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Abstract 10 

 11 

Grade S960 ultra-high strength steel is receiving increasing attention owing to its excellent 12 

strength-to-weight ratio. However, its application in construction engineering is rather limited 13 

due to the lack of adequate design rules, as the current established codes in Europe, North 14 

America and Australia/New Zealand only cover the design of steel components with material 15 

grades up to S700 (or S690). This prompts investigations into different types of S960 UHSS 16 

structural components and development of precise and efficient design rules for them. The 17 

present paper focuses on press-braked S960 UHSS channel section columns prone to flexural 18 

buckling about the minor principal axes, with their behaviour and strengths thoroughly 19 

examined through experiments and numerical modelling. An experimental programme was 20 

firstly performed on two non-slender press-braked channel sections, with five column 21 

specimens of varying member lengths employed for each cross-section, and included initial 22 

local and global geometric imperfection measurements and pin-ended column tests about the 23 

minor principal axes. This was followed by a parallel numerical modelling programme, in 24 

which finite element (FE) models were developed to simulate the experimental results and 25 
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afterwards adopted to perform parametric studies to derive additional numerical data over a 26 

broader spectrum of cross-section dimensions and member lengths. It is worth noting that there 27 

were two orientations associated with minor-axis flexural buckling of press-braked S960 28 

UHSS channel section columns, namely ‘C’ orientation (indicating that columns buckled 29 

towards the webs) and ‘reverse C’ orientation (indicating that columns buckled towards the 30 

flange tips), and both of the two types of failure modes were carefully examined in the present 31 

study. It was found that channel section columns failing by flexural buckling in the ‘reverse C’ 32 

orientation generally exhibited superior strengths relative to their counterparts with failure in 33 

the ‘C’ orientation. The experimental and numerical data were also used to assess the 34 

applicability of the codified provisions for press-braked S700 (or S690) channel section 35 

columns failing by minor-axis flexural buckling to the design of their S960 counterparts. The 36 

assessment results indicated that (i) the existing European code leads to overall conservative 37 

and scattered design flexural buckling strengths, especially for those relatively short and 38 

intermediate press-braked S960 UHSS channel section columns with failure in the ‘reverse C’ 39 

orientation, and (ii) the North American specification and Australian/New Zealand standard 40 

result in a higher degree of design accuracy and consistency than the European code, but with 41 

many over-predicted flexural buckling strengths for press-braked S960 UHSS channel section 42 

short and intermediate columns failing in the ‘C’ orientation. 43 

 44 

Keywords: ‘C’ orientation; Design codes; Flexural buckling behaviour; Grade S960 ultra-high 45 

strength steel; Minor principal axis; Numerical modelling; Pin-ended column tests; Press-46 

braked channel section; ‘Reverse C’ orientation  47 

 48 

 49 

 50 
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1. Introduction 51 

 52 

High strength steels (HSS), defined as steels with yield strengths greater than 460 MPa, are 53 

becoming increasingly widespread in civil engineering, owing to their superior strength-to-54 

weight ratios compared to the conventional normal strength steels. The use of high strength 55 

steel allows structural components to be designed with smaller dimensions, thereby achieving 56 

reductions in overall structure and foundation weights. This makes high strength steels a 57 

desirable material and particularly well suited to high-rise and long-span structures [1,2]. It is 58 

worth noting that S690 (or S700) is the highest material grade covered in the existing 59 

international design standards. However, recent advancements in material science and 60 

manufacturing techniques have enabled production of high strength steels with yield strengths 61 

greater than 700 MPa (even up to 1200 MPa) but still good weldability and ductility [3,4]. 62 

Grade S960 ultra-high strength steel (UHSS), with the nominal yield strength equal to 960 63 

MPa, is a typical example and currently mainly used in the automotive industry. In order to 64 

extend the application of Grade S960 ultra-high strength steel to construction industry, research 65 

efforts have been made towards verifying the behaviour of various types of S960 UHSS cross-66 

sections and members and devising accurate design provisions for them. Specifically, Li et al. 67 

[1] conducted stub column tests on S960 UHSS welded I- and box sections to investigate their 68 

local buckling behaviour and cross-section compression resistances; it was found that the 69 

codified slenderness limits for S690 (or S700) HSS plate elements are generally applicable to 70 

their S960 UHSS counterparts, though more accurate slenderness limits were also proposed 71 

based on the test results. Similar investigations into the local stability and compression 72 

resistances of S960 UHSS welded I- and box section stub columns were performed by Shi et 73 

al. [5]; comparisons of the test and numerical failure loads against the predicted failure loads 74 

indicated a high level of inaccuracy of the codified design rules when applied to S960 UHSS 75 
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welded I- and box section stub columns. Ma et al. [6,7] conducted tests on S960 UHSS cold-76 

formed tubular section stub columns and beams, and highlighted the inapplicability of the 77 

relevant codified local buckling design provisions when used for S960 UHSS cold-formed 78 

tubular section components. Shi et al. [8] and Ban et al. [9] experimentally and numerically 79 

examined the flexural buckling behaviour and strengths of S960 UHSS welded I- and box 80 

section columns, highlighted the inaccuracy of the codified design buckling curves, and finally 81 

proposed new improved design methods. 82 

 83 

Despite extensive studies have been carried out on S960 UHSS doubly symmetric sections (i.e. 84 

welded I- and box sections and cold-formed tubular sections), investigations into their non-85 

doubly symmetric counterparts are rather limited. Therefore, an in-depth research programme 86 

has been initiated by the authors, with the aim of investigating the static, fire and post-fire 87 

performance of various types of S960 UHSS angle and channel section structural components. 88 

Investigations into the cross-section compressive behaviour of S960 UHSS angle and channel 89 

section stub columns [10] and flexural responses of S960 UHSS channel section beams [11] 90 

have been recently performed, whilst the flexural buckling behaviour of S960 UHSS channel 91 

section columns is thoroughly examined based on experiments and numerical modelling, and 92 

fully presented in this paper.  93 

 94 

First, a structural testing programme was carried out on two press-braked S960 UHSS channel 95 

sections, with five column specimens of varying member lengths adopted for each cross-96 

section, and included initial local and global geometric imperfection measurements and pin-97 

ended column tests about the minor principal axes. A complementary numerical modelling 98 

programme was then carried out, and included a validation study to validate the developed 99 

column finite element models against the experimental results and a parametric study to derive 100 
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further numerical data over a broader spectrum of cross-section dimensions and member 101 

lengths. The experimental and numerical data were analysed and employed to assess the 102 

applicability of the relevant codified provisions for press-braked S700 (or S690) HSS channel 103 

section columns prone to minor-axis flexural buckling, prescribed in EN 1993-1-3 [12], AISI 104 

S100 [13] and AS/NZS 4600 [14], to the design of their S960 UHSS counterparts.  105 

 106 

2. Laboratory testing 107 

 108 

2.1. Overview 109 

 110 

A comprehensive laboratory testing programme was firstly conducted to experimentally 111 

examine the minor-axis flexural buckling behaviour and strengths of pin-ended press-braked 112 

S960 UHSS channel section columns. Two different channel sections were taken into account 113 

in the laboratory testing programme: C 70×40×6 and C 80×45×6, both of which are classified 114 

as Class 1 according to the slenderness limits prescribed in EN 1993-1-1 [15] and EN 1993-1-115 

12 [16], and also fall in the category of non-slender sections specified in AISI S100 [13] and 116 

AS/NZS 4600 [14]. Both of the adopted channel sections were press-braked from 6 mm thick 117 

S960 UHSS sheets. For each channel section size, five specimens with various member lengths 118 

were prepared. Each specimen was first cut to the pre-defined nominal length using a band saw, 119 

and then milled flat and square at both ends in a CNC milling machine. The cross-section 120 

dimensions, including the outer flange width Bf, the outer web width Bw, the wall thickness t 121 

and the inner corner radius ri – see Fig. 1, and the member length L of each specimen were 122 

accurately measured prior to pin-ended column tests, and are reported in Table 1. The specimen 123 

label comprises the cross-section identifier ‘C1’ or ‘C2’ (‘C1’ representing C 70×40×6 and 124 

‘C2’ standing for C 80×45×6), a letter ‘L (indicating length) and a number (for the purpose of 125 
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differentiating specimens with the same cross-section size but different member lengths). In 126 

the following sections, material tensile coupon tests and results, previously reported in detail 127 

by the authors in Wang et al. [10], are firstly reviewed; this is followed by descriptions of initial 128 

global and local geometric imperfection measurements of the column specimens and pin-ended 129 

column tests.  130 

 131 

2.2. Material tensile coupon tests 132 

 133 

Prior to pin-ended column tests, tensile coupon tests were performed to obtain the material 134 

properties of the two adopted press-braked S960 UHSS channel sections; the material test 135 

setups and results have been fully described in Wang et al. [10], and are briefly reviewed herein. 136 

Given that both of the two adopted channel sections were press-braked from the same batch of 137 

S960 UHSS sheets using the same set of punch and die, their material properties were deemed 138 

to have very little if any difference. Coupons were therefore only machined from the web, 139 

flange and corner of a representative channel section C 70×40×6 – see Fig. 1, and one 140 

additional coupon was also extracted from the virgin sheet. The flat coupons cut from the flange 141 

and web of the channel section C 70×40×6 and virgin sheet are respectively denoted as C 142 

70×40×6-F, C 70×40×6-W and VS, while the corner coupon cut from the corner portion of the 143 

channel section C 70×40×6 is labelled as C 70×40×6-C. The geometric sizes of both the flat 144 

and corner coupons complied with the requirements given in ASTM E8M-15 [17], and all the 145 

coupons were carefully machined such that the widths of the parallel necked portions, as 146 

measured by micrometer, were equal to 12 mm. The measured full stress–strain curves of the 147 

flat and corner coupons are shown in Fig. 2. A summary of the key material properties obtained 148 

from the tensile coupon tests is presented in Table 2, in which E is the Young's modulus, fy and 149 
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fu are the yield and ultimate stresses, respectively, εu is the strain at the ultimate stress, and εf is 150 

the strain at fracture. 151 

 152 

2.3. Initial local and global geometric imperfection measurements  153 

 154 

Initial geometric imperfections inherently exist in thin-walled steel members and are known to 155 

affect their structural behaviour and capacities [18–21]. The initial global and local geometric 156 

imperfections of each press-braked S960 UHSS channel section column specimen were 157 

therefore measured. The setup for initial global geometric imperfection measurements is 158 

depicted in Fig. 3(a), where a calibrated CNC router table is utilised to provide a flat work 159 

bench for mounting the specimen, and a LVDT, fixed onto the arm of the CNC router, is moved 160 

along the centreline of the specimen web to record the deviations in the direction of minor-axis 161 

flexural buckling. The initial global geometric imperfections of each specimen were defined as 162 

the deviations from a linear reference line (i.e. a straight line connecting the data points 163 

recorded by the LVDT at the two ends). Fig. 4(a) and Fig. 4(b) depict the initial global 164 

geometric imperfection distribution profiles measured for the C 70×40×6 and C 80×45×6 165 

column specimens, respectively, while the measured initial global geometric imperfection 166 

amplitude of each column specimen at mid-height ωg is reported in Table 1; note that the 167 

measured initial global geometric imperfection amplitudes are taken as positive if the 168 

imperfection profiles are towards the flange tips – see Fig. 5(a), but are negative if the 169 

imperfection profiles are towards the webs – see Fig. 5(b). The rig for initial local geometric 170 

imperfection measurements, as shown in Fig. 3(b), is similar to that used for initial global 171 

geometric imperfection measurements. But it is worth noting that the initial local geometric 172 

imperfections of each specimen were measured along the centrelines of the three constituent 173 

plate elements (two flanges and one web) over the central 300 mm; this length is deemed short 174 
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enough to eliminate the influence from member initial global geometric imperfections, but still 175 

long enough to incorporate representative initial local geometric imperfections. For each 176 

constituent plate element of the specimen, the initial local geometric imperfections were taken 177 

as the derivations from a linear regression line fitted to the corresponding measured data set 178 

[10,11,22,23], while the initial local geometric imperfection magnitude of the specimen ω0 was 179 

defined as the largest derivation derived from all the three constituent plate elements, as 180 

presented in Table 1. Note that the manufacturing squareness tolerance for flanges of structural 181 

channel sections is equal to 2 mm when Bf≤100 and the corresponding tolerances for channel 182 

webs are equal to 0.5 mm and 1.0 mm when Bw≤100 mm and 100<Bw≤200 mm, respectively. 183 

The measured initial geometric imperfections, as listed in Table 1, are smaller than the 184 

corresponding codified manufacturing tolerances. The measured initial local geometric 185 

imperfection distributions of the outstand flanges and internal web of a typical press-braked 186 

S960 UHSS channel section column specimen C2-L3 are plotted in Fig. 6.  187 

 188 

2.4. Pin-ended column tests 189 

 190 

Compression tests on ten pin-ended press-braked S960 UHSS channel section columns were 191 

performed to examine their minor-axis flexural buckling behaviour and capacities. All the 192 

column specimens were concentrically compressed in an INSTRON 5000 kN capacity servo-193 

controlled hydraulic testing machine at a constant rate of 0.2 mm/min. The testing machine 194 

was equipped with knife-edge and anchor devices at both ends, which offer pin-ended 195 

boundary conditions to the column specimens, i.e. allowing for rotation about the buckling axis 196 

but restraining rotations about other axes as well as twisting and warping. As depicted in Fig. 197 

7, the knife-edge device consists of a pit plate with a semi-circular groove and a wedge plate 198 

with a knife-edge wedge, while the anchor device consists of a 20 mm thick hardened base 199 
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plate and four 15 mm thick stiffening plates. Prior to testing, the column specimen, together 200 

with the hardened base plates at both ends, was firstly positioned between the top and bottom 201 

wedge plates, with its cross-section minor principal axis parallel to the knife-edges and its 202 

member longitudinal axis intersecting with the knife-edges at right angles, and then anchored 203 

at both ends using the four stiffening plates (bolted to the wedge plates), before placed between 204 

the top and bottom pit plates in the testing machine. It is worth noting that the distance 205 

measured from the end of the specimen to the rotation centre of the knife-edge device is equal 206 

to 75 mm. Table 3 lists the effective member length of each column specimen Le=L+150 mm 207 

and the corresponding member non-dimensional slenderness   about the minor principle axis, 208 

as calculated from Eq. (1), where A is the gross cross-section area and I is the second moment 209 

of area about the minor principle axis. 210 

 

2
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 212 

The instrumentation employed for pin-ended column tests is shown in Fig. 7, where a LVDT 213 

is horizontally installed at the mid-height of the column specimen, to record the lateral 214 

deflection along the buckling direction, and two pairs of strain gauges are attached to the 215 

outstand flanges at mid-height and at the same time offset from the cross-section minor 216 

principal axis to each side by the same distance (see Fig. 7), to monitor the longitudinal strains 217 

at these locations. For each channel section column specimen, the readings from the LVDT 218 

and strain gauges were adopted to derive the overall loading eccentricity relative to the minor 219 

principal axis of the cross-section at mid-height em, based on Eq. (2) [24–28], where εmax-εmin 220 

is the difference of the longitudinal strains measured by the two pairs of strain gauges, N is the 221 

applied compression load, ds is the distance between the two pairs of strain gauges, and Δ is 222 

the mid-height lateral deflection recorded by the LVDT. Note that Eq. (2) was derived by 223 
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assuming that the structural behaviour was close to linear elastic, and it was thus suggested that 224 

no more than 15% of the expected failure load be used in the determination of em [25]. The 225 

overall loading eccentricities are positive if the knife-edges are located closer to the webs – see 226 

Fig. 8(a), but negative if the knife-edges are located near the flange tips – see Fig. 8(b). If the 227 

absolute value of the overall loading eccentricity |em| exceeded Le/1000, the position of the 228 

column specimen was carefully re-adjusted until the attainment of |em|<Le/1000 [27–29]. Table 229 

3 reports the final overall loading eccentricity of each channel section column specimen, with 230 

the largest normalised eccentricity |em|/Le equal to 1/1009.  231 

 max min( )
m

s

EI
e Δ

Nd

 −
= −  (2) 232 

 233 

All the examined press-braked S960 UHSS channel section column specimens underwent 234 

noticeable global deformations upon testing, and failed by member flexural buckling about the 235 

minor principal axes. It is worth noting that there were two orientations associated with minor-236 

axis flexural buckling, namely ‘C’ orientation (indicating that specimens buckled towards the 237 

webs) and ‘reverse C’ orientation (indicating that specimens buckled towards the flange tips). 238 

With regard to channel section column specimens with negative overall loading eccentricities, 239 

the induced second-order bending moments resulted in compressive stresses at the flange tips; 240 

for these cases, the failure modes displayed minor-axis flexural buckling in the ‘C’ orientation, 241 

with a typical deformed failure specimen C1-L1 displayed in Fig. 9. Regarding channel section 242 

column specimens with positive overall loading eccentricities, the induced second-order 243 

bending moments led to tensile stresses at the flange tips, and the corresponding failure modes 244 

showed minor-axis flexural buckling in the ‘reverse C’ orientation, with a typical deformed 245 

failure specimen C2-L3 is presented in Fig. 10. The load–mid-height lateral deflection curves 246 

for the C 70×40×6 and C 80×45×6 column specimens are representatively shown in Figs 11(a) 247 

and 11(b), while the failure load Nu,test and the corresponding mid-height lateral deflection at 248 
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the failure load δu for each tested specimen are listed in Table 3; note that the mid-height lateral 249 

deflections are taken as negative for specimens failing by minor-axis flexural buckling in the 250 

‘C’ orientation, but positive if the failure specimens buckle in the ‘reverse C’ orientation. It is 251 

worth noting that the behaviour and capacity of S960 UHSS channel section columns are 252 

different to their mild steel and S690 HSS counterparts. Specifically, the load–mid-height 253 

lateral deflection curves for S960 UHSS channel section columns were found to be shorter, 254 

indicating less ductile structural responses; this can be attributed to the distinct brittle nature of 255 

S960 ultra-high strength steel over mild steels and S690 high strength steel. The failure loads 256 

of S960 UHSS channel section columns were shown to be considerably larger than their mild 257 

steel and S690 HSS counterparts (particularly for those members with relatively short and 258 

intermediate lengths), owing to the much higher material strength. Moreover, the normalised 259 

failure loads of S960 UHSS channel section columns (by the cross-section yield loads) were 260 

found to be higher than those of mild steel and S690 HSS channel section columns, which can 261 

be attributed to the reduced sensitivity of S960 UHSS members to initial geometric 262 

imperfections [29]. Therefore, the codified design buckling curves, established for mild steel 263 

and S690 HSS channel section columns, were expected to be also applicable to the examined 264 

S960 UHSS channel section columns, as demonstrated in Section 4. 265 

  266 

3. Numerical modelling 267 

 268 

3.1. Overview 269 

 270 

A numerical modelling programme was performed by means of the nonlinear finite element 271 

(FE) software ABAQUS [30], aimed at generating additional numerical results to supplement 272 

the test data, and reported in this section. The numerical modelling programme included a 273 
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validation study to validate the developed column FE models against the experimental results 274 

and a parametric study to generate further numerical data over a broader spectrum of member 275 

lengths and cross-section sizes. 276 

 277 

3.2. Development of FE models 278 

 279 

Each channel section column FE model was developed using the S4R shell element 280 

[10,11,22,23] and based on the measured cross-section sizes and effective member length. 281 

Regarding the element width along the centreline of the cross-section, a uniform element width 282 

equal to the wall thickness t was assigned to the flat parts, while each corner of the cross-section 283 

was uniformly discretised into 6 elements to ensure an accurate representation of the curved 284 

geometry. The element length along the longitudinal direction of the channel section column 285 

FE model was equal to the wall thickness t. The measured engineering stress–strain curves 286 

from the tensile coupons C 70×40×6-W, C 70×40×6-F and C 70×40×6-C were converted into 287 

the true stress–true plastic strain curves, and then respectively assigned to the web, flanges and 288 

corners of each channel section column FE model. For ease of application of boundary 289 

conditions, each end section of the column FE model was coupled to a reference point 290 

positioned at the cross-section centroid. The reference point at one end was fully restrained 291 

except for rotation about the considered axis of buckling (i.e. the minor principle axis), whilst 292 

the reference point at the other end was allowed for translation in the longitudinal direction and 293 

rotation about the same axis, to replicate the pin-ended boundary condition that offered by the 294 

knife-edge and anchor devices in the tests. Initial global and local geometric imperfections 295 

were respectively incorporated into each channel section column FE model in the form of the 296 

lowest elastic global and local buckling mode shapes. Note that the global buckling mode shape 297 

of each column FE model was oriented such that it was consistent with the buckling orientation 298 
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of the corresponding test specimen. The derived initial global geometric imperfection shape 299 

was factored by three different magnitudes – the measured overall loading eccentricity |em| and 300 

two fractions of the member effective length (Le/1000 and Le/1500), while the obtained initial 301 

local geometric imperfection shape was scaled by three different values – the measured local 302 

geometric imperfection value ω0 and two fractions of the wall thickness (t/100 and t/10). A 303 

total of five combinations of initial global and local geometric imperfection magnitudes were 304 

examined, aimed at evaluating the sensitivity of the developed channel section column FE 305 

models to geometric imperfection magnitudes and seeking the most appropriate imperfection 306 

magnitude combination to be employed in the parametric study.  307 

 308 

3.3. Validation study 309 

 310 

The modified Riks method is commonly adopted for solving static numerical problems with 311 

geometrical and material nonlinearities [10,11,22,23,30–32], and also employed in the present 312 

study for nonlinear analyses of the developed channel section column FE models. The derived 313 

numerical failure loads, load–mid-height lateral deflection curves and failure modes were 314 

compared against the corresponding experimental results, allowing for the accuracy of the 315 

developed channel section column FE models to be assessed. Table 4 presents the ratios of the 316 

FE to experimental failure loads Nu,FE/Nu,test; the results indicated that (i) the experimental 317 

failure loads were generally well predicted for all the five examined initial global and local 318 

geometric imperfection magnitude combinations, (ii) compared to the initial global geometric 319 

imperfection magnitudes, the initial local geometric imperfection magnitudes were found to be 320 

less influential on the failure loads, which may be attributed to the fact that the studied columns 321 

of non-slender channel section profiles are not prone to local instability, and (iii) the most 322 

accurate and consistent predictions of the experimental failure loads were obtained when the 323 
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measured initial global and local geometric imperfection values were adopted, while precise 324 

failure load predictions were also achieved when the initial global and local geometric 325 

imperfection magnitudes are respectively taken as Le/1000 and t/10. Moreover, the channel 326 

section column FE models are capable of simulating the experimental load–deformation 327 

histories, as evident in Figs 12(a) and 12(b), where the test and numerical load–mid-height 328 

lateral deflection curves for the two series of press-braked S960 UHSS channel section column 329 

specimens are compared. It is worth noting that the experimental and numerical load–lateral 330 

deflection curves for the specimens C1-L2 and C2-L2 have some discrepancies in the knee 331 

regions, with the main reason being that the actual initial geometric imperfections of the 332 

specimens and the idealised initial geometric imperfections (with elastic buckling mode shapes) 333 

of the FE modes are different. But the discrepancies were considered to be small and 334 

insignificant, and do not affect the failure loads. Figs 9 and 10 present comparisons between 335 

the experimentally and numerically obtained failure modes for typical specimens C1-L1 and 336 

C2-L3 failing by minor-axis flexural buckling in the ‘C’ and ‘reverse C’ orientations, 337 

respectively, revealing good agreement. Overall, it may be concluded that the developed FE 338 

models are capable of accurately simulating the test responses of pin-ended press-braked S960 339 

UHSS channel section columns, and therefore deemed to be validated.   340 

 341 

3.4. Parametric study 342 

 343 

Having been validated in Section 3.3, the developed column FE models were subsequently 344 

used to conduct parametric studies, aimed at expanding the experimental data pool over a wide 345 

variety of effective member lengths and cross-section dimensions. The key geometric 346 

parameters of channel section column FE models are summarised in Table 5, where the outer 347 

web widths Bw are selected to be equal to 180 mm and 90 mm, with the outer flange widths Bf 348 
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varied to obtain a spectrum of cross-section aspect ratios Bw/Bf from 1.0 to 3.0, the wall 349 

thicknesses t are carefully selected such that all the modelled channel sections fall in the 350 

category of non-slender sections prescribed in EN 1993-1-12 [16], AISI S100 [13] and AS/NZS 351 

4600 [14], and the effective member lengths are varied from 450 mm to 5150 mm so as to 352 

achieve a wide range of member non-dimensional slendernesses. In the parametric studies, the 353 

employed modelling procedures and techniques were in accordance with those described in 354 

Section 3.2, but with the initial global and local geometric imperfection magnitudes 355 

respectively fixed at Le/1000 and t/10. Note that for each modelled channel section column, 356 

two orientations of initial global geometric imperfections were considered, enabling flexural 357 

buckling in both the ‘C’ and ‘reverse C’ orientations to be examined. The two sets of numerical 358 

parametric study results allowed for evaluation of the influence of flexural buckling 359 

orientations on the load-carrying capacities of press-braked S960 UHSS channel section 360 

columns. Overall, a total of 184 numerical results were derived in the parametric study. 361 

 362 

4. Evaluation of applicability of international design standards 363 

 364 

4.1. General  365 

 366 

The current international design standards for cold-formed steel structures, as employed in 367 

Europe (EN 1993-1-3 [12]), North America (AISI S100 [13]) and Australia/New Zealand 368 

(AS/NZS 4600 [14]), are only applicable to members with material grades up to S700 (or 369 

S690), and thus none of these existing design standards can be directly applied to S960 UHSS 370 

members. In this section, the applicability of the codified design rules for S700 (S690) HSS 371 

press-braked channel section columns susceptible to minor-axis flexural buckling was 372 

evaluated for their S960 UHSS counterparts. Graphical and quantitative evaluations were both 373 
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carried out through comparing the experimental (and numerical) failure loads Nu against the 374 

corresponding unfactored design flexural buckling strengths Nu,pred obtained from each design 375 

standard, with the results respectively presented in Figs 13–18 and Table 6.  376 

 377 

4.2. EN 1993-1-3 (EC3) 378 

 379 

The current European code EN 1993-1-3 [12] covers the design of cold-formed steel structures 380 

with material grades up to S700. With regard to cold-formed steel columns prone to global 381 

instability (e.g., torsional, flexural and flexural-torsional buckling), the design procedures and 382 

formulations outlined in EN 1993-1-3 [12] were generally established by analogy with those 383 

for hot-rolled and welded normal strength steel columns prescribed in EN 1993-1-1 [15]. The 384 

concept of buckling curves, as derived based on the Perry-Robertson buckling formula, was 385 

employed in the European codes. For press-braked channel section column failing by flexural 386 

buckling about the minor principle axis, the EC3 strength prediction NEC3 can be determined 387 

from Eq. (2),  388 

 3EC yaN Af=  (2) 389 

 390 

where fya is the weighted average yield stress (by area), taking due account of the enhanced 391 

yield stress at corners due to cold-working during the press-braking process, and χ is the 392 

reduction factor and determined from the EC3 design buckling curves, as given by Eq. (4),  393 

 
2 2

1
1

  
= 

+ −
 (4) 394 

 395 

where ϕ is a buckling coefficient and can be calculated from Eq. (5), in which α is the 396 

imperfection factor, reflecting the degree of influence of initial geometric imperfections and 397 
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residual stresses on the column buckling strengths, and dependent on the adopted design 398 

buckling curve; with regard to press-braked channel section columns failing by flexural 399 

buckling about the minor principal axes, buckling curve ‘c’ is prescribed in EN 1993-1-3 [12] 400 

and the corresponding α is taken as 0.49. 401 

 20.5[1 ( 0.2) ]   = + − +  (5) 402 

 403 

The applicability of the EC3 design buckling curve ‘c’ for S700 HSS press-braked channel 404 

section columns failing by minor-axis flexural buckling to their S960 UHSS counterparts was 405 

evaluated, based on the test and numerical data. The graphical evaluation results for press-406 

braked S960 UHSS channel section columns with flexural buckling in the ‘C’ orientation and 407 

‘reverse C’ orientation are depicted in Fig. 13 and Fig. 14, respectively, where the normalised 408 

test and numerical failure loads (by the cross-section yield loads Afya) are plotted against the 409 

member non-dimensional slendernesses  , and compared with the EC3 design buckling curve 410 

‘c’. In general, the EC3 buckling curve ‘c’ lies well below the test and numerical data points 411 

for press-braked S960 UHSS channel section columns with relatively short and intermediate 412 

member lengths (i.e. within the low and intermediate member non-dimensional slenderness 413 

range), but matches closely with data points for S960 UHSS channel section columns with 414 

relatively long member lengths (i.e. within the large member non-dimensional slenderness 415 

range). It was also found that channel section columns failing by flexural buckling in the 416 

‘reverse C’ orientation generally exhibit superior strengths relative to their counterparts with 417 

flexural buckling in the ‘C’ orientation, especially in the low slenderness range; this can be 418 

attributed to the fact that second-order bending moments associated with ‘C’-orientation 419 

flexural buckling induce additional compressive stresses at the outstand flanges and thus the 420 

specimens are more prone to failure and have relatively smaller load-carrying capacities [33]. 421 

The second-order bending moments associated with ‘reverse C’-orientation flexural buckling 422 
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induce additional compressive stresses at the corner regions and the specimens are thus less 423 

prone to instability. On this basis, and coupled with the fact that the pronounced material strain 424 

hardening of the corner regions can now be exploited, the specimens failing by flexural 425 

buckling in the ‘reverse C’ orientation have higher load-carrying capacities, in particular those 426 

relatively short columns with member non-dimensional slendernesses less than around 0.6, of 427 

which the failure loads are even greater than the cross-section yield loads. Figs 15 and 16 428 

present the ratios of the test and numerical failure loads to the EC3 predicted flexural buckling 429 

strengths plotted against the member non-dimensional slendernesses   for press-braked S960 430 

UHSS channel section columns failing by minor-axis flexural buckling in the ‘C’ orientation 431 

and ‘reverse C’ orientation, respectively, whilst the mean ratios of Nu/NEC3 are equal to 1.13 432 

and 1.27 for channel section columns with flexural buckling in the ‘C’ and ‘reverse ‘C’ 433 

orientations, respectively, with the coefficients of variation (COVs) of 0.04 and 0.09, as listed 434 

in Table 6. Overall, it may be concluded that EC3 design buckling curve ‘c’ for S700 HSS 435 

press-braked channel section columns failing by minor-axis flexural buckling is also applicable 436 

to their S960 UHSS counterparts, but leads to overly conservative strength predictions for those 437 

relatively short and intermediate columns with failure in the ‘reverse C’ orientation.  438 

 439 

4.3. AISI S100 (AISI) and AS/NZS 4600 (AS/NZS) 440 

 441 

The North American Specification AISI S100 [13] and Australian/New Zealand Standard 442 

AS/NZS 4600 [14] are applicable to cold-formed steel structures with material grades up to 443 

S690, and employ the same provision for the design of concentrically loaded columns prone to 444 

global instability. The compressive strength NAISI (or NAS/NZS), as specified in AISI S100 [13] 445 

(or AS/NZS 4600 [14]), can be expressed as the product of the cross-section area A and the 446 

design failure stress fn – see Eq. (6). The design failure stress fn is derived from the design 447 
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buckling curve, expressed by Eq. (7), where λc=(fy/fcre)
0.5, where fcre is given as the minimum 448 

of the member elastic flexural-torsional, flexural and torsional buckling stresses. It is worth 449 

noting that all the examined press-braked S960 UHSS channel section columns fail by minor-450 

axis flexural buckling. Therefore, fcre is taken as the corresponding elastic flexural buckling 451 

stress herein, and c becomes essentially the same as   employed in EN 1993-1-3 [12]. 452 

 /orAISI n AS NZS nN Af N Af= =  (6) 453 

 

( )
2

2

0.658 for 1.5

0.877
for 1.5

c

ya c

n

ya c

c

f

f
f

 




 


=  
 

 

 (7) 454 

 455 

The design buckling curve of AISI S100 [13] and AS/NZS 4600 [14] is also plotted with the 456 

test and numerical data in Figs 13 and 14 to access its applicability to press-braked S960 UHSS 457 

channel section columns. The AISI and AS/NZS design buckling curve is located slightly 458 

above the data points for columns with member non-dimensional slendernesses less than 459 

around 1.5 and failure in the ‘C’ orientation, but lies below the test and numerical data points 460 

for columns with member non-dimensional slendernesses less than around 1.5 and failure in 461 

the ‘reverse C’ orientation, while all the other data points are followed closely by the design 462 

curve. The AISI and AS/NZS design flexural buckling strengths were also assessed through 463 

graphical and numerical comparisons against the obtained test (and numerical) failure loads. 464 

Fig. 17 and Fig. 18 respectively display the graphical evaluation results for columns failing by 465 

flexural buckling in the ‘C’ and ‘reverse C’ orientations, indicating that AISI S100 [13] and 466 

AS/NZS 4600 [14] provide overall precise and consistent flexural buckling strength 467 

predictions, but with many unsafe design strengths for those short and intermediate columns 468 

failing in the ‘C’ orientation. The mean test and numerical to AISI (or AS/NZS) predicted 469 

failure load ratios Nu/NAISI (or Nu/NAS/NZS) are equal to 1.00 and 1.11, respectively, with the 470 
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COVs of 0.04 and 0.06, for press-braked S960 UHSS channel section columns with minor-axis 471 

flexural buckling in the ‘C’ and ‘reverse C’ orientations, as reported in Table 6. In comparison 472 

with EN 1993-1-3 [12], AISI S100 [13] and AS/NZS 4600 [14] were found to result in more 473 

accurate and consistent predictions of strengths for press-braked S960 UHSS channel section 474 

columns failing by minor-axis flexural buckling in both the ‘C’ and ‘reverse C’ orientations. 475 

 476 

5. Conclusions 477 

 478 

A thorough testing and numerical modelling programme has been carried out to investigate the 479 

structural behaviour and strengths of pin-ended press-braked S960 UHSS channel section 480 

columns prone to flexural buckling about the minor principle axes. The testing programme 481 

included concentrically loaded pin-ended column tests on ten press-braked S960 UHSS 482 

channel section columns with two cross-section sizes and various member lengths as well as 483 

supplementary measurements of their initial geometric imperfections. The obtained test results 484 

were used in the parallel numerical modelling programme for validating the developed column 485 

FE models, which were subsequently adopted to perform parametric studies to derive a 486 

numerical data pool on press-braked S960 UHSS channel section columns over an extended 487 

range of member lengths and cross-section dimensions. Two failure orientations associated 488 

with minor-axis flexural buckling of press-braked S960 UHSS channel section columns, 489 

namely ‘C’ orientation (indicating that columns buckled towards the webs) and ‘reverse C’ 490 

orientation (indicating that columns buckled towards the flange tips), were observed and 491 

discussed. It was found that channel section columns failing by flexural buckling in the ‘reverse 492 

C’ orientation exhibited superior load-carrying capacities than their counterparts with failure 493 

in the ‘C’ orientation. The derived experimental and numerical data was adopted to assess the 494 

applicability of the relevant design rules for S700 (or S690) HSS press-braked channel section 495 
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columns failing by minor-axis flexural buckling, as prescribed in EN 1993-1-3 [12], AISI S100 496 

[13] and AS/NZS 4600 [14], to the design of their S960 UHSS counterparts. EN 1993-1-3 [12] 497 

was found to yield a high degree of conservatism and scatter when used to predict the flexural 498 

buckling strengths for press-braked S960 UHSS channel section columns, especially those 499 

members with relatively short and intermediate lengths failing in the ‘reverse C’ orientation. 500 

AISI S100 [13] and AS/NZS 4600 [14] were found to yield more accurate and consistent 501 

predictions of flexural buckling strengths for press-braked S960 UHSS channel section 502 

columns than EN 1993-1-3 [12], but with many over-predicted flexural buckling strengths for 503 

those with short and intermediate member lengths failing in the ‘C’ orientation.  504 
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Fig. 1. Definition of symbols and locations of tensile coupons extracted from channel section. 

 

 

 

 

Fig. 2. Stress–strain curves obtained from tensile coupon tests [10]. 
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(a) Setup for initial global geometric imperfection measurements 

 

 

 

(b) Setup for initial local geometric imperfection measurements  

Fig. 3. Setups for initial geometric imperfection measurements. 

 

 



 
                                                                        (a) C 70×40×6 column specimens 

 

 
                                                         (b) C 80×45×6 column specimens 

 

Fig. 4. Measured initial global geometric imperfection distributions of press-braked S960 UHSS channel 

section column specimens. 
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                                            (a) Positive                                                    (b) Negative 

Fig. 5. Sign convention of initial global geometric imperfection amplitude ωg. 

 

 

 

 

 

 

 
 

Fig. 6. Measured initial local geometric imperfection distributions for a typical column specimen C2-L3. 
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Fig. 7. Experimental setup for pin-ended press-braked S960 UHSS channel section columns. 

 

 

     
                                        (a) Positive                                                        (b) Negative 

Fig. 8. Sign convention of overall loading eccentricity em. 
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Fig. 9. Experimental and numerical failure modes for press-braked S960 UHSS channel section column 

specimen C1-L1. 

 

 

                                   

 

Fig. 10. Experimental and numerical failure modes for press-braked S960 UHSS channel section column 

specimen C2-L3. 

 



 
(a) C 70×40×6 column specimens 

 

 

 
(b) C 80×45×6 column specimens 

Fig. 11. Experimental load–mid-height lateral deflection curves for pin-ended press-braked S960 UHSS channel 

section column specimens. 
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                                                                   (a) C 70×40×6 column specimens 

 

 

 
                                                                   (b) C 80×45×6 column specimens 

Fig. 12. Experimental and numerical load–mid-height lateral deflection curves for pin-ended press-braked S960 

UHSS channel section column specimens. 
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Fig. 13. Comparisons of test and FE failure loads with design buckling curves for press-braked S960 UHSS 

channel section columns with flexural buckling in the ‘C’ orientation. 

 

 

 

 

Fig. 14. Comparisons of test and FE failure loads with design buckling curves for press-braked S960 UHSS 

channel section columns with flexural buckling in the ‘reverse C’ orientation.  
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Fig. 15. Comparisons of test and FE failure loads with EC3 predicted strengths for press-braked S960 UHSS 

channel section columns with flexural buckling in the ‘C’ orientation. 

 

 

 

  

Fig. 16. Comparisons of test and FE failure loads with EC3 predicted strengths for press-braked S960 UHSS 

channel section columns with flexural buckling in the ‘reverse C’ orientation. 
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Fig. 17. Comparisons of test and FE failure loads with AISI (or AS/NZS) predicted strengths for press-braked 

S960 UHSS channel section columns with flexural buckling in the ‘C’ orientation. 

 

 

 

 

Fig. 18. Comparisons of test and FE failure loads with AISI (or AS/NZS) predicted strengths for press-braked 

S960 UHSS channel section columns with flexural buckling in the ‘reverse C’ orientation. 
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Table 1. Measured geometric dimensions and initial geometric imperfections of press-braked S960 UHSS 

channel section column specimens. 

Cross-section Specimen ID 
L Bf Bw t ri ω0 ωg 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) 

C 70×40×6 

C1-L1 400.2 41.41 69.26 6.04 14.8 0.07 -0.26 

C1-L2 549.8 41.62 68.55 6.10 14.8 0.08 -0.21 

C1-L3 698.9 39.09 73.35 6.02 14.8 0.02 0.42 

C1-L4 849.0 40.72 70.86 6.01 14.8 0.08 0.74 

C1-L5 1000.0 40.64 69.41 6.07 14.8 0.01 0.99 

C 80×45×6 

C2-L1 400.1 45.94 79.25 6.10 14.5 0.02 0.06 

C2-L2 499.9 44.69 78.25 6.01 14.5 0.03 0.14 

C2-L3 698.5 45.78 79.67 6.07 14.5 0.07 -0.12 

C2-L4 849.0 44.66 78.18 6.08 14.5 0.04 0.44 

C2-L5 999.0 45.78 79.56 6.09 14.5 0.02 0.61 

 

 

 

Table 2. Measured flat and corner material properties of press-braked S960 UHSS channel section C 70×40×6 

and virgin sheet [10]. 

Coupon specimen ID 
E fy  fu  εu εf 

fufy 
(GPa) (MPa) (MPa) (%) (%) 

VS 208 982 1011 5.1 12.3 1.03 

C 70×40×6-W 214 935 1000 4.5 14.3 1.07 

C 70×40×6-F 203 927 1021 5.1 13.3 1.10 

C 70×40×6-C 203 1033 1173 2.4 10.6 1.13 

 

 

Table 3. Test results for press-braked S960 UHSS channel section column specimens. 

Cross-section Specimen ID 
Le em 

|em|/Le 
Nu,test δu 

Failure orientation 
(mm) (mm) (kN) (mm) 

C 70×40×6 

C1-L1 550.2 -0.10 1/5342 578.3 -0.8 C 

C1-L2 699.8 -0.16 1/4401 421.5 -7.4 C 

C1-L3 848.9 0.82 1/1030 274.0 15.0 reverse C 

C1-L4 999.0 0.99 1/1009 220.8 16.3 reverse C 

C1-L5 1150.0 1.02 1/1127 168.2 23.9 reverse C 

C 80×45×6 

C2-L1 550.1 0.46 1/1198 741.1 2.8 reverse C 

C2-L2 649.9 0.64 1/1023 573.3 6.2 reverse C 

C2-L3 848.5 0.52 1/1622 460.6 7.7 reverse C 

C2-L4 999.0 0.50 1/2002 322.2 13.7 reverse C 

C2-L5 1149.0 0.50 1/2293 262.7 14.4 reverse C 



Table 4. Comparison of press-braked S960 UHSS channel section column FE and test failure loads for various 

initial geometric imperfection magnitude combinations. 

Cross-section Specimen ID 
Nu,FE/Nu,test 

ω0+|em| t/100+Le/1000 t/100+Le/1500 t/10+Le/1000 t/10+Le/1500 

C 70×40×6 

C1-L1 0.95 0.88 0.91 0.88 0.90 

C1-L2 1.00 0.92 0.95 0.92 0.95 

C1-L3 1.01 1.00 1.03 1.00 1.03 

C1-L4 1.00 1.01 1.01 0.99 1.01 

C1-L5 1.00 0.98 1.00 0.98 1.00 

C 80×45×6 

C2-L1 1.01 1.00 1.02 1.00 1.03 

C2-L2 1.06 1.06 1.09 1.06 1.10 

C2-L3 0.99 0.96 0.99 0.96 0.99 

C2-L4 0.97 0.97 0.99 0.97 0.99 

C2-L5 0.98 0.98 0.99 0.98 0.99 

Mean 1.00 0.98 1.00 0.97 1.00 

COV 0.03 0.05 0.05 0.05 0.05 

 

Table 5. Geometric dimensions of press-braked S960 UHSS channel section columns selected for parametric 

studies. 

Bw Bf t Cross-section 

class* 

Aspect ratio 

Bw/Bf 

Le 

(mm) (mm) (mm) (mm) 

180 60 10 1 3.00 450, 550, 650, 750, 950, 1150, 1350, 1550, 

1750, 1950, 2150, 2350, 2550, 2750 

180 120 15 2 2.25 950, 1150, 1350, 1550, 1750, 1950, 2150, 2350, 

2550, 2750, 2950, 3150, 3350, 3550, 3750 

180 160 16 3 1.13 1550, 1950, 2350, 2750, 3150, 3550, 3750, 

3950, 4150, 4550, 5150 

90 50 7 1 1.80 450, 550, 650, 750, 950, 1150, 1350, 1550, 

1750, 1950, 2150, 2350, 2550, 2750, 2950 

90 80 10 2 1.13 750, 950, 1150, 1350, 1550, 1750, 1950, 2150, 

2350, 2550, 2750, 2950, 3150, 3350, 3550 

90 70 8 3 1.29 650, 750, 950, 1150, 1350, 1550, 1750, 1950, 

2150, 2350, 2550, 2750, 2950, 3150, 3350 

90 40 7 1 2.25 350, 450, 550, 650, 750, 950, 1150, 1350, 1550, 

1750 

Note: * The cross-section class is defined according to EN 1993-1-1 [15] and EN 1993-1-12 [16]. 

 

Table 6. Comparisons of test and FE failure loads with predicted flexural buckling strengths. 

Failure orientation 
No. of data Nu/NEC3 Nu/NAISI  Nu/NAS/NZS 

Test FE Mean COV Mean COV Mean COV 

C 2 92 1.13 0.04 1.00 0.04 1.00 0.04 

reverse C 8 92 1.27 0.09 1.11 0.06 1.11 0.06 

Total 10 184 1.21 0.09 1.06 0.07 1.06 0.07 
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