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Abstract 14 

Giardia duodenalis is a major gastrointestinal parasite of humans and animals across the 15 

globe. It is also of interest from an evolutionary perspective as it possesses many features 16 

that are unique among the eukaryotes, including its distinctive binucleate cell structure. 17 

While genomic analysis of a small number of isolates has provided valuable insights, efforts 18 

to understand the epidemiology of the disease and the population biology of the parasite 19 

have been limited by the molecular tools currently available. We review these tools and 20 

assess the impact of affordable and rapid genome sequencing systems increasingly being 21 

deployed in diagnostic settings. While these technologies have direct implications for public 22 

and veterinary health, they will also improve our understanding of the unique biology of this 23 

fascinating parasite.  24 
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A major worldwide pathogen 25 

Giardia duodenalis (also known as Giardia intestinalis or Giardia lamblia) is one of the most 26 

common gastrointestinal parasites in the world, causing an estimated 180 million infections 27 

annually [1]. Although giardiasis is treatable, the correct administration of therapeutics 28 

depends on accurately identifying the parasite, either in an individual or within a community 29 

during an outbreak. Asymptomatic infection can occur and may represent the majority of 30 

cases [2–5], although it should be noted that apparently asymptomatic individuals can still 31 

display signs of mild malnutrition [6]. Patients with overt clinical disease experience severe 32 

gastrointestinal disturbances for several weeks due to trophozoites (see Glossary) attaching 33 

to the intestinal lining of the host, disrupting nutrient and water uptake and eliciting an 34 

immune response [7]. In rare cases, some patients can develop post-infection complications 35 

that lead to long-term gastrointestinal disorders similar to irritable bowel syndrome (IBS) 36 

[8]. These symptoms are linked to a loss of barrier function and dysbiosis of the gut flora [9–37 

11]. Infective cysts are shed into the environment by infected hosts where they can be 38 

ingested by new individuals, maintaining transmission. Outbreaks are frequently associated 39 

with contaminated water [12] or food sources [13]. 40 

Giardia genetics 41 

Giardia species are described as early divergent eukaryotes and lack common subcellular 42 

structures such as mitochondria, a true Golgi complex and peroxisomes [14]. However, the 43 

identification of mitochondrial genes in the genome suggests that G. duodenalis and other 44 

diplomonads once possessed these organelles but subsequently lost them [15]. In addition 45 

to being amitochondriate, G. duodenalis is unusual in that it possesses two nuclei despite 46 

being unicellular. This gives rise to an unusual ploidy throughout the life-cycle where the 47 
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trophozoites cycle between 4N (2×2N) and 8N (4×2N) in vegetative growth, doubling to 16N 48 

(4×4N) during the transition to cysts (Figure 1A) [16]. After excystation, the cell divides 49 

without DNA replication to create four trophozoites, each with a ploidy of 4N. The relatively 50 

small genome (11.7 megabases (Mb)) is distributed across five chromosomes that feature 51 

few intergenic spaces, introns or non-coding regions. Promoters and untranslated regions 52 

are also minimized, leading to a highly condensed and efficient genome [14]. This appears to 53 

be a distinctive trait of the diplomonads and the genome is even more compact in the 54 

closely related rodent parasite G. muris [17]. Although similar, the genomes of each nucleus 55 

in an individual parasite are not identical and the differences between the four different 56 

genomes are termed allelic sequence heterozygosity (ASH). The proportion of heterozygous 57 

bases within a genome typically ranges between 0.25–0.74 % for most Giardia isolates [18–58 

20] but can be extremely low (<0.01%) [ 9,11]. The majority of these heterozygous sites 59 

contain two different bases but some feature three or four, capturing the diversity present 60 

across all of the copies of the genome [20]. Regions of heterozygosity are not distributed 61 

evenly throughout the genome and more typically occur in non-coding regions, as might be 62 

expected with purifying selection acting on coding regions [20]. 63 

Genotyping Giardia duodenalis 64 

Initial isozyme and 18S ssu-rRNA gene sequencing demonstrated that two broad groups of 65 

G. duodenalis infected human patients (eventually termed A and B). These were 66 

characterized as assemblages to reflect the fact that the relationships between the groups 67 

were undefined [22–24]. Additional genetic data from animal-derived isolates, coupled with 68 

various biological differences, allowed a further six distinct assemblages to be differentiated 69 

(C–H) (Table 1). Assemblages A and B contain zoonotic isolates that can infect humans and 70 
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animals, whereas assemblages C–H show specificity to particular animal hosts (Table 1). 71 

However, isolates with molecular sequences similar to assemblages C–H have been 72 

amplified from humans, suggesting there are either limits to current molecular typing tools 73 

or G. duodenalis may have a wider zoonotic potential than first assumed [25–27]. As these 74 

molecular detections in humans are often from asymptomatic individuals, it is unclear 75 

whether the DNA detected in the molecular screens represents infection, carriage or 76 

contamination. Antigen-capture assay, immunofluorescent antibody testing (IFAT), direct 77 

microscopy and ssu-rRNA quantitative polymerase chain reaction (qPCR) are the standard 78 

methods for detecting G. duodenalis, although many diagnostic laboratories rely on 79 

microscopy for detection due to cost and established pipelines [28]. Microscopy can lack 80 

sensitivity when parasitaemia is low (which is common) or where expertise is lacking, 81 

indicating a switch to immunological assays or qPCR in diagnostic settings may be preferable 82 

to assess accurately the presence of the parasite [29]. However, it should be appreciated 83 

that although qPCR sensitively detects Giardia nucleic acid, a positive test result does not 84 

necessarily confirm the presence of viable parasite cells. Routine qPCR-based detection 85 

methods are also unsuitable for determining the relationships between isolates as they do 86 

not provide detailed genetic information [30]. Over the years, several molecular markers 87 

have been developed to create a multilocus sequence typing (MLST) panel to investigate 88 

the molecular phylogeny of G. duodenalis. These involve targeted PCR and subsequent 89 

sequencing of genes that are relatively stable but possess some degree of variability for 90 

differentiating isolates. The most commonly used regions of the genome are the loci 91 

encoding β-giardin (bg) [31], triosephosphate isomerase (tpi) [32] and glutamate 92 

dehydrogenase (gdh) [33,34]. Of these three primary markers, tpi displays the most 93 

polymorphisms in the currently sequenced population in terms of substitutions per 94 
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nucleotide site (π = 0.12) and bg the least (π = 0.03), with gdh intermediate between the 95 

two (π = 0.06) [35]. There are also some rarely used loci that are more difficult to amplify 96 

than the typical markers, including the internal transcribed spacer (its1) and elongation 97 

factor 1 (ef1) [36,37]. In common with other parasite species, PCR and sequencing of the 98 

ssu-rRNA region is also employed for molecular genotyping [35]. Amplification success for 99 

this region can be higher than other PCR targets due to being multi-copy, making it highly 100 

sensitive and ideal for identification [38]. However, single-copy markers are still commonly 101 

employed due to the relatively low discriminatory power of the ssu-rRNA region [35] and 102 

unusually high GC content that can lead to issues with specificity [39,40]. Further analysis 103 

has shown that assemblage B isolates display greater polymorphism than other strains at 104 

the commonly used marker sites, possessing higher ASH within individual parasites and 105 

greater allelic diversity in the population [41,42]. Infections with multiple assemblages [43–106 

45] or sub-assemblages [46] can also occur in humans and animals, affecting estimates of 107 

heterozygosity. Furthermore, it appears that mixed genotypic infections can affect infection 108 

dynamics, such as increasing cyst shedding [44]. However, it is unclear how often mixed 109 

Giardia infections occur as they may only be detectable after sub-cloning and sequencing at 110 

a depth able to detect low levels of ASH [41]. 111 

Current methods provide insufficient resolution 112 

MLST approaches using targeted PCR with sequencing of amplicons have largely validated 113 

the assemblage model, leading to the proposal that the assemblages should be formally re-114 

defined as species [47]. However, as the current markers do not provide the resolution 115 

required to determine accurately relationships between isolates beyond assemblages, their 116 

effectiveness in the public health sphere has been limited. While putative sub-assemblages 117 
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have been defined within assemblage A (AI–III) [46], the framework describing sub-118 

structuring within assemblage B appears less robust [35]. There are also situations in which 119 

there is a lack of concurrence between the different markers that may be due to their low 120 

discriminatory power [48,49]. For example, there is only a single nucleotide difference that 121 

discriminates between the allele subtypes AI and AII within the bg amplicon and two for the 122 

corresponding tpi subtypes [35]. These issues are clearly demonstrated by recent high-123 

resolution analysis that used an MLST consisting of six markers to examine assemblage A 124 

isolates [46]. While delineation into three distinct sub-assemblages was supported, 125 

individual markers were less stable and showed conflicting results when examined in 126 

isolation. This was attributed to potential recombination within the population. Similar 127 

incongruities were noted in a recent study of primate Giardia isolates; the current 128 

assemblage model could not be reliably reproduced with ssu-rRNA data, likely due to the 129 

low resolution of the marker [50]. There are also issues with the reliability of PCR assays 130 

targeting single copy genes and it is common for only one gene to amplify. Success rates 131 

vary from 11–91% across the different markers depending on the study [38]. Mixed 132 

infections and ASH can also make it impossible to infer alleles from direct PCR sequencing 133 

and it is necessary to use laborious transformation and cloning protocols before sequencing. 134 

These are often difficult and costly to implement in a diagnostic setting. This lack of 135 

reliability is likely due in part to the large amounts of contaminating DNA and inhibitors 136 

found in faecal material, compounded by the variable number of G. duodenalis cysts present 137 

[51,52]. However, it is also likely that there is a degree of sequence variability present in the 138 

genes affecting primer binding sites and amplification success (Box 1 and Figure 2). It is 139 

therefore probable that a great deal of genetic diversity in the Giardia population is being 140 

overlooked due to the specificity of the primers used and the difficulties in amplifying from 141 
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faecal material. As such, the currently available marker-based system for understanding the 142 

molecular phylogeny of G. duodenalis is limited in scope and does not provide a high level of 143 

genetic discrimination. This makes it virtually impossible to identify reliably transmission 144 

routes, reservoirs and relationships between strains, hampering public health efforts to 145 

control giardiasis. 146 

Investigating the epidemiology of Giardia infections 147 

The lack of high-resolution genotyping tools also limits the ability to answer fundamental 148 

biological questions concerning the parasite, many of which have wider effects on 149 

understanding transmission and controlling disease. For example, a large number of 150 

companion and livestock animals are infected with G. duodenalis, including assemblages 151 

that can infect humans [53]. Although in some cases disease manifestation can be severe, 152 

the typical clinical impact for animals appears to be low and may often not be associated 153 

with clinical signs [54]. While companion animals appear more likely to be infected with 154 

species-specific assemblages (C/D in dogs, F in cats), they can also be infected with 155 

assemblages A and B. However, whether these actually pose a zoonotic risk is inherently 156 

difficult to ascertain due to the low resolution of current markers. Several studies have 157 

shown that animals and humans can share genotypes [55] and even sub-assemblages 158 

[42,56–61], but incomplete MLSTs, in addition to the low resolution and incongruences 159 

between markers, mean these data cannot be definitive. Indeed, many studies rely on the 160 

use of a single marker, despite this being inadequate to group isolates reliably [35,41,50,62]. 161 

Instead, identifying G. duodenalis transmission between humans and animals has been 162 

inferred using classical epidemiological studies and indirect observations. For example, 163 

wide-scale vaccination of dogs in a deprived community in Argentina led to a corresponding 164 
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decrease in the prevalence of Giardia in the local children [63]. Additionally, epidemiological 165 

analyses in India found a highly significant association between the prevalence of G. 166 

duodenalis in humans, dog ownership and the presence of a G. duodenalis-positive dogs in 167 

the same household [37]. Similar links were found between dog ownership and human 168 

infection with assemblage A in a United Kingdom setting [64]. However, no link has been 169 

found in other communities [65] and it likely that the epidemiology and zoonotic risk of 170 

Giardia infections vary in different locations. This diversity of epidemiological contexts 171 

underlines the need for novel high-resolution genotyping methods which can be applied to 172 

reveal the particular transmission pathways in action in different areas. 173 

Population genetic structure of Giardia 174 

Another important aspect of G. duodenalis biology that cannot be resolved with the current 175 

molecular tools is the role that sexual recombination plays in creating diversity in natural 176 

populations of the parasite. Although seemingly an academic question, this issue is of 177 

practical importance as the occurrence of genetic exchange in pathogen populations can 178 

have a significant impact on disease epidemiology. For example, in asexual organisms only 179 

rare mutations at specific loci or horizontal gene transfers can provide new genotypes that 180 

may lead to drug resistance or increased virulence. Conversely, sexual organisms are able to 181 

produce new genotypes constantly through meiosis and chromosomal re-assortment, 182 

allowing alleles conferring a fitness advantage to spread in the population. This in turn 183 

allows pathogens to adapt and exploit new conditions. In diagnostic and public health 184 

settings, sexual recombination also affects the ability to track outbreaks and identify 185 

transmission networks by disrupting the genotypes involved. Although G. duodenalis 186 

possesses many of the genes for meiosis [66], sexual reproduction has never directly been 187 
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observed and examination of linkage disequilibrium among isozymes suggests G. 188 

duodenalis is asexual [67]. There are hints that the parasite may not be completely asexual 189 

and sexual recombination may simply be a rare event [14,21]. In particular, extensive 190 

examination of the genetics of G. duodenalis from a single household found evidence for the 191 

reassortment of alleles between infections, suggesting sexual recombination [68]. Similar 192 

reassortment was suggested by a high-resolution study of assemblage A isolates that also 193 

indicated possible cross-assemblage recombination with assemblage E [46]. Horizontal gene 194 

transfer has also been documented between assemblages A and B [69,70]. 195 

An alternative explanation for the low levels of variance and heterozygosity observed in G. 196 

duodenalis is the utilization of a parasexual cycle during reproduction, similar to many fungi 197 

[71]. A parasexual cycle differs from meiosis in that it involves the fusing of two diploid 198 

parent cells prior to genetic exchange rather than haploid gametes. To return to a diploid 199 

state there must be a reduction in chromosomal number after this process. Microscopic 200 

evidence has shown that within G. duodenalis cysts, nuclear fusion and genetic exchange 201 

can occur during the transition from the 4x2N to the 4x4N stage (Figure 1B), although 202 

without the loss of chromosomes [72]. This unique parasexual cycle could act to decrease 203 

heterozygosity within the G. duodenalis population, reducing the negative effects associated 204 

with deleterious mutations that accumulate in asexual eukaryotes [73]. It can also lead to 205 

the generation of new allele combinations, emulating some of the benefits of true sexual 206 

recombination. However, as this is essentially a form of self-fertilization (an extreme form of 207 

inbreeding), the system can only slow down the accumulation of mutations rather than 208 

eliminate them completely. Additionally, a parasexual cycle cannot explain the apparent 209 

recombination observed between Giardia isolates across assemblages and sub-assemblages 210 

[46,68–70], nor incidences of lateral gene transfer from bacteria and the host [14]. 211 



 - 10 - 

Alternatively, G. duodenalis may utilize large-scale gene conversion (evidenced by long-212 

range loss of heterozygosity (LOH)) achieved through homologous recombination events to 213 

compensate for the build-up of deleterious mutations, similar to that described for the 214 

asexual parasite Trypanosoma brucei gambiense [74]. It is currently unclear if the large 215 

regions of homozygosity found in G. duodenalis genomes are due to loss of heterozygosity. 216 

Irrespective of the method, it seems likely that some form of recombination occurs in G. 217 

duodenalis. Higher-resolution markers or wide-spread sequencing will make it easier to 218 

understand how common the phenomenon is and what the effects may be on the molecular 219 

epidemiology of Giardia infections. This is further supported by a recent study that found 220 

evidence for recombination between assemblage A sub-assemblages using six markers [46]. 221 

However, it is likely that infrequent recombination would affect estimates of how related 222 

individuals are, complicating interpretation. 223 

A need for new genotyping tools 224 

Together, these issues indicate a need for more robust tools for genotyping G. duodenalis to 225 

understand better the molecular epidemiology of the disease and the biology of the 226 

parasite to improve outbreak management. The recent publication of updated reference 227 

genomes for G. duodenalis [75] and G. muris [17] provides more complete scaffolds to build 228 

upon and a well-characterized outgroup for comparison, contributing to these aims. 229 

However, the development of new tools depends on collecting a large and diverse selection 230 

of sequenced isolates to capture the diversity in the field more fully. Previously, sequencing 231 

of G. duodenalis samples has been restricted due to the limitations of sampling from faecal 232 

material and the requirement to adapt strains to axenic culture [14,19–21]. This adds 233 

significant cost, is labour intensive and introduces time delays to sequencing efforts. It also 234 
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ensures that only culturable strains can be sequenced, introducing potential bias, although 235 

assemblage-specific techniques may improve axenic culture techniques in the future. 236 

Comparative genomic analysis may provide information that would improve the axenic 237 

culture of specific assemblages, such as the recent analysis of assemblages C and D that 238 

identified assemblage-specific genes [18]. Several clinical isolates have recently been 239 

sequenced without axenic culture by concentrating cysts from clinical samples [76]. This 240 

approach may have limited effectiveness in many situations due to the requirement of a 241 

large number of starting cysts (often difficult to obtain in a diagnostic setting) and also 242 

results in highly variable sequencing quality and coverage. Several new technologies are 243 

now reaching maturity that may allow the rapid whole-genome sequencing (WGS) of G. 244 

duodenalis isolates from the small amount of starting material available in the clinical 245 

diagnostic setting. Accurate genomes that represent the individual assemblages would also 246 

assist in resequencing efforts in samples with low starting material. For many years this was 247 

limited to assemblages A, B and E, although genomes for assemblages C and D have recently 248 

been added as a resource for the community [18]. 249 

Whole genome sequencing of Giardia 250 

Central to efforts to sequence G. duodenalis clinical isolates are affordable and relatively 251 

simple sequencing platforms that can be inserted into diagnostic pathways with little 252 

disruption. These technologies have led to the average cost of sequencing falling from 253 

$1,000 per megabase in 2009 to $0.01 in 2019. Costs are predicted to fall further with the 254 

drive to perform WGS routinely for certain pathogens to generate epidemiological data and 255 

to assist the management of outbreaks. Indeed, wider deployment of Illumina NovaSeq and 256 

third generation long-read sequencing have recently been used to update the G. duodenalis 257 
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reference genome [75]. The long-term aim would be user-friendly sequencing machines that 258 

could be deployed at the benchtop and used by non-specialist scientists in diagnostic 259 

laboratories. While we are still some way from this goal, and even upcoming “black box” 260 

technologies (such as Seeplex or Filmarray) only detect pathogens rather than genotype 261 

them, on-site rapid sequencing has shown promise in improving the management of 262 

bacterial and viral outbreaks by enhancing throughput, reproducibility and sensitivity. It has 263 

also led to a rapid expansion in the number of detectable genotypes and new strategies to 264 

understand the molecular epidemiology of these diseases [77]. This in turn has led to an 265 

improvement in identifying infectious agents and sources, tracking outbreaks and 266 

monitoring drug resistance markers in infected individuals who do not respond to 267 

treatment. We suggest similar efforts should be made to build a substantial collection of 268 

sequenced samples from multiple centres across the globe to capture the diversity of G. 269 

duodenalis in clinical, veterinary and environmental samples, leading to better management 270 

of clusters/outbreaks, reservoirs and drug resistance. To avoid the bottleneck of adapting 271 

strains to culture, several approaches have the potential to be developed to allow 272 

sequencing of isolates directly from faecal samples. For example, researchers in a recent 273 

study used a combination of cytometric sorting and single-cell whole-genome amplification 274 

to sequence assemblage C and D isolates from dogs, neither of which have been successfully 275 

cultured [18]. This revealed numerous genes that may be linked to host specificity and 276 

highlighted important differences in heterozygosity between the assemblages. Another 277 

promising technology is exome capture, an approach using biotinylated DNA or RNA ‘baits’ 278 

to capture DNA fragments from a target genome. This has successfully been used to identify 279 

and sequence material with a large amount of contaminating DNA, including enteric 280 

pathogens from faeces [78]. 281 
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Making sense of the genomic data 282 

If the issues of concentrating and purifying cysts to obtain sufficient quantity and quality of 283 

G. duodenalis DNA for sequencing are overcome, the next concern that limits the 284 

development of high-resolution genotyping markers becomes collating and analysing the 285 

large amounts of genomic data. A centralized global database will be required to develop a 286 

standardized set of markers efficiently, either by adapting current resources like GiardiaDB 287 

[79] or developing a dedicated system that receives MLST or other forms of sequence data. 288 

Several such databases have emerged that collate data from bacterial and viral sources, 289 

such as Enterobase [80], PubMLST and the European Nucleotide Archive that facilitate 290 

standards used for MLST genotyping. Similar efforts have been established in the past for 291 

Giardia species, for example ZOOPNET [55], however only now is the technology maturing 292 

sufficiently to meet the ambitions of the community for research and clinical applications. 293 

While a diagnostic panel of single nucleotide polymorphisms would provide the highest 294 

resolution for discriminating G. duodenalis genotypes, the most widely deployable output in 295 

the first instance will be additional MLST loci that expand on the current markers to increase 296 

reliability and resolution. These would ideally target genes or regions without indels that 297 

would cause frame shift mutations, making them more amenable to direct sequencing and 298 

avoiding cloning procedures. Direct sequencing is able to identify heterozygous positions 299 

across each of the four genomes present in a single Giardia isolate, providing extra 300 

discriminatory information [41]. Indeed, it may be preferable to target heterozygous regions 301 

to identify potential recombination events occurring between generations. Alternatively, if 302 

it is shown that LOH occurs in G. duodenalis to reduce deleterious alleles, identifying and 303 

contrasting such regions would also serve as a means to establish relationships between 304 

strains. In addition, a selection of genes that are under a range of selection pressures would 305 



 - 14 - 

be ideal to provide different temporal resolution. This may entail using markers with 306 

relatively high rates of mutation to track close relationships, while using slower evolving 307 

genes to elucidate more ancestral relationships. The power of an expanded MLST panel with 308 

higher discriminatory power has recently been demonstrated using a combination of six 309 

markers, revealing evidence for recombination and zoonotic transfer in assemblage A 310 

isolates [46]. However, increasing the number of markers further and improving reliability 311 

across all of the different assemblages would allow the collective effort of the Giardia 312 

community to quantify the degree of zoonotic transmission in different epidemiological 313 

contexts and to identify environmental or animal reservoirs of infection. 314 

The application of genomics to clinical isolates 315 

The ability to link closely related G. duodenalis isolates within a short period of time would 316 

allow potential outbreaks to be rapidly identified and effectively managed and could also be 317 

used to identify drug-resistant strains. This approach is already in use for other pathogens 318 

including tuberculosis, Salmonella spp. and E. coli 0157 [81]. Due to selective testing 319 

protocols largely based on patient travel history, there is potential for under-detection of 320 

the parasite in clinical samples and under-reporting of domestically-acquired cases, an issue 321 

recently highlighted in Scotland [82]. Compared to other pathogens, limited resources are 322 

directed towards Giardia surveillance activities and for this reason it may be hypothesized 323 

that public health systems would lack the power to detect small-scale endemic outbreaks 324 

should they occur. This is particularly the case if these outbreaks had low case numbers and 325 

were not associated with a clear ‘point source’, such as a water contamination event. For 326 

these reasons, having the capacity to detect outbreaks routinely as part of a clinical 327 

genomics laboratory service would represent a major step forward for public health [12]. 328 
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PCR and Sanger sequencing-based MLST approaches have the benefit of being more easily 329 

inserted into current laboratory pathways [83,84], are rapid, cost-effective and are also 330 

more likely to be adopted in lower-to-middle income countries that lack the capacity to 331 

perform large amounts of sequencing. As sequencing technology reaches greater 332 

penetration, clinical diagnostic services could begin to incorporate high-throughput 333 

sequencing into their pipelines while maintaining backwards compatibility with established 334 

MLST systems [84]. The cooperation of low, middle- and higher-income countries will not 335 

only be essential to identify both endemic outbreaks and reservoirs but also distinguish 336 

cases caused by ‘foreign’ genotypes of Giardia that have been imported through 337 

international travel. Working in such a broadly collaborative manner will undoubtedly raise 338 

issues in the sharing of public health data, the policies for which can vary widely between 339 

countries. Fortunately, efforts such as the Global Alliance for Genomics and Health are 340 

working to facilitate such programmes and their recommendations have been adopted by a 341 

number of health services worldwide [85]. 342 

Using genomics to understand the biology of Giardia 343 

Although the collection of large amounts of sequencing data and the development of more 344 

robust sets of MLSTs will directly impact the management of giardiasis, these data will also 345 

contribute to answering several long-standing questions concerning the biology of the 346 

parasite that have implications for the disease. For example, large numbers of genomic or 347 

high-resolution MLST sequences would reveal the degree to which allelic recombination 348 

occurs between generations of parasites, especially if isolates were closely linked in terms of 349 

geographical location and time of sampling. The differences between generations would 350 

also demonstrate whether recombination was occurring between individuals or a 351 
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parasexual cycle was being utilized [72]. Determining the amount of recombination 352 

occurring in the field is important as it directly impacts our understanding of transmission 353 

networks and the likelihood of positive mutations becoming fixed in the population. These 354 

data would also confirm which assemblages are true species and no longer share genetic 355 

information, and those that have host-specific adaptations which limit their zoonotic 356 

potential. For example, several genes have been identified in assemblage C isolates that are 357 

suggested to be involved in host-specificity [18]. Finally, the capacity to genotype large 358 

numbers of isolates accurately has the potential to reveal associations between parasite 359 

genes and phenotypes. This will allow forward genetic techniques to be used in G. 360 

duodenalis for the first time, making it easier to link genotype to phenotype. Similarly, the 361 

ongoing refinement of single-cell genomics and transcriptomics also provides a tool to 362 

examine important biological questions in Giardia [86]. This would include identifying genes 363 

that distinguish between drug resistance and treatment failure [87] and identifying 364 

genotypes involved in more severe sequelae [11]. These approaches along with other 365 

advances in functional analysis will, to some extent, compensate for the lack of a reverse 366 

genetic framework for Giardia which has stifled research in this area [88]. Fortunately, in-367 

roads are being made with the development of CRISPR/Cas9-mediated gene knockdown 368 

protocols, although the capacity for complete knockout remains elusive [89,90]. 369 

The current genetic contribution to drug resistance is unclear [91] and appears to be largely 370 

linked to transcriptional changes mediated by epigenetic factors [87]. However, there are 371 

numerous polymorphisms in several of the genes believed to be involved [92]. This suggests 372 

that if associating polymorphisms are identified in these candidate genes then there is the 373 

capacity to identify and distinguish cases of true drug-resistance from treatment failure for 374 

alternative reasons. The application of WGS to clinical isolates would also reveal whether de 375 
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novo positively selected mutations, including LOH events, arise in vivo and what role they 376 

may play in drug resistance. This knowledge would lead to an improvement in patient 377 

treatment by allowing alternative drug regimens to be followed immediately rather than 378 

waiting for treatment failure. If an effective alternative treatment can be utilized quickly in 379 

such cases, this would reduce the selective power of the ineffective treatment and limit the 380 

spread of resistant genotypes, therefore benefiting wider public health. To date, no allelic 381 

variants of genes have been identified that associate with different clinical outcomes of G. 382 

duodenalis infection, despite symptoms ranging from asymptomatic carriage to long-term 383 

IBS [11]. Preliminary data is largely ambiguous, with conflicting genotypes associating with 384 

the development of symptoms [2,93]. Again, the use of a publicly available pathogen 385 

database (or expanding current resources such as GiardiaDB) that integrates data from 386 

forward genetic screens and association studies would facilitate the identification of the 387 

genes involved. However, this would require a degree of clinical information being made 388 

available alongside the genetic information, complicating data sharing across jurisdictions. It 389 

will also be important to determine the molecular profile of isolates from asymptomatic 390 

cases, raising further ethical and logistical issues. The input that host and parasite genetics 391 

have in determining outcome is important to establish as these asymptomatic cases may 392 

represent a large and overlooked reservoir of infection for susceptible individuals, again 393 

impacting public health. 394 

Concluding Remarks 395 

In summary, there has been a long-held view that new genotyping markers are required for 396 

G. duodenalis to address numerous issues (Outstanding Questions Box). New sequencing 397 

technologies based on genome capture and single cell sequencing mean that it is now 398 
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possible to achieve these aims using clinical samples. However, successfully expanding the 399 

MLST framework for G. duodenalis will require cooperation across the research, medical and 400 

veterinary communities to develop a consistent set of standards and methods to avoid 401 

replicating effort and maximising return. It will also benefit from establishing a centralised 402 

database to collate and process data to deliver tangible outcomes that benefit public health. 403 

This does not necessarily require the generation of new tools, as current resources such as 404 

GiardiaDB may be expanded to perform a wider role. The routine application of WGS to 405 

clinical samples in the public health sphere would allow a genomics-led approach to 406 

outbreak detection, which contrasts to the ‘response mode’ approach currently taken 407 

where only large-scale outbreaks identified by other surveillance activities are genetically 408 

characterized. Clinical genomics would also allow drug-resistant isolates to be 409 

comprehensively genotyped, determining whether resistant lineages are circulating and 410 

whether de novo, positively selected mutants play a role in this poorly understood 411 

phenomenon. If successful, these approaches will greatly improve the global effort to 412 

reduce Giardia infections effectively and minimize outbreaks, and also answer long-standing 413 

questions concerning the biology of these unique eukaryotes. 414 
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 637 

Glossary 638 

18S ssu-rRNA gene: highly conserved gene encoding ribosomal RNA and commonly used for 639 

phylogenetic studies 640 

allelic sequence heterozygosity (ASH): genetic differences at a genetic locus as assessed 641 

across the four different genomes in an individual Giardia isolate 642 

cyst: infective, environmental stage of the parasite 643 

diplomixis: a unique parasexual recombination cycle that occurs between two nuclei of a 644 

Giardia cell during encystation 645 

diplomonad: group of flagellated protozoa with double cells and two nuclei 646 

dysbiosis: disruption of the gut-microflora 647 

excyzoite: a newly excysted Giardia cell with 4×4N ploidy 648 

gene conversion: transfer of genetic material from an intact chromosomal DNA sequence to 649 

a homologous sequence which contains double-strand breaks 650 
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inter-nuclei heterozygosity: the degree of polymorphism between the two nuclei of a 651 

Giardia cell, which is typically lower than would be expected 652 

isozyme (or isoenzyme): multiple forms of the same enzyme that differ in amino acid 653 

sequence and which can be used as the basis for a typing method 654 

lateral gene transfer: the horizontal movement of genetic material between organisms 655 

distinct from the vertical transmission of DNA from parent to offspring 656 

linkage disequilibrium: the non-random association of alleles at two or more loci in a 657 

population 658 

loss of heterozygosity (LOH): regions that display no heterozygous sites in a genome 659 

multilocus sequence typing (MLST): method used to characterize individuals genetically 660 

based on the sequence at a number of marker loci distributed throughout the genome 661 

parasexual recombination: a process genetic recombination utilized by some organisms 662 

that does not require the production and fusing of haploid gametes 663 

peroxisome: membrane-bound organelle found in eukaryotic cells involved in oxidation and 664 

lipid metabolism 665 

ploidy: the number of sets of chromosomes within the cell of an organism 666 

trophozoite: active ‘feeding’ form of the parasite located in the small intestine responsible 667 

for pathology 668 

  669 
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Text Boxes 670 

Box 1. G376 primer annealing site diversity. The diversity found within the three main 671 

genes used to genotype G. duodenalis (bg, tpi, and gdh) makes them useful to differentiate 672 

assemblages and subtypes. The separate assemblages also display different diversities, 673 

allowing a degree of sub-structuring to be observed. However, this diversity may also 674 

encompass the primer annealing sites, affecting the amplification success rates for isolates 675 

and assemblages. For example, there are 1,598 publicly available G. duodenalis sequences 676 

that include the annealing site for the commonly used β-giardin primer G376. Within these 677 

sequences, there can be up to eight polymorphisms compared to the primer sequence 678 

(Figure 2). Assemblage A sequences are the least likely to have polymorphisms, likely 679 

reflecting the fact that primers are initially designed using this assemblage. Conversely, 680 

assemblages B–H are more likely to contain polymorphisms in the annealing site (most have 681 

at least two), making them harder to amplify. In addition, as these public sequences are by 682 

definition the products of successful reactions with optimal conditions for promoting 683 

amplification, it is reasonable to speculate that many sequences fail to amplify due to 684 

polymorphisms in the primer-binding sites and other inhibiting factors. 685 

 686 

  687 
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Figures 688 

 689 

Key Figure. The unknown aspects of Giardia duodenalis molecular epidemiology. The 690 

parasite Giardia duodenalis infects a wide range of mammalian hosts and features a 691 

relatively simple direct life cycle. Despite being one of the most common enteric parasites in 692 

the world, low resolution molecular markers limit research and control efforts in this 693 

important organism. For example, the relationships between clinical isolates cannot 694 

accurately be established, making it difficult to identify outbreaks and trace sources of 695 

disease. Similarly, a role for zoonotic transmission in human disease is also unclear, although 696 

it is suspected based on indirect evidence. Finally, certain aspects of G. duodenalis biology 697 

that would affect efforts to control the disease, such as the frequency of sexual or 698 

parasexual recombination, remain ambiguous. In this manuscript, we discuss how new 699 

sequencing technologies and strategies may contribute to a new generation of molecular 700 

markers for Giardia that will aid in addressing these questions and contribute to improving 701 

public health. 702 

  703 
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 704 

Figure 1. An overview of the G. duodenalis life cycle. A) In the mammalian intestinal tract, 705 

binucleate trophozoites cycle between 4N and 8N during vegetative growth. Trophozoites 706 

swept into the large intestine differentiate into cysts and are released into the environment 707 

for direct transmission. During encystation, the two nuclei divide and the DNA replicates, 708 

resulting in a ploidy of 16N. After activation in the mammalian stomach, cysts excyst in the 709 

intestine to release a 16N excyzoite with four nuclei. This excyzoite divides twice without 710 

DNA replication, resulting in four trophozoites that begin the vegetative cycle in a new host. 711 

B) G. duodenalis exhibits a unique parasexual cycle (diplomixis) that may contribute to 712 

lower than expected heterozygosity between the two nuclei of the cell. When the 16N cyst 713 

is formed during encystation, genetic exchange can occur between nuclei via homologous 714 

recombination. i) Without diplomixis, inter-nucleus heterozygosity is maintained in the 715 

daughter cells. Consequently, inter-nucleus heterozygosity will continue to increase and the 716 

genomes of the two nuclei will diverge. ii) With occasional diplomixis, regions of inter-717 

nucleus heterozygosity can be transferred, reducing heterozygosity in some of the daughter 718 

cells and slowing the rate of divergence between the two nuclei. In addition, the process can 719 

generate genotypes with new allele combinations, further emulating sexual recombination. 720 
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 721 

Figure 2. β-giardin G376 primer annealing site diversity among assemblages. For this 722 

analysis, 1,598 publicly available G. duodenalis sequences were downloaded and the G376 723 

primer annealing site identified and aligned. The numbers of differences between each 724 

sequenced site and the primer were calculated using the Levenstein distance. The data are 725 

presented for each assemblage, showing that assemblage A sequences have few 726 

polymorphisms in the annealing site compared to the published primer. In contrast, 727 

assemblages B–H have, for the most part, at least two and up to five polymorphisms in total. 728 

 729 

  730 
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Tables 731 

Table 1. Giardia duodenalis host assemblages 732 

Giardia Assemblage/Sub-
Assemblage 

 

Host Proposed Nomenclature 
[47] 

A I 
     II 
    III 

Humans, non-human 
primates, canines, felines, 

other mammals 
 

G. duodenalis 

B Humans, non-human 
primates, canines, felines, 

other mammals 

G. enterica 

C Canines G. canis 

D Canines G. canis 

E Livestock G. bovis 

F Felines G. cati 

G Rodents G. simondi 

H Marine mammals  

 733 

 734 


