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Abstract—Network slicing is identified as a fundamental archi-
tectural technology for future mobile networks since it can logi-
cally separate networks into multiple slices and provide tailored
quality of service (QoS). However, the introduction of network
slicing into radio access networks (RAN) can greatly increase
user handover complexity in cellular networks. Specifically, both
physical resource constraints on base stations (BSs) and logical
connection constraints on network slices (NSs) should be consid-
ered when making a handover decision. Moreover, various service
types call for an intelligent handover scheme to guarantee the
diversified QoS requirements. As such, in this paper, a multi-agent
reinforcement LEarning based Smart handover Scheme, named
LESS, is proposed, with the purpose of minimizing handover
cost while maintaining user QoS. Due to the large action space
introduced by multiple users and the data sparsity caused by user
mobility, conventional reinforcement learning algorithms cannot
be applied directly. To solve these difficulties, LESS exploits the
unique characteristics of slicing in designing two algorithms: 1)
LESS-DL, a distributed Q-learning algorithm to make handover
decisions with reduced action space but without compromising
handover performance; 2) LESS-QVU, a modified Q-value update
algorithm which exploits slice traffic similarity to improve the
accuracy of Q-value evaluation with limited data. Thus, LESS uses
LESS-DL to choose the target BS and NS when a handover occurs,
while Q-values are updated by using LESS-QVU. The convergence
of LESS is theoretically proved in this paper. Simulation results
show that LESS can significantly improve network performance.
In more detail, the number of handovers, handover cost and
outage probability are reduced by around 50%, 65%, and 45%,
respectively, when compared with traditional methods.

Index Terms—Handover, RAN Slicing, Multi-agent Reinforce-
ment Learning, Quality of Service

I. INTRODUCTION

Network slicing has been widely accepted as a novel tech-
nology that will be of extreme importance in future mobile
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networks to support highly diverse quality of service (QoS)
requirements from end-users [1]–[3]. Network slicing is de-
fined as a technology that logically separates network functions
and resources into multiple network slices (NSs) within a
common physical infrastructure. Each NS represents an in-
dependent virtualized end-to-end network, providing tailored
service for a specific communication scenario (e.g., enhanced
Mobile Broadband, massive Machine Type Communication, or
Ultra Reliable Low Latency Communications [4]). As such,
due to its high flexibility and flexibility in terms of resource
configuration, network slicing can provide great improvements
in terms of network capacity, latency, transmission rate and
reliability [5].

However, despite these benefits, network slicing also in-
troduces many design challenges to the sliced radio access
networks (referred as RAN slicing throughout this paper),
such as network function virtualization, physical layer mixed-
numerology coexistence, network resource allocation, and mo-
bility management, to name a few [6]–[10]. Regarding mobility
management, one critical component is the handover process,
as it is essential for keeping users connected while they traverse
the mobile network [11]. However, despite being essential,
handovers bring other technical challenges to the network
domain, as they can directly affect not only the performance
of end users, in terms of QoS, but also of the overall network
performance in terms of the amount of resources utilized,
how many handovers occur, and (with the introduction of
NS) NS re-configuration frequency, among others [12]. Thus,
the introduction of NS is expected to bring other challenges
in terms of handover design, as the conventional reference
signal received power (RSRP) based handover schemes [13]
will not be suitable for RAN slicing. This occurs because, if
only RSRP information is used for making handover decisions,
the target base station (BS) might not be able to provide the
required service type for different users, which by its turn,
will cause a severe increase in outage probability. On the other
hand, although in the case that the target BS can provide the
required service type, the achievable QoS performance of users
may be poor due to the limited resource. In general, RSRP-
based handover scheme cannot guarantee QoS provisioning for
mobile users, which is exactly the main idea of network slicing.
Therefore, it is of paramount importance to consider new
handover mechanisms dedicated to the RAN slicing domain.

As it can be seen, designing handover procedures for RAN
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slicing can be much more complicated than in traditional
cellular networks. In the case of RAN slicing, user equipments
(UEs) are now associated with not only a specific BS, but also
a NS, forming a three-layer association relationship, UE-BS-
NS. Therefore, in addition to the RSRP, now the service type
of the NS should also be incorporated in order to guarantee the
QoS of UEs when handovers occur. However, differently than
traditional networks, in RAN slicing several handover scenarios
are possible, e.g., switching NS only when UE changes service
type; switching BS only when UE moves; switching both
when UE moves with changed service type; or even deploy
a new NS when the existing available NSs cannot provide
the required service. Moreover, different types of handovers
require different levels of signaling, thus resulting in different
handover cost. For example, handover performed by switching
only the NS of a UE should cost lower than that of a handover
in which both NS and BS are changed. Thus, in order to
address the aforementioned challenges, including the three-
layer association, the diverse set of QoS requirements from
UEs as well as different handover costs, it is imperative to
resort to new effective techniques.

One promising method is to exploit artificial intelligence
tools for designing a smart handover algorithm for RAN
slicing. Specifically, reinforcement learning can be expected
to solve such sequential decision problem under complex
RAN slicing environment by continuously using trial and error
learning process with environment interactions thus to optimize
long-term handover performance. Moreover, some information
such as user movement trajectory, channel quality, available
communication resources, etc. is usually time-varying and
cannot be obtained or described accurately and timely. Hence,
learning tools come to rescue in designing handover schemes
with certain unknown information in complex environment,
such as our RAN slicing.

In this paper, a multi-agent LEarning based Smart handover
Scheme (LESS) for RAN slicing is proposed, with the aim of
minimizing long-term handover cost while also guaranteeing
the QoS of UEs. In order to solve the scalability issues of
Q-learning and the low accuracy of the value function due to
limited data collected by each user in the network, the proposed
LESS framework is divided into two parts. The first part,
LESS-DL, chooses both the target BS and NS when a handover
occurs, while the second, LESS-QVU, updates the Q-values
of the Q-learning algorithm. More specifically, LESS-DL is a
distributed Q-learning with a reduced action space. This allows
each UE to separately update its own Q-value and make its
own handover decisions without loss of the global optimality
by maintaining a respective optimal action policy in parallel.
LESS-QVU, on the other hand, is a modified Q-value update
algorithm which uses data sharing in order to tackle the lack of
collected data, such as around BSs where few UEs have been
associated before. LESS-QVU updates the Q-value for UEs
based on the traffic similarity of an NS, i.e., UEs who access
the same NSs share the reward when handover decisions are
made due to similar service provisioning of this NS. Thus, the

proposed solution requires less data to obtain accurate Q-value
estimates. The convergence of LESS is theoretically proved
in this paper. Comparing the performance of the proposed
solution with other state-of-the-art approaches show that LESS
can significantly improve not only network handover cost, but
also the number of handovers and outage probability.

In the following, we overview the related work in Section II,
and describe our system model in Section III. Then, we propose
the learning based handover scheme LESS in Section IV, and
elaborate LESS-DL for handover decisions and LESS-QVU for
Q-value update with data sharing in Section V. In Section VI,
we discuss the implementation of LESS, and present numerical
results in Section VII. Lastly, conclusions are drawn in Section
VIII.

II. RELATED WORK

We overview the related work on handover schemes for
traditional cellular network and RAN slicing respectively.

A. Handover Schemes for Traditional Cellular Networks

In recent years, research on handover is mainly focused
on heterogeneous cellular networks (HetNets) consisting of
different types of BSs. A number of handover schemes have
been proposed to optimize the instantaneous or long-term
network performance in terms of the number of handovers,
system throughput, outage probability, load balance, etc.

Starting from handover on instantaneous network perfor-
mance. The authors of [14] develop a handover framework for
HetNets based on game theory to improve energy efficiency.
In [15], the authors first determine the candidate BSs by
considering the constrains in terms of signal strength, BS load
and UE dwelling time, and then use bargaining game model for
resource allocation thus to reduce handover occurrence ratio
as well as call drop probability. The authors of [16] investi-
gate handover management in dense networks by considering
network topology. They propose several handover skipping
schemes to avoid unnecessary handovers in dense networks.
Works [17] and [18] are mainly focused on the improvement of
handover trigger conditions to optimize handover performance
in terms of the number of unnecessary handovers [17], [18]
and handover failure rate [17].

In recent years, some researchers began to investigate intelli-
gent handover schemes aiming to optimize long-term network
performance by using machine learning [19] and/or Markov
decision process (MDP). In [20], we use reinforcement learning
to solve the huge redundant handover issue in millimeter
wave heterogeneous networks. Both handover trigger condi-
tions and target BS selections are investigated in our work
aiming at reducing the number of redundant handovers while
guaranteeing the QoS of users. The authors of [21] propose a
handover scheme based on an MDP model. The proposed BS
selection scheme considers context parameters, such as user
speed, channel gains and cell load information to maximize UE
average capacity. The authors of [22] propose a proactive han-
dover decision scheme for cognitive radio networks to reduce
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redundant handovers based on MDP model. Unfortunately, due
to the lack of considering NS, the aforementioned handover
schemes cannot be directly applied to RAN slicing.

B. Handover Schemes for RAN Slicing

Thus far, only a few researchers focus on the handover issue
in RAN slicing. The authors of [2] and [11] point out that the
handover should be one of the key issues in RAN slicing, while
no handover mechanisms or algorithms are studied in their
work. The authors of [23] propose a new network architecture
based on NS to support mobility management between different
radio access technologies, including 4G, Wi-Fi and 5G. They
investigate the problem from network architecture perspective,
and no specific handover mechanism is proposed in their
work either. In [24] a novel handover scheme for integrated
train-ground systems based on virtualized wireless networks is
proposed. As the resource virtualization is only considered in
core networks, the handover scheme in [24] is not appropriate
for RAN slicing. To the best of the authors’ knowledge, so far
there is no specific handover mechanism proposed for RAN
slicing to optimize the handover performance.

III. SYSTEM MODEL

In this paper, a mobile network architecture with multiple
end-to-end NSs, BSs and UEs is considered, as shown in Fig. 1.
The coverage of each NS is indicated by different colors and
filling shapes, and the areas with multiple colors/shapes are
the overlapping area of the corresponding NSs. The forwarding
routers in overlapping area are shared by the multiple NSs. It
is assumed that NSs share physical resources in both RAN and
core network domains. Further to that, it is considered that each
NS has different network function modules to support differ-
ent service types, i.e., connection and mobility management,
security, etc.. A more detailed discussion on sliced network
architectures can be found in [25]. Since in this paper the
focus is on the handover procedure, we focus on mobility
management in RAN slicing.
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Fig. 1. NS-based mobile network architecture.

A. RAN Slicing Model

As shown in Fig. 1, a multi-BS and multi-NS RAN model
is considered. Assume that B, N and U denote the set of BSs,
NSs and UEs, respectively. Moreover, it is considered that each
UE moves at random speeds and random directions (a random
mobility model). Regarding user requirements, a model similar
to that in [20] is considered, in which two parameters are
assumed in order to describe a UE QoS requirements. These
parameters are:
• γmini , which represents a minimum threshold of transmis-

sion rate;
• τi, which is an endurable time, or in other words, the

maximum time a UE is allowed to have its transmission
rate lower than the minimum threshold.

Let T = {T1, T2, . . . , TL} be the set of all service types, and
ψi ∈ T be the service type that UE i requires. We say ψi = Tn
when both γmini and τi can meet the requirement of the service
type Tn.

Further to that, a specific NS is also defined by two compo-
nents:
• Tj , which represents the service type of NS j provisions;
• Bj , a bandwidth allocation vector of NS j from all BSs.

The value of Bj is fixed, which means that bandwidth
allocation for NS is static.

Given that b̄(k)j is the k-th element of vector Bj , denoting the
bandwidth of NS j allocated by BS k, when b̄(k)j = 0 BS k is
not in the coverage of NS j. For example, in the case of Fig 1,
UEs can only access slice 1 via BSs 1 or 2, since BSs 3 and
4 do not cover that slice. For the way of bandwidth allocation
to users, we assume that NS allocates the minimal required
bandwidth to fulfil UE QoS requirement [26].

B. Handover Model

Before presenting the handover model considered in this pa-
per, let us discuss two components of the handover procedure:
its trigger condition and cost. In RAN slicing architecture, once
the specific QoS of a UE is not satisfied, a handover should
occur [23]. Thus, based on the QoS definition, the handover
trigger condition for UE i can be expressed as Thus, based on
the QoS definition, the handover trigger condition for UE i can
be expressed as

∀t0 ∈ [t− τi, t], ri(t0) < γmini , (1)

where ri(t0) is the achievable transmission rate of UE i at time
t0. This condition states that UE i cannot achieve the minimum
rate requirement γmini in the past τi time. Here we should point
out that the following design on target NS and BS selection
will not be affected although the handover trigger condition
changes. This is because that the handover trigger condition
and target NS, BS selection are decoupled, and Section IV and
Section V paper focus on how to optimize NS, BS selection
when handovers occur.

Thus, whenever this condition is met, a US should select an
appropriate target NS and BS to handover to. However, each
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type of handover incurs in a different cost. Thus, based on the
handover procedure in RAN slicing [2], we define the handover
cost by the four handover types as follows:

1) CNS , the cost of switching serving NS only. This type of
handover occurs when the UE changes the service type
while staying in the coverage of the same BS. Therefore,
the signaling exchanges only occur between the two
NSs within the same BS. Some handover procedures
such as synchronization, handover confirmation between
different BSs and even data forwarding can be avoided.
Thus, only a small amount of signaling overhead is
caused for this type of handover.

2) CBS , the cost of switching serving BS only. A handover
of this type happens when a UE moves out of the cover-
age of the source BS with unchanged service type. The
signaling of this type of handovers should be exchanged
between two different BSs. Since the serving NS remains
the same, the handover procedure is similar to that in
conventional cellular networks. Thus, the handover cost
CBS should be greater than CNS .

3) CNS−BS , the cost of switching both the serving NS
and BS. This type of handover happens because of UE
movement and the change of service type. Thus, some
additional handover processes should be performed, such
as admission control for the new NS, handover confir-
mation between the two involved NS, resource allocation
from the new NS, etc.. Therefore, the handover cost
CNS−BS is greater than CBS .

4) CNew, the cost of deploying a new NS, which is exclu-
sive to RAN slicing. If we cannot find an appropriate
target NS to guarantee the QoS of the handover user,
a new NS should be created for the user to provide
the required service (This is consistent with the main
idea of network slicing, providing tailored service for
individual users). Thus, both the extra resources (in terms
of power, bandwidth and computing) as well as the new
network function chains should be introduced, leading
to an extremely high handover cost for this type of
handover.

Thus, we have CNS < CBS < CNS−BS < CNew. Based
on this, a novel handover procedure is designed with the goal
of minimizing the overall handover cost, through the selection
of both NS and BS, while guaranteeing user’s QoS. Note that
minimizing handover cost also implies in the improvement in
terms of network signaling exchanges/overhead, the number of
handovers and outage probability. Moreover, the cost value of
these four types of handover may affect the absolute value of
handover cost, but do not invalidate the relative performance
enhancement of our proposed LESS scheme. This is because
that LESS is a general solution based on a reinforcement learn-
ing (RL) model, which employs an obtained reward to guide
the system to perform actions with the aim of optimizing long-
term performance through interacting with the environment.

IV. MULTI-AGENT RL BASED HANDOVER FRAMEWORK

In this section, we first state the handover decision problem,
and then formulate it as a multi-agent RL model. Finally, we
propose an intelligent handover scheme, LESS, based on a
modified distributed learning model.

A. Handover Decision Problem Description

Once the handover trigger condition (i.e., equation (1)) for a
UE is met, a handover decision should be performed in order
to maintain the requested UE QoS by assigning the appropriate
NS and BS. This is accomplished by making handover deci-
sions, with the objective of minimizing the long-term handover
cost while guaranteeing the desired QoS, subject to constrains
on UE mobility, bandwidth resources, channel conditions and
QoS provisioning of NSs. After careful investigation, the
problem of selecting a target BS and NS can be formulated as a
multi-agent RL model due to the complicated wireless environ-
ments, the long-term design objective as well as the multiple
UEs in the network. Specifically, as mentioned before, the
wireless environments are rather complicated in RAN slicing
because of the three layer UE-BS-NS association association
relationship, diversified QoS guaranteeing as well as multiple
types of handover, requiring interactions with the environment
for making handover decisions. Moreover, the long-term design
objective can be achieved through an RL framework rather
than traditional static optimization methods. Lastly, due to the
resource competition among the UEs, intuitively a multi-agent
model of RL framework could be exploited to achieve a near-
optimal solution for the handover decision problem.

B. Multi-Agent RL Model for Handover

The proposed multi-agent RL model has four main compo-
nents: agents, states, actions and a reward. More specifically, in
our problem each UE acts as an agent that performs handover
decisions. Similar to that in [20], the available bandwidth is
discretized, and the available bandwidth of NS j and BS k at
a specific time t is denoted by skj (t), after the discretization.
Regarding the environment, a state is defined as the available
bandwidth level of NSs, and thus the environment state at time
t is represented by S (t) =

(
skj (t)

)
(|B||N|)×1.

On the other hand, regarding the UE, its actions consist of
selecting a target NS and BS whenever a handover occurs.
Moreover, the action space of this problem should contain
the type of handover (i.e., switch NS/BS, switch the both
or even create a new NS). This is because even the target
BS and NS are same, the type of handover as well handover
cost could be different as the different current serving BS and
NS. Therefore, more specifically, an action taken by UE i at
time t can be expressed by ai (t) = (xi (t) , yi (t) , zi (t)),
where xi (t), yi (t) and zi (t) represent the target BS, NS and
handover type, respectively. It is also important to mention that
if yi (t) /∈ N , the action performed by the UE will result in a
new NS being deployed. With A being the action space of a
given UE, the action space of all UEs is given by A|U|. Lastly,
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the system reward, given as ri(S (t) ,ai (t)), corresponds to
the handover cost of UE i at state S (t) ∈ S when performing
action ai (t) ∈ A at time t. Mathematically, the reward is
expressed as

ri (S (t) ,ai (t)) =
CNS , if xi (t) = xi (t− 1) , yi (t) 6= yi (t− 1) ,

CBS , if xi (t) 6= xi (t− 1) , yi (t) = yi (t− 1) ,

CNS−BS , if xi (t) 6= xi (t− 1) , yi (t) 6= yi (t− 1) ,

CNew, if yi (t) /∈ N .
(2)

Based on the aforementioned multi-agent RL framework, the
optimization objective consists of minimizing the long-term
handover cost, or in other words, the long-term reward, given
by
∑∞
t=1

∑|U|
i=1 ri(S (t) ,ai (t)) , which can be achieved by an

intelligent handover mechanism. One of the most popular RL
algorithms is Q-learning, introduced in [27]. However, despite
Q-learning being extensively utilized in RL to find optimal
or near optimal solutions, in the mobile networks domain, the
performance of Q-learning can be degraded, mainly because of
two issues. First, since UEs can have several different options
of NS and BS to choose from, the system action space,

∣∣A|U|∣∣,
can be extremely large, which can lead to a longer convergence
time. Secondly, the original Q-learning algorithm is guaranteed
to converge to an optimal solution only when all possible state-
action pairs have been visited an infinite (or near infinite)
number of times. However, if this condition is not met, the
algorithm does not have enough data in order to accurately
estimate the Q-values, which will eventually lead to a non-
optimal solution. As such, using the standard Q-learning in the
proposed model can be troublesome, as if UEs do not choose
certain NS or BSs very frequently, the value of the Q will be
inaccurate, leading to non-optimal solutions. Thus, in order to
overcome these issues a novel handover scheme, named LESS,
is proposed next.

C. Framework of LESS Handover Scheme

The proposed LEarning based Smart handover Scheme
(LESS) consists of two algorithms: LESS-DL and LESS-
QVU, shown in Fig. 2. LESS-DL consists of a distributed
implementation of Q-learning, that chooses a target BS and
NS for each UE in the network whenever handovers occur. By
cooperating with UEs, LESS-DL is able to reduce the action
space from

∣∣A|U|∣∣ to |A| without compromising handover
performance when compared to the traditional Q-learning.
More specifically, in LESS-DL each UE updates its Q-values
and make handover decisions independently from one another
(based only on its own Q-table). However, the calculation rule
of the Q-value is modified, such that the minimum value of
the original Q-table can be recovered from the distributed Q-
tables of individual UEs. Besides these distributed Q-tables,
LESS-DL also requires UEs to maintain a currently optimal
policy in parallel, which guarantees the global optimality of
the selected actions. We will elaborate LESS-DL later.

Fig. 2. The framework of LESS handover mechanism.

On the other hand, LESS-QVU is a modified Q-value update
algorithm, which shares the reward of UEs with similar QoS
requirements. By considering a collaborative approach, the
problem of accurately estimating the Q-values by infinitely vis-
iting all state-action pairs is mitigated and the aforementioned
data sparsity problem can be overcome. Moreover, LESS-
QVU is designed with the following principle in mind: given
that UEs served by the same NS should have similar QOS
requirements, whenever handover decisions are made, UEs
with the same service type should have their Q-values updated
by LESS-QVU. In this way, accurate Q-values can be obtained
by using less data.

V. LESS ALGORITHMS

In this section, LESS-DL and LESS-QVU algorithms are
discussed in detail. Moreover, we theoretically prove the con-
vergence of LESS at the end of this section. Let us start with
LESS-DL.

A. LESS-DL Algorithm for Target BS and NS Selection

The conventional Q-learning algorithm is a simple yet
effective solution for RL problems. Its implementation
can be described as follows. Denote by vector A =[
a1 (t) , ...,a|U| (t)

]
∈ A|U| the actions for all UEs. Qt (S,A)

and r (S,A) represent the Q-value and reward for state-action
pair (S,A) ∈ S × A|U|, respectively, where r (S,A) =∑|U|
i=1 ri (S (t) ,ai (t)). The calculation rule of Q-value can be

expressed as:

Q0 (S,A) = M, for all A ∈ A|U| and S ∈ S,
Qt+1 (S,A) =Qt (S,A) , if A (t) 6= A or S (t) 6= S,

r (S,A) + β min
A′∈A|U|

Qt (S (t+ 1) ,A′), otherwise,

(3)

where S (t) and A (t) correspond to the state and action vectors
at time t, respectively. M is a sufficiently large constant for
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initialization purposes and β(0 < β < 1) is the discount factor.
Lastly, an ε-greedy policy is considered, in which the target BS
and NS are selected based on the smallest Q-value [27].

However, when the traditional Q-learning model is applied
to our problem, a large action space (i.e.,

∣∣A|U|∣∣) hinders its
performance. On top of that, when the original Q-learning
algorithm is considered, handover decisions are performed for
all UEs simultaneously, which is unrealistic. As such, in order
to tackle these problems, LESS-DL, a distributed learning
algorithm is proposed in order to select target BSs and NSs
for individual UEs, according to Fig. 3. The main idea behind
LESS-DL is to maintain a set of reduced Q-tables, where the
action space consists of each UE’s (i.e., agent) own actions.
The Q-values are calculated by considering the cooperation
of other UEs. Moreover, different from that in traditional Q-
learning algorithm, besides the reduced Q-tables, LESS-DL
also maintains a currently optimal policy in parallel based
on current Q-values for multiple UEs. Storing this currently
optimal policy guarantees the global optimality of LESS-DL
from these reduced Q-tables in a distributed way. Once a
handover decision is made, the UE will get a reward which
is used for the update of Q-values as well as the currently
optimal policy, and then the new policy is used for the next
handover decision. In the following, we will elaborate the Q-
value calculations and currently optimal policy maintaining in
LESS-DL respectively.

Fig. 3. The framework of LESS-DL.

First, let us study the Q-value calculation in LESS-DL.
Considering that each individual UE maintains a reduced Q-
table, denoted by q-table, the Q-value of UE i for a state-action
pair (S,ai), at time t is represented by q

(i)
t (S,ai). For the

readers convenience, we adopt q-value and Q-value to represent
the values in the reduced and original tables respectively. Based
on this concept and using a similar idea of [28], q(i)t (S,ai)
can be updated as:

q
(i)
0 (S,ai) = M, for all ai ∈ A and S ∈ S,
q
(i)
t+1 (S,ai) =
q
(i)
t (S,ai) , if ai (t) 6= ai or S (t) 6= S,

min

{
q
(i)
t (S,ai) , ri (S,ai) + β min

a′∈A
q
(i)
t (S (t+ 1) ,a′)

}
,

otherwise.
(4)

As such, if the update is followed according to (4), the reduced

q-tables for all UEs can be obtained. Despite the fact that the
reduced q-tables of all UEs cannot reconstruct the original
Q-table, it makes possible for all UEs to make decisions
distributively. The proposition presented next highlights some
properties of the reduced q-table.

Proposition 1. When the action of a given UE i is ai, the
q-value in the reduced q-table, given by q

(i)
t (S,ai), is the

minimum value in the original Q-table defined in (3), i.e.,

q
(i)
t (S,ai) = min

A∈A|U|,a(i)=ai

Qt (S,A) , (5)

where a(i) denotes the i-th element of the action vector A.

Proof: Using the similar idea of [28], we prove Proposi-
tion 1 via mathematical induction.

First, when t = 0, this equation naturally holds as all the
values in both the reduced q-table and the original Q-table are
equal to the initial value M .

Second, assume that (5) holds at the t-th iteration, and we
should prove this equation also holds for t+1 in the following.
If (S (t) ,ai (t)) 6= (S,ai), equation (5) holds for t+ 1, since
no update is performed in both (3) and (4).
When (S (t) ,ai (t)) = (S,ai), for a specific UE i, we have

q
(i)
t+1 (S(t),ai(t))

= min
{
q
(i)
t (S(t),ai(t)) ,

ri (S(t),ai(t)) + β min
a′∈A

q
(i)
t (S (t+ 1) ,a′)

}
(a)
= min

{
min

A∈A|U|,a(i)=ai

Qt (S(t),A(t)) ,

ri (S(t),ai(t)) + β min
A′∈A|U|

Qt (S(t+ 1),A′)

}
(b)
= min

{
min

A∈A|U|,a(i)=ai

Qt (S(t),A) , Qt+1 (S(t),A(t))

}
,

(6)

where (a) is obtained from the assumption that equation (5)
holds at the t-th iteration, and (b) is derived from (3).
Re-write min

A∈A|U|,a(i)=ai

Qt (S(t),A) as

min
A∈A|U|,a(i)=ai

Qt (S(t),A)

= min

{
min

A∈A|U|,a(i)=ai,A6=A(t)
Qt (S(t),A) , Qt (S(t),A(t))

}
.

(7)

For A 6= A(t), Q-values do not update, i.e,

Qt (S(t),A) = Qt+1 (S(t),A) . (8)

Moreover, due to the monotonicity of Q table, we have

Qt+1 (S(t),A(t)) ≤ Qt (S(t),A(t)) . (9)
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Therefore, based on (8) and (9), we combine (6) and (7) as

q
(i)
t+1 (S(t),ai(t))

= min
{

min
A∈A|U|,a(i)=ai,A6=A(t)

Qt+1 (S(t),A) ,

Qt+1 (S(t),A(t))
}

= min
A∈A|U|,a(i)=ai

Qt+1 (S(t),A) .

(10)

Hence, (5) holds for t+ 1.
Therefore, Proposition 1 is proved by using mathematical

induction on t.
According to proposition 1, when (4) is used, each user will

store in its reduced q-table, the minimum value of the original
Q-table, Qt (S,A). This, by its turn, enables us to design
an optimal NS and BS distributed selection policy. Next, we
illustrate how a global optimal policy for NS and BS selection
can be achieved solely based on the q-values of each UE.

In conventional Q-leaning, after the algorithm has converged
(when the values of the Q-table do not change), the followed
policy is guaranteed to choose actions that yield the smallest
Q-value, guaranteeing its optimality [27]. However, when the
distributed reduced qtables is considered, if the smallest value
for each individual UE is chosen, q(i)t (S,ai), there is no
guarantee that a global optimal policy is reached. In other
words, choosing the best action values of each UE does not
guarantee that the optimal action-vector A∗ is chosen, i.e., we
cannot guarantee that[

a1
∗,a2

∗, . . . ,a|U|
∗] = A∗. (11)

In order to address this problem, a new policy for choosing
actions is designed. The idea behind this new design is to store
an action policy for UEs in parallel along with q

(i)
t (S,ai)

update. Once the value of min q
(i)
t (S,ai) decreases, the action

policy is updated. Thus, since the policy has improved, a better
action is available and, hence, it is stored as the currently
optimal action. As such, when the algorithm converges, or
in other words, when the value of min q

(i)
t (S,ai) does not

change, the proposed action policy is stable, and the stored
policy is the global optimal solution. The update rule of the
stored action policy π(i)

t (S) of the i-th UE is:

π
(i)
0 (S) ∈ A, arbitrarily,

π
(i)
t+1 (S) ={
π
(i)
t (S) , if S 6= St or min

ai∈A
q
(i)
t (S,ai) = min

ai∈A
q
(i)
t+1 (S,ai),

ai (t) , otherwise.
(12)

where ai (t) is the action of UE i at time t.
From [28] its corollary also states that for a given state S,

we have[
π
(1)
t (S) , π

(2)
t (S) , . . . , π

(|U|)
t (S)

]
= arg min

A∈A|U|
Qt (S,A).

(13)
As it can be seen, when the reduced q-tables converge the

current stored action π(i)
t (S) for each individual UE guarantees

the minimum handover cost.

In the case of LESS-DL, an ε-greedy action policy is
chosen. This means that, before the q-values converge, each
UE chooses as its target NS and BS pair the currently stored
policy, π(i)

t (S), with a probability of p = (1 − ε), or it can
also choose randomly other actions with a probability of p = ε.
This allows the UEs to explore in earlier stages, and later on
to exploit the information collected to their own benefit. Once
the q-values have converged, the policy becomes a completely
greedy one and the currently stored action is always chosen as
the target NS and BS pair for each UE.

B. LESS-QVU Algorithm for Q-Value Update

Since the proposed LESS-DL algorithm relies on a variant
of the Q-learning algorithm, it also requires a sufficient amount
of data in order to accurately estimate its q-values and achieve
a global optimal solution in terms of handover cost. However,
since data among the mobile network is normally not evenly
distributed, some BSs might be less visited than others, thus
not generating enough data for the algorithm, and hindering its
handover performance. Such areas, where data is not sufficient,
is referred here as low-frequency activity (LFA) areas. As
such, in order to surpass this data sparsity problem in LFA
areas, a modified Q-value update algorithm, namely LESS-
QVU, working in conjunction with LESS-DL is proposed. The
core idea behind LESS-QVU, as shown in Fig. 4, is to exploit
traffic similarity in the same slice for data augmentation, so as
to expedite the convergence speed of the learning algorithm.
Specifically, the agent trains the model by using not only its
own data but also the shared data generated from other users
of this slice with the same service type. For example, if a
UE has a low latency requirement and it is in an LFA, it
can utilize data from other UEs that also share low latency
requirements to update its q-values, leading to better and more
informed decisions. This idea ingeniously exploits the unique
characteristics of NS: providing tailored service for UEs [2],
leading to a high traffic similarity among the same type of NSs,
thus the data sharing can be effectively exploited.

Considering an agent that makes decisions at time t as φ (t)
and a given q-table stored by a given UE i, the q-value update
policy for LESS-QVU is described as follows. If φ (t) = i,
the update policy of q(i)t+1 (S,ai) is the same as (4), whereas
if φ (t) = j, (j 6= i), the update policy of q(i)t+1 (S,ai) is:

q
(i)
t+1 (S,ai) ={
q
(i)
t (S,ai) , if ai (t) 6= ai or S (t) 6= S or ψi 6= ψj ,

min
{
q
(i)
t (S,ai) , p

(i,j)
t (S,ai)

}
, otherwise,

(14)
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Fig. 4. LESS-QVU based LESS handover mechanism.

where the service type of the i-th UE is given by ψi and

p
(i,j)
t (S,ai)

= Γ
(i)
t (S,ai)

α
[
ρ · rj (S,ai) + β min

a′∈A
qt (a′, S (t+ 1))

]
(15)

represents the calculated q-value of UE i considering the
handover cost generated by UE j. Additionally, in p(i,j)t (S,ai),
Γ
(i)
t (S,ai) represents how many times, at state S, the action ai

was chosen by UE i until time t, α > 0 is a data sharing level
parameter between UEs i and j, and ρ > 1 is a punishment
factor to avoid excessive decrease of q(i)t+1 (S,ai).

Below a more in-depth explanation is given behind the q-
value update policy of LESS-QVU. When a handover decision
is made solely by UE i, the same update as in (4) is used
to calculate its q-values. On the other hand, if the handover
decision is performed by another UE j, the q-value is updated
according to (14). On top of that, the update is designed in
such a way that, if the chosen NS and BS pair area is regularly
visited by UE i, implying that Γ

(i)
t (S,ai) is a large number, the

value of p(i,j)t (S,ai) could be greater than q(i)t (S,ai). Hence,
q
(i)
t+1 (S,ai) = q

(i)
t (S,ai) is kept. In other words, this means

that other UE’s data does not interfere in the q-value update
when a given UE is in a non-LFA area. On the other hand, in
LFA areas, where Γ

(i)
t (S,ai) is small, the handover cost of UE

j, rj (S,ai), with the same service type of UE i, is utilized to
calculate p(i,j)t (S,ai) and to update the q-value q(i)t+1 (S,ai) of
UE i. Lastly, in order to avoid excessively reducing the q-value
of UE i, q(i)t+1 (S,ai), a punishment factor ρ > 1 is introduced.
Based on this novel update, the impact that LESS-QVU has in
the performance of the proposed framework is evaluated and
verified by extensive simulations in Section VI.

Lastly, since LESS relies on the combination of both LESS-
DL and LESS-QVU, this combination is briefly described here.
First, whenever handover conditions are met and a handover
event occurs, LESS-DL is activated and is utilized to choose
the target NS and BS of multiple UEs in a distributed manner.
After this process is performed, LESS-QVU comes into play

and the q-values of all UEs are updated according to its
novel update mechanism. Let us use the example in Fig. 1
to describe our proposed framework. In this scenario, there are
3 handover UEs, 4 BSs and 2 NSs. LESS-DL is first executed
to make handover decisions for the 3 UEs based on their q-
values respectively. According to the handover decisions, the
corresponding reward values (handover cost) are generated, and
LESS-QVU uses these reward values to update q-tables for the
3 UEs. In this way, whenever a new handover event occurs,
LESS-DL is triggered again and chooses a new set of NS and
BS based on the updated q-values.

C. Convergence Proof of LESS

We now start to theoretically prove the convergence of
LESS algorithm. To obtain this, we first give the following
Proposition 2 to show the convergence of LESS-DL.

Proposition 2. Given by the q-value update rule in equation
(4), LESS-DL converges to the minimum value in each action
row of original Q-table with probability 1 (w.p.1) as long as
each pair of state and action can be visited at infinite times.

Proof: It is proved that the traditional single-agent Q-
learning under the rule in equation (3) is converged w.p.1 if
each pair of state and action can be visited infinitely [28]. In
other word, denote by Q? the converged single-agent based Q
value, and thus

lim
t→∞

Qt (S,A) = Q? (S,A) (16)

Based on Proposition 1, we have that

q
(i)
t (S,ai) = min

A∈A|U|,a(i)=ai

Qt (S,A) . (17)

Therefore,

lim
t→∞

q
(i)
t (S,ai) = lim

t→∞
min

A∈A|U|,a(i)=ai

Qt (S,A)

= min
A∈A|U|,a(i)=ai

Q? (S,A) .
(18)

Hence, we obtain that each q value is converged, thus the whole
reduced q-table is converged. The convergence of LESS-DL
under update rule of equation (4) has been proved.

Then, moving to the convergence proof of LESS, we should
in the following prove that the introduced data sharing scheme
LESS-QVU does not affect the convergence property of LESS-
DL.

Proposition 3. Given by the q-value update rule in equation
(4), and the data sharing rule in equation (14), LESS converges
to the minimum value in each action row of original Q-table
w.p.1 as long as each pair of state and action can be visited
at infinite times.

Proof: For an arbitrary q value, say q(i) (S,ai), denote
by
{
q
(i)
n (S,ai)

}
and

{
q̂
(i)
n (S,ai)

}
the update series under

LESS-DL and LESS respectively. Note that the subscript n
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denotes the n-th update not the time. Based on Proposition 2,
we have that ∃ T0 > 0 and δ > 0 satisfy∣∣∣∣q(i)T0

(S,ai)− min
A∈A|U|,a(i)=ai

Q? (S,A)

∣∣∣∣ < δ. (19)

Since α > 0 in equation (15), it is reasonable to assume that
∀ n ≥ T0, the following equation holds

p(i,j)n (S,ai) > q(i)n (S,ai) ,∀ j 6= i. (20)

Thus, after T0 updates, the data of other users does not affect
the q-value update of UE i. Go back to the first T0 updates,
let us consider the worst case where all the first T0 updates
of UE i are performed by using others’ data, i.e., for ∀ 0 <

n ≤ T0, q̂(i)n (S,ai) is updated based on p
(i,j)
n (S,ai). Since

ρ · rj (S,ai) > ri (S,ai) and α > 0, we have

p(i,j)n (S,ai) ≥ ri (S,ai) + β min
a′∈A

qn (a′, S (n+ 1))

= q(i)n (S,ai)
(21)

Thus, under this worst case, we have

q̂
(i)
T0

(S,ai) = p
(i,j)
T0

(S,ai) ≥ q(i)T0
(S,ai) . (22)

Since the value of p(i,j)t (S,ai) does not affect the update of
q̂
(i)
t (S,ai) after T0 updates, the update rule of q̂(i)t (S,ai) now

becomes the same as q(i)t (S,ai). Combining equation (19) and
(22) and the monotonous decrease of

{
q̂
(i)
n (S,ai)

}
, we obtain

that ∃ T1 ≥ T0 > 0 and δ > 0 satisfy∣∣∣∣q̂(i)T1
(S,ai)− min

A∈A|U|,a(i)=ai

Q? (S,A)

∣∣∣∣ < δ. (23)

Therefore,
{
q̂
(i)
n (S,ai)

}
is converged.

Here please note that the convergence speed of LESS should
be faster than that of LESS-DL, although the required number
of updates T1 showing in the above proof of LESS could be
larger than that of LESS-DL, i.e., T0. This is because that there
would be many updates under LESS are performed by using
the data of others rather than the data generated by the UE
itself after visiting the state-action pair. Hence, the convergence
speed of LESS could be accelerated even more updates are
introduced.

VI. IMPLEMENTATIONS OF LESS

In this section, we first illustrate the implementations of
LESS mechanism in a real communication system, and then
analyze the signaling overhead.

A. Implementations

Due to the different architecture between RAN slicing and
the traditional cellular network, the implementations of LESS
mechanism in RAN slicing should be deliberately explained.
In sliced mobile networks, a software defined network (SDN)
controller needs to be deployed in each NS to handle handovers
[2]. Note that the SDN controller will take responsibility for

handovers besides routing and forwarding [2], [29]. With the
cooperation of UEs, BSs and SDN controllers, the handover
procedures based on LESS are described in Fig. 5.

UE
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access unit
Target 

access unit
Source SDN 
controller

Target SDN 
controller

QoS Measurement Report

Handoff Trigger Condition Check

Handoff Triggering 

Link Measurement Report

LESS-DL for target BS 
and NS selection

Handoff Request
Handoff Request

Handoff Request ACK

Handoff Command

Handoff Command

Handoff Execution 

Handoff Execution 

Reward Value

LESS-QVU for Q-table 
update Handoff Completed

Resource Release
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QoS Measurement Report

Handoff Trigger Condition Check

Handoff Triggering 
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LESS-DL for target BS 
and NS selection

Handoff Request
Handoff Request

Handoff Request ACK

Handoff Command

Handoff Command

Handoff Execution 

Handoff Execution 

Reward Value

LESS-QVU for Q-table 
update Handoff Completed

Resource Release

Fig. 5. Handover procedures for RAN slicing based on LESS.

In detail, the UE periodically measures and reports the
obtained QoS to the source BS and NS, and the source SDN
controller checks if the handover trigger condition (equation
(1)) is satisfied. Then the UE uses LESS-DL to select the target
BS and NS and sends the handover request to the corresponding
SDN controllers. After the confirmation of handover command,
this handover is executed by the target and the source SDN
controllers. Before the handover is completed, the target SDN
controller calculates the the reward value of this handover
decision, and then broadcasts the reward to the UEs. The UEs
served by the same type of this target NS use LESS-QVU to
update Q-table. Finally, the resource of source BS and NS is
released by the SDN controller.

B. Signaling Overhead

Next we analyze the signaling overhead of LESS mech-
anism. According to Fig. 5, we find that compared with
conventional handover mechanism the extra procedures of
LESS handover are executing LESS-DL and LESS-QVU.
Thus, we focus on the signaling overhead caused by these
two algorithms. First, in LESS-DL, the handover UE needs
to send the handover request to the admissible NSs (the NSs
that can provide the service type of the UE), and then the SDN
controller deployed on these admissible NSs checks and noti-
fies if the corresponding BSs have sufficient resources to serve
the UE. Finally, the UE makes handover decisions from the
admissible NSs and BSs. Therefore, the number of signaling
exchanges can be approximately calculated as (2|Na|+ |Ba|),
where |Na| and |Ba| are the number of admissible NSs and
BSs respectively.

Second, let us examine the signaling overhead caused by
LESS-QVU. In LESS-QVU, once a reward is generated by a
handover UE, the corresponding target SDN controller should
notify this reward value to all the serving UEs. Then, the
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UEs need to update their Q-table according to (14). Thus,
the number of signaling exchanges is (|Ua|), where (|Ua|)
is the number of serving UEs of the target NS. Therefore,
the total number of extra signaling exchanges of LESS is
(2|Na|+ |Ba|+ |Ua|) for one handover, and each signaling
exchange uses only several bits.

VII. SIMULATION AND NUMERICAL RESULTS

In order to evaluate the performance of the proposed LESS
scheme, simulations are performed and the proposed solution
is compared with three other baselines, namely: Max-SINR,
NS-Prior and LESS-DL. The Max-SINR method consists of
a modified version of the traditional RSRP-based handover
scheme. It works by first selecting BSs with the highest signal-
to-interference-plus-noise ratio (SINR) for every UE [13]. After
that, it attempts to find a suitable NS in the BS that can
satisfy the QoS required by the UEs. On the one hand, if
such BS and NS pair exists, they are selected as targets for
the UEs handover. On the other hand, if no such NS satisfies
the UEs requirements, a new NS is deployed in the BS and the
target is assigned for the respective BS and the newly created
NS. The second baseline, NS-prior, is similar to the Max-
SINR method, but it performs its operations in the opposite
way. It first finds a suitable NS for UEs to handover to, and
then later attempts to select a BS, with sufficient bandwidth,
covered by this NS. Lastly, LESS-DL mechanism corresponds
to the proposed handover mechanism, albeit without the data
sharing component. This is done, so that we can compare the
performance of LESS with and without data sharing and verify
the effectiveness of the newly proposed data sharing policy.

In addition, the condition for a handover to be triggered is the
same, as in (1), in order to provide a fair comparison between
all methods. Lastly, all methods are evaluated in terms of three
metrics, which are: handover cost, total number of handovers
and UE outage probability, defined as the probability of the
UE’s QoS not being satisfied.

A. Simulation Settings

Regarding the simulation, a heterogeneous mobile network
scenario is considered. In this network, a macro BS (MBS)
located in the center of a circular area of 1000m radius is
deployed. On top of that, a varying number of small BSs (SBS),
such as femto BSs (FBS), and UEs are randomly distributed
in the area. In terms of NSs, the total number of NSs in this
network is 40. Each NS covers a random number of BSs,
and also has different capabilities in terms of data rate and
latency (given as γminn and τn respectively in our model).
Based on the levels of data rate (high, medium and low) and
latency (high, medium and low) offered by the NSs, the total
number of service types is set to 9, as shown in Table I. The
transmit power of MBS and FBS is set to 46dBm and 20dBm
respectively [30]. In terms of bandwidth, it is considered that
all BSs share a 20MHz bandwidth [26], which is allocated
to the deployed NSs based on the NS QoS provisioning. For
UE movement, we consider a well-known user mobility patten

straight-line motion with random bouncing (sLRB) defined by
3GPP [31], where users move at a constant speed along with
a random direction in a straight line, and they will bounce in
a random direction once reaching the edge of the considered
area. Lastly, regarding user requirements, both their data rate
and latency requirements are randomly distributed among the
3 levels defined in the NS provisioning (high, medium or low).

Since there is no reference to investigate the parameters
of handover cost CNS , CBS , CNS−BS and CNew, we set
the values to them based on the relationship in Section III.
Specifically, we normalize CNS as 1, and set CBS , CNS−BS
and CNew to 3, 5 and 20, respectively. Note that these four
parameters may affect the absolute value of total handover cost,
but do not invalidate the relative performance enhancement of
our proposed mechanism. For convenience, simulation param-
eters are summarized in Table II.

TABLE I
SERVICE TYPE

Delay

Service Type Rate
low medium high

low 1 2 3
medium 4 5 6

high 7 8 9

TABLE II
SIMULATION PARAMETERS

Parameter Value
MBS coverage radius 1000 m
The total number of deployed NSs 40
The number of service types 9
Handover cost CNS of switching NS only 1
Handover cost CBS of switching BS only 3
Handover cost CNS−BS of switching the both 5
Handover cost CNew of deploying a new slice 20
The transmit power of MBS 46 dBm
The transmit power of PBS 30 dBm
The transmit power of FBS 20 dBm
Bandwidth of all BSs 20 MHz

B. Numerical Results and Discussions

In the first experiment, we verify the convergence of the
proposed LESS algorithm with the comparison of LESS-DL.
Fig. 6 shows the cumulative distribution function (CDF) of
convergence step of LESS and LESS-DL under the number of
BS equals to 15 and 25 respectively. The number of UE is
set to 200. Note that both the two intelligent algorithms are
distributed, and each agent (i.e., UE) maintains a reduced Q-
table separately. Hence, the convergence speed among these
200 UEs could be different. To make the results comparable
here, we calculate the CDF of convergence step with respect to
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Fig. 6. Convergence of LESS and LESS-DL (number of UE: 200).

all 200 UEs for the two algorithms respectively. From Fig. 6,
we can see that LESS has faster convergence speed compared
with LESS-DL under the two different number of BSs. For
example, more than 80% UEs can get converged before 3000
steps in LESS under the case of 15 BSs, while only about
63% UEs could converge in LESS-DL. These results clearly
demonstrate the effectiveness of our data sharing scheme in
LESS, which is that the data sharing scheme can increase the
convergence speed of LESS-DL.

In the following several experiments we will evaluate the
handover performance of the four methods. Fig. 7 shows the
performance of all methods in terms of handover cost, number
of handovers and UE outage probability, when the number of
BSs varies from 10 to 40. From Fig. 7(a), it can be seen that the
handover cost of the two intelligent methods (LESS and LESS-
DL) is much lower than that of the Max-SINR and NS-Prior.
For 25 BSs, for example, it can be seen that the handover cost
gain of LESS is approximately of 51%, 40% and 10% when
compared to Max-SINR, NS-Prior and LESS-DL, respectively.
These results clearly validate the effectiveness of LESS. When
comparing the total number of handovers, in Fig. 7(b), it can
be seen that the proposed scheme, LESS, is able to achieve the
lowest number of handovers among all methods. On the other
hand, the performance of LESS-DL is worse than that of the
NS-Prior method. This can be explained by the fact that LESS
does not have enough data collected from the LESS-QVU new
policy, thus it is not able to make as many good decisions
as LESS-DL or even the NS-prior method. These results also
demonstrate that the parameters of handover cost do not affect
the performance gain of LESS mechanism since LESS achieves
both the lowest handover cost and the smallest number of
handovers. Finally, Fig. 7(c) shows that the UE outage proba-
bility of all the four mechanisms decreases with the number of
BSs due to more available wireless resources. Moreover, NS-
Prior achieves similar outage probability performance to LESS
because of the prior consideration of NS service provisioning,
while the Max-SINR method has the highest outage probability,
even though it may achieve good SINR performance.

Fig. 8 compares the handover performance of the four han-

dover methods for a fixed number of BSs, in this case 20, and
a different number of UEs, varying from 50 to 400. Fig. 8(a)
compares the handover cost for the four algorithms. It can be
seen that the handover cost of all the mechanisms increases
with the number of UEs, and that the learning methods LESS
and LESS-DL significantly outperform the other two due to
the exploitation of historical data. In terms of the total number
of handovers, Fig. 8(b) shows that the performance of NS-
Prior is similar to both LESS and LESS-DL. This can be
explained by the fact that all these schemes consider finding a
NS, whereas Max-SINR does not. Lastly, in term of UE outage
probability, Fig 8(c) shows that it increases with the number of
UEs for all the four handover methods due to limited network
resources. The UE outage probability of Max-SINR is always
much higher than that of the other three mechanisms.

Fig. 9 compares the performance of all schemes for different
UE movement speeds. Fig. 9(a) shows the handover cost for
the four mechanisms. It can see that from a slow walking speed
of 2 m/s (7.2 km/h) to faster driving speeds of up to 14 m/s
(50km/h), the handover cost increases for all four methods.
Moreover, the handover cost of LESS and LESS-DL increases
slowly due to the interaction with environment by using
historical data, while the handover cost of the traditional Max-
SINR mechanism increases rapidly due to the lack of NS as
well as UE service type. As expected, Fig. 9(b) shows that the
number of handovers increases with UE movement speed for
all the four mechanisms due to fast change of channel quality.
Moreover, the differences of the number of handovers among
LESS, LESS-DL and NS-Prior are relatively small. Fig. 9(c)
compares the performance of UE outage probability. From this
figure, we find that when UE movement speed is larger than 10
m/s, NS-Prior achieves the lowest UE outage probability. This
is because in NS-Prior UEs always choose the most suitable
serving NS to fulfill the QoS requirement in NS-Prior when a
handover occurs. Moreover, the UE outage probability of LESS
is always lower than 2%, implying that even if UE movement
speed is not considered in our reinforcement learning model,
the outage probability under fast movement scenario of LESS
is only slightly higher than that of NS-Prior.

Lastly, the performance of the four methods is investigated
in a scenario with different NS coverage. Note that the NS
coverage is defined as the number of BSs covered by an NS.
Fig. 10(a) shows the handover cost for the four mechanisms
with different NS coverage. Intuitively, increasing NS coverage
may reduce handover cost since the serving NS covers more
BSs. However, from Fig. 10(a), we find that the handover
cost of LESS, LESS-DL and NS-Prior remains stable when
the NS coverage increases, and the handover cost of Max-
SINR increases even more rapidly. This is because the total
bandwidth of the network is fixed although we increase the
NS coverage, implying that the average available bandwidth is
decreased. Thus, the handover cost cannot be reduced when
we increase the coverage of NS with a fixed amount of
bandwidth. Similarly, Fig. 10(b) and Fig. 10(c) reveal the
same behaviors of the number of handovers and UE outage



12

(a) Handover cost (b) Number of handovers (c) Outage probability of UEs

Fig. 7. Comparisons of handover performance for the four handover mechanisms with different number of BSs.

(a) Handover cost (b) Number of handovers (c) Outage probability of UEs

Fig. 8. Comparisons of handover performance for the four handover mechanisms with different number of UEs.

probability respectively. Therefore, we can draw a conclusion
based on the results of these three figures: increasing NS
coverage (i.e., the number of BSs covered by an NS) with fixed
total wireless resources cannot improve handover performance.

VIII. CONCLUSIONS

In this work, we have identified the importance and chal-
lenges of designing new handover algorithms for RAN slic-
ing, and exploited artificial intelligence to incorporate the
information on the complicated RAN slicing environments
for making precise handover decisions. The proposed efficient
intelligent handover mechanism LESS is based on a multi-
agent distributed learning with the objective of minimizing the
long-term handover cost of the network, while guaranteeing
users’ QoS. By ingeniously exploiting the characteristics of
network slice, we modified the learning rules including the
way of decision making as well as reward function update,
thus LESS archived significant performance gain in terms of
handover cost, the number of handovers, outage probability.
Even compared the performance improvement brought by other
conventional learning-based algorithm, “LESS is more”. Im-
portantly, the idea of exploiting traffic similarity of a network
slice and thus sharing the data for distributed learning can be

generalized to address other problems of mobile networks in
the case of limited available data, such as resource allocation,
transmit power control and interference coordination.
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