Knowledge engineering and planning for social human–robot interaction: a case study

Petrick, R. P. A. and Foster, M. E. (2020) Knowledge engineering and planning for social human–robot interaction: a case study. In: Vallati, M. and Kitchin, D. (eds.) Knowledge Engineering Tools and Techniques for AI Planning. Springer, pp. 261-277. ISBN 9783030385606 (doi: 10.1007/978-3-030-38561-3_14)

[img] Text
223843.pdf - Accepted Version



The core task of automated planning is goal-directed action selection; this task is not unique to the planning community, but is also relevant to numerous other research areas within AI. One such area is interactive systems, where a fundamental component called the interaction manager selects actions in the context of conversing with humans using natural language. Although this has obvious parallels to automated planning, using a planner to address the interaction management task relies on appropriate engineering of the underlying planning domain and planning problem to capture the necessary dynamics of the world, the agents involved, their actions, and their knowledge. In this chapter, we describe work on using domain-independent automated planning for action section in social human-robot interaction, focusing on work from the JAMES (Joint Action for Multimodal Embodied Social Systems) robot bartender project.

Item Type:Book Sections
Glasgow Author(s) Enlighten ID:Foster, Dr Mary Ellen
Authors: Petrick, R. P. A., and Foster, M. E.
Subjects:Q Science > QA Mathematics > QA75 Electronic computers. Computer science
College/School:College of Science and Engineering > School of Computing Science
Copyright Holders:Copyright © 2020 Springer Nature Switzerland AG
Publisher Policy:Reproduced in accordance with the copyright policy of the publisher

University Staff: Request a correction | Enlighten Editors: Update this record