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Why are the east sides of formerly industrial cities more deprived? To
answer this question, we use individual-level census data and create his-
torical pollution patterns derived from the locations of 5,000 industrial
chimneys and an atmospheric model. We show that this observation re-
sults from path-dependent neighborhood sorting that began during
the Industrial Revolution, as prevailing winds blew pollution eastward.
Past pollution explains up to 20% of observed neighborhood segrega-
tion in 2011, even though coal pollution stopped in the 1970s. We de-
velop a quantitative model to identify the role of neighborhood effects
and relocation rigidities underlying this persistence.
I. Introduction
Cities that were formerly reliant on industry tend today to have east-
ern suburbs that are notably poorer than their western suburbs. This
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observation is echoed in media stories about the east side of London,
New York, or Paris and in popular culture (such as in the long-running
BBC soap opera EastEnders). We show that the east-west gradient is par-
tially a remnant of the distribution of the atmospheric pollution that af-
fected cities during the Industrial Revolution. Pollution from historical
factories accounted for about 15%of the variation in neighborhood com-
position in 1881. There is no evidence of excess deprivation in neighbor-
hoods downwind from industrial chimneys before the rise of industrial
coal in 1817. Industrial coal pollution effectively stopped in the 1970s,
but thepathdependence inneighborhood sorting is still felt today. Toun-
derstand this, we develop a quantitative model of neighborhood sorting
and provide new evidence on how the combination of neighborhood ef-
fects and relocation frictions can generate tipping-like dynamics.
This paper is the first to present a long-run analysis of the effects of pol-

lution on the internal structure of cities.While the impact of pollution on
welfare in cities is often highlighted in modern policy debates, the long-
run consequences for economic agents are less well known. Providing
such evidence is challenging since systematic air-pollution monitoring
on a fine spatial scale started only after industrial coal pollutionmarkedly
slowed down. To fill this gap, we develop a novel method of modeling his-
torical pollutionwithinEnglish cities at the endof thenineteenth century.
Specifically, we geolocate industrial chimneys from historical Ordnance
Survey (OS) maps of the 70 largest metropolitan areas in England over
the period 1880–1900 and use an atmospheric dispersion modeling sys-
tem (ADSM) to construct pollution maps from the chimney locations.1
1 To account for heterogeneity in local conditions, the model incorporates additional
information on terrain, prevailing winds, and chimney characteristics (chimney dimen-
sions, exit velocity, coal burning temperature).
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We combine this measure of late-nineteenth-century pollution exposure
with unique, neighborhood-level panel data spanning nearly 200 years.
The latter is made possible by a newly developed algorithm that helps
us geolocate individual addresses from the 1881 census and assign them
to 5,500 low-level administrative units.
We find a strong effect of air pollution on the share of low-skilled work-

ers in 1881. A pollution differential equivalent to that between the 10th
and 90th percentiles in Manchester would be associated with a gradient
of 16 percentage points in the share of low-skilled workers. Importantly,
there is no excess deprivation in neighborhoods downwind from indus-
trial chimneys prior to the rise of industrial coal use. Moreover, we con-
tinue to find substantial persistence in the effect of historical pollution
on within-city distribution of low-skilled workers, even after the second
Clean Air Act of 1968 abruptly decreased pollution from coal burning.2

The previous 10th–90th-percentile difference would explain a similar
gradient in neighborhood composition in 2011 and a 40% difference in
property prices. We also find that the dynamics of persistence between
1971 and 2011 show evidence of nonlinearities, with mean reversion for
intermediate values of within-city pollution and inertia for neighbor-
hoods with values of within-city pollution at the high and low tails of pol-
lution exposure.
An immediate identification concern is that industrial chimneys are

not randomly allocated within cities. We address this issue in two ways.
First, we condition our analysis on the distance to industrial chimneys
and analyze neighborhood composition in all different directions relative
to the chimney. This spatial differencing exercise reveals excess depriva-
tion in 1881 along a narrow corridor downwind of industrial chimneys.
Second, we present an instrumental variable (IV) strategy to address the
concern that chimneys may have been selectively located upwind of poor
areas. Specifically, we instrument the pollution pattern induced by actual
chimneys with a predicted pollution pattern that exploits exogenous loca-
tions of pollution sources. The choice of exogenous pollution sources
rests on the fact that steam engines need water for cooling (Maw, Wyke,
and Kidd 2012). We exploit waterways in 1827 as an exogenous location
factor that predicts the actual pollution pattern. As we also condition
on distance to the waterways and exclude neighborhoods bordering the
waterside, we exploit the difference between upwind and downwind
neighborhoods at the same distance from potential factories located
along waterways. The IV specification delivers qualitatively similar results
as the baseline ordinary least squares (OLS) specification.
2 The first Clean Air Act was enacted in 1956 as a reaction to the Great Smog of 1952 in
London. However, the second Clean Air Act in 1968 caused a much more pronounced
drop in coal consumption.
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To interpret the persistence of past pollution, we develop a dynamic
model of neighborhood choice with two types of households—low-skilled
andhigh-skilled—that differ only in their income.Ourmain contribution
relative to previous studies lies in the way we model moving rigidities. We
suppose that, in each period, households are subject to an exogenous re-
location shock. Conditional on being able to move, the decision to actu-
ally do so reflects households’ relative preferences for neighborhoods
(as in, e.g., Bayer et al. 2016). This setup yields a simple dynamic equation
that characterizes the relative demand for neighborhoods. A key advan-
tage is the comparatively low data requirement; instead of individual
data or flows between neighborhoods, identification requires only the ag-
gregate share of low-skilled households in each neighborhood over 3 pe-
riods. Using the shares of low-skilled households from 1971 to 2011, we
estimate the relative demand for neighborhoods using the generalized
method of moments. To address endogeneity concerns, we show how
to use historical pollution as an instrument for current neighborhood
composition and its subsequent evolution. We find that the persistence
of neighborhood sorting is tied not only to relocation frictions but also
to its interaction with preferences for neighborhood composition. Since
past sorting is partially inherited, a backward-looking element of persis-
tence is captured in the estimate of the share of residents who move in
each period. An additional effect arises from the forward-looking behav-
ior of movers: they anticipate the slow future adjustment of neighbor-
hood composition in their current valuation of a neighborhood.
We use our model to undertake counterfactuals. In particular, we can

quantify the fraction of present-day sorting due to pollution and social
housing policies. In the most-polluted cities, historical pollution in-
creased neighborhood segregation by about 1 standard deviation (SD),
as evaluated in 1971 as well as 2011. We also show that the liberalization
of social housing contributed to the persistence of neighborhood sort-
ing: fixing social housing at its level and distribution in 1971 would have
reduced segregation markedly by preventing well-connected neighbor-
hoods from further gentrifying.
Our paper contributes to three different strands of literature. First, our

work is related to that of Lee and Lin (2018), who look at exogenous nat-
ural amenities as a driver of neighborhood sorting.We, however, study the
consequences of a temporary disamenity. To the best of our knowledge,
we are the first to show that the high level of temporary pollution from
industrial coal use modified the spatial organization of cities in the long
run.3 Related studies that look at pollution-induced sorting in a purely
3 Two recent papers find similar patterns of persistence for (i) historical marshes in New
York City (Villarreal 2014) and (ii) historical streetcar lines in Los Angeles County (Brooks
and Lutz 2019). A large body of literature discusses the path dependence in economic ac-
tivity across cities (e.g., Davis and Weinstein 2002; Bleakley and Lin 2012).
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modern setting include those by Chay and Greenstone (2005) and Ban-
zhaf and Walsh (2008).4 Kuminoff, Smith, and Timmins (2013) provide
a broader review of the residential sorting literature. Our argument fur-
ther relates to that of Depro, Timmins, andO’Neil (2015), who argue that
neighborhood sorting, rather than environmental injustice, is the reason
why poor households are more exposed to environmental disamenities.
Finally, our work shares a common theme with that of Hanlon (2019),
who argues that coal-based pollution was a significant disamenity, with a
strong negative impact on city size in England during industrialization,
and Chen, Oliva, and Zhang (2017) and Freeman et al. (2019), who doc-
ument a similar correlation between pollution and residential choices be-
tween cities in China.
Second, we relate to a literature on the gentrification of historic cen-

ters in US cities (Brueckner and Rosenthal 2009; Guerrieri, Hartley,
and Hurst 2013; Baum-Snow and Hartley 2020; Couture and Handbury
2020), which, in turn, builds on previous research on the dynamics of seg-
regation and tipping points (Schelling 1971; Card, Mas, and Rothstein
2008; Logan and Parman 2017). In our context, we mostly identify a so-
cial component behind segregation (in contrast to the literature on the
United States, whichmostly focuses on ethnic considerations).We also pre-
sent a novel strategy to estimate a dynamicmodel of neighborhood choice
with low data requirements (in contrast to Bayer et al. 2016).Our estimates
point to nonlinearities in the dynamics of segregation: highly polluted
neighborhoods repel high-income residents even after pollutionhas waned.
Third, we contribute to quantitative research in economic history. We

introduce an algorithm that geolocates census entries in 1881. This could
be applied to any historical census in most developed countries. The al-
gorithm exploits the clustering among census entries to infer the geo-
location of all residents from a fraction of well-matched neighbors. An-
other contribution is digitizing historical maps to create a new data set
on pollution and the structure of cities. Related to this approach is work
by Siodla (2015) and Hornbeck and Keniston (2017), who use historical
maps to understand the effects of the great fires in Boston and San Fran-
cisco, and Redding and Sturm (2016), who use maps to document de-
struction in London during the Second World War.
The remainder of the paper is organized as follows. Section II pro-

vides elements of context and describes data sources. The reduced-form
4 There is also a broad body of literature on pollution exposure and its effect on produc-
tivity (Graff Zivin and Neidell 2012), cognitive performance (Lavy, Ebenstein, and Roth
2016), violent crime (Herrnstadt et al. 2019), and health (Graff Zivin and Neidell 2013;
Deryugina et al. 2019; Anderson 2020) that relates to our research. Closely related histor-
ical assessments of the effect of coal use on health include Barreca, Clay, and Tarr (2014),
Clay, Lewis, and Severnini (2016), and Beach and Hanlon (2018).
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evidence on neighborhood sorting and its persistence is discussed in
section III. Section IV develops a dynamic model of residential choice.
The identification and estimation of the demand for neighborhoods are
discussed in section V. Finally, section VI concludes.
II. Historical Background and Data
This section describes the historical setting, our main data sources, the
construction and validation of atmospheric pollution between 1880 and
1900, and neighborhood composition in 1817, 1881, and 1971–2011.
We also provide suggestive evidence about the role of wind direction in
generating spatial inequalities within cities.
A. Historical Background
The start of the classical Industrial Revolution dates to around 1760,
marked by the arrival of new technologies in key growth sectors such as
textiles, iron, and steam. However, important consequences of that revo-
lution were not realized until much later, and per capita growth rates
did not accelerate until after 1830 (Crafts and Harley 1992). Economic
growth was accompanied by an energy transition, with coal emerging
as the dominant energy source around 1840.5 Figure 1A shows this rapid
energy transition and subsequent trends in coal use. There is a sharp ac-
celeration of coal consumption between 1850 and 1910, which flattens
out as electricity and oil rise in importance. The 1926 strike in support
of the coal miners reflects the declining importance of coal, even though
coal consumption remains relatively stable in absolute terms until the
mid-1950s. After the 1952LondonSmog caused approximately 4,000deaths,
a first Clean Air Act was passed in 1956, whichmarked a turning point in air-
quality regulation worldwide (Brimblecombe 2006). Once in place, there
was an increasing societal understanding of the importance of air quality,
which led to the more restrictive 1968 Clean Air Act. The Clean Air Acts
penalized the emissions of grit, dust, and “dark smoke” in cities and placed
minimum height restrictions on chimneys. Industry subsequently shifted
away from coal to the use of cleaner energy sources such as oil, gas, and
electricity generated by power stations outside of cities. As apparent in fig-
ure 1, these regulations, and particularly the Clean Air Act of 1968, had an
immediate and marked impact on coal consumption.6
5 As Musson (1976) shows, power derived from waterwheels remained important to in-
dustry in the early nineteenth century—steam power was not prevalent outside of textiles
until after the 1870s.

6 The early twentieth century saw a consolidation of industry, with employment peaking
at 46% in 1950 (Crafts 2014). The decline in coal consumption preceded the massive de-
industrialization, which occurred most rapidly in the 1980s, when state-owned industries
were privatized.
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The heavy reliance on coal between 1850 and 1960 generated unprec-
edented concentrations of sulfur dioxide (SO2) in the atmosphere,
which scarred cities and their surroundings.7 Mosley (2013), for instance,
conjectured a relationship between historical pollution and neighbor-
hood sorting: “In Manchester, prevailing and strongest winds [blow]
from the south west. This meant that when the dense sulphurous smoke
left Manchester’s tall chimneys it usually moved north east, and this was
to have a marked effect on the shaping of the city. . . . The poorest city
dwellers were forced to live amongst the mills and factories in north-
easterly districts . . . the better-paid among Manchester’s working classes
might at least escape the worst of the smoke” (30–31). The negative impact
of atmospheric pollution is also captured in a well-known case of micro-
evolutionary change. The dominant form of the peppered moth (Biston
betularia) at the start of the nineteenth century was the lighter form
(insularia), as it was camouflaged against predation when on light trees
and lichens. The first sightings of the darker form of the moth (car-
bonaria) in the industrial north of England were not until after 1848
(Cook 2003). As pollution caused trees to blacken under layers of soot,
the carbonaria emerged as the dominant form by the end of the nine-
teenth century. The decline in air pollution after the Clean Air Acts led
to a rapid recovery of the Biston betularia insularia after 1970 (Cook 2003).
Along with the structural transformation of the economy, the end of

the eighteenth century saw rapid urbanization, with workers from the
FIG. 1.—Coal consumption and migration during the Industrial Revolution. A, Increase
and decrease in coal consumption over the period 1750–2000, based on the work of Warde
(2007), who reports coal consumption in petajoule. To convert numbers from petajoule to
tons, we use a conversion factor of 1∶34,140. The solid vertical lines indicate the years 1817
and 1881, while the dashed vertical lines mark the introduction of the 1956 and 1968 Clean
Air Acts. B, Average decadal population growth rate for the period 1801–91 in cities in our
sample.
7 We do not attempt to discuss the growing body of literature on pollution and individ-
ual health. Instead, we refer to a survey article by Graff Zivin and Neidell (2013) and, spe-
cifically, to historical assessments of the effect of coal use on health discussed by Barreca,
Clay, and Tarr (2014), Clay, Lewis, and Severnini (2016), and Beach and Hanlon (2018).
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countryside flocking into the emerging industrial cities (Shaw-Taylor
and Wrigley 2014). As shown in figure 1B, the growth of cities started
to decline after 1830 and steadily slowed down as the nineteenth century
proceeded. By the end of the nineteenth century, the large cross-country
migratory flows that marked the early Industrial Revolution had moder-
ated significantly.8

This great movement into cities came with an increase in density that
overwhelmed Victorian cities. The characteristic back-to-back houses
were put together with thin walls and no foundation or ventilation and
located within walking distance to the new factories. The lack of suitable
housing along with a limited supply of clean water and sanitation created
unhealthy urban slums plagued by diseases such as cholera and typhoid,
leading to notoriously low life expectancy (Clark 1962). Only in the sec-
ondhalf of the nineteenth century did the PublicHealth Acts of 1872 and
1875 begin to improve the living conditions of the poor.
While poor working-class families were typically stuck in the inner res-

idential areas (or urban slums) around the city center, middle- and, sub-
sequently, lower-middle-classes families started separating their place of
work and place of residence, thus encouraging new housing develop-
ment in suburbs at the fringe of the city. Wealthier suburbs were charac-
terized by private residential gardens and spacious villas, while poorer
suburbs were made up of long terraces of byelaw housing. As discussed
by Heblich, Redding, and Sturm (2020), the rise of the railways and the
subway facilitated suburbanization, with residential development spread-
ing widely around London. However, this wide-sprawling development
was specific to London. In other British cities, suburbs remained in walk-
ing distance from workplaces (Kellett 1969; Lawton 1972).
The empirical analysis relies on the following observable characteris-

tics of neighborhoods: (i) neighborhood composition in 1817, before
the acceleration in coal consumption and around the decline in rural mi-
gration to urban centers; (ii) atmospheric pollution, neighborhood com-
position, and urban structure around 1880–1900, slightly before the peak
in coal consumption; and (iii) neighborhood characteristics between 1971
and 2011, after the abrupt decrease in atmospheric pollution.
B. Data Sources and Construction
This section provides a summary of the different data sources; a compre-
hensive description can be found in appendix C (apps. A–H are available
online).
8 Ravenstein (1885) and Williamson (1990) show that the portion of city growth due to
migration declines over the nineteenth century; by 1881, 75% of individuals in England
and Wales resided in the county of their birth.
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1. OS Maps and Geolocation of Pollution Sources
Data on city structure and pollution sources are drawn from theOSmaps,
which are scaled at 25 inches to 1 mile. These maps are the most detailed
topographic maps to cover England and Wales at the turn of the nine-
teenth century. We restrict the analysis to the wave of maps published be-
tween 1880 and 1900 and to the 70 largest metropolitan areas in England
at the time (as derived from the 1907 Census of Production). These cities
constitute a quasi-exhaustive snapshot of industry and cover 60% of the
total population in 1801 and 66% in 2011. The maps contain details on
roads, railway, rivers, canals, and public amenities as well as the outline
of each building and their use.9 Most useful for our purposes, these maps
mark the locations of factory chimneys, in a sign of the fastidiousness
of Victorian mappers. We georeference more than 5,000 chimneys, all
matched to a description of the associated workshop or factory. Figure 2
gives some examples of the variety of symbols that were used to mark a
chimney on amap; figure 3 depicts ourmethodof extracting information.
In order to account for sectoral differences in coal use, we extract in-

dustrial information along with chimney locations.10 Aggregatemeasures
of coal use per worker are calculated for the following 11 industrial cate-
gories: brick factories, foundries, chemical factories, mining, breweries,
tanneries, food processing, textile production, paper production, ship-
building, and wood processing (Hanlon 2019). A simple textual analysis
based on a few keywords to associate a category to the map’s description
of each industrial site allows us to match 90% of the 5,000 chimneys. The
remaining 10% are classified under a generic category (“other manufac-
tures”). The estimated pollution emission Ei from a chimney in industry i
is constructed as

Ei 5
Ci � Li

Chi

,

where Ci is the industry-specific measure of coal use per worker, Li is total
employment in industry i, andChi is the total number of chimneys of type
i. Accordingly, Li=Chi gives us the average number of workers per chim-
ney in industry i.11
9 We use theOSmaps to extract information about the city contour—the location of town
halls, market halls, churches, schools, universities, parks, theaters, museums, churches, and
hospitals.

10 The industrial category—measured with error—is the only information that we use in
order to proxy for the average pollution emission associated with a chimney. The measure-
ment error induced by our (imperfect) modeling of pollution emissions is likely to gener-
ate an attenuation bias. We show, however, in a robustness check that the industry weight
already contains significant information.

11 We report the estimated pollution emission per industry, Ei, in table A1 (tables A1–
A13 are available online). As chimneys in the unidentified category (other manufactures)
are apparently associated with small workshops, we calibrate their weight Ei on the least-
polluting category (wood processing).
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2. Pollution Dispersion
The previous exercise produces a map of industrial pollution sources.
The ADMS 5 dispersion model then permits us to construct a citywide
map of exposure to air pollutants (SO2, measured in mg/m3).12 The
ADMS 5 models atmospheric dispersion under a large spectrum of me-
teorological conditions, provides pollution estimates in coastal areas, in-
corporates the impact of temperature and humidity, and accounts for
complex terrain and changes in surface roughness.
The ADMS 5 model requires a number of inputs. First, it uses meteoro-

logical information. We use contemporary, 10-year statistical meteorologi-
cal data as provided by theMetOffice, thereby neglecting small changes in
prevailing winds related to climate fluctuations between the nineteenth
century and today. Figure 4 illustrates the wind provenance and intensity
for two of the four regional models: Northern England and Southern En-
gland.Winds blowmostly from the west/southwest; it is, however, less pre-
dictable inNorthern England, generating, on average,more dispersed air-
pollutionmeasures. Second, themodel requires complex terrain data and
convective meteorological conditions on land. We use the current terrain
height and ruggedness, which affect wind speed and turbulence for cities
with high gradients.13 Finally, ADMS 5 requires information on the emis-
sion source. Atmospheric dispersion modeling is usually parameterized
FIG. 2.—Examples of markings used to identify chimneys in 1842–1952 Ordnance Survey
maps (scaled at 25 inches to themile). Four different symbols for chimneys are circled. The var-
iation in symbols prevents us from directly using a recognition algorithm. Instead, we go
through all maps and mark chimneys with the symbol X and a unique numeric identifier
(see fig. 3).
12 See http://www.cerc.co.uk/environmental-software/ADMS-model.html. Atmospheric
dispersion models are additive, such that concentration of air pollutants is calculated as
the sum of concentrations computed separately from each chimney.

13 Since industrial chimneys during the Industrial Revolution were shorter than modern
chimneys, pollution dispersion was heavily influenced by surrounding topography. In
fig. A1, we show the differences in pollutant dispersion implied by topography in a city with
high gradients (Oldham). Topography and land cover play little role in flat terrains.

http://www.cerc.co.uk/environmental-software/ADMS-model.html
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on current chimneys that are tall and wide and have high exit velocity. By
contrast, chimneys in the Industrial Revolution were 10–50m tall, with the
majority being shorter than 25 m. Moreover, the exit velocity and temper-
ature were also lower than today. To incorporate these characteristics, we
set chimney height to 25 m in the baseline and assume an exit velocity of
4m/s and an exit temperature of 1207C.Tomodel pollution from residen-
tial sources, we assume domestic chimneys to be uniformly distributed
within city borders at a very low altitude, and theADMS5model is usedun-
der the same meteorological and topographic inputs.14

To validate our pollution measure, we use a sample of deposits col-
lected in a few neighborhoods of Manchester as part of the First Annual
Report of the Sanitary Committee on the Work of the Air Pollution Advi-
sory Board, 1915 (Mosley 2013). We provide a comparison of our con-
structed measure with this external source in figure 5. We observe a large
variation across neighborhoods for both measures, illustrating that dis-
tance to chimneys, topography, and wind directions generate significant
FIG. 3.—Marks X and identifiers (e.g., “00006”) used by a recognition algorithm to
locate chimneys and associated factories, together with the projection provided by the
Ordnance Survey, allow us to geolocate each chimney. Factory-specific information can
be retrieved after the recognition algorithm has (i) located a chimney and (ii) stored
the associated identifier.
14 In our sample of industrialized cities, the relative contributionof domestic emissions (vs.
industrial emissions) in explaining the distribution of pollutant concentration within a city is
low: while industrial coal consumption was very high but also very concentrated in few neigh-
borhoods, residential coal consumption was equally spread across neighborhoods.
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within-city dispersion in pollution, with some neighborhoods reaching
alarming concentrations in air pollutants.15 Reassuringly, the estimated
pollution very strongly correlates with the deposit measure.
Another validation exercise brings us back to the example of the pep-

peredmoth and the appearance of the darker carbonaria form.We exploit
a collection of surveys reporting the melanic forms of species of moths
(Cook 2018). We restrict the sample to 54 surveys conducted before the
swift decrease in industrial pollution (between 1965 and 1974). Figure A2
(figs. A1–A16 are available online) illustrates the relationship between
our measure of historical pollution at each survey site and the share of
darker moths. We find higher shares of the darker form (carbonaria) in
highly polluted areas. There is a difference of about 60 percentage points
between the least- and most-polluted survey sites. This exercise provides
additional support for the validity of our pollution measure.
3. Measure of Neighborhood Composition
Measures of neighborhood sorting in the nineteenth century are ex-
tracted from individual records of the 1881 census. These records hold
FIG. 4.—Wind-rose differences across two sets of meteorological conditions based on
10-year statistical meteorological data from the Met Office. A, North England. B, South En-
gland. We use four different sets of meteorological conditions across England and Wales:
Southern England, Central England, Northern England, and East Anglia.
15 To better understand the extent to which cities werepolluted at the endof the nineteenth
century, we provide the cumulative distribution for our measure of pollution in our sample of
neighborhoods (LSOA). Figure A3 shows that about 10%of LSOAs display air pollution above
the two National Ambient Air Quality Standards (SO2 concentration above 12 and 15 mg/m3,
respectively). About 2% of LSOAs—mostly in Manchester, Oldham, and Liverpool—have in-
dexes of pollution above the peaks recorded in contemporary Beijing (40 mg/m3).
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information on the structure of households and each occupant’s gender,
age, occupation, and place of birth. There are two indicators of house-
hold location: a parish variable and an unreferenced address. While
the parish variable is consistently referenced, the geographically more
precise address information is inconsistently reported (surveyors use ab-
breviations, and misspelling is frequent) and poorly digitized (e.g., due
to handwriting). To process this patchy information, we develop amethod
to allocate households interviewed in the 1881 census to small adminis-
trative units (2001 lower layer super output area [LSOA]), based on the
organization of data collection.
Individual surveyors were given blocks to survey, and each filled in

enumerator books while visiting their allocated neighborhoods: this in-
duces a mechanical spatial clustering among adjacent individual records.
The exact position of each entry in the 1881 census is thus an exceptional
source of information that has, to the best of our knowledge, not previ-
ously been exploited.16 If we locate a fraction of households, we can infer
the location of unmatched entries given their position in the census
books and the location of well-matched neighbors.
FIG. 5.—Air-pollution measures (external validity) across neighborhoods of Manchester,
based on the First Annual Report of the Sanitary Committee on theWork of theAir Pollution
Advisory Board, 1915. The graph charts the relationship between deposits, as collected by
the Air Pollution Advisory Board (1915), and our measure of SO2 concentration (mg/m3).
The correlation between the two measures is 0.92. Deposit measure (g/m2) is available for the
following neighborhoods: Ancoats Hospital (30.59), Philips Park (22.59), Whitworth Street
(22.51), Queen’s Park (20.18), Moss Side (18.69), Whitefield (15.53), Fallowfield (13.24),
Davyhulme (12.68), Cheadle (10.63), and Bowdon (6.25).
16 Logan and Parman (2017) exploit the structure of the 1880 US census enumeration
to create segregation measures based on the race of “census neighbors.”
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To implement our clustering analysis, wefirst geolocate a non-negligible
fraction of households. First, we create a pool of geolocated addresses,
heritage sites, and listed buildings. Second, we run a fuzzy matching pro-
cedure between census addresses and the pool of geolocated addresses
within the same registration parish. A perfect match is found for 20%
of all records, and a further 30% are matched with sufficient precision
(where 90% of the original string is found in the matched address).17

To locate the remaining addresses, we run an algorithm that uses the
well-matched addresses together with the mechanical clustering induced
by a surveyor’s sequenced record taking to infer a location for the un-
matched addresses. This procedure is described in detail in appendix D.
For the preperiod, we use “The Occupational Structure of England

andWales, c.1817–1881” (Shaw-Taylor andWrigley 2014), which constructs
a quasi-census of male occupations around 1817 using baptism records.
These data are nested within the 834 parishes of the 1881 microcensus
and cannot be allocated to smaller administrative units. Recent censuses
(1971–2011) provide consistentmeasures of occupation, housing, educa-
tion level, and country of origin, and we use area weights to map census
enumeration districts into LSOAs.
One drawback is that we do not directly observe income. Instead, we

observe three-digit occupational information in recent censuses and rely
on a similar classification for 1817 and 1881 (the primary, secondary, ter-
tiary [PST] systemof classifying occupations; seeWrigley 2010). There are
various ways to proxy for income based on occupational structure, for ex-
ample by predicting income using average occupational wages. Such in-
ference would require assumptions regarding the relative wage per occu-
pation across cities. For the sake of transparency, we rely on a proxy based
on the raw data, that is, the share of low-skilled workers among the work-
ing population. For 1817 and 1881, we collapse the 500 occupational sub-
categories into 10 categories. We restrict the sample to individuals with
the lowest possible measurement error, that is, males between 25 and
55.18 Unemployed, disabled, unskilled, and semiskilled workers are classi-
fied as low-skilled workers. Managers, gentlemen, rentiers, clerks, and
manual skilled workers are classified as high-skilled workers. We assign
farmers to a separate category and drop soldiers from our analysis. This
breaks down to about 60% low-skilled workers, 30% high-skilled workers,
and 10% farmers in 1881 (78%, 12%, and 10%, respectively, in 1817)
17 There are three potential sources of noise when matching historical address with
current addresses: (i) reporting error from past surveyors, (ii) digitizing errors, and
(iii) changes in street names, e.g., red-light districts. The first two sources of error are the
most common.

18 Our results are robust to (i) adding female workers, as we will show later, and (ii) wid-
ening the age interval (e.g., 15–65).
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in the 70 metropolitan areas. For 1971–2011, occupations are already
classified into one-digit occupational categories: managers, professionals,
associate professionals, administration, manual skilled, care, sales, pro-
cessing, and elementary.We group thefirst three categories as high-skilled
and the remaining six as low-skilled to harmonize shares of low-skilled
workers between 1881 and 1971–2011. Clerks andmanual skilled workers
are thus classified as low-skilled, which breaks down to 62% low-skilled
workers and 38% high-skilled workers in 2011.
C. Descriptive Statistics
We start by providing evidence on the correlation between exposure to
air pollutants and neighborhood composition and the underlying role
of prevailing wind patterns. Figure 6 displays the spatial gradients in pol-
lution and in the share of low-skilled workers at the end of the nineteenth
century in the average city of our sample.19 The pollution cloud leans to-
ward the east, which could be due to prevailing winds or possibly the un-
equal distribution of pollution sources across space. The spatial gradient
in the share of low-skilled workers also exhibits a similar asymmetric pat-
tern toward eastern neighborhoods, albeit with slightly greater noise.
Figure 7 refines our analysis of the relationship between the share of

low-skilled workers in 1881 and pollution sources. Units of observation
are the 675,000 block � chimney pairs, where a block is a census cluster
of households with the same geolocation in 1881 that is located within
2 km of the chimney (there are 100,000 such blocks). Figure 7A displays
the average share of low-skilled workers in 1881 as a function of distance
to the chimney. There is a sharp gradient, with a 10 percentage point dif-
ference between 100 and 1,500 m from a pollution source. This gradient
likely captures high commuting costs. Strikingly, even conditional on dis-
tance to the pollution source and amenities in 1881, there remains large
variation in the share of low-skilled workers at the block level. Part of this
variation relates to the location of the block relative to the chimney. As
apparent in figure 7B, there is a 1.5 percentage point excess share of
low-skilled workers for blocks situated northeast of the chimney. This gra-
dient in the direction of prevailing winds is what will be captured in the
reduced-form analysis in the next section.
Table 1 provides summary statistics at the level of our baseline units of

observation. Within a buffer of 20 km around the centroids of our 70
19 Figure 6A is constructed as follows. First, we define a grid of equally spaced points—
every 100 m—within 1.5 km of each city centroid, and we associate excess pollution at each
point relative to the average city pollution. Second, we overlay the city grids and compute,
for each point, the unweighted average of excess pollution across cities. Third, we interpo-
late across grid points using a Gaussian kernel interpolation method. The 20 level lines are
quantiles of pollution. Figure 6B is constructed in the same fashion, with the share of low-
skilled workers in 1881. We provide a similar illustration centered on town halls in fig. A4.



FIG. 7.—Relationship between the share of low-skilled workers in 1881 and their position
relative to a pollution source. In this exercise, the unit of observation is a neighborhood �
chimney pair, where a neighborhood is a census cluster of households with the same
geolocation in 1881 (about 100 households). A, Average share of low-skilled workers in
1881 across observed units (weighted such that all households are given the same weight).
B, Residual of the share of low-skilled workers in 1881 cleaned for distance to the pollution
source and distance to amenities (canals, town hall, theaters, hospitals, parks, churches,
schools, universities, guild hall, mills, and elevation), as a function of the direction with re-
spect to the pollution source. The lines are locally weighted regressions on all observations
with respective bandwidths of 30 m (A) and 207 (B). “NE” indicates that the household is
located toward the northeast direction, from the standpoint of the pollution source.
FIG. 6.—Pollution and share of low-skilled workers in the average city. A, Average gradi-
ent of pollution in 1880–1900 across cities. B, Average gradient of neighborhood compo-
sition, as captured by the share of low-skilled workers in 1881, across cities. To construct
this figure, we define a grid of equally spaced points within 1.5 km of each city centroid
(indicated with a triangle); we overlay the grids across cities and consider the unweighted
average. In order to create a continuous measure, we interpolate across the grid points us-
ing a Gaussian kernel. The 20 shadings/level lines are quantiles of pollution (A) and share
of low-skilled workers (B); darker shadings indicate the highest quantiles.
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metropolitan areas, the clustering process associates about 5million active
male workers in 1881 to 5,538 LSOAs. As these LSOAs are the 2001 census
units, we can associate contemporary measures to all of these 5,538 geo-
graphic units that will constitute our baseline sample. The sample covers
70metropolitan areas, 142 “cities” (i.e., local administrations), and 542 par-
ishes.20Weprovide summary statistics for the full sample and forLSOAswith
above- and below-median pollution at the city level. We report statistics for
TABLE 1
Descriptive Statistics and Variance Decomposition

Mean

Pollution Standard Deviation

High Low Total Between Within
(1) (2) (3) (4) (5) (6)

A. Air Pollution

Normalized pollution 2.034 .234 2.298 .928 .596 .560

B. Population Measures

1817:a

Low-skilled workers .784 .787 .780 .111 .090 .073
High-skilled workers .093 .085 .102 .087 .085 .068
Farmers .123 .128 .117 .092 .066 .047
Property tax (log) 9.94 10.05 9.82 1.25 1.05 .077

1881:
Low-skilled workers .601 .627 .573 .256 .149 .235
High-skilled workers .278 .285 .271 .241 .125 .217
Farmers .121 .088 .156 .199 .176 .180

2011:
Low-skilled workers .587 .605 .568 .173 .118 .123
High-skilled workers .413 .395 .432 .173 .118 .123

C. Topography Controls

Maximum elevation (m) 72.9 66.9 79.0 66.0 63.3 31.8
Minimum elevation (m) 52.6 50.2 54.9 48.9 44.1 19.6
Mean elevation (m) 62.3 58.3 66.4 55.8 51.6 23.4
Distance canals (km) 6.12 5.57 6.69 14.9 19.1 1.30

D. Amenities Controls

Distance town hall (km) 4.64 3.05 5.24 5.35 4.72 1.27
Distance parks (km) 9.57 9.38 9.77 23.9 28.9 1.16
Share LSOA within city .296 .398 .192 .418 .245 .296
Area (km2) .940 .608 1.28 3.99 8.00 3.50
Distance heavy (km) 2.49 1.98 3.01 6.36 8.82 .973
Distance light (km) 5.32 4.80 5.84 13.5 17.6 1.16
20 We show the geographi
c distribut
ion of these 5,538 LS
OAs in fig
. A10.
Note.—All statistics are computed using the baseline sample of 5,538 lower layer super
output areas (LSOAs). Standard deviations are decomposed into between- and within-city
standard deviations. The samples of high and low within-city pollution are defined with re-
spect to the median city pollution.

a Computed at the parish level, which explains the lower variance.
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the main outcome variables and baseline controls, accounting for topogra-
phy, amenities, and direction (latitude and longitude). Some of these char-
acteristics capture important differences between more- and less-polluted
LSOAs within cities. Less-polluted neighborhoods have higher elevation,
aremore rural, andaremoredistant fromwaterways andpollution sources.
In columns 4–6 of table 1, we provide a decomposition of the variance
within and between cities. A very large share of the variance in pollution
is within cities. Our empirical strategy, described in the following section,
hinges on such within-city variation and is mostly orthogonal to variation
across cities.
III. Reduced-Form Evidence
This section presents reduced-form evidence on (i) historical pollution
and neighborhood sorting and (ii) the subsequent persistence of neigh-
borhood segregation.
A. Empirical Strategy
To estimate the impact of pollution on neighborhood sorting within cit-
ies, we run a baseline difference specification at the LSOA level and an
IV specification where we employ exogenous factors that influence the
location of pollution sources.
1. Baseline Specification
Letting i denote an LSOA, p a parish, c a city, and t a particular census
wave, we estimate the following equation:

Yit 5 a 1 bPi 1 cXi 1 mYp 1 dc 1 εict , (S1)

where Yit is a measure of occupational structure. The measure of histor-
ical pollution, Pi, results from a combination of the location of pollution
sources and a dispersion process. Physical features such as hills or rivers
that enter the simulated pollution measure may also be local (dis)ame-
nities that affect individual neighborhood choices. To eliminate this po-
tential source of bias, we include separate topography indicators (e.g.,
maximum, minimum, and average elevation), along with a rich set of
geographic controls (e.g., area, share of LSOAwithin the city borders, lat-
itude, and longitude) and controls for (dis)amenities (distance to water-
ways, heavy-industry chimneys, light-industry chimneys, the town hall,
and parks) in the set of controlsXi. We use Yp to indicate a set ofmeasures
of occupational structure in 1817 at the parish level (shares of low-skilled
workers, high-skilled workers, and farmers) and the logarithm of the
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property tax in 1815 at the parish level to capture possible fixed neighbor-
hood amenities. City fixed effects are indicated by dc, and standard errors
are clustered at the parish level.21

We further exploit the interaction between the distribution of pollu-
tion sources and air-pollution dispersion by considering counterfactual
diffusion processes, such as those generated by the same pollution
sources but with artificially rotated wind patterns. One can think of this
procedure as a decomposition of the interaction between location and
diffusion; it isolates variation induced by the asymmetry between neigh-
borhoods at the same distance from factories, some of them being located
downwind and others upwind (as in fig. 7).
A concern with specification (S1) is that the treatment may not be ex-

ogenous because fixed unobserved amenities explain both the upwind
presence of industries and the local occupational structure. In robust-
ness checks, we show a balance test before the rise of industrial coal pol-
lution and provide identification at a more granular level by including
fixed effects at the level of parishes or electoral ward.22

Finally, there is a remaining threat to identification from reverse cau-
sality or time-varying omitted variation. For instance, factories may be
strategically placed upwind of poor neighborhoods to minimize political
or economic costs associated with environmental disamenities in richer
neighborhoods. We address this concern with an instrumental variable.
2. IV Specification
To account for the bias arising from potentially nonrandom industry loca-
tion, we exploit exogenous variation in location factors, which translates
into exogenous variation in pollution imprints. Specifically, we exploit
the fact that large boilers required a constant stream of water for cooling.
As a result, the natural geographic placement of all mills was along rivers
or canals (Maw, Wyke, and Kidd 2012). We locate hypothetical chimneys
in intervals of 150m along waterways in 1827, before the rise of coal as the
21 Our main independent variable, i.e., historical pollution, is a preestimated regressor,
which has possibly a sampling variance of its own, due to, e.g., variation in the 10-year av-
erage weather conditions. Standard errors need to be adjusted in such cases (Murphy and
Topel 2002). One standard method is to bootstrap the procedure defined by (i) the esti-
mation of historical pollution and (ii) our reduced-form regression. However, the sam-
pling variance generated by the first step occurs within the atmospheric dispersion model
that we outsource to ADMS 5. We thus cannot correct our standard errors for this issue,
and they may be slightly underestimated. On a separate note, we allow for spatial correla-
tion along distance in robustness checks (following Conley 1999), instead of clustering
standard errors at a certain administrative level.

22 One issue with our reduced-form approach is that the potential outcome for one
neighborhood is affected by the treatment intensity in other neighborhoods. Finer fixed
effectsmay aggravate this issue if individuals choose residences within a small radius around
their working place. One way to deal with this issue is to develop a proper model of neigh-
borhood choice that accounts for equilibrium adjustments at the city level (see sec. IV).
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main energy source. To derive our instrument, we assume uniform air-
pollutant emissions from these exogenous pollution sources, combined
with the actual atmospheric dispersion due to wind flows and topogra-
phy.23 This natural geographic placement of chimneys is not susceptible
to being selectively placed upwind of poor neighborhoods. However, the
variation correlates with proximity to waterways that may itself affect the
attractiveness of a neighborhood. We thus control separately for distance
to waterways and exclude neighborhoods bordering these waterways.
We then use the following first-stage specification to instrument the

historical pollution, Pi, in specification (S1):

Pi 5 b0 1 b1PP i 1 cXi 1 dc 1 fYp 1 eict , (S2)

where PPi is the simulated pollution using hypothetical chimneys. As de-
scribed above, Xi includes a comprehensive set of controls for physical
attributes, Yp is the occupational structure in 1817 at the parish level,
and dc are city fixed effects.
B. Historical Pollution and Neighborhood Sorting
In this section, we document a positive contemporaneous correlation
between air pollution and the share of high-skilled workers in 1881. In
table 2, we report the estimates for our baseline specification (S1). As
can be seen in column 1, air pollution and the share of low-skilled work-
ers in 1881 are positively correlated. It does not affect the estimates when
we control for a large set of covariates. In column 2, we add city fixed ef-
fects to control for variation in atmospheric pollution and neighborhood
composition between cities (Hanlon 2019). In column 3, we add (log)
property tax in 1815 and the parish-level shares of low-skilled workers,
high-skilled workers, and farmers in 1817 to clean for potentially un-
observedfixed characteristics. For columns 4–6, we add separate elements
entering in the pollution-dispersion process. In column 4, we condi-
tion on topography (elevation and distance to waterways in 1827). In col-
umn 5, we control for distance to pollution sources (heavy and light in-
dustry), distance to city hall, distance to parks, area, and the share of
the LSOA within the 1880 city borders.24 In column 6, we add eastings
23 Figure A5 depicts our approach. In panel a, we see the cities of Manchester and Old-
ham with the associated 1827 natural waterways. Panel b displays the natural geographic
placement of chimneys along canals, and panel c shows the resulting spatial distribution
of air pollutants. Finally, panel d shows the distribution of air pollutants using actual pol-
lution sources.

24 As stated in sec. II, the metropolitan areas (and thus the sample of LSOAs) are de-
fined by a buffer of 20 km around the centroids of our cities. In robustness checks, we verify
that the results are left unchanged if we limit the sample to urban LSOAs intersecting with
the 1880 city borders (which may be endogenous and affected by pollution through agri-
cultural yields).
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and northings of the LSOA centroids to control for wind patterns and
potential western or southern preferences in locations. As apparent from
table 2, our estimates slightly decrease but remain large and precisely
estimated.25

The correlation between air pollution and the occupational structure
is both statistically and economically significant. In the baseline specifi-
cation (col. 6), the coefficient is 0.034 and the 95% confidence interval
is [0.020, 0.047]. One additional standard deviation in air pollution in-
creases the prevalence of low-skilled workers by 3.4 percentage points,
which is about 13.3% of a standard deviation in their prevalence across
LSOAs. A differential in pollution equivalent to the one between the first
and last deciles in Manchester would be associated with a differential of
16 percentage points in the share of low-skilled workers.26 Residential sort-
ing may be tempered by the necessity for residents to live close to their
working place, as induced by relatively costly modes of transportation.
Figure 8 illustrates the estimated relationship between the share of low-

skilled workers before and after the rise in coal use (in 1817 and 1881,
respectively) and the atmospheric pollution during the Industrial Revo-
lution. On the y -axis, we plot the residuals from a regression of the stan-
dardized shares of low-skilled workers on a similar set of controls, as in
column 6 of table 2. On the x -axis, we plot the regression-adjusted resid-
ual of standardized air pollution. The relationship between the share of
low-skilled workers and standardized air pollution is strongly positive but
flattens at both extremes, that is, for very high and very low within-city
pollution levels. By contrast, there is no correlation between the share
of low-skilled workers in 1817 and the measure of atmospheric pollution.
The most convincing evidence in support of a causal relationship be-

tween pollution and neighborhood sorting comes from hypothetical pol-
lution imprints. In figure 9, we disentangle the role of prevailing winds
from the correlation induced by proximity to pollution sources.27 We first
construct a measure capturing average proximity to pollution sources at
the LSOA level. The measure of symmetric pollution is generated by dis-
persing pollutants from existing chimneys but under a wind profile that is
25 Column 1 of table A2 reports the coefficients on all covariates.
26 We consider other outcomes in table A3, with the share of all low-skilled workers in-

cluding females and the share of migrants distinguishing between migrants from England
andWales vs. the Commonwealth. We find that the standardized effects of pollution on the
share of all low-skilled workers and migrants are comparable to the baseline findings. In-
terestingly, the higher prevalence of migrants in polluted neighborhoods is essentially due
to migrants from England and Wales (and thus unrelated to the Irish Potato Famine).

27 The exercise underlying fig. 9 is similar in nature to the exercise underlying fig. 7. In
both cases, the objective is to exploit the direction of prevailing winds and the location of
neighborhoods relative to chimneys, with controls for their proximity to such chimneys.
Relative to fig. 7, fig. 9 isolates the role of prevailing winds (i) by aggregating pollution ex-
posure across chimneys and census blocks and collapsing the data at the LSOA level and
(ii) by conditioning the analysis on an extended set of controls (as in col. 6 of table 2).



1530 journal of political economy
symmetric in all directions. We then generate a set of counterfactual pol-
lution exposures using wind profiles rotated in steps of 307 relative to the
actual prevailing winds. Figure 9 displays the correlations between these
rotated measures and the share of low-skilled workers for the years 1817
and 1881, conditioning on an extended set of controls and the symmetric
pollution measure. In 1817 (fig. 9A), before the rise of coal pollution, we
observe virtually no correlation between rotated pollution measures and
the share of low-skilled workers. In 1881 (fig. 9B), after pollution became
a meaningful disamenity, we see a pronounced bell-shaped pattern, with
a peak in correlation observed around wind profiles rotated by 07 and
307.28 As we rotate wind profiles away fromprevailing winds, the estimated
relationship loses significance and turns negative. To reduce measure-
ment error, we clean our estimates for parish fixed effects in figure 9C
and for residential pollution in figure 9D. The estimates remain large
within a narrow corridor along prevailing winds, but they now decrease
sharply, becoming negative for rotations of more than 907.
FIG. 8.—Pollution (x -axis) across neighborhoods and shares of low-skilled workers (y -
axis) in 1817 and 1881. The graph charts the relationship between the (standardized) shares
of low-skilled workers in 1817 (gray triangles) and 1881 (black diamonds) and our (stan-
dardized)measure of past pollution. We consider the residuals of all measures once cleaned
by the topography controls, the amenities controls, and the latitude/longitude controls
(see table 1). We create 40 bins of neighborhoods along past pollution, and the circles rep-
resent the average shares of low-skilled workers within each bin. The lines are locally weighted
regressions on all observations. We restrict the sample to observations with residual pollution
between 21 and 1 standard deviation.
28 The fact that the peak in correlation is 07–307may be due to measurement error. First,
wind patterns may have changed in one century, in particular the frequency of cyclonic or
anticyclonic conditions (Lamb 1972), each associated with different wind-direction pro-
files. Second, we consider yearly averages for our meteorological conditions, possibly ig-
noring differential pollution exposure and wind patterns across seasons or hours of a day.
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Finally, we present in table 3 the results of the IV strategy (spec. [S2]),
that uses 1827 waterways as a source of exogenous variation for chimney
locations. We report four sets of estimates, excluding neighborhoods
within 250 or 500 m of waterways, both with and without extended con-
trols in addition to city fixed effects. The first stage is strong in all cases,
and the (stable) two-stage least squares estimates tend to be larger than
the OLS estimates. One additional standard deviation in air pollution
increases the prevalence of low-skilled workers by about 9 percentage
points. Explanations for the downward bias in the OLS specification
could be measurement error or possibly the difference between the local
average treatment and the average treatment effects. The IV strategy
mostly relies on variation induced by pollution sources located around
city centers, and the treatment effect appears larger for these central
neighborhoods. Indeed, the local slope between pollution and the share
of low-skilled workers is highest for pollution levels between 0 and 0.50 SD
above the mean (see fig. 8); the average pollution for central neigh-
borhoods or for neighborhoods in proximity to waterways is around
FIG. 9.—Rotating wind patterns representing conditional correlations between shares
of low-skilled workers and counterfactual measures of past pollution rotated in steps of
307. A, 1817; B, 1881; C, 1881, with controls for parish fixed effects; D, 1881, with controls
for parish fixed effects (FEs) and residential pollution. Each circle represents the estimate
in a specification including the controls reported in table 1, column 6, and the measure of
symmetric pollution capturing proximity to the pollution source. Standard errors are clus-
tered at the parish level, and the lines represent 5% confidence intervals.



1532 journal of political economy
0.10–0.30. Moreover, we find larger average treatment effects when re-
stricting the sample to central LSOAs (see app. E).
C. Historical Pollution and Contemporary
Neighborhood Segregation
This section extends our analysis of neighborhood sorting to recent cen-
sus waves (1971–2011) to assess potential reversion to the mean after the
1968 Clean Air Act stopped coal use within cities. Table 4 reports the
slopes between the shares of low-skilled workers and historical pollution,
TABLE 3
Pollution and Shares of Low-Skilled Workers in 1881—Instrumental

Variables Specification

(1) (2) (3) (4)

A. First Stage: Pollution

Pollution (waterways) .2904 .2020 .3100 .1834
(.0331) (.0347) (.0403) (.0384)

B. Second Stage: Share of Low-Skilled Workers

Pollution .1286 .0937 .1143 .0695
(.0199) (.0296) (.0201) (.0359)
[.5076] [.3695] [.4511] [.2743]

Observations 4,830 4,830 4,557 4,557
F-statistic 77.16 33.91 59.22 22.81
OLS coefficient .0408 .0216 .0392 .0209
Sample Canal > 250 m Canal > 250 m Canal > 500 m Canal > 500 m
Fixed effects (city) Yes Yes Yes Yes
Extended controls No Yes No Yes
Note.—Standard errors are reported in parentheses and clustered at the parish level.
Standardized effects are reported in brackets. Panel A reports the first stage, and
Kleibergen-Paap F-statistics are reported in panel B. The unit of observation is a lower layer
super output area (LSOA). The set of extended controls include all controls in col. 6 of
table 2. The variable pollution (waterways) is the first predicted pollution instrument from
a uniform allocation of pollution sources along waterways (as of 1827). Samples exclude
LSOAs within 250 m (cols. 1, 2) and 500 m (cols. 3, 4) of a waterway.
TABLE 4
Pollution and Shares of Low-Skilled Workers in 1971–2011

1971 1981 1991 2001 2011

Pollution .0244 .0309 .0388 .0374 .0355
(.0046) (.0050) (.0063) (.0063) (.0057)
[.1914] [.2204] [.2072] [.2299] [.2029]

Observations 5,535 5,538 5,538 5,538 5,538
Fixed effects (city) Yes Yes Yes Yes Yes
Extended controls Yes Yes Yes Yes Yes
Note.—Standard errors are reported in parentheses and clustered at the parish level (as
defined in 1881). Standardized effects are in brackets. Each cell is the result of a separate
regression. The unit of observation is a lower layer super output area. The set of extended
controls include all controls in col. 6 of table 2.



east-side story 1533
as estimated by specification (S1). One standard deviation in historical
air pollution increases the prevalence of low-skilled workers by 2.5–4 per-
centage points without a clear pattern between 1971 and 2011, and the
standardized effects range between 0.19 and 0.23. Table 5 displays the IV
estimates for the occupational structure in recent years and shows, as in
table 4, that there are no signs of (overall) reversion to the mean.
Our analysis of spatial inequalities in cities of the nineteenth century

was not informed by house or land prices, due to data scarcity.We do have
such data for more recent years, however. In table 6, we use transactions
TABLE 5
Pollution and Shares of Low-Skilled Workers in 1971–2011—Instrumental

Variables Specification

1971 1981 1991 2001 2011

Pollution .0300 .0406 .0342 .0462 .0495
(.0164) (.0198) (.0257) (.0193) (.0214)
[.2358] [.2895] [.1823] [.2839] [.2830]

Observations 4,829 4,830 4,830 4,830 4,830
F-statistic (first stage) 33.91 33.91 33.91 33.91 33.91
Fixed effects (city) Yes Yes Yes Yes Yes
Extended controls Yes Yes Yes Yes Yes
Note.—Standard errors are reported in parentheses and clustered at the parish level (as
defined in 1881). Standardized effects are in brackets. Each cell is the result of a separate
regression. The unit of observation is a lower layer super output area (LSOA). The set of
extended controls include all controls in col. 6 of table 2. As in cols. 1 and 2 of table 3, the
instrument is the predicted pollution generated by a uniform allocation of pollution sources
along waterways (as of 1827), and we exclude LSOA within 250 m of a waterway.
TABLE 6
Pollution, House Prices, and Transactions (Nationwide, 2009–13,

and Land Registry, 2000–2011)

Nationwide Land Registry

(1) (2) (3) (4)

Pollution 2.1035 2.0852 2.1116 2.0642
(.0168) (.0121) (.0161) (.0121)

[2.1685] [2.1386] [2.2030] [2.1168]
Observations 5,226 5,226 5,538 5,538
Fixed effects (city) Yes Yes Yes Yes
Extended controls Yes Yes Yes Yes
Controls (house characteristics) No Yes No Yes
Note.—Standard errors are reported in parentheses and clustered at the parish level.
Standardized effects are in brackets. Each column is the result of a separate regression.
The unit of observation is a lower layer super output area. The set of extended controls
include all controls in col. 6 of table 2. The dependent variables are the (log) average
house prices. The unreported effect of pollution on the number of transactions is between
20.0473 (specification similar to col. 3) and 20.0878 (specification similar to col. 4). In
col. 2, controls for house characteristics include the average shares of new houses, the av-
erage square meters, number of bedrooms, and the year of construction for nationwide
transactions. In col. 4, controls for house characteristics include the average shares of de-
tached, semidetached, terraced, and new houses for all transactions.
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in England andWales as recorded by (i) the Land Registry between 2000
and 2011 (cols. 1, 2) and (ii) the Nationwide Building Society between
2009 and 2013 (cols. 3, 4). Hedonic regressions with and without controls
for average house characteristics find that one additional standard devi-
ation in past pollution is associated with a price drop of about 10%–11%.
Controls for property characteristics reduce these estimates to 6%–8%,
showing that properties in formerly polluted neighborhoods are smaller
and more likely to be nondetached.29

Past environmental disamenities appear to have a marked effect on
spatial inequalities today. A differential in pollution equivalent to the
one between the first and last deciles in Manchester is associated with
a differential of 16 percentage points in the share of low-skilled workers
or with differences in property prices of about 40%.
To visualize possible nonlinearities in the persistence of neighborhood

sorting, figure 10 displays the relationship between shares of low-skilled
workers in 1817 (long dash), 1881 (short dash), 1971, 1991, and 2011
(plain lines) and the historical pollution disamenity that stopped after
the 1968 Clean Air Act. As apparent, we observe some reversion to the
mean for low and intermediate values of within-city pollution. By con-
trast, segregation patterns appear to persist at around 1 SD above average
within-city pollution.
To take a closer look at the underlying dynamics, we refine the analysis

between 1971 and 2011 and organize the data in a panel structure with
decadal observations for each LSOA. To shed light on nonlinearities,
we define 10 pollution categories corresponding to the 10 deciles in
intracity pollution, that is, neighborhood pollution adjusted by the aver-
age city pollution. We then run a panel regression with the share of low-
skilled workers as the dependent variable, LSOA fixed effects, city� year
fixed effects, and trends for each pollution decile. The initial relation-
ship between the share of low-skilled workers in 1971 and pollution dec-
iles is displayed in figure 11A, while the estimates for pollution-decile
trends are shown in figure 11B. A process of mean reversion would be
captured in the form of a decreasing pattern in trends for each pollution
decile.30 Our findings are not consistent with a uniform reversion to the
mean. Figure 11A shows evidence of mean reversion over the period
1971–2011 but only for areas with below-median levels of past pollution
exposure (i.e., pollution categories 1–5). We see a slight increase in the
share of low-income workers in the least-polluted neighborhoods and a
corresponding decrease in moderately polluted neighborhoods. For
29 Figure A6 illustrates these very large effects.
30 Letting xi,t denote the excess share of low-skilled workers in neighborhood i and pe-

riod t and v < 1 the AR(1) parameter, we should observe that

E xi,t11 2 xi,t½ � 5 ðv 2 1ÞE xi,t½ �:
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neighborhoods with above-median levels of past pollution, however, we
see the opposite. These neighborhoods become even more deprived rel-
ative to the median polluted neighborhoods. This pattern would be con-
sistent with tipping dynamics leading to a high persistence of deprivation
in neighborhoods with extreme pollution exposure in the past.
FIG. 11.—Mean reversion between 1971 and 2011—share of low-skilled workers by pol-
lution decile. A, The effect of pollution on the share of low-skilled workers in 1971 in a spec-
ification with pollution category dummies defined by pollution decile (1 5 lowest, 10 5
highest pollution exposure). The effect of the last decile is normalized to 0. B, The effect
of pollution on the annualized trends in low-skilled workers between 1971 and 2011. The
specification is a panel regression using data in 1971, 1981, 1991, 2001, and 2011 with lower
layer super output area fixed effects. The reported coefficients are extracted from the inter-
action of pollution category dummies and the year and are adjusted to represent decadal
changes.
FIG. 10.—Pollution (x -axis) across neighborhoods and shares of low-skilled workers
(y -axis) in 1817, 1881, 1971, 1991, and 2011. This figure represents the locally weighted
regressions on all observations between the (standardized) shares of low-skilled workers
and our (standardized) measure of past pollution. We consider the residuals of all mea-
sures once cleaned by city fixed effects as well as topography and population controls.
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D. Sensitivity and Robustness Checks
We conduct a large number of robustness checks around the baseline
specification(s). We summarize the findings in this subsection and leave
a detailed discussion of the results along with additional figures and ta-
bles to appendix E.
First, we conduct balance tests in the period before coal pollution to

further reduce concerns about biasing effects from unobserved preex-
isting neighborhood characteristics. There is no correlation at the parish
level between either the 1817 share of low-skilled workers or the 1815
property tax returns (as a proxy for wealth) and the later atmospheric
pollution.
Second, we consider variations in our pollution modeling. We vary

only the chimney height, as the exit velocity and temperature would af-
fect the same crucial model input, that is, the height of the smoke col-
umn in the atmosphere. The atmospheric pollution based on chimneys
assumed to be shorter (15 m) or taller (40 m) than our baseline (25 m)
generates similar estimates, as in tables 2 and 4.
We also try a simple, albeit less informative, measure of pollution expo-

sure. We overlay each city with a grid of equally spaced points and count
the number of chimneys that are located in the (i) northeast, (ii) north-
west, (iii) southeast, or (iv) southwest quadrants—within a given distance
from each grid point. Last, we collapse themeasure for all four quadrants
into 2001 LSOAs. Only chimneys located in the northwest and southwest
are correlated with the share of low-skilled workers, which coincides with
prevailing downwind directions. Once we split the sample into northern
and southern cities, we find that chimneys located in southwest quad-
rants are relatively more predictive of deprivation in northern cities, re-
flecting the more southerly wind direction in North England (see fig. 4).
Third, we test the sensitivity of our findings to the addition of the fol-

lowing pollution imprints as controls: a symmetric placebo pollution
measure that assumes that pollution spreads evenly in all directions
and captures the proximity to industrial centers; a placebo pollution pat-
tern that varies the emission intensity by coding the chimneys of high
(low) polluting industries as low (high) polluting; residential pollution;
and a contemporary measure of atmospheric pollution. We find that the
two placebo patterns do not affect the significance of the main pollution
variable and have no predicting power, suggesting that there is no addi-
tional information in distance or emission intensity that might affect our
estimation. Residential pollution does predict deprivation, but its stan-
dardized effect is one-third of the standardized effect of industrial pollu-
tion. Contemporary pollution has a small impact on neighborhood com-
position in 2011. Historical pollution is far more predictive of current
spatial inequalities than current exposure to air pollutants.
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Fourth, we explore sensitivity to controls, fixed effects, clustering, and
sample selection. We control for a number of within-city geography var-
iables interacted with city fixed effects to capture city-specific geographic
patterns and commuting infrastructure: latitude and longitude, distance
to the town hall, distance to heavy industries, and distance to light in-
dustries. The effect of a standard deviation in pollution remains stable
at 3.6–4.5 percentage points in the share of low-skilled workers. We
also report the results of our baseline specification with 540 parish fixed
effects, with fixed effects expanded to 1,440 electoral wards and to the
1,850 middle layer super output areas (MSOA). The estimates remain
unchanged, even when identification comes from a within-MSOA com-
parison. We report standard errors clustered at three different levels:
electoral ward, MSOA, and city. Standard errors increase by about 40%
between the least and most conservative choice, and our baseline analy-
sis clustered at the parish level is at the center of this interval. Finally, we
estimate the baseline specification on alternative samples where we ex-
clude Greater London, the northwest, and the northeast, respectively.
The estimates fluctuate around the baseline, but they remain large in
all cases.31 We also analyze the sensitivity of our results to the exclusion
of suburbs and rural LSOAs. The estimates remain precisely estimated
and larger than in the baseline when restricting the analysis to central
neighborhoods.
Fifth, we consider an alternative instrument, based on the historical

settlements of industries. We isolate variation induced by the location
of industrial districts before coal became a major energy source that
would affect disproportionately downwind neighborhoods. To predict
early industrial districts, we locate 543 early steam engines installed be-
tween 1700 and 1800, using data from Kanefsky and Robey (1980) and
Nuvolari, Verspagen, and von Tunzelmann (2011). We model uniform
air-pollutant emissions from early steam engine locations and use the re-
sulting atmospheric dispersion as an instrument for actual pollution,
conditioning for distance to the nearest industrial chimneys. The esti-
mates from using this instrument are remarkably similar to the ones us-
ing waterways as an exogenous factor for industry location.
Finally, we provide some insight on the recent dynamics of neighbor-

hood composition (1971–2011) in appendix F, where we document dif-
ferences across neighborhoods in school supply, crime, housing quality,
31 We find, however, that the treatment effect is about three times smaller in the north-
west region than in the rest of the country. The evidence suggests that it is due to nonlin-
earities in the treatment effect: pollution is about 0.8 SD above the country average in the
northwest, and the relationship between pollution and deprivation flattens for such pollu-
tion levels in 1881 (see fig. 10). From 1971 to 2011, the relationship is more linear, and the
northwest treatment effect is then much closer to the average treatment effect.
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and public amenities. We also show how the liberalization of social hous-
ing and immigration inflows may have contributed to residential segrega-
tion between 1971 and 2011 in appendix G.
IV. A Dynamic Model of Residential Sorting
In order to quantify the nonlinear dynamics in the persistence of neigh-
borhood sorting between 1971 and 2011, we develop a dynamic model of
residential sorting within a city, in which infinitely lived households face
relocation frictions. Those relocation frictions mean that optimal resi-
dential choice depends on past and future neighborhood amenities.
The purpose of the model is to derive a dynamic demand equation for
neighborhoods, which we can then proceed to estimate in section V.
A. Environment
Consider a unit mass of infinitely lived households, each of measure
zero. Time is discrete, and each household receives utility every period
from the consumption of the numeraire and a neighborhood amenity.
Households are hand-to-mouth consumers, and they rent one unit of
land from absentee landlords in a closed city. Land markets are compet-
itive, and land supply is constant over time.
We assume that there is a discrete number of neighborhoods J. Let

rj,t denote the rental cost in neighborhood j and period t. The amenity
in each neighborhood may be time varying, and we denote it aj,t. Fi-
nally, we assume that there is a household- and period-specific idiosyn-
cratic preference shock, εi,j,t, for household i in neighborhood j and
period t.
The flow of utility for household i residing in neighborhood j at period

t is uj ,t 1 εi,j ,t , where uj,t depends on consumption and the amenity

uj,t 5 g aj ,t , yt 2 rj,t
� �

and where yt is the (exogenous) income in period t.
At the beginning of each period t, the idiosyncratic preference shock is

revealed. There is then another household-specific idiosyncratic draw:
with probability 1 2 v, the household can freely relocate to any other
neighborhood within the period. This relocation shock is a convenient
way to capture the presence of moving rigidities. This formalization has
two important properties. First, there is an exogenous and representative
share v of nonmovers in each period. Second, and in contrast with impli-
cations of the common assumption of fixed moving costs (Bayer et al.
2016), the location choice of a possiblemover is not tied to their previous
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location.32 One interpretation of the option to move being a random
draw is that the psychological cost of considering relocation is very high,
and only an external event can force the household to pay such a cost. For
instance, a liquidity shock may force the absentee landlord to sell the
property—the equivalent of exogenous firing in models of labor search.
Alternatively, the householdmay be affected by life-cycle shocks (e.g., the
birth of a child).
Letting b denote the discount factor, the value of residing in neighbor-

hood j and period t for household i is

Ui,j ,t 5 uj ,t 1 εi,j ,t 1 bvEtUi,j ,t11 1 b 1 2 vð ÞEtVt11,

where Vt11 is the value function for a household with the opportunity to
relocate at t 1 1. A household with the opportunity to relocate considers
the path of future (and possibly stochastic) amenities faj ,tgj ,t as given and
maximizes

Vt 5 max
j

uj ,t 1 εi,j ,t 1 bvEtUi,j,t11

� �
1 b 1 2 vð ÞEtVt11:

We assume, as is common in models of residential sorting (Bayer et al.
2016), that idiosyncratic preferences, εi,j,t, are distributed across house-
holds along a type-I extreme-value distribution, such that the fraction
of households opting for neighborhood j if they have such an option
in period t, n*j ,t , follows a logit model:

n*j,t 5
eo

∞
t50

bvð ÞtEtuj,t1t

oj eo
∞
t50

bvð ÞtEtuj,t1t
: (1)

Households need only consider the states of nature along which no fur-
ther reoptimization is possible; these occurrences are the only ones in
which the current relocation decision matters—see appendix B.1 for
the derivation of equation (1) from the household optimization problem.
The equilibrium is given by (i) a sequence of neighborhood choices,

resulting from the previous household optimization problem, and (ii) a
sequence of rental prices, rj,t, which adjust to equate land supply and
land demand in each neighborhood and each period. We assume that
households are perfectly rational. In each period, households form cor-
rect beliefs about the path of future exogenous amenities as well as cur-
rent and future demand for neighborhoods, given the state of the econ-
omy. In effect, households have correct beliefs about the evolution of the
endogenous amenity, {sj,t}. Households are of measure zero; they take de-
mand for neighborhoods and rental prices as given.
32 The possibility to relocate is orthogonal to the current location and to the relative val-
uations of the different neighborhoods in the city. Conditional on being able to move,
however, the household decision to stay or move will account for relative preferences for
neighborhoods.
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B. Equilibrium with Two Types of Households
Consider that the city is populated by two types of households o ∈ fH , Lg
in proportion (h, 1 2 h), differing only along their income, where
yL < yH .33 The demand for neighborhood j is given by equation (1),

ln n
H*
j,t

� �
5 o

∞

t50

bvð ÞtEtu
H
j ,t1t 2 ln o

j

e
o
∞

t50

bvð ÞtEtu
H
j ,t1t

0
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1
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∞

t50

bvð ÞtEtu
L
j ,t1t 2 ln o

j

e
o
∞

t50
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L
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,
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where (n
H*
j ,t , n

L*
j ,t ) are the fractions of each type of household opting for

neighborhood j at time t. Letting (nH
j,t , n

L
j ,t) denote the fractions of each

type of household residing in neighborhood j at time t, we have

nH
j ,t 5 vnH

j ,t21 1 ð1 2 vÞnH*
j ,t

nL
j ,t 5 vnL

j ,t21 1 ð1 2 vÞnL*
j ,t

,

(

and the land market equilibrium implies that, in each period t and
neighborhood j,

hnH
j ,t 1 ð1 2 hÞnL

j,t 5 nj ,

where nj is the fixed land supply in neighborhood j. We can use these
equilibrium conditions in periods t and t 2 1 in order to express the
whole problem as a function of the share sj,t of type-L households among
households living in neighborhood j and period t.34 By subtracting the
respective demand schedules, we obtain35
33 We allow for this share of workers of different skill types to fluctuate over time, follow-
ing migration choices, in app. B.3, and show that the relative demand for neighborhoods
across types would remain unchanged. We also consider an extension with many house-
hold types and elastic land supply in app. B.3, and we show that the assumption that land
supply is inelastic and constant over time is not crucial to derive the dynamic demand for
neighborhoods but is required to identify the model with our data.

34 The reader interested in the detailed derivation of the demand schedule can refer to
app. B.2. Note that we normalize the total number of households to be equal to 1 without
loss of generality, i.e.,

ho
j

nH
j ,t 1 ð1 2 hÞo

j

nL
j ,t 5 1:

35 We define F ðxÞ 5 lnð1 2 xÞ 2 lnðxÞ and

mt 5 ln o
j

eo
∞
t50

bvð ÞtEtu
L
j ,t1t

 !
2 ln o

j

eo
∞
t50

bvð ÞtEtu
H
j ,t1t

 !
1 ln

h

1 2 h

� 	
:

The quantity mt captures the average relative welfare of each type in period t.
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F
sj ,t 2 vsj ,t21

1 2 v

� 	
5 o

∞

t50

bvð ÞtEt uH
j ,t1t 2 uL

j ,t1t

� �
1 mt :

We can thus write the dynamic demand equation for neighborhood j as

F
sj ,t 2 vsj,t21

1 2 v

� 	
2 bvEtF

sj ,t11 2 vsj ,t
1 2 v

� 	
5 uH

j ,t 2 uL
j ,t 1 nt , (2)

where F is a decreasing function, and nt 5 mt 2 Etmt11 is a time-fluctuating
variable that captures dynamics in the relative welfare of type-L residents
and does not vary across neighborhoods.
Equation (2) characterizes the relative demand for neighborhood j.

The right-hand side is the contemporaneous valuation of living in neigh-
borhood j for an average type-H household relative to an average type-L
household. The left-hand side is the relative demand for this neighbor-
hood. A positive shock to the relative valuation of neighborhood j at time t,
uH
j ,t 2 uL

j ,t , induces an instantaneous decrease in the fraction of low-
skilled workers residing in neighborhood j. This decrease is, however,
tempered by relocation rigidities: (i) some residents have not been able
to respond to the change in valuation by relocating; and (ii) the residents
who do have the opportunity to relocate account for the fact they may not
be able to relocate in subsequent periods. With v 5 0, the program of res-
idents collapses to a static problem.Theydonotneed toworry—in the cur-
rent period—about their location in subsequent periods, and they fully
adjust to any changes in their valuation of neighborhoods. With v > 0,
the demanddepends on the past and future expected allocation of house-
holds. The next section discusses the identification and estimation of
equation (2) in the data.
V. The Persistence of Residential Sorting
In this section, we discuss the identification of the relative demand for a
neighborhood in the data, present the estimates, and discuss counterfac-
tual exercises.
A. Identification
We estimate equation (2) using the observed neighborhood composition
in 142 closed cities, indexed by c, over five waves (1971, 1981, 1991, 2001,
and 2011). The identification requires the following assumptions. We
suppose that utility features complementarity between the neighborhood
amenity, aj,c,t, and the consumption of the numeraire and that household
types differ only along their fixed income y. Specifically, we let the utility
of a type-o household living in neighborhood j of city c be
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uo
j ,c,t 5 aj ,c,t yo 2 rj,c,t

� �
:

We further assume that the neighborhood amenity, aj ,c,t 5 hðaj ,c , xj ,c,t , sj ,c,tÞ,
is a functionof (i) a constant, city-wide exogenous amenity, aj,c; (ii) a neigh-
borhood amenity shock, xj,c,t, satisfying Et21½xj ,c,t � 5 0 and observed by
agents at the start of period t (before the relocation choice); and (iii) an
endogenous amenity proxied by the current compositionof theneighbor-
hood, sj,c,t.36 The estimation of the relative demand for neighborhoods re-
quires that we specify a functional form for the valuation of neighborhood
j in city c. Our data do not include resident flows between neighborhoods
(as in, e.g., Bayer et al. 2016), even at the aggregate level. Therefore, we
can identify only a function h that is separable in its components. We show
in appendix B.2 that demand for neighborhood j can then be written as

F
sj,c,t 2 vsj,c,t21

1 2 v

� 	
2 bvF

sj ,c,t11 2 vsj ,c,t
1 2 v

� 	

5 a0 1 a1s
g
j ,c,t 1 bj ,c 1 z j,c,t 1 nc,t , (S3)

where bj,c is a neighborhood fixed effect, unobserved to the econometri-
cian, and the noise zj,c,t is a linear combination of the neighborhood ame-
nity shock and a prediction error, F ððsj ,c,t11 2 vsj ,c,tÞ=ð1 2 vÞÞ2 EtF ððsj ,c,t112
vsj ,c,tÞ=ð1 2 vÞÞ, thus satisfying Et21½z j ,c,t � 5 0.
In specification (S3), the parameters of interest are v, b, and the vector

of parameters characterizing the relative valuation of neighborhoods,
(a, g).37 The estimation needs to absorb city/wave fixed effects, vc,t,
and neighborhood fixed effects, bj,c.
We estimate specification (S3) by generalizedmethodofmoments. The

(local) identification of the discount factor, b, the relocation rigidities, v,
and the preferences for neighborhood quality are formally derived in ap-
pendix B.5. Intuitively, the identification of preferences for neighbor-
hood quality relies on variation in the share of low-skilled workers across
neighborhoods at a point in time, sj,c,t. By contrast, the identification of the
discount factor and relocation rigidities comes from the dynamics of res-
idential sorting. The change in residential sorting from one period to an-
other is important in pinning down both parameters. The acceleration/
slowdown in residential sorting (the change in the change in sorting) is

(S3)
36 The composition of the neighborhood is used as a proxy for the wide range of neigh-
borhood effects that may affect the perceived “neighborhood quality.” Durlauf (2004) and
Rosenthal and Ross (2015) provide excellent overviews of neighborhood effects affecting
residential choices. These effects may include school quality (Durlauf 1996), quality of the
housing stock (Rosenthal 2008), or preferences to live among workers of similar or higher
income groups (Guerrieri, Hartley, and Hurst 2013) or the same ethnic group (Card, Mas,
and Rothstein 2008).

37 We study the dynamic properties of the system of equations (spec. [S3]) in app. B.4.
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crucial in separating the specific role of relocation rigidities. The follow-
ing thought experiment helps understand this last argument. Consider
one neighborhood that is expected to be polluted until t 1 1 and clean
in t 1 2. High relocation rigidities will induce very similar relocation pat-
terns in t, t 1 1, or t 1 2: agents anticipate that they may not be able to
move in the future and relocate as soon as they are given the opportunity.
With low relocation rigidities, agents will instead mostly relocate in t 1 2.
High relocation rigidities are thus identified through sluggish dynamics.
A concern with the estimation of specification (S3) is that, in the data,

the share of low-skilled workers, sj,c,t, may be correlated with the unob-
served noise zj,c,t. Neighborhood dynamics correlate with the neighbor-
hood amenity shock, unobserved to the econometrician. We thus ex-
clude the shares of low-skilled workers, sj,c,t, from the set of instruments,
and we create a set of new instruments exploiting the temporary dis-
amenity induced by historical pollution. Pollution had an impact on
the initial stock of low-skilled workers across neighborhoods. Given the
role of neighborhood dynamics in identifying equation (S3), we interact
past pollution, as a shifter for the initial share of low-skilled workers, with
wave fixed effects. The set of instruments allows us to isolate variations in
the share of low-skilled workers in 1971, in its growth from one period to
the other, and in its acceleration/slowdown (as shown in figs. 10, 11).
In parallel, we control for the interactions of (i) the initial share of so-

cial housing in 1971 and (ii) bombing intensity during the German Blitz,
with wave fixed effects, in order to clean for dynamics induced by social
housing policies (e.g., the Housing Act 1980) and urban renewal.38 We
also control flexibly for nonlinear dynamics linked to the presence of
amenities in a neighborhood by interacting a measure of predicted ame-
nities (using all controls of table 2, col. 6, to predict the share of low-
skilled workers in 1971) with wave fixed effects. The identifying assump-
tion is that historical pollution is orthogonal to neighborhood amenity
shocks and affects only relative demand for neighborhoods through in-
herited neighborhood composition, conditional on time-varying con-
trols for social housing, past exposure to bombings, and predicted neigh-
borhood amenities. A premise is that industrial pollution from coal
burning disappears from cities after 1971.
B. Structural Estimates
The estimates for specification (S3) are reported in table 7. Column 1
reports the baseline specification where neighborhood preferences are
linear in neighborhood composition. The share of low-skilled workers
38 We study the respective roles of social housing and bombing intensity on neighbor-
hood sorting in apps. G and H.
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lowers the valuation of the neighborhood, which generates a multiplier
effect. One additional standard deviation in the share of low-skilled work-
ers (about 7 percentage points) reduces the relative valuation of a neigh-
borhood by about 0.20, which would trigger—off equilibrium and at the
steady state—a further decrease in the share of high-skilled workers of
3 percentage points. This finding is illustrated in figure A8. The persis-
tence in neighborhood dynamics derives from the existence of neigh-
borhood effects, combined with non-negligible moving rigidities. Past
neighborhood composition directly influences current neighborhood
composition, as many residents will not be given the opportunity to relo-
cate. Movers anticipate this long-lasting effect on neighborhood compo-
sition and adjust their location choices accordingly. We quantify this indi-
rect, forward-looking effect in the next section.
The probability of being given the opportunity to relocate over a period

of 10 years, 1 2 v, is estimated to be 52%. Assuming that residents al-
ways move when given the possibility (they would almost certainly do so in
a city with many neighborhoods), this estimate implies an average hous-
ing tenure of about 14 years, consistent with average rates of turnover ob-
served in the housing market. The annualized discount rate, estimated
TABLE 7
Relative Demand for Neighborhoods—Structural

Estimation for Specification (S3)

(1) (2) (3) (4) (5)

Relocation rigidity v .4782 .4777 .4706 .4730 .4897
(.0229) (.0221) (.0314) (.0209) (.0225)

Discount factor b .9303 .9000 .6312 .8171 1.365
(.3783) (.3152) (.9056) (.2660)

Preferences a1 22.869 22.893 23.652 23.122 25.285
(1.051) (.9147) (2.062) (.7225) (1.590)

Preferences g 1 1 1 1 1.170
(.3079)

Observations 16,284 16,284 16,284 16,284 16,284
Instruments (I1) (I2) (I3) (I1) (I2)
Note.—Standard errors are in parentheses and clustered at the parish� wave level. The
unit of observation is a lower layer super output area in 1981, 1991, or 2001. The estimation
is performed using a one-step generalized method of moments estimator, with all endog-
enous variables included as instruments, except neighborhood composition variables, which
are replaced by measures of historical pollution � wave fixed effects. The set of instru-
ments I1 include our baseline measure of historical pollution interacted with wave fixed
effects. The set of instruments I2 include pollution deciles interacted with wave fixed ef-
fects. The set of instruments I3 include distance to waterways interacted with wave fixed ef-
fects. All specifications include city/wave and neighborhood fixed effects and the interac-
tions of (i) bombing intensity during the German Blitz and (ii) the initial share of social
housing in 1971 with time fixed effects, and (iii) a measure of predicted amenities (using
all controls in table 2, col. 6, to predict the share of low-skilled workers in 1971). The re-
location rigidity corresponds to a yearly probability to be able to relocate of 7%; the 10-year
discount rate b corresponds to a yearly discount rate of 0.993 (col. 1).
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to be around 0.7%, is in the low range of risk-free rates observed over
the past 50 years (in spite of a recent drop in such rates; Del Negro
et al. 2019).
We then run a series of robustness checks. We add the set of dummies

for different pollution deciles interacted with time trends as instru-
ments, in order to exploit the nonlinearities in neighborhood dynamics
documented in figure 11 (see table 7, col. 2). We replace the pollution-
based instruments by distance to waterways interacted with wave fixed
effects in order to replicate the intuition behind our IV strategy in col-
umn 3. We calibrate the discount factor as induced by a 2% annualized
discount rate and estimate the remaining parameters (col. 4). Finally, we
estimate a nonlinear specification in column 5. The baseline specifica-
tion is robust to the use of a different set of instruments; the identifica-
tion of the relocation rigidity v does not appear to be tied to the identi-
fication of the discount factor; the parameter g is not significantly
different from 1. For these reasons, we consider the estimates presented
in column 1 as the baseline estimated parameters in the following simu-
lations and counterfactual experiments.
C. Dynamics of Neighborhood Segregation
To consider the in-sample performance of the model, we simulate neigh-
borhood dynamics between 1991 and 2011 using the structural estimates
reported in column 1 of table 7 and the actual shares of low-skilled work-
ers in 1971 and 1981. Figure 12 shows themodel performance in explain-
ing the transitional dynamics between 1971 and 2011. There is a secular
and exogenous decrease in the share of low-skilled workers. This de-
crease is, however, more pronounced for neighborhoods with low histor-
ical pollution exposure, where neighborhood composition does not an-
chor expectations about future amenities. In effect, the relationship
between past pollution and deprivation is at least as strong in 2011 as
in 1971, when industrial pollution abruptly waned from urban centers.
We report the observed shares of low-skilled workers in 2011 to provide
some visual evidence of the model fit: the model performs well in repro-
ducing the general neighborhood dynamics.
Next, we introduce two counterfactual experiments to help us under-

stand the respective role of preferences and frictions in the dynamics of
segregation. In a first counterfactual experiment, we simulate neighbor-
hood dynamics in a model where preferences are set to be orthogonal to
current neighborhood composition. More specifically, we set the param-
eter a1 to zero and adjust the neighborhood fixed amenity to keep the
right-hand side of specification (S3) unchanged in 1971. In figure A9a,
we report the simulated share of low-skilled workers in 2011. The secular
decrease in the share of low-skilled workers between 1971 and 2011 is
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much larger in formerly highly polluted neighborhoods: neutralizing
neighborhood effects is sufficient to turn around the dynamics of segre-
gation, with the remaining correlation between past pollution and depri-
vation being entirely explained by fixed geographic amenities. In a sec-
ond counterfactual experiment, we keep preferences as in the baseline
model and instead modify the extent of rigidities in the relocation pro-
cess. More precisely, we increase the annual probability to be given the
opportunity to relocate from 7% to 13% (corresponding to v 5 0:25),
such that most residents have the opportunity to relocate between two
census waves. We report the simulated dynamics in figure A9b. Again,
the simulated dynamics sharply differ from the baseline scenario with
a quick reversion to the mean in formerly highly polluted neighbor-
hoods. These simulations shed light on the crucial role of the combina-
tion of neighborhood effects and relocation rigidities in the dynamics of
segregation.
D. Quantifying the Impact of Past Pollution and
Social Housing
The Clean Air Acts of 1952 and 1968 penalized the emissions of grit,
dust, and dark smoke in urban centers and succeeded in reducing emis-
sions from burning coal. However, past pollution exposure leaves a long
FIG. 12.—Simulated dynamics (1971–2011) using the structural estimates. Shown are
the average shares of low-skilled workers as a function of past pollution, using a local poly-
nomial smoothing. We report neighborhood dynamics, as estimated using the structural
estimates reported in column 1 of table 6 and the observed shares of low-skilled workers
in 1971 and 1981. The solid line represents simulated shares in 2011, while dashed lines
represent observed shares of low-skilled workers in 1971, 1981, and 2011 (shown from
lighter to darker gray, respectively).
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shadow, arising from the inherited neighborhood composition and the
subsequent persistence of neighborhood sorting.
We now quantify the magnitude of this effect, among all other drivers

of residential segregation (e.g., fixed neighborhood amenities). We first
construct a counterfactual distribution of residents in 1971 and 1981
across neighborhoods by subtracting the effect of pollution, as measured
in table 4 (cols. 1, 2). We then compare the simulated dynamics based
on such counterfactual neighborhood composition to the simulated dy-
namics based on actual neighborhood composition in 1971 and 1981
(see fig. 13). To this end, we construct a measure of evenness, dissimilar-
ity, for each city in our sample.39 Figure 13 shows the differences between
the measures of segregation in the two experiments. Dark gray circles
represent cities in the top quartile of pollution; light gray circles repre-
sent cities in the lower quartiles of pollution. In 1971, just after the Clean
Air Act of 1968, the dissimilarity measure is about 0.07 (about 1 SD) lower
for heavily polluted cities when we shut down the effect of pollution. In
2011, the effect of pollution on the dissimilarity measure remains equally
large for heavily polluted cities.
FIG. 13.—Neighborhood segregation across cities in the absence of pollution in 1971
(A) and 2011 (B). Compared are measures of segregation across cities in two experiments:
(i) simulated dynamics based on actual neighborhood compositions in 1971 and 1981 (x -
axis) and simulated dynamics based on counterfactual neighborhood compositions in
1971 and 1981 (no pollution; y -axis). We construct the counterfactual neighborhood com-
positions by subtracting the effect of pollution, as measured in table 4 (cols. 1, 2). Each city
is represented by a circle whose size is proportional to its number of lower layer super out-
put areas (LSOAs) within the sample and whose color shows the importance of pollution at
the city level. Dark gray circles represent cities in the top quartile of pollution; light gray
circles represent cities in the lower quartiles. The measure of segregation used is one of
evenness, that is, dissimilarity: ð1=2JcÞoJc

j51jðsj ,c=scÞ 2 ð1 2 sj,c=1 2 scÞj, where sj,c is the share
of low-skilled workers in LSOA j of city c, sc is the average share of low-skilled workers in city
c, and Jc is the number of LSOAs in city c.
39 The dissimilarity measure is defined as ð1=2JcÞoJc
j51jðsj ,c=scÞ 2 ð1 2 sj,c=1 2 scÞj, where sj,c

is the share of low-skilled workers in LSOA j of city c, sc is the average share of low-skilled
workers in city c, and Jc is the number of LSOAs in city c.
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Social housing policies, such as theHousing Act 1980, could have had a
role in tempering or fostering neighborhood segregation between 1971
and 2011. We quantify their impact by considering an experiment in
which the share of social housing in 1971 imposes a minimum level for
the fraction of low-skilled workers at the LSOA level. We simulate the dy-
namics between 1991 and 2011 in this scenario, and we report the correla-
tion between past pollution and the simulated deprivation in figure 14A.
We also build on our previous analysis and compare the dissimilaritymea-
sures across cities between the baseline scenario and the social housing
scenario in 2011 (see fig. 14B).
The locational rigidities induced by a fixed stock of social housing at

the LSOA level reduce neighborhood segregation in 2011, compared
to the baseline. The dissimilarity measure is about 1 SD lower, with loca-
tional rigidities for those cities with an above-median stock of social hous-
ing in 1971. The reason for this counterintuitive finding is that social
housing is negatively correlated with past pollution in 1971 and aligns
only with deprivation from 1991 onward (see app. G). A policy that would
confine social housing to its predetermined location would thus limit
the extent to which well-connected, attractive locations would further
gentrify (as documented, e.g., in Guerrieri, Hartley, and Hurst 2013;
Baum-Snow and Hartley 2020; and Couture and Handbury 2020).
FIG. 14.—Neighborhood dynamics and segregation with fixed social housing. A, The av-
erage shares of low-skilled workers as a function of past pollution when there are some lo-
cational rigidities—as induced by imposing a constant, lower threshold for the share of low-
skilled workers at the lower layer super output area (LSOA) level (corresponding to the
minimum between this share and fractions of low-skilled workers in 1971 and 1981).
B, Comparison of measures of segregation across cities in two experiments: (i) unrestricted
simulated dynamics and (ii) simulated dynamics with locational rigidities (y -axis). Each city
is represented by a circle whose size is proportional to its number of LSOAs within the sam-
ple and whose color shows the importance of social housing at the city level. Dark gray cir-
cles represent cities with above-median shares of social housing in 1971; light gray circles
represent cities with below-median shares of social housing in 1971. The measure of segre-
gation used is one of evenness, that is, dissimilarity: ð1=2JcÞoJc

j51jðsj ,c=scÞ 2 ð1 2 sj ,c=1 2 scÞj,
where sj,c is the share of low-skilled workers in LSOA j of city c, sc is the average share of low-
skilled workers in city c, and Jc is the number of LSOAs in city c.



east-side story 1549
VI. Conclusion
This paper presents a plausible explanation for what was, until now, an
anecdotal observation that the east sides of formerly industrial cities in
the Western Hemisphere tend to be poorer than the west sides. With ris-
ing coal use in the heyday of industrialization, pollution became a major
environmental disamenity in cities. An unequal distribution of pollution
exposure induced a sorting process that left lower classes in polluted
neighborhoods. Our empirical analysis relies on precise pollution esti-
mates and identifies neighborhood sorting at a highly local level: the
east/west gradient reflects a drift in pollution at the city level, but the re-
lationship between atmospheric pollution and neighborhood composi-
tion materializes at a much more local level.
We first use data from the time before coal became the major energy

technology in 1817 as well as data around the peak time of coal use in
1881 to show that rising pollution set off the process of residential sort-
ing. Next, we look at the long-run consequences of this initial sorting
and find that neighborhood segregation is surprisingly persistent. Find-
ing these highly persistent effects is remarkable since industrial pollution
slowed down during the twentieth century andmostly stopped in the late
1960s with the introduction of a second, stricter Clean Air Act. There ex-
ists no correlation between past industrial pollution and the relatively
mild contemporary pollution in England, suggesting that other forces
have sustained neighborhood segregation over time. We use a quantita-
tive model with relocation rigidities and neighborhood effects to esti-
mate a dynamic demand equation for neighborhoods. Our structural es-
timates imply nonlinear transitional dynamics that relate to the literature
on tipping dynamics (Card, Mas, and Rothstein 2008).
Our findings hold at least two important implications. First, the suc-

cess of urban policies to revitalize deprived areas may depend on the ini-
tial level of deprivation. As suggested by our findings, very deprived
neighborhoods may need a larger push to attract richer residents. This
observation leads to a second implication for countries such as China
where pollution currently presents a major challenge. Besides the well-
documented short-run effects of pollution exposure on health, there
are long-run consequences of uneven pollution exposure across space:
pollution induces spatial inequalities that far outlive deindustrialization.
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