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Abstract 16 

Rural areas in developing countries face the twin challenges of water scarcity and risk of 17 

groundwater contamination due to lack of water treatment options. A decentralized greywater 18 

treatment system for reuse is an option that addresses both of these challenges. This study 19 

reports the performance of a decentralized greywater treatment and reuse system which was 20 

constructed and operated for over 12 months in a government-managed school in rural India. 21 

The handwash and kitchen wash wastewater streams were treated separately due to differences 22 

in the initial greywater characteristics. The treatment stages included pre-treatment using 23 
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screens and grease traps, slow sand biofiltration combined with anaerobic sludge bioreactor, 24 

and aeration before the final ozone-based disinfection stage. The treated water at the end of all 25 

these stages was used for toilet-flushing in the school. The treatment system was operated for 26 

one year and sampling was performed to investigate the system performance. The overall 27 

treatment system showed removal efficiencies of 99%, 98%, 66%, 73%, 98%, 96% and 28 

>99.99% for the parameters of turbidity, total suspended solids, nitrate, total phosphorus, 29 

biological oxygen demand (5 days), chemical oxygen demand  and fecal coliform respectively. 30 

This study quantifies the performance of each subsystem and demonstrates for the first time 31 

that a decentralized greywater treatment can be operated effectively and economically in a rural 32 

Indian setting.   33 

 34 

Keywords: decentralized, greywater, water treatment, water recycling, biofiltration, plasma 35 

ozonation 36 

 37 

1 Introduction 38 

With increasing population, climate change and expanding pressures on water resources, much 39 

of the world faces a major water crisis. Globally, water shortages are estimated to affect more 40 

than 4 billion people annually[1]. India occupies only 2.4% of the world's total land area yet 41 

supports over 17.5% of the global population[2]. The total freshwater resource of the country 42 

is only 4% of the world's total utilizable water resource[3], which is disproportionately low for 43 

the current population. In India, over 600 million people face high to extreme water scarcity, 44 

with water contamination estimated to impact as much as 70% of the country’s utilizable water 45 

resource[4]. Currently, the disparity between water supply and demand is widening due to 46 

increasing water scarcity[5],[6], population growth, contamination of available surface water 47 

sources and depleting groundwater reserves. As this disparity worsens, there is a growing need 48 
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for technologies that can address the interactions between poor water quality and insufficient 49 

water quantity[7,8]. Despite the extensive scientific and technological advances, the discharge 50 

of untreated wastewater (WW) in India still poses environmental and human health risks[9]. 51 

Treatment technology exists, but today these technologies are based on the conventional large-52 

scale centralized WW treatment plants, where WW is collected from various sources and 53 

brought to a centralized WW treatment plant through extensive pipe networks[10]. 54 

Decentralized, efficient, on-site treatment and reuse of WW in general and greywater in 55 

particular, has the potential to realize the dual benefits of reducing consumption of freshwater 56 

and sustainably managing WW, especially in rural and peri-urban areas[11]. Though the reuse 57 

of greywater has a lot of potential, there are obstacles to its reuse, including but not limited 58 

topublic health concerns and human perceptions of using treated water[12].  59 

Wastewater generated from households typically consists of blackwater (BW) and greywater 60 

(GW). BW is defined as wastewater produced in toilets, whereas freshwater soiled by use in 61 

laundry, baths, showers, hand washbasins, dishwashers, and kitchen sinks is called GW [13].  62 

Contaminants present in the GW includes oil, food waste from kitchen water and surfactants 63 

from all household cleaning and personal care products. Relative to BW[14], GW has 64 

characteristically low suspended solids[15], pathogens and nitrogen[16]. The quality of 65 

supplied freshwater and the type of water distribution system (continuous vs intermittent 66 

supply) is known to affect the composition of GW[17]. Due to these characteristics, GW 67 

represents a huge potential for domestic water savings through reuse. In many parts of the 68 

world, GW is reused for landscape irrigation, toilet flushing, gardening and other non-potable 69 

uses[12,16,18,19]. This has been supported by regulation and financial incentives that support 70 

a transition to water reuse technologies[20].   71 

Greywater treatment for reuse has utilized one or more technologies such as: 72 
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Filtration (anaerobic, activated carbon, biofilm, fiberglass, Filtralite®, horizontal, oil shale ash, 73 

sand, slate waste, vertical, volcanic ash, etc.), rotating biological contractors, sedimentation, 74 

reed beds, constructed wetlands, microbial fuel cells, coagulation, granular activated carbon 75 

adsorption, aeration and disinfection (UV, chlorination, etc)[21–31]. Bolton et. al. showed that 76 

there is also potential to obtain electrical energy from treating GW by using constructed 77 

wetlands and microbial fuel cells followed by biological sand filtration for reuse[31].      78 

Reuse of GW for non-potable purposes remains relatively uncommon in India, partly owing to 79 

unproven technologies, high costs for installation, operation and maintenance of such systems, 80 

but also because of the social sensitivities that surround human interactions with wastewater 81 

[32]. Realizing the full potential of GW reuse requires cost-effective, proven and efficient 82 

approaches to treatment that are adaptable to site-specific hydro-social conditions[33]. 83 

This work reports the design and performance of a decentralized, gravity-driven GW treatment 84 

and reuse system designed by integrating different technologies specifically for a government 85 

school in rural India. The GW recycling system was co-designed by engaging stakeholders in 86 

a demand-driven approach. The treatment scheme used disinfection techniques such as 87 

ozonation by installing ozonators specifically designed for the rural Indian setting. This was 88 

done to ensure the system was not reliant on disinfection chemicals, such as chlorine, which 89 

need to be procured from a nearby city or town.  . This study is uniquebecause not only does it 90 

demonstrate the successful functioning of a decentralized GW treatment plant but also captures 91 

and compares the performance of various treatment options. The system was operated for over 92 

12 months by students and staff in a rural government school. The performance of each of the 93 

different treatment modules is quantified. The treated GW was recycled and its effect on the 94 

school’s annual water budget is reported. 95 

 96 
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2 Materials and methods 97 

2.1 Study location and size  98 

This study was conducted in the Berambadi Primary School (11045′44′′ N; 76034′03′′ E) 99 

located in Berambadi village (Population of 2982 as of 2011)[34], Chamarajanagar district in 100 

the Indian state of Karnataka.  The school is located in the Berambadi watershed (11043′00′′ −101 

11048′00′′ N; 76031′00′′ −  76040′00′′ E), which is classified as AW (Tropical wet and dry 102 

or Savannah Climate) based on the revised 𝐾𝑜̈𝑝𝑝𝑒𝑛 − 𝐺𝑒𝑖𝑔𝑒𝑟 climate classification. The area 103 

receives an average annual rainfall of 1000 𝑚𝑚 [35].  104 

Typically, schools do not generate as much per capita GW as domestic households, owing to 105 

the absence of GW sources such as laundry and showers. The government-run schools in India 106 

operate a mid-day meal initiative where nutritious food is cooked at the school and provided to 107 

the students for lunch. The Berambadi school generated GW from its hand wash (HW) and 108 

kitchen wash (KW) sinks. During this study, the school had about 187 students and 10 staff. 109 

The HW sinks which were used by the students and staff were located at a slightly higher 110 

elevation compared to the KW sink. The GW treatment system utilized this difference in 111 

elevation for gravity flow. This study was conducted for a total period of one full academic 112 

year, which included 50 days of summer break between April and June and a two week  113 

Navaratri/Dasara break at the beginning of October.  114 

2.2 System description 115 

Figure 1 shows the block diagram of the stages of treatment for HW and KW greywater. The 116 

HW and KW streams were separated owing to the difference in their composition. The 117 

composition of the HW and KW greywater is discussed in Section 3.1.  118 

 119 
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 120 

Figure 1: Block diagram of the greywater treatment stages for handwash greywater and kitchen 121 

wash greywater.  122 

The HW treatment module consisted of sink bucket traps with 2 mm pore size as a pre-123 

treatment stage before the filtration stages. Figure 2a shows a picture of the sink strainer used 124 

to separate out large food particles. Following this, three anaerobic bio-filters i.e., concrete 125 

tanks filled with decreasing particle sizes (coarse gravel (20-40 mm), medium gravel (4-20 126 

mm) and sand (2-4 mm)), were used in the treatment train. Locally available gravel was chosen 127 

as filling material in these tanks and the tanks were closed to achieve anaerobic biofilm growth 128 

conditions. The three biofiltration tanks (with their lids open) is shown in Figure 2b through 129 

2c. The volume of each of these filter units, their porosity and hydraulic residence times are 130 

tabulated in table 1. In the coarse and medium gravel biofilters, the GW feed pipes were brought 131 

to the bottom of the filtration tanks to achieve an upward flow during operation and to keep 132 

these filters partially flooded to facilitate biofilm growth. The system was not inoculated with 133 

any bacteria and was left to naturally acclimatize. The overflow line from the medium gravel 134 

filter was introduced to the top of the sand filter as shown in Figure 2c, wherein the water 135 

trickles down through medium gravel biofilter before exiting from the bottom of the 136 

biofilteration tank. The filtered water was then fed to the aeration tank for aeration.  137 
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A recent study had also reported that handwashing soap is the dominant ingredient in the 138 

handwash water[36]. In the handwash area the students were instructed not to use any soaps as 139 

that could potentially increase the nutrient level in the HW water. This practice was not 140 

followed in the school from January to March but was implemented from July-December.  141 

 142 

Figure 2: Different stages of the HW treatment train a) Sink strainers in handwash sink, b) 143 

Coarse gravel biofilter c) Medium gravel biofilter and d) Sand biofilter  144 

The KW treatment module consisted of bar screens of 5 mm opening size and an oil and grease 145 

trap as pretreatment stages. The oil and grease trap, as shown in Figure 3a, had a detachable 146 

perforated (3 mm) basket, and a secondary chamber where oil and grease can be trapped and 147 

skimmed off. Following this, the KW wastewater was fed to the bottom of an anaerobic sludge 148 

bioreactor (AnSBR) as shown in Figure 3b. The overflow from the AnSBR was introduced to 149 

the bottom of a biofiltration chamber. The biofiltration chamber was a stratified column of 150 

coarse gravel (20-40 mm), medium gravel (4-20 mm) and sand (2-4 mm) as shown in Figure 151 

1. The coarse gravel was used at the bottom of the biofilter whereas fine gravel was used at the 152 
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top. The KW wastewater was made to flow in upward direction first through the coarse gravel, 153 

followed by medium gravel and finally through sand layers to achieve bio-filtration. The 154 

overflow line from this biofiltration tank was connected to the aeration tank as shown in Figure 155 

1.  156 

In the kitchen wash area Vim™ soap was used for utensil cleaning. The manufacturers claim 157 

the composition of Vim soap to be Sodium LAS, Sodium Carbonate, Neem Oil, Concentrated 158 

Lime Juice, CI 74260, CI 11680, and Water[37].  159 

 160 

In the aeration tank, the filtered water from HW and KW was mixed and aerated using locally 161 

made diffuse aeration pipes. As shown in Figure 3c, the aeration system consisted of updraft 162 

diffusers, designed using locally sourced PVC pipelines (1 inch 𝑑𝑖𝑎) perforated (3 – 4 𝑚𝑚) at 163 

equal intervals. The aerated water entered the bottom of the ozonation tank through gravity 164 

displacement. Cold plasma powered high throughput ozonators, as shown in Figure 3d, 165 

delivering up to 10 gm/hr of ozone were used to achieve ozonation of the GW. The ozonation 166 

tank was also fitted with the updraft diffusers to achieve the proper contact of ozone with the 167 

GW. The treated GW from the ozonation tank was pumped to an overhead treated GW tank, 168 

using a solar-powered submersible water pump. The ozonators, aeration system and water 169 

pumps were powered using solar panels. The design volumes and hydraulic residence time of 170 

all these units are given in table 1. 171 
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 172 

Figure 3: Pictures of KW treatment a) Grease trap b) Anaerobic upwelling sludge bioreactor, 173 

c) Diffuse aeration system of aeration and ozonation tank d) cold plasma ozonator 174 

Table 1: Stagewise sizing and retention time 175 

Treatment Stages 
 Total Volume (L) 

Design flow rate 
(LPD) 

Porosity 
(%) 

Hydraulic Retention time (hours)  

Handwash 
biofilters 

Coarse gravel biofilter 1014 750 35 11.4 

31.2 Medium gravel biofilter 1014 750 33 10.7 

Sand biofilter 1014 750 28 9.1 

Kitchen wash 
filter 
 

Oil and grease trap 148 750  4.7 

52 Anaerobic sludge 
bioreactor 

1130 750  36.2 

Stratified column biofilter 990 750 35 11.1 

Aeration tank Aeration tank 620 1500  9.9 (1.5 h treatment time) 

Ozonation 
tank 

Ozonation tank 620 1500  9.9 (0.5 h treatment time) 

 176 
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As shown in Table 1, the hydraulic retention time (HRT) for the HW and KW treatment 177 

modules were 31.2 h and 52 h respectively.  The HRT for the overall treatment (including the 178 

aeration and ozonation) residence time for treating the HW and KW streams were 51 h (~2 179 

days) and 71 h (~3 days) respectively. 180 

2.3 System Operation 181 

On a typical working day, the school opens at 8:30 am and closes at 4:30 pm. The lunch (mid-182 

day meals) was served in the afternoon between 12:30 pm and 2:00 pm, during which time 183 

most of the day’s GW is generated and channeled through treatment units.  184 

As a first operation step, the treated GW from the ozonation tank was pumped to the overhead 185 

tank daily at 9:30 am. This pumping operation took between 15 to 20 minutes. At the end of 186 

the pumping, the ozonation tank was emptied to make room for new water to be ozonated. The 187 

aeration was performed daily for 90 mins from 10 am to 11:30 am and the aerated water was 188 

allowed to settle for 30-60 mins, before receiving the fresh load, which started after lunch 189 

between 1 and 2 pm from HW sinks and between 2 and 3 pm from KW sinks. As the system 190 

was gravity fed, the HW and KW water generated in a day displaced the water present in the 191 

biofilters and AnSBR. The entry of a new batch resulted in the overflow of the aerated water 192 

from the aeration chamber into the ozonation chamber. Ozonation was performed between 3:30 193 

pm and 4:00 pm daily. This treated GW in the ozonation tank was allowed to stay overnight 194 

before being pumped to the overhead tank the next morning.  195 

The timings for the operation of the ozonators and aerators were optimized after quantifying 196 

the flow rates in each stage of the system daily, so as to obtain treated water at the beginning 197 

of the day and with the least energy consumption. Despite these optimizations, the end quality 198 

of water would vary significantly (within the acceptable limits of reuse) due to the high 199 

variations in the input parameters to the GW treatment system. Factors such as school 200 
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attendance, the seasonal variation in the availability of greens and vegetables, guests coming 201 

to the school and cultural events in the village affected the GW quality. These external factors 202 

were responsible for the variations in the quality and quantity of GW generated, which is 203 

discussed in the results and discussion section 3.0.  204 

2.4 Sampling methodology 205 

Sampling ports were installed using valves at the end of each stage as shown in Figure 1. Water 206 

samples were collected at each of these ports in a sterilized sample collection container, 207 

fortnightly over a period of one year. These samples were analyzed for standard water quality 208 

parameters using APHA protocols[38]. Samples were analyzed for pH, total suspended solids 209 

(TSS), total dissolved solids (TDS), nitrates (NO3
−), total phosphorus (TP), phosphates (PO4

3−) , 210 

temperature (T), biological oxygen demand (BOD5), turbidity, chemical oxygen demand 211 

(COD), total organic carbon (TOC) and fecal coliform counts (FC).The unit of measurement 212 

was NTU for turbidity, MPN/100 mL for FC, and ppm for all other parameters. The post-213 

treatment water quality parameters at each stage were compared with the relevant water sewage 214 

discharge standards for recycling and reuse [39,40]. All the data were statistically analyzed 215 

using MS Excel Data Analysis tools for statistical measurements such as two-tailed t-test to 216 

verify  statistical significance. All data is represented in the form mean ± standard deviation 217 

(μ ± σ). 218 

The quantity of water consumed at the KW and HW areas were also measured on a monthly 219 

frequency to assess the containment loading rates and evaluate the removal efficiencies, due to 220 

the separate treatment of these two GW streams. 221 

2.5 Operation and maintenance 222 

One of the major attractions that the system offers is its ease of operation and maintenance. 223 

The system has no major machinery requiring skilled labor for operation. The maintenance of 224 
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the system is only involves cleaning tanks and filters biannually. The detachable perforated 225 

basket in the grease trap is washed on a biweekly basis. At present, the system is operated by 226 

the school staff after a training and transition period of one year. 227 

The system, therefore, has the potential to be replicated as well as scaled up. Such decentralized 228 

plants can also be conveniently built-in urban settings such as apartments, hospitals, and 229 

educational institutions, depending on local climatic conditions, population density and land 230 

availability.  231 

2.6 Calculations 232 

The removal efficiencies (RE) for the parameters of turbidity, TSS, BOD5, COD, NO3
− TP, TOC 233 

and FC were evaluated for each of the water treatment steps. The removal efficiency of the 234 

overall treatment was measured using the percentage reduction in the concentration from the 235 

samples collected pre and post-treatment, which is represented by equation 1[41]. 236 

Removal Efficiency (RE) = 100 ×
Ci − Co

Ci
 (1), 237 

where Ci and Co are the concentrations of the parameters at the influent and effluent samples 238 

respectively.  239 

As the aeration and ozonation stages had two inlets with variable flow rates, removal efficiency 240 

calculations were measured by load, and not concentration. Load (Lp) of parameter p was 241 

measured using Lp = Cp × V, where Cp and V is the concentration of parameter p and volume 242 

of the GW.  243 

Removal efficiency of the aeration and ozonation stages for parameter p was measured using 244 

the equation: 245 

REp =
(LoadHW+LoadKW)−(Loadout)

LoadHW+LoadKW
× 100 = 100 ×

(Cp HW×VHW+Cp KW×VKW)−Cp out×Vout

Cp HW×VHW+Cp KW×VKW
     (2), 246 
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Where Cp HW, Cp KW , and Cp out are the concentration of parameter p at the handwash filter 247 

outlet, kitchen wash filter outlet and ozonation outlet respectively,  VHW, VKW,and  Vout are the 248 

volume of GW at the handwash filter outlet, kitchen wash filter outlet and ozonation outlet 249 

respectively. 250 

The organic loading rates (OLR) were calculated using the following equation: 251 

OLR = CCOD ×
Qin

𝑉𝑡𝑟
=

𝐶𝐶𝑂𝐷

𝐻𝑅𝑇𝑡𝑟
 (3), 252 

Where OLR is the organic loading rate in g COD/(m3.day), CCOD is the COD concentration in 253 

the input (g COD/m3), Qin is the volumetric flow rate of the wastewater (m3/day), and Vtr is the 254 

volume of the treatment component. The ratio of the volume of the treatment component and 255 

the inflow rate is equal to the hydraulic retention time (𝐻𝑅𝑇). 256 

3 Results and Discussions 257 

3.1 Baseline Study Results 258 

The baseline water quality was measured at the inlet of the school and also at the outlet of the 259 

kitchen sink and handwash sink. The baseline study for the GW was done by sampling the 260 

water coming out of the kitchen wash (KW) and handwash (HW) areas before mixing, at three 261 

different times daily for four days. The average values of the physicochemical and biological 262 

parameters obtained in this study are presented in table 2 along with previously reported values 263 

for GW treatment and reuse systems from across the globe.  264 

 265 

 266 

 267 
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Table 2: Baseline greywater characteristics reported in the literature and the data at handwash 268 

(HW) and kitchen wash (KW) outlets obtained in this study.  269 

S.No Refer
ence 

Location Greywater Characteristics 

Turbidi
ty 

(NTU) 

TSS 
(ppm) 

BOD5 
(ppm) 

COD 
(ppm) 

Nitrate 
(ppm) 

FC TP 

1  [21] Egypt  105 298.6 395   10.5 

2  [22] Saudi 
Arabia 

103 79 119 219 0 
 9.8 

3 HW  [23] Greece   61  335   0.7(𝑃𝑂4
−) 

4 KW  [23] Greece  299  775   0.4(𝑃𝑂4
−) 

5  [24] Brazil 40.4 76 93 170 33   

6  [25] Costa Rica 96  167   1.5 ± 4.6 × 108 16 ± 15 (𝑃𝑂4
−) 

7  [26] Jordan  845 1056 2568  7 × 105 18.25 

8  [27] Estonia 
 158 

442 
(BOD7) 

695 0.1 
 7.1 

9  [28] Uganda  2828 1395 6563 12 8.72 × 107 6.2 

10 
HW 
sinks 
[29] 

[29] Brazil 

35.8  56 145.8  

1.8 × 105  

11  [30] India 29.7 14.8 78 264 2.4 3.5 × 104  

12 
HW 
This 
Study 

 India 
196
± 112 

351
± 223 

344
± 272 

643
± 387 

34 ± 6 

2.35 × 108 1.03 ± 0.68 

13 
KW 
This 
Study 

 India 
225
± 118 

619
± 237 

445
± 165 

553
± 267 

40 ± 6 

2.26 × 108 4.53 ± 2.01 

 270 

Compared to the quality of inlet water being supplied to the school (Turbidity=0.17, TSS=13, 271 

COD=23 and NO3
−=34) the water at the GW outlet showed much higher values of Turbidity, 272 

TSS, COD, and FC as expected as shown in table 2.  273 

When the baseline greywater characteristics obtained in this study are compared with the 274 

previously reported values, the TSS, BOD5 and COD values fall within the range of the reported 275 

values. These values are higher than most values reported but not as high as the values reported 276 

by Halalseh et al and Katukiza et al for the Jordanian and Ugandan scenarios[26,28]. Halalseh 277 
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et al had reported that the high values obtained in their study was due to the very low per capita 278 

water consumption in Jordan[26]. The turbidity values are higher than the typically reported 279 

values[22,24]. Nitrate values obtained are comparable to values reported by Couto et al. in the 280 

Brazilian scenario[24]. It should be noted that the NO3
− in the raw inlet water supplied to the 281 

school itself was high at 34 ppm. Mandal et al.  also conducted a study in India but in an urban 282 

scenario. The significantly higher values of all the aforementioned parameters in this study 283 

when compared to the values reported by Mandal et al indicate a wide disparity in the GW 284 

characteristics between the rural and urban areas within the same country[30]. 285 

As can be seen from Table 2, there were variations in the quality of the wastewater generated 286 

in the school, depicted by the standard deviation in mean values. These variations were due to 287 

several day-to-day variations in school attendance and other factors such as the seasonal 288 

variation in the availability of greens and vegetables, guests coming to the school, and cultural 289 

events in the village.  290 

The water consumption of the school was monitored three times daily for three months as part 291 

of the baseline study at three different points. The first point was at the inlet of the school 292 

measuring the overall water consumption of the school. The subsequent two points of 293 

measurements were before the HW and KW areas measuring the respective consumption in 294 

each of these areas. This data was used to calculate the loading factor and reduction of 295 

freshwater consumption which is discussed in section 3.6.  296 

3.2 Pretreatment of HW and KW wastewater using coarse strainers and grease trap  297 

Prior to the slow sand bio-filtration stages, both the KW and HW were directed through 298 

separate pretreatment stages. The pretreatment stage was used to alleviate the stress caused by 299 

large food particles on the downstream treatment units. Baseline studies clearly indicated the 300 

need for installing traps to remove large chunks of food particles which would otherwise 301 
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potentially clog up the downstream equipment. Also, the KW sink generated GW having high 302 

levels of oil and grease. To address this, pretreatment stages were installed.  303 

The HW pretreatment was achieved using particle trapping sink strainers with 2 mm pore 304 

diameter as shown in Figure 2a. These strainers would screen out the large food particles and 305 

help in reducing the TSS and turbidity of the GW. The removal efficiency of this stage for 306 

turbidity and TSS was evaluated by comparing the baseline GW and the post pretreatment GW. 307 

Removal efficiencies (RE) of 88% for turbidity and 75% for TSS, was achieved by the 308 

pretreatment strainers as shown in table 3.  309 

The KW treatment module had a grease trapper for pretreatment. The grease trapper was 310 

intended to reduce the TSS and turbidity of the GW by trapping the oil and grease present in 311 

the KW wastewater. Table 3 shows the turbidity and TSS of the GW from KW sink before and 312 

after pretreatment. The KW pretreatment using grease trapper achieved RE of 65% and 89% 313 

for turbidity and TSS respectively as shown in table 3. The TSS levels at the outlets of both the 314 

pretreatment stages averaged around 80 ppm.  315 

Table 3: Turbidity and TSS removal efficiency of pretreatment stages 316 

 
HW before 

pre-
treatment 

HW after 
pre- 

treatment 

Avg.  
Removal 

Efficiency 
(%) 

KW before 
pre-

treatment 

KW after 
pre- 

treatment 

Avg. Removal 
Efficiency 

(%) 

Turb 
(NTU) 

196 ± 112 24 ± 12 88 225 ± 118 78 ± 55 65 

TSS 
(ppm) 

351 ± 223 88 ± 48 75 619 ± 237 73 ± 30 89 

 317 

 318 

 319 
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3.3 Performance of biofilters in treating HW greywater 320 

The HW filtration consisted of three separate anaerobic biofilm slow sand filtration chambers. 321 

The average organic loading rates in HW filtration system was calculated using equation 3 and 322 

was found to be ~109 g COD/m3 day. 323 

Figure 4 shows the load and removal efficiency of the HW filtration stages over the operational 324 

period (the school was not operational during April-June due to summer vacation). Figure 4a 325 

and Figure 4b shows that the input NO3
− load was between 12 ± 2 g for most of the months and 326 

TP load was between 0.75 ± 0.25 g. The NO3
− removal fluctuated between 60% and 95% and 327 

averaged around 79%. The removal efficiency of TP fluctuated between the months, but this 328 

did noteffect the overall performance as TP was low (~1 ppm) in the GW from HW area, 329 

thereby not impacting its reuse capacity. From Figure 4c and 4d it can be seen that, the BOD5 330 

and COD load for the system were between 70 ± 10 g and 140 ± 20 g respectively. The BOD5 331 

and COD removal efficiencies were consistent throughout the operational period at around 332 

92% and 83% respectively, despite breaks in the operation due to the summer vacation. This 333 

indicates that the system is able to perform even with breaks in feed to the biofiltration units.  334 

Figure 4c and 4d illustrate the consistent removal efficienct (RE) of BOD5 and COD throughout 335 

the operational period except in November. The low RE of COD in November can be attributed 336 

to the relatively lower input COD load on that particular month. The high removal efficiency 337 

for the BOD5 and COD achieved by the HW filtration stages bring the GW within the treated 338 

water reuse norms for BOD5 and COD, details of which are discussed further in section 3.6.  339 
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 340 

Figure 4: Load and removal efficiencies of the HW filtration stages for a) NO3
−, b) TP, c) BOD5 341 

and d) COD over the operational period.  342 

Figure 5a and 5b, shows the picture of the coarse gravel taken during installation and one month 343 

after the commencement of the plant operation respectively. From Figure 5b, the biofilm layer 344 

formation after one month of the commencement of system operation is evident on the filter 345 

media. The formation of the biofilm layer has been reported to potentially enhance the removal 346 

efficiencies through possible several pathways which include biosorption, biological 347 

degradation of soluble organics and also reduces odor and color[42]. The microbial 348 

communities thriving on the biofilm are known to be responsible for the breakdown of different 349 

nutrients, such as phosphorous and nitrogen-containing compounds, carbonaceous materials as 350 

well as the removal of trapped pathogens from the wastewater[43,44]. The high removal 351 

efficiency observed in this study can be attributed to the presence of these biofilms. The 352 

reduction in the TP values may have been influenced by the students not using handwash soaps 353 

after the month of July in the handwash areas.  354 
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   355 

Figure 5: Picture of coarse gravel during installation(left/a) and one month after 356 

commencement of system operations(right/b).  357 

3.4 Performance of AnSBR and biofilters in treating KW greywater 358 

The average organic loading rates in the KW module after the pretreatment were calculated 359 

using equation 3 and averaged around 179 g COD/m3 day, which was about 64% higher than 360 

the HW greywater. As expected, the average organic loading rates from the kitchen sink were 361 

higher than that from the handwash sinks.  362 

 363 



20 
 

 364 

Figure 6: Load and removal efficiencies of the KW filtration stages for a) NO3
−, b) TP, c) BOD5 365 

and d) COD over the operational period. 366 

Figure 6 shows the load and removal efficiency of the KW module consisting of AnSBR and 367 

filtration stages over the operational period. As shown in Figure 6a and 6b, the NO3
− and TP 368 

load from KW wastewater was between 12 ± 2 g and 4.5 ± 2 g respectively. Although the 369 

NO3
−load in the KW stream, was similar to that of HW stream, the TP load was almost double. 370 

This high load of TP is attributed to the oil coming from washing of cooking utensils and the 371 

cleaning products used in the kitchen.  The RE of NO3
− fluctuated between 80% and 95% and 372 

averaged to be around 88%. The RE of TP fluctuated between 40% and 80% averaging around 373 

69% and it is believed that the resuspension of biofilms into the water is the reason for such 374 

fluctuations. Figure 6c and 6d illustrate that the BOD5 and COD of the KW stream was higher 375 

than the HW stream (Figure 5c and 5d). This higher load is again believed to be coming from 376 

the oil films present on the utensils and washing products used in the kitchen. As can be seen 377 

from Figure 6c and 6d, the BOD5 and COD RE stayed consistent throughout the operational 378 
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period (except February) at around 80% and 69% respectively. The exception in RE of BOD5 379 

for February can be attributed to the lower BOD loads on that month. This trend is similar to 380 

that observed in the HW filtration.  381 

 The RE of BOD5 and COD of the KW module was relatively lower than that of the HW 382 

module.   The AnSBR of the KW module had an HRT of 33 h, and it was noticed that, even 383 

after 12 months of operations, there was very little sludge present in the AnSBR.  384 

Typically in the enhanced biological phosphate removal systems COD uptake and P-release 385 

occurs in the anaerobic conditions[45]. The exact mechanism of phosphorus (P) removal is yet 386 

to be fully understood in an anaerobic system. Past studies have also reported this observation 387 

and hypothesized two possible explanations. Wang et al had reported 50-70% phosphate uptake 388 

efficiencies in their study and found a correlation between anaerobic uptake of acetate and 389 

phosphates[45]. Keating et al  also observed phosphate removal in the anaerobic digestion of 390 

wastewater treatment and hypothesized the removal mechanism to be biological in nature, 391 

mediated by the biofilms in the reactor[46]. The formation of biofilm was observed in the HW 392 

stages of the treatment but could not be monitored in the KW stages due to the filtration units 393 

being below the ground level. The odor in the KW water obtained after filtration indicates the 394 

presence of anaerobic microorganisms in the KW filtration stages, and biofilm formation is 395 

expected in the KW filter. These indicate that the biofilm or anaerobic microorganism in the 396 

KW filtration stage is responsible for the TP reduction similar to what was reported by Keating 397 

et al[46]. 398 

The KW filtration stages had a lower HRT than the HW filtration stages. This was designed as 399 

the AnSBR was intended to be the main component in removing BOD5 and COD. The low 400 

sludge level in the AnSBR coupled with lower overall surface area and HRT in the stratified 401 

bio-filtration units are believed to be the reason for relatively lower RE for BOD5 and COD.   402 
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3.4 Performance of aeration and ozonation modules 403 

The filtered water obtained at the end of the filtration stages of both KW and HW systems 404 

looked clear as shown in Figure 7, but was not free of odor. Furthermore, the FC of these 405 

samples at the end of the treatment stages was over 1000 MPN/100 mL which exceeds the 406 

Karnataka State Pollution Control Board (KSPCB) treated sewage discharge standards [39,40]. 407 

This standard mentions that it applies to recycling and reuse of treated effluent involving 408 

human contact[39].  The water obtained at the end of KW filtration did not meet the KSPCB 409 

effluent reuse standard norms for BOD5 and COD, which also needed to be addressed. Aeration 410 

and ozonation were performed following filtration to resolve these issues. Ozonation enables 411 

the removal of odor, color, micropollutants [47] and enhances the disinfection capabilities 412 

offered by the treatment plant. The average organic loading rates for the aeration system was 413 

calculated using equation 3 and averaged around 77 g COD/m3 day. 414 

 415 

Figure 7: Visual appearance of water at different treatment stages 416 

Ozone generated from on-site plasma sources was used for the final disinfection stage. Despite 417 

the higher economic cost of plasma-based ozonation compared to chlorination, plasma-based 418 
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ozonation results in fewer health impacts relative to chlorination[48,49]. Ozone is known, to 419 

be superior to chlorine in destroying viruses and bacteria, with contact time of 10 to 30 minutes, 420 

has no harmful residues, and prevents the biofilm growth and regrowth of microorganisms in 421 

wastewater streams [49]. As the treatment module was located in a remote area, a decentralized 422 

approach for the disinfection process using ozonation was preferred over chlorination as it 423 

would reduce the risks associated with handling and shipping of chlorine[49]. Furthermore, 424 

ozonation is also known to elevate the DO concentration as oxygen is the byproduct of ozone 425 

degradation[49]. This reduces the required aeration time for the treatment process to achieve 426 

safe DO levels.  427 

The ozonators were tailormade specifically for the purpose of WW treatment as part of this 428 

work. Rao et al had reported the design and performance of the same ozonator at lower flow 429 

rates and ozone outputs (20 LPM flow rater for 1.2 g h-1 ozone production) for decentralized 430 

GW applications[50]. A 69% reduction in COD was reported upon 30 min of ozonation [50]. 431 

For this study, and based on the results reported by Rao et al, the ozonator design was modified 432 

and optimized to operate at the higher flow air rates (100 LPM) and produce higher ozone 433 

output (4.5 g h-1).The ozonator did not require pure oxygen as a feed gas like most of the 434 

commercially available ozonators but worked with ambient air as the feed gas. This was more 435 

practical as the supply of oxygen cylinders to a rural area is not economically feasible. 436 

Furthermore, oxygen cylinders are a fire and explosion hazard in a school, which requires 437 

skilled technical labor for operation and maintenance. To achieve a decentralized system the 438 

ozonator was designed to be easy to operate and maintain, requiring no external materials after 439 

post-installation. This ozonator was fed air using a compressor, bypassing the need of 440 

compressed oxygen cylinders[50]. Four ozonators were placed in parallel as shown in Figure 441 

3 d and operated only for 30 mins daily to achieve the required effluent sewage and reuse 442 

standards for the treated GW.  443 
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The cost estimation for the disinfection of wastewater using chlorine, ozone and UV varies 444 

based on the volume of water treated daily[51]. The cost of treating 1 𝑘𝐿 of water using 445 

chlorine, ozone, hypochlorite and UV are in the ranges of 0.02-4 $, 0.18-11.7 $, 0.03-4 $ and 446 

0.02-8 $ respectively [49,51–54].  447 

Figure 8 shows the load and removal efficiencies of the aeration and ozonation stages for 448 

turbidity, TSS, BOD5 and COD over the operational period. The turbidity removal efficiency 449 

was consistently between 70% and 88% and averages around 83%. The removal efficiency of 450 

TSS, BOD5 and COD showed variations but averaged around 80, 58 and 49% respectively. The 451 

removal efficiency of BOD5 and COD may seem low, but it must be noted that this is an 452 

enhancement to the high removal efficiencies achieved already by the previous stages. 453 

 454 

 455 

Figure 8: Load and removal efficiencies of the aeration and ozonation for a) turbidity, b) TSS, 456 

c) BOD5 and d) COD over the operational period. 457 
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The FC present in water collected from different sampling points were measured. Table 4 458 

shows the log lower reduction value (LRV) and log higher reduction value (HRV) at different 459 

stages of treatment. 460 

Table 4: Log kill of coliform at each treatment stage 461 

Stage Log LRV Log HRV Avg. Log Reduction 

HW Bio-filtration 1.22 5.25 3.37 

KW Bio-filtration 1.47 3.86 2.96 

Ozonation 0.59 4.93 1.97 

 462 

The filtration shows an average log reduction of 3.37 and 2.96 in the HW and KW filters. The 463 

difference in the LRV and HRV can be attributed to the difference in the FC concentration in 464 

the source water. 465 

The ozonator enhanced the disinfection capabilities by reducing the FC by 2 log to the filter-466 

treated water. The water obtained post-ozonation shows very low coliform values 28 MPN/100 467 

ml) and can be safely utilized for non-potable domestic purposes. The ozone-treated water at 468 

the outlet was free of odor and color. Even after 12 months of use, there was no evidence of 469 

any biofilm on the downstream pipes and tanks of the treated GW distribution system. Also, 470 

there was no evidence of any malodor in the treated GW post ozonation.  471 

3.5 Overall system Performance  472 

The water quality parameters at different stages of treatment are shown in table 5, alongside 473 

the treated sewage discharge standards of the KSPCB. It was observed that the pretreatment 474 

stages are effective for the removal of turbidity and TSS without which, the slow sand bio-475 

filters would have clogged leading to the requirement for frequent maintenance and increased 476 

associated costs. The RE of BOD5 in the HW pretreatment was around 50%, which was only 477 
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10% in the KW pretreatment. This could be attributed to the high amount of food waste that 478 

was discharged into the handwash area as shown in Figure 4. This solid food waste was the 479 

main constituent responsible for the BOD5 of the HW stream. In the KW stream, BOD5 is 480 

attributed to several constituents of not all of which were removed by the pretreatment. 481 

The filtration stages of both KW and HW streams reduce the Turbidity and TSS but do not 482 

bring them within the sewage discharge and reuse standards. The BOD5 and COD removal of 483 

the HW filtration achieves permissible limits. The KW filtration does not bring the BOD5 and 484 

COD to permissible limits due to poor performance of the AnSBR, higher OLR and lower HRT 485 

in the KW bio-filters. The FC in both the KW and HW streams at the filtration outlet was much 486 

higher than the sewage discharge and reuse standards. The ozonation and aeration stages 487 

address these parameters and bring them well within the sewage discharge and reuse standards. 488 

It is important to note that the ozonation stage increases the NO3
−  in the GW, but this range 489 

still falls within the sewage discharge and reuse standards. Rahmadi et al. [42] had reported 490 

oxidation of nitrite and ammonia to NO3
− leading to an increase in NO3

− upon oxidation. The 491 

increase in the NO3
− observed in this study could be due to the oxidation of the other nitrogen 492 

species as the overall TN was not significantly affected by the ozonation stage (Refer to 493 

Supplementary Material).  494 

  495 
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 496 

Table 5: Concentrations of different parameters at different stages of treatment. 497 

Param

eter 

Hand wash 

GW 

baseline 

Hand 

wash GW 

after pre-

treatment 

Hand 

wash GW 

after 

triple 

filtration 

Kitchen 

wash GW 

Kitchen 

wash 

GW 

after 

pre-

treatme

nt 

Kitchen 

wash GW 

after 

anaerobic 

tank and 

updraft 

filtration  

GW post 

aeration and 

ozonation 

(end-use) 

KSPCB 

sewage 

discharge 

and reuse 

Standards

[39,40] 

Turbidi

ty 

(NTU) 

196 ± 112 24 ± 12 
4.32
± 3.84 

225
± 118 

78 ± 55 14 ± 12 0.8 ± 0.4   

TSS 

(mg/L) 
341±223 88±48 30±13.2 619±237 73±30 24±15 9 ± 3.1 20 

Nitrate 

(mg/L) 34 ± 6 26 ± 14 
8.58
± 6.5 

40 ± 6 28 ± 17 9.9 ± 3.4 12.4 ± 11.1 
 

BOD5 

(mg/L) 
344±273 165±72 13 ± 6 445±165 402±178 31±16 9 ± 5 30 

COD 

(mg/L) 
633 ± 383 328 ± 137 48 ± 38 

533
± 267 

497
± 225 

74.3 ± 23 27 ± 16 50 

TP 

(mg/L) 
1.03 ± 0.68  

0.46
± 0.31 

4.53
± 2.01 

 1.40 ± 0.62 0.46 ± 0.25  

FC 

(MPN/ 

100 

mL) 

2.35 × 108 7.2 × 106 3.1 × 103 
2.26
× 108 

2.8
× 106 

3 × 103 28 100 

 498 

Figure 9 shows the loads and removal efficiency of the overall treatment system over the 499 

operational period. From Figure 10c and 10d, it can be seen that the RE of BOD5 and COD is 500 

consistent across filtration stages before averaging around 98% and 96% respectively. The RE 501 

of NO3
− varies between 35 and 80% and averages around 66%. The RE of TP was variable but 502 

averaged aproximately 73%.  503 
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 504 

Figure 9: Load and removal efficiencies of the overall treatment for a) nitrate, b) TP, c) BOD5 505 

and d) COD over the operational period. 506 

Though there are variations in the NO3
− removal over the different months it is important to 507 

note that even the untreated streams of HW and KW had NO3
− which were within the 508 

permissible limits.   The overall treatment system showed RE of 99%, 98%, 66%, 73%, 98%, 509 

96% and >99.99% in turbidity, TSS, NO3
−, TP, BOD5, COD and FC respectively. The relatively 510 

low removal of NO3
− when compared to the other components can be attributed to the low NO3

− 511 

concentrations in KW and HW streams.  512 

3.6 Treated water reuse 513 

An average around 667 L of water was treated daily. All of the treated GW was redirected to 514 

the toilets for flushing. This corresponds to an annual water saving of 180 kL assuming 270 515 

working days in a year. Figure 10 shows the treated water generated from HW and KW 516 

facilities, individually.. The average water consumption in the toilet blocks adds up to be 517 

around 754 L daily. Treated GW was utilized and accounted for 85% of the total water 518 
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consumption in the toilet block.   It has the scope to be also be used for other non-potable 519 

purposes. 520 

 521 

Fig 10: Quantity of treated water from the two sources 522 

3.8 Performance of the system compared to other reported systems 523 

The system performance was compared with values reported in the literature from field and 524 

laboratory studies conducted elsewhere for GW treatment and reuse, owing to a lack of 525 

published reports pertaining to the rural Indian context.  526 

Table 7 provides a summary of the previously reported RE values obtained for different 527 

parameters upon GW treatment for reuse using different technologies and compares it with this 528 

study.  529 

Table 7: Summary of reported wastewater treatment technologies and their performances. 530 

S.No Technology Utilized Removal Efficiencies (%) Log+  

Turbidity  TSS 
 

BOD5  COD  NO3
−  TP FC 

1 [21] Sedimentation followed by aeration 
along with addition of effective 
microorganisms 

 92.4 91.1 79.9    

363
498

300 296 325 361
260 285 301

323

303

299 288 294
333

335
384
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2 [22] Rotating biological contractor 
followed by sedimentation and UV 
disinfection 

 92.8 95.5 219 58.6 

(TKN) 

  

3 HW [23] Coagulation with Al2(SO4)3 followed 
by sand filtration and granular 
activated carbon adsorbtion 

 97  96    

4 [24] Anaerobic filtration (fiberglass) 
followed by UV disinfection 

88 77 73 72 60   

5 [25] Two reedbeds in series followed by a 
pond and soakage area 

97.9  98.8   80 >5 log 

6 [27] Three vertical flow wells followed by 
a recirculation well and a horizontal 
filter (Filtralite® filter system) 

  91 

(BOD7) 

85 51 

(TN) 

42  

7 [27] Three vertical flow wells followed by 
a recirculation well and a horizontal 
filter (Oil shale ash filter system) 

  85 80 46 

(TN) 

89  

8 [28] Sedimentation followed by two 
vertical flow filtration systems with 
crushed lava rock as filter media 

 90-94  90-94 59.5 

(TKN) 

 >3 log 

9 HW [29] Slow sand filtration followed by 
granular activated carbon 

61  56 56   1.7 log 

10 HW 
[29] 

Slate waste filtration followed by 
granular activated carbon 

66  51 60   1.8 log 

11 [30] Coarse filtration followed by 
equalization and secondary filtration 
and step aeration 

70 28 80 65 25 18 2 log 

12 [31] Constructed wetland-microbial fuel 
cells followed by sand biofiltration and 
granular activated carbon filter. 

   99 63 75 4 log 

13 This 
Study 

Pre-treatment followed by filtration, 
aeration and ozone disinfection 

99 98 98 96 66  5-8 log 

+ Log reduction in removal efficiencies are shown for FC, as most of the RE %>99.  
531 

From table 7 it can be inferred that the GW treatment and reuse system installed at Berambadi 532 

government primary school shows RE which is comparable or better than the reported RE 533 

values from earlier studies. This indicates that the system installed is performing better than 534 

other existing systems in place in different parts of the world in terms of RE. The high RE 535 

obtained can be attributed to the integration of different technologies into the system. The RE 536 

values obtained in this study have been consistent for almost one year signifying the robustness 537 

of this system.  538 

Hydraulic retention time is known to influence the RE values of any given GW treatment 539 

system[55]. Detailed analysis on the impact of HRT on the RE of this system has not been 540 
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performed. As the greywater characteristics at the input  described in table 2 was at the higher 541 

range, the effective treatment required a multistage process involving pre-treatment, settling 542 

cum filtration, followed by aeration and ozonation. If the GW did not contain high FC values, 543 

then there would be no need for ozonation. If the GW was devoid of the KW stream, the 544 

implementation of grease trap would not have been required. As this was a rural scenario, space 545 

was not a major constraint and a gravity-driven flow was achievable for this system. This may 546 

not be possible in the urban context as space constraints may force the system to be 547 

underground. There is no fixed system that is optimal for all GW treatment and reuse scenarios. 548 

The characteristics of GW to be treated and the location influence the design of the treatment 549 

system, as do the needs and capacities of end users and operators.  550 

4.0 Conclusion 551 

This study reports the performance of a decentralized greywater treatment and reuse system 552 

which was operated for over 12 months in a government-managed school in rural India. A 553 

greywater treatment train including slow sand biofilters, anaerobic sludge bioreactors, aerators 554 

and ozonation system was installed and the performance of each of the subsystems was 555 

captured. The results show that  556 

• The pre-treatment reduced the TSS and turbidity effectively thereby reducing the 557 

clogging and maintenance in the filtration stages.  558 

• The filtration stages reduced the TSS, turbidity, BOD5, and COD effectively.  559 

• The high FC values at the end of the filtration stages was resolved at the ozonation 560 

stages.  561 

• The treated GW obtained after all these stages were well within the range of the effluent 562 

discharge standards for reuse with human contact prescribed by the KSPCB.  563 

• The overall treatment system showed RE of 99%, 98%, 66%, 73%, 98%, 96% and 564 

>99.99% in turbidity, TSS, NO3
−, TP, BOD5, COD and FC respectively.  565 
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These RE values obtained are comparable and slightly higher than the previously reported 566 

values. The decentralized approach using components that require low-maintenance and are 567 

simple to operate enabled the system to run smoothly without replacement of system 568 

components. The consistent RE for all the parameters discussed for a year of operation signifies 569 

the robustness of the system. A total of 180 kL of water was saved over the operational period 570 

of one-year which was utilized for toilet flushing.  This study establishes that a decentralized 571 

greywater treatment can be installed and operated with relative ease in a rural Indian setting. 572 

The removal efficiencies of each of the sub-systems are quantified which further enables proper 573 

selection of these sub-systems based on influent and effluent quality and demand. 574 
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