently large and the production stage is 
relatively long (see Fig. 1).

Figure 1 shows the MPE demands as the rate l increases, for relatively long pro-
duction stages.19 When l is sufficiently large (i.e., l ⩾ 1.7) , the most patient pro-
poser (j) demands a share smaller than his rival’s ( xj < xi ). The intuition is that for 
high rates of return G and/or low depreciation rates � , both parties have incentives 
to invest more, however, the most patient party wishes to invest more and the gap 
between players’ investment plans, rj and ri , increases with l. Then, to prioritize 
investment—which affects future bargaining possibilities—the most patient party 
must make larger concessions, while the impatient party can increase his demand 
(Fig. 1 shows that xj decreases with l,  while xi increases with l).

A crucial factor, aside from a large value of l,   is the difference in players’ dis-
count factors ( �i − �i).20 For large values of l, the most patient player must make 
larger concessions since counteroffers can be made fairly quickly ( Δ is significantly 
smaller than � ). It can be shown that with shorter production stages and/or smaller l 
there would be no crossing between xj and xi ( xj > xi ), while l increases.

Next, the focus is on the MPE investment plans. We will show that the within-
cake discount factors ( �i with i = 1, 2) and the difference between players in this 
dimension play an important role in defining the optimal investment plans.

Remark 2 The more patient party invests more than his opponent, unless �i = �j 
(with i, j = 1, 2, and i ≠ j ); in this case, they generally have the same investment 
plan.

In Remark  2, we are considering the scenario in which players have the same 
between-cake discount factors, but different within-cake discount factors. This can 
be contemplated in our model (apart from comparative statics) only if the common 
parameter � is re-interpreted as a probability of game continuation after an accept-
ance (while production is instantaneous and bargaining rounds still take time). We 
would expect that since the most patient party is the most concerned about future 
payoffs then he will invest more than his opponent. This is generally confirmed 
in our numerical analysis, for instance, in Fig.  1 and in Table  2 (where ri ⩽ rj , 
recall the values ri and rj are in the second column of each cell). However, Table 3 
shows that the investment plans are surprising similar when players have the same 
between-cake discount factor or probability of game continuation (in all the cells 
either ri = rj or ri ≃ rj) . Differences in time preferences affect their consumption 
shares, but the long-run variable of our model, investment, is crucially determined 
by the probability of game continuation.

19 A relative long production stage implies a relative large lag between the within- and between-cake 
discount factors ( �i − �i ), especially for the most impatient player (see footnote 17).
20 This gap, ( �i − �i ), rather than strong asymmetries between players, drives the result. Indeed, Fig. 1 
can be replicated for cases where the gap �j − �i is marginal.
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In the next two remarks, we summarize the effects of a change in a party’s level 
of patience on the MPE investment strategies (Remark 3) and payoffs (Remark 4). 
As highlighted below, more patience may imply less investment.

Remark 3 If a party becomes more patient, both parties invest more, only when suf-
ficiently similar, otherwise they decrease their investment plans.
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Fig. 1  MPE demands for � = 1∕2 , (�i, �i) = (0.5, 0.9) and (�j, �j) = (0.7, 0.95)

Table 2  Player i’s (j’s) MPE demands ( xi, ri ) in the first (second) line (for asymmetic cases), for 
� = 1∕2 and l = 0.7

The values for �i are omitted, since they correspond to the same values as �j , in the symmetric cases. For 
the first row, for instance, �i = exp(ln(0.8)ln(0.4)∕ln(0.9)) = 0.144

j �j = 0.144 �j = 0.339 �j = 0.470 �j = 0.623 �j = 0.8

i �j = 0.4 �j = 0.6 �j = 0.7 �j = 0.8 �j = 0.9

�
i
= 0.4 0.867, 0.005 0.712, 0.022 0.621, 0.047 0.521, 0.099 0.393, 0.209

0.896, 0.024 0.913, 0.054 0.931, 0.117 0.952, 0.244
�
i
= 0.6 0.765, 0.042 0.679, 0.066 0.575, 0.113 0.432, 0.215

0.802, 0.070 0.844, 0.127 0.895, 0.244
�
i
= 0.7 0.723, 0.092 0.620, 0.134 0.467, 0.226

0.778, 0.143 0.850, 0.249
�
i
= 0.8 0.683, 0.175 0.524, 0.249

0.779,0.264
�
i
= 0.9 0.633, 0.305



138 Homo Oeconomicus (2020) 37:121–153

1 3

Figure  2 presents the effect of a change in player j’s patience on the MPE 
demands, for � = 1∕2, l = 1.1, (�i, �i) = (0.8, 0.9). The x-axis represents player 
j’s within-cake discount factor, �j ( �j varies accordingly, see footnote 17). The effect 
on the consumption shares ( xi and xj ) is simple here: when player j becomes more 
patient he can consume a larger share ( xj increases) while his opponent consumes 
less ( xi decreases), in line with standard bargaining theory.21 Instead, the effect of 
a change in player j’s patience on the investment shares is less straightforward. Fig-
ure 2 shows that starting from low levels of patience for player j, while he becomes 
more patient he reduces investment ( rj decreases), similarly, for his opponent ( ri 
decreases). However, as player j’s level of patience increases further ( �j ⩾ 0.4 ), 
he invests more and eventually also his opponent becomes willing to increase his 
investment plan ( �j is required to be larger than 0.5). This effect is interesting, 
because generally, we would expect that if a party becomes more patient, he would 
invest more (since his future payoffs are discounted less heavily) and subsequently 
his rival will also invest more (as shown, for instance, in Table 2, when we move 
along each row, ri and rj , the values in the second column of each cell, increase with 
player j’s patience). Clearly, though, this is a key incentive only when players’ asym-
metry is mild. With pronounced asymmetries, instead, there is a tension between a 
patient player willing to invest a large share and an impatient one forced to accept 
smaller shares of the residual surplus. The key underlying driver of this result is that 
when counteroffers become cheaper for the impatient party (his between-cake dis-
count factor increases, ceteris paribus), this allows him to increase his consumption 
level (by demanding a larger share and reducing his investment plan). As a result, 
his more patient opponent is forced to make larger concessions (by reducing both his 
investment and consumption plans).22

Table 3  Player i’s (j’s) MPE 
demands ( xi , ri ) in the first 
(second) line, for �i = 0.9 , 
�j = 0.95 and l = 0.7

� = 1∕3 � = 1∕2 � = 2∕3

� = 0.15 0.353, 0.0011 0.364, 0.0110 0.386, 0.0337
0.698, 0.0011 0.707, 0.0110 0.728, 0.0337

� = 0.35 0.355, 0.0146 0.369, 0.0596 0.403, 0.1198
0.699, 0.0146 0.712, 0.0596 0.743, 0.1199

� = 0.55 0.358, 0.0568 0.381, 0.1470 0.436, 0.2349
0.702, 0.0568 0.724, 0.1470 0.771, 0.2351

� = 0.75 0.367, 0.1438 0.408, 0.2722 0.506, 0.3701
0.711, 0.1438 0.748, 0.2722 0.825, 0.3707

� = 0.95 0.391, 0.2912 0.481, 0.4320 0.700, 0.5114
0.734, 0.2911 0.809, 0.4320 0.940, 0.5153

21 This result can be overturned, as will be shown in the following remark, again with a sufficiently large 
rate l and longer production periods.
22 This effect is also present in Fig. 3a, b.
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In accumulation games with simpler bargaining structures, it has been shown that, 
differently from standard bargaining theory, patience is weakness. In our model, we 
can re-establish the result that patience is strength and demonstrate that patience can 
make a rival better off, under certain conditions, as shown next.

Remark 4 Let player i be less patient than j, but his patience increases. Then, player 
j, consumes more and is overall better off, if l is sufficiently large and the production 
stage is sufficiently longer than a bargaining round.

Figure  3a and b show the effect of an increase in player i ’s patience on the 
MPE demands (first panel) and payoffs coefficients (second and third panel) for 
(�j, �j) = (0.8, 0.95), when the production stage is relatively long (that is, a par-
ty’s between-cake discount factor is significantly lower than his within-cake dis-
count factor, see also footnote 19). In terms of parameter constellations, the only 
difference between Fig. 3a and b is that in the former l is lower ( l = 1.2 in Fig. 3a 
and 1.3 in Fig. 3b). This is a crucial difference: while for l = 1.2 , we obtain the 
standard result that as a player (say i) gets more patient, his rival is worse off (the 
value function coefficients, �j and �j decrease, see the middle panel of Fig. 3a), for 
l = 1.3 , player j becomes better off ( �j and �j increase for 𝛿i > 0.85 , see the middle 
panel of Fig. 3b).

To understand this result, we look into the effect of patience on the MPE strat-
egies. In contrast with Fig.  3a (and Fig.  2), Fig.  3b shows that proposer j is able 
to consume a higher share ( xj increases) despite his opponent becoming more 
patient. In particular, while in Fig. 3a (and Fig. 2), for relatively low l, xj decreases 
monotonically, in Fig.  3b, with a higher l, xj increases with patience, for �i suffi-
ciently large ( 𝛿i > 0.88 ). The key force behind this result is that while the asym-
metry between players softens, investment rates are converging and increasing ( ri 
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Fig. 2  MPE demands for � = 1∕2, l = 1.1 and ( �i, �i) = (0.8, 0.9)
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increases for 𝛿i > 0.66 and rj increases for 𝛿i > 0.74 in Fig. 3b) for a large rate of 
return ( l = 1.3 ). Hence, the patient player, j, who was forced to make concessions 
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Fig. 3  a MPE for � = 2∕3, l = 1.2 and (�j, �j) = (0.8, 0.95) b MPE for � = 2∕3, l = 1.3 and 
(�j, �j) = (0.8, 0.95)
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when player i was still significantly more impatient (see also Remark 3 and the fol-
lowing discussion), can now exploit the prospect of high future consumption levels, 
due to the high investment plans, and extract a larger share of the current surplus.23
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Fig. 3  (continued)

23 The result that “patience is not strenght” is also found in Houba et  al. (2000) and Sorger (2006), 
although the mechanism behind this is different. Since in the disagreement phase of their models, par-
ties can consume as much as they wish, the impatient player can strategically use the threat of a delay 
to obtain a better agreement. In our framework, instead, is the higher investment rate that makes player j 
better off (this is not detrimental to the player i).
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Finally, following Muthoo (1999, p. 307), we can interpret the value functions as 
a measure of overall bargaining power in long-run relationships.24 Then, Fig. 3a and 
b show that, despite the concessions that a patient player must make in equilibrium, 
such a player maintains the highest bargaining power both as a proposer and as a 
responder (that is, 𝜙j > 𝜙i and 𝜇j > 𝜇i , for any 𝛿i < 𝛿j = 0.95 , in Fig.  3a and b, 
middle and bottom panels).

3.2  MPE with Extreme Demands

In this section, we focus on MPE with extreme demands. We are interested in cases 
where parties are still relatively patient. Despite being relatively patient, there is an 
equilibrium in which both players are able to consume all the residual surplus (this 
is the polar consumption MPE) and it is analyzed in the next subsection. The case in 
which only one player is able to consume all the residual surplus (this is the hybrid 
MPE) is briefly considered last. We find that the different types of MPE cannot 
coexist for the same parameter constellation.

3.2.1  Polar Consumption MPE

Let

with � ≠ 1∕2 and25

Proposition 2 If � ∈ (1∕2, 1) and (�i, �i, l) ∈ D there is a unique (linear) MPE in 
which each proposer consumes all the surplus not invested ( xi = 1 ) and his invest-
ment plan is

The value function coefficients are

for i, j = 1, 2 with i ≠ j.

bi = [�
�

i
(�jl)

1−�]
2

2�−1

D =
{
(𝛼i, 𝛿i, l)|𝛼i, 𝛿i ∈ (0, 1), l > 0, 𝛿j ≤ 𝛼j

(
lbi

)1−𝜂
, bi ∈ (0, 1)

for i, j = 1, 2, i ≠ j}

(35)ri = lbi

(36)�i =
l1−�

(1 − bi)
�
and �i =

b
�

i

(1 − bi)
��i

24 Interpersonal comparisons of expected utility are allowed.
25 The set D is the set of all triple (�i, �i, l) such that the solution xi = 1, ri = lbi (see Proposition 2) is 
feasible (real and positive) and accepted without delay; moreover, the transversality condition is satisfied.
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Proof In Appendix.26   ◻

Polar consumption MPE can exist in our model when players are relatively 
patient, because a proposer can compensate a responder, who has a zero per-period 
consumption, by investing sufficiently therefore increasing his future consumption 
levels (as a proposer). A key role is played by the elasticity of intertemporal substi-
tution, which is required to be sufficiently small ( 𝜂 > 1∕2 ). This measures the play-
er’s willingness to substitute future consumption for present consumption. When it 
is low enough, extreme demands are acceptable. In other words, the curvature of the 
utility function in (3) decreases when consumption levels increase, but decreases 
less when � is large. As a result, a player’s utility is higher for any positive level 
of consumption, when � is larger. Therefore, the higher � , the higher the compen-
sation a player will obtain after accepting an extreme demand. Hence, for 𝜂 > 1∕2 
the responder can defer consumption and accept a polar consumption proposal that 
gives him zero current consumption, while for � ≤ 1∕2 responders cannot accept 
polar consumption proposal.

The investment path under the polar consumption MPE is simpler than the 
one highlighted in Remark  3. The investment rates in (35) increase with players’ 
patience. Therefore, if player i becomes more patient not only does he increase his 
investment plan but so does his opponent. This clear-cut effect is due to that fact that 
only the between-cake discount factors affect the size of ri [see (35)].27 Moreover, 
the overall effect on player j’s payoff is positive [using (36), it can be shown that the 
coefficients for j’s value functions both as a proposer, �j , and as a responder, �j , are 
increasing with �i].28 However, as for the interior MPE, also in the polar consump-
tion MPE, there is underinvestment. That is, for h1 = h2 , the investment rates in 
(35) are lower than the socially optimal rate r = (�l)1∕� (see proof of Corollary 1, 
since 𝛼l1−𝜂 < 1).

It has been shown that in long-run relationships without dynamic accumulation 
(see Muthoo 1995), players can have extreme forms of bargaining power where pro-
posers consume all the residual surplus, although, only under unlikely conditions (in 
which the production stage is quicker than the length of a bargaining round, Δ ≥ �, 
see Muthoo 1999, p. 594). In our dynamic framework, a polar consumption MPE 
can be sustained under less restrictive conditions (that is, Δ < 𝜏 ), as long as the 
investment rates are sufficiently large ( ri = lbi ≥ (�j∕�j)

1∕(1−�) ) so as to compensate 
a responder for accepting extreme proposals. However, there must be some frictions 
in the bargaining stage. If, instead, counteroffers can be made instantaneously (the 
interval Δ tends to 0), extreme demands are not sustainable in equilibrium. To see 
this, we re-write the last two conditions in the feasibility set D as follows

26 Note that it is not possible to find any interior (or hybrid) MPE in D.
27 The within-cake discount factors affects the solution only via its support D.
28 See footnote 23. Note that the models in Houba et al. (2000) and Sorger (2006) do not support polar 
consumption MPE.
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At the limit for Δ that tends to 0, condition (38) cannot hold for both i, j = 1, 2 
with i ≠ j. Intuitively, when counteroffers can be made quickly, extreme demands 
are not acceptable (investment levels cannot be large enough) and, as a result, a pro-
poser must make some concessions (and leave a positive share of the surplus to the 
responder).

To give an idea of the support for the polar consumption MPE in Proposition 2, we 
consider the case of symmetric players, then, conditions (37) and (38), can be written 
as

The first inequality in (39) ensures that the surplus generated is sufficiently large, 
so that fairly patient parties still accept consuming nothing when they are respond-
ers, while the second inequality in (39) ensures that the equilibrium payoffs are 
finite. Obviously, the conditions in (39) are less stringent when Δ ≥ �. For instance, 
if after an agreement another bargaining stage can start straightaway ( � → 0) then 
the upper bound for the discount factor � is simply l

1−�

2�−1 and l is required to be less 
than 1. Assume, instead, it is quicker to make a counteroffer than producing a sur-
plus ( Δ < 𝜏) . Then, l must be larger than 1 (from (39), since 𝛿2𝜂−1∕𝛼 > 1). Hence, 
it is possible to accept extreme demands when counteroffers can be made relatively 
quickly only if capital is productive enough.

3.2.2  Hybrid MPE

In addition to the polar consumption MPE, there can be other solutions of the problem, 
in which only one player (say, 1) is able to make extreme offers (that is, x1 = 1 while 
x2 < 1) without facing a rejection. Intuitively, this requires sufficiently asymmetric 
players (so that the most impatient party accepts an extreme proposal and makes con-
cessions to the opponent when proposing). Indeed, this is what we can show numerally. 
However, we omit the numerical analysis, since the most interesting MPE remains the 
interior solution. For completeness, we present the characterization of the hybrid MPE 
in the Appendix.

(37)
𝛿
2𝜂−1

j

𝛼
1−2𝜂+2𝜂2

j
𝛼
2𝜂(1−𝜂)

i

≤ l1−𝜂 <
1

𝛼
𝜂

i
𝛼
1−𝜂

j

(38)𝛿j <

(
𝛼j

𝛼i

)𝜂

(39)𝛿 ≤ (𝛼l1−𝜂)
1

2𝜂−1 < 1
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4  Final Remarks

The novelty of our framework is that it addresses the problem of dynamic accumula-
tion within a bargaining game, following a fully non-cooperative approach, where 
counteroffers are allowed and players can directly affect the future potential ben-
efits which can arise from their long-run relationship. We have shown that when 
investment is introduced within a bargaining game, the interplay of the forces can 
be very complex and that various lessons from standard bargaining theory can be 
overturned. An additional novelty of our model is that polar consumption shares can 
be an equilibrium phenomenon, even with modest frictions, since a proposer can 
invest enough to compensate a responder for accepting a proposal that gives him 
zero current consumption. Moreover, although generally the investment strategy can 
give a proposer the ability to obtain an acceptance without making large concessions 
to his opponent, players will never over-invest. Indeed, they will typically under-
invest. Only with frictionless bargaining, players can achieve the efficient level of 
investment.

In addition, when players are asymmetric, they agree on dynamically inefficient 
divisions, since typically they will share the surplus not invested. Instead, it would 
be Pareto superior to let only the impatient player consume a positive share of the 
initial N surpluses and let only the patient party consume afterwards. Although the 
solution is dynamically inefficient, it is dynamically consistent. Dynamic consist-
ency emerges from the fact that players do not commit to future behaviors, in each 
period they simply optimize their behavior taking into account the effect of current 
decisions.

Institutions could re-establish efficiency. For instance, assuming players with sim-
ilar rates of time preference, if they could commit to share all the residual surpluses 
equally, then, even if impatient they can behave efficiently (regardless of the bar-
gaining procedure adopted). Suppose, for instance, that before entering a business, 
two partners could sign a contract that specifies that each will obtain half of the 
profits not re-invested. Then, their investment plan would be efficient. Accordingly, 
policy makers may wish to create institutions which guarantee an appropriate divi-
sion of mutual gains to encourage efficient investment paths in ongoing negotiations.
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Appendix

Proof of Lemma 129

Consider any subgame where player i proposes first. Let kt be the state variable 
and Vi(kt) ( Wj(kt) ) the sum of discounted payoffs to player i (j) in an arbitrary MPE, 
with i, j = 1, 2 and i ≠ j. First, we show that the sum of discounted utilities Vi(kt) 
and Wi(kt) are bounded,

if 𝛼il1−𝜂 < 1. The upper bound has been derived by assuming that the investment 
and consumption paths are to maximize player i’s payoff as in a standard saving 
model (with one decision maker). Using the value function iteration method, it can 
be shown that the per-period consumption for player i is given by

and all the surplus not consumed by player i is invested. The condition 𝛼il1−𝜂 < 1 
must hold to have the convergence of the sum of discounted payoffs.

Next, we show that delays cannot be part of an MPE. Consider an arbitrary sta-
tionary MPE, where player i proposes ( xi,�i ) to player j, with i, j = 1, 2 and i ≠ j . 
If player j accepts the offer ( xi,�i ) and the state is kt , his payoff is

while, if he rejects it, he obtains �jVj(kt). Therefore, the proposal ( xi,�i ) is accepted 
if and only if

We now distinguish three scenarios: depending on whether (41) holds for at least one 
player or not. In the first case, (41) does not hold for any player, or Wj(kt) < 𝛿jVj(kt) 

Vi(kt),Wi(kt) ∈

⎡
⎢⎢⎢⎣
0,

k
1−�
t

1 − �

l1−��
1 −

�
�il

1−�
�1∕���

⎤
⎥⎥⎥⎦

(40)l
(
1 −

(
�il

1−�
)1∕�)

kt

uj(xi,�i, kt) + �jVj(kt+1)

(41)uj(xi,�i, kt) ≥ �jVj(kt) − �jVj(kt+1)

29 The proof holds for any concave per-period utility as long as the sum of discounted utility in the 
standard saving-consumption problem (without bargaining) are bounded. However, given the focus of the 
paper, in the following we assume CES per-period utility.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


147

1 3

Homo Oeconomicus (2020) 37:121–153 

with j = 1, 2 . If players always reject the offer, when the state is kt , then the state 
kt+1 is never reached and

for any i, j = 1, 2, which leads to a contradiction.
In the second case, (41) holds only for one player, without loss of generality, say 

j = 1 and i = 2. Then, player 2 makes an acceptable offer (while 1 does not). 
Player 2 prefers to make an acceptable offer if the sum of his discounted payoff, 
when making the offer, V2(kt) , is not smaller than his discounted payoffs in the case 
of a rejection, or

with kt+1 = (1 + � + �2)kt . Instead, player 1 prefers to make an unacceptable offer 
if

Then, the offer must be such that player 2 prefers to reject it, W2(kt) < 𝛿2V2(kt). 
Next, we show that this case cannot hold. Assume player 1 proposed the same divi-
sion as player 2, (x1,�1) = (1 − x2,�2), this would be accepted and player 1 would 
be strictly better off, since a delay is avoided (and 𝛿1 < 1),

Therefore, there is a contradiction. We can conclude that delays cannot be part an MPE.
In the third case, (41) holds for both players when responding to an offer, in other 

words, regardless of who makes the offer at kt , the other party accepts the offer. The 
rest of the paper focuses on this case.

Derivation of the First Order Conditions

Player i’s Lagrangian in (11) becomes

The first order conditions with respect to the controls are

Vj(kt) = Vj(kt+1) = Wi(kt) = Wi(kt+1) = 0

(42)u2(x2,�2, kt) + �2W2(kt+1) ≥ �2W2(kt)

(43)u1(x1,𝜑1, kt) + 𝛼1W1(kt+1) < 𝛿1W1(kt)

u1(x1,𝜑1, kt) + 𝛼1W1(kt+1) > 𝛿1
(
u1(x2,𝜑2, kt) + 𝛼1W1(kt+1)

)

max
xi∈[0,1]

�i∈[−(1−�),G]

(xi(G − �i)kt)
1−�

1 − �
+ �i�i

((�i + 1 − �)kt)
1−�

1 − �

+ mi

[
((1 − xi)(G − �i)kt)

1−�

1 − �
+ �j�j

((�i + 1 − �)kt)
1−�

1 − �
+

−�j

(
(xj(G − �j)kt)

1−�

1 − �
+ �j�j

((�j + 1 − �)kt)
1−�

1 − �

)]

(44)
1

x
�

i

−
mi

(1 − xi)
�

= 0
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while, with respect to the multiplier,

Then, using (44), we can obtain (16). Moreover, (16) in (45) gives the optimal for 
�i , as in (17).   ◻

Proof of Proposition 1 For � = 1∕2 and hi = h , system (24)–(25) has a unique 
symmetric solution, which is given by (29) and (32). Then, the MPE demand (16) 
becomes (27), while using (32), the MPE investment plan (26) can be written as 
(28). Moreover, the payoff coefficients (30) and (31) follow from (22), given

Finally, the support set M can be replaced by the condition 𝛼2l < 1, given 
�, � ∈ (0, 1) and l > 0.   ◻

Proof of Corollary 2 The multiplier decreases with � and increases with �, since,

for any �, � in (0, 1) and l𝛼2 < 1. Therefore the MPE demand (27) increases with � 
and decreases with � .   ◻

The effect of patience on the multiplier can be either positive or negative, as shown 
next. The derivative of the multiplier m with respect to h is

with ��∕�h = −�e−h� and ��∕�h = −Δe−hΔ . Hence,

where

(45)−
xi
1−� + mi(1 − xi)

1−�

(G − �i)
1−�

+
�i�i + mi�j�j

(�i + 1 − �)�
= 0

�j − �j�j ⩾ 0, mi(�j − �j�j) = 0

gi =
(
�i − (1 + m2

i
)
)1∕2

𝜕m

𝜕𝛼
=

2l𝛼(1 − 𝛿2)
(
(1 + l𝛼2)(1 − 𝛿2) − Γ

1

2

)

𝛿(1 − l𝛼2)2Γ
1

2

< 0

𝜕m

𝜕𝛿
=

(1 + 𝛿2)(1 + l𝛼2)
(
Γ

1

2 − (1 + l𝛼2)(1 − 𝛿2)
)

2(1 − l𝛼2)𝛿2Γ
1

2

> 0

�m

�h
=

�m

��

��

�h
+

�m

��

��

�h

�m

�h
=

a
(
Γ

1

2 − b
)

(1 − f )2e−hΔΓ
1

2



149

1 3

Homo Oeconomicus (2020) 37:121–153 

and Γ as defined in Proposition 1. Next, we show that the sign of the derivative 
�m∕�h can be either positive or negative (depending on the sign of a,   as all the 
other factors in �m∕�h are non-negative). First, if l tends to 0, it is straightforward 
that the derivative �m∕�h is always negative ( lim �m∕�h = −2Δe−hΔ ), similarly 
for � → ∞ . Instead, if production is sufficiently short and l is sufficiently large (with 
𝛼2l < 1 ), the derivative �m∕�h can be positive. For instance, in the case of l = 2 , 
� = 1.1, Δ = 1 and h = 0.5 , then �m∕�h = 1.07.

For the MPE investment (28),

with

It can be shown that all terms in (46) are positive. Therefore, the MPE investment 
(28) increases with �.

Finally,

with

It can be shown that all the terms in (47) are positive, then the MPE investment (28) 
increases with �.  ◻

Proof of Proposition 2 Using the first order conditions of the general problem (11), in 
(16)–(18), xi = 0 if and only if mi = 0 . By the complementary slackness condi-
tion, see (18), then �j ≥ �j�j . Next, we find under which conditions on the param-
eters of the model the corner solution is an equilibrium. The first order conditions 
(16) and (17) for mi = 0 become

a = − Δ
(
1 + (e−hΔ)2

)(
1 − f 2

)
+ 4�f (1 − (e−hΔ)2)

b = (1 − (e−hΔ)2)(1 + f )

f = (e−h�)2l

(46)
�r

��
=

8(1 + �2 + l�2
(
1 − 3�2) − Γ

1

2

)
(1 + �2)(1 − l�2)z

Γ
1

2

(
3 − �2 − l�2(1 + �2) − Γ

1

2

)3

�3�2

z = 1 + �2 + l�2(1 + �4 − 6�2 + l�2�2(1 + �2)) − Γ
1

2 (1 − �2l�2)

(47)
�r

��
=

8(1 − �2)(1 + l�2)w

�2Γ
1

2 (Γ
1

2 − 3 + �2 + l�2(1 + �2))2�2

w = (1 + �2)(1 + �4l2�2) + l�2((1 − �2)2 − 4�2) − Γ
1

2 (1 − �2l�2)

(48)�i =
(�i�i)

1∕�G − (1 − �)

(�i�i)
1∕� + 1

(49)xi = 1
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We now input the first order condition in the Bellman equation (12) and after simpli-
fying we obtain that �i = �

�

i
l1−� with �i = 1 + (�i�i)

1∕�.

The rate of investment (48) can now be written as �i = G −
l

�i

 or ri = l
(
1 −

1

�i

)
 . 

Consequently, the responder’s MPE payoff coefficient is

This and the definition of �i , that is (�i − 1)� = �i�i , implies the following system

For � ∈ (1∕2, 1), there is a unique solution given by

with bi ∈ (0, 1).30 This defines an acceptable offer if the responder is better off in 
accepting rather than rejecting the offer

that is, �j(lbi)1−� ≥ �j for i, j = 1, 2 with i ≠ j. The latter, together with bi ∈ (0, 1), 
implies the conditions set in (37) and (38) or the set D. Under such conditions, 
also the transversality condition is satisfied (since 𝛼2

i
(l2bibj)

1−𝜂 < 1 implies the 
second inequality in (37)). Finally, given (50), the coefficients �i = �

�

i
l1−� and 

�i = (�i − 1)�∕�i can be written as in (36).  ◻

The System Characterizing the Hybrid MPE

The Bellman equations are given by (12) with x1 = 1 and x2 < 1. In other 
words, the constraint of the acceptance condition (13) is not binding for player 2 
(i.e., m1 = 0), while it must be binding for player 2 ( m2 > 0). Let c1 = (�1�1l)

1−�
�  

and31

�j = �j�jr
1−�

i

�2
j
l2(1−�)

(
�i − 1

�i

)1−�

=

(
�j − 1

�j

)�

(50)�i =
1

1 − bi

�j�jl
1−�

(
1 −

1

�i

)1−�

≥ �j�j

30 For � ∈ (0, 1∕2], the condition 𝜓i > 1 cannot hold. This implies that capital would be fully disinvested 
( xi = 1, ri = 0 ). This can be part of an MPE strategies if and only if the frictions in the bargaining 
stage, Δ , go to +∞ (or players are infinitely impatient). To see this, note that the left hand side of (41) 
must be non-negative if xi = 1, that is �j − �jr

1−�

i
≤ 0. Hence, if ri = 0, it must be that �j = 0, for any 

i, j = 1, 2 and i ≠ j.
31 A triple (�2,m2, c1) ∈ C is such that the solution in (51) and (52) is feasible (real and positive) and 
accepted without delay; moreover, the transversality condition is satisfied.
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where �2 = (�2�2 + m2�1�1)
1∕� + 1 + m

1∕�

2
 , as in (23). Using the first order condi-

tion of the Lagrangian (11), that is, (16) and (17) with m1 = 0, we obtain

Then, after some manipulations, the equilibrium coefficients can be re-written as

Given the indifferent condition for player 1, �1 = �1�1, then (53) becomes

Hence, using (57) and �1 = �1�1, r1 in ( 51) becomes

and (56) can be re-written as

The latter in (54) implies

C =

�
(𝜓2,m2, c1)�

𝛿2

𝛼2
≤ c1 < l

1−𝜂

,𝜓2 > 1 + m2,m2 > 0,

c1𝛼
2
1

��
1 −

1 + m
1∕𝜂

2

𝜓2

�
l

�1−𝜂

< 1

⎫
⎪⎬⎪⎭

(51)x1 = 1 and r1 =
l(�1�1)

1∕�

(�1�1)
1∕� + 1

(52)x2 =
1

1 + m
1∕�

2

and r2 = l

(
1 −

1 + m
1∕�

2

�2

)

(53)�1 = l1−�(1 + (�1�1)
1∕�)�

(54)�2 =
l1−�

�2

[
1 + �2�2(�2 − 1 − m

1∕�

2
)1−�

]

(55)�1 =
l1−�

�2

[
m

1−�

�

2
+ �1�1(�2 − 1 − m

1∕�

2
)1−�

]

(56)�2 = �2�2

[
l(�1�1)

1∕�

1 + (�1�1)
1∕�

]1−�

(57)�1 =
l1−�(

1 − (�1�1l
1−�)

1

�

)�

(58)r1 = c

1

1−�

1

�2 = �2�2c1
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Now, both �2 and �2 are written in terms of �2 and m2 (while �1 and �1 are already 
solved for). The equilibrium �2 and m2 are given by the solution of the following 
system

with �1, �1 and �2 as in (57), (55) and (56) respectively. Numerically, we find that a 
solution (�2,m2, c1) ∈ C cannot coexist with either an interior or a polar consump-
tion MPE.
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