

Schultz-Swarthfigure, C. T., McCall, P., Docking, R., Galley, H. F. and Shelley, B. (2021) Can soluble urokinase plasminogen receptor predict outcomes after cardiac surgery? *Interactive CardioVascular and Thoracic Surgery*, 32(2), pp. 236-243. (doi: <u>10.1093/icvts/ivaa239</u>)

The material cannot be used for any other purpose without further permission of the publisher and is for private use only.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/223608/

Deposited on 29 September 2020

Enlighten – Research publications by members of the University of Glasgow <u>http://eprints.gla.ac.uk</u>

1	Running Title
2 3	Can soluble urokinase plasminogen receptor predict outcomes after cardiac surgery?
4	
5	
6 7	Chase T. Schultz-Swarthfigure ¹ , Philip McCall ¹⁺² , Robert Docking ³ , Helen F. Galley ⁴ and Benjamin Shelley ^{1,2*}
8	
9 10	¹ University Department of Anaesthesia, Pain and Intensive care Medicine, New Lister Building, Glasgow Royal Infirmary, Glasgow
11	² Department of Anaesthesia, Golden Jubilee National Hospital, Glasgow
12	³ Department of Anaesthesia, Queen Elizabeth University Hospital, Glasgow
13	⁴ Institute of Medical Sciences, University of Aberdeen, Aberdeen
14	
15	
16	Presentation
17	This work was presented as an oral presentation at the BJA Research Forum,
18	November 12-13 th , 2015, York at The Principal hotel
19	
20	Word Count: 4996
21	
22	Clinical Registration
23	West of Scotland Research Ethics Committee Reference: 12/WS/0179 (AM01)
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	*Corresponding author's phone number: 07980112140
36	*E-mail: <u>benjamin.shelley@glasgow.ac.uk</u>
37 38	*Mailing Address: Department of Anaesthesia, Golden Jubilee National Hospital, Agamemnon St, Clydebank, Glasgow, G81 4DY

- 39 Visual Abstract
- *Key Question:* Does the biomarker suPAR have value in predicting postop
- 41 complications in patients following cardiac surgery?
- 42 Key Findings: suPAR was predictive for prolonged hospital and ICU stay at all
- 43 timepoints, including preop, and compared favourably to other scoring tools.
- **Take Home Message:** In cardiac surgery patients, suPAR is a predictor of
- 45 postop complications that can help perioperative clinical decision making.

-

61 Abstract

62 **Objectives:** Soluble urokinase plasminogen activator receptor (suPAR) is a 63 biomarker that has been implicated in several cardiac pathologies and has been 64 shown to be elevated in critically-ill populations. We measured plasma suPAR in 65 a cohort of cardiac surgical patients to evaluate its ability to predict prolonged 66 intensive care unit (ICU) and hospital length of stay and development of 67 complications following surgery. We compared suPAR against Euroscore II and 68 CRP.

Methods: Ninety patients undergoing cardiac surgery were recruited with samples taken preoperatively and on postoperative days 1, 2 and 3. suPAR was measured using enzyme-linked immunosorbent assay. Area under the receiver operating characteristic curve (AUROC) was used to test predictive capability of suPAR. Comparison was made with Euroscore II and C-reactive protein (CRP).

<u>Results</u>: suPAR increased over time (p<0.001) with higher levels in patients 74 requiring prolonged ICU and hospital stay, and prolonged ventilation (p < 0.05). 75 suPAR was predictive for prolonged ICU and hospital stay, and prolonged 76 77 ventilation at all time-points (AUROC 0.66-0.74). Interestingly this association 78 was also observed preoperatively, with preoperative suPAR predicting prolonged ICU (AUROC 0.66), and hospital stay (AUROC 0.67) and prolonged ventilation 79 (AUROC 0.74). The predictive value of preoperative suPAR compared favourably 80 to EuroSCORE II and CRP. 81

Conclusions: suPAR increases following cardiac surgery and levels are higher
 in those who require prolonged ICU stay, prolonged hospital stay and prolonged
 ventilation. Preoperative suPAR compares favourably to EuroSCORE II and CRP

86	outcome following cardiac surgery, helping inform clinical decision making.					
87						
88	<u>Keywords</u>					
89						Complications;
90	Receptors, Uro	okinase P	Plasminoge	en Activator; Th	noracic surgery	
91						
92						
93						
94						
95						
96						
97						
98						
99						
100						
101						
102						
103						
104						
105						
106						
107						

in prediction of these outcomes. suPAR could be a useful biomarker in predicting

108 Abbreviations

- ICU Intensive Care Unit
- suPAR Soluble Urokinase Plasminogen Receptor
- CRP C Reactive Protein
- AUROC Area Under the Receiver Operator Curve
- 113 Introduction

Patient's undergoing cardiac surgery are at risk of multisystem postoperative 114 complications¹ resulting in prolongation of intensive care unit (ICU) admission² 115 and hospital stay.³ The ability to predict either preoperatively, or early 116 postoperatively, those patients at increased risk of complications would aid 117 clinical decision-making. A reliable prognostic biomarker⁴ would enable 118 identification of patients at increased risk, allowing them to receive additional 119 120 monitoring and earlier intervention. Conversely, identification of patients unlikely to require extra support would allow these patients to be triaged to a fast-track 121 122 recovery.

123 Soluble urokinase plasminogen activator receptor (suPAR) is the soluble form of

the leukocyte membrane-bound urokinase plasminogen activator receptor (uPAR)⁵ and has been linked to plasminogen activation, pericellular proteolysis, and chemotaxis.^{5,6} suPAR is a novel biomarker that has been shown to have diagnostic and predictive value in cardiovascular disease,^{7,8} the critically ill,^{9,10} and patient's with sepsis.^{11,12}

We hypothesised suPAR would increase following cardiac surgery and would be useful to identify patients requiring a prolonged stay in hospital and/or ICU. Furthermore, we compared the discriminative capability of suPAR against C-Reactive protein (CRP) and Euroscore II, both of which are measured and calculated perioperatively, to assess suPAR's potential clinical applicabilityagainst established methods.

EuroSCORE II is a scoring system used prior to cardiac surgery to provide an estimate of predicted mortality.¹³ It considers various patient-dependent factors, such as cardiac and renal function, as well as surgical factors, and quantifies the overall risk of death. It is intuitive that patients at higher risk of death have higher risk of increased intensive care requirement and EuroSCORE II has been demonstrated to predict prolonged ICU stay.¹⁴ CRP is widely measured in this patient population and is used to identify patients mounting an inflammatory response and determine those at risk of complications such as infection. For these reasons, EuroSCORE II and CRP were compared to suPAR.

Finally, we wanted to assess whether a combined model integrating commonly used clinical information with inflammatory biomarkers would have a greater value in identifying those patients requiring prolonged stays.

161 Methods

162

163 Trial Enrolment and Ethics Approval

This study is a *post-hoc* analysis of a previous study examining acute kidney 164 injury in patients undergoing cardiac surgery. The trial was registered in April 165 2012 at ClinicalTrials.Gov (Trial number NCT01573104). Ethical approval for this 166 study (Ethic committee number: 12/WS/0179) was provided by the West of 167 Scotland Research Ethics Service on the 21st of August 2012. A substantial 168 amendment to allow the additional analyses was submitted on the 26th of 169 September 2014 and approved by the same ethics committee on the 27th of April 170 2016. With informed consent, blood samples were collected from patients 171 undergoing cardiopulmonary bypass cardiac surgery at the Golden Jubilee 172 National Hospital between November 2011 and January 2014. 173

174 Data Collection

Exclusion criteria for the primary study were; patient/surgical refusal, 175 preoperative renal replacement, emergency procedures, age <18 or >90 years, 176 pregnancy, the use of ventricular-assist devices, severe chronic renal failure 177 (defined as eGFR <30mL/min/1.73m²) and impaired patient capacity to consent. 178 179 Baseline information was collected on admission about co-morbidity status, from which EuroSCORE II¹³ was calculated. Intraoperative data were collected from 180 the recall AIMS electronic anaesthetic charting system (Informatics Clinical 181 Information Systems Limited, Glasgow) and postoperative data from the hospitals 182 ICU clinical information system (Centricity CIS: GE Healthcare[©]. 183 184 Buckinghamshire, UK).

¹⁸⁵ In accordance with previous studies, prolonged ICU stay was defined as over 48 ¹⁸⁶ hours¹⁴ and prolonged hospital stay was defined as 12 days or greater.¹⁵ Often ¹⁸⁷ patients are discharged from intensive care or hospital for logistical rather than ¹⁸⁸ clinical reasons, at 'set times', such as following the morning ward round, which ¹⁸⁹ can confound the use of length of stay data as a continuous variable. To counter ¹⁹⁰ this, these variables were dichotomized to highlight patients that had deviated ¹⁹¹ from normal recovery and required prolonged stays.

192 A composite endpoint of complications was used; surgical re-operation, stroke, deep sternal wound infection, postoperative renal failure, prolonged ventilation¹⁶ 193 and atrial fibrillation. Surgical re-operation, stroke and deep sternal wound 194 infection were included if documented in the hospital's cardiac surgery database 195 (Cardiac, Cardiology, and Thoracic Health Information System; CaTHi, Amor 196 197 Group, Renfrew, Scotland). In line with previous studies, renal failure was defined as acute kidney injury network¹⁷ stage 1 or greater¹⁸ and prolonged ventilation 198 was defined as over 24 hours.^{19,20} 199

Blood samples were collected before induction of anaesthesia and were also collected on the morning of postoperative days 1, 2 and 3. Samples were centrifuged, frozen and stored at -80°C until analysis. suPAR was measured in duplicate using a commercially available solid phase enzyme linked immunosorbent assay (suPARnostic[®], Virogates, Denmark) according to the manufacturer's instructions. The within-batch coefficient of variation (CV) was 6.2%, whilst the between-batch CV was 11.8%. 207 CRP was determined as a routine clinical sample by an enhanced 208 immunoturbidimetric assay run on a Roche Cobas 6000 analyser. The reference 209 range is <10mg/L, with a lower limit of detection of 1.0 mg/L and a CV of 1.7%.

210 Statistical Analysis

Analysis was undertaken using SPSS® (version 22, IBM, Armonk, NY). Variables were visually inspected and tested for normality using the Shapiro-Wilk test. Categorical data are presented as frequency(%) and continuous data are presented as mean(SD) or median(IQR) as appropriate.

Multiple comparisons across time-points were performed using repeated measures ANOVA or Friedman's test. Pairwise comparisons were performed using Wilcoxon signed rank test or a paired T-test with appropriate Bonferroniadjusted *p*-values to avoid type 1 errors. Comparisons between independent groups were performed using Student's T-test or Mann-Whitney U-test; adjustment for multiple testing was not applied. Statistical significance was determined as p<0.05.

The area under the receiver operator curve (AUROC) was calculated to evaluate 222 the discriminative capability of variables for predicting patients who would require 223 224 prolonged ICU or hospital stay or who would develop complications. Sensitivity, specificity and positive and negative predictive values were calculated according 225 to optimum cut off points defined as the point at which the sum of sensitivity and 226 specificity were maximal (Youden's Index²¹). Multivariable logistic regression was 227 used to develop a model incorporating preoperative suPAR and EuroSCORE II, 228 with AUROC used to evaluate its discriminative capability. 229

This manuscript adheres to the STARD guidelines where appropriate.

231 **Results**

Ninety patients were recruited. Of the original cohort, two patients had their operations cancelled after recruitment for clinical reasons, and no blood samples were obtained in a further five patients; these patients were excluded from analysis. The median age was 66 years. The median for EuroSCORE II was 1.2%, ventilation time was 7 hours, ICU length of stay was 23 hours and hospital length of stay was 7 days (Table 1).

Seventeen patients (19.3%) had a prolonged ICU stay and 23 (26.1%) had a prolonged hospital stay. Those with a prolonged hospital stay were older (p<0.001), had a longer cardiopulmonary bypass time (p=0.004), had a longer aortic cross clamp time (p=0.027), and had a longer ICU stay (p=0.002) than those who did not. There was no difference in demographics between those having a longer ICU stay and those who did not (Table 2).

suPAR was higher at all postoperative time-points compared with baseline
(Figure 1a). There were differences in suPAR levels both preoperatively and
postoperative days 1 and 2 between those patients requiring a longer stay in the
ICU and those who did not (Figure 2a). There were also significant differences in
suPAR levels at all time-points between those patients who stayed longer in
hospital and those who did not (Figure 2b).

CRP levels were higher at all postoperative time-points compared with baseline
(Figure 1b). There was no difference in CRP levels at any timepoint between
those patients who required prolonged ICU and those who did not (Figure 2d).
There were differences in CRP levels on postoperative day 2 between those

patients requiring prolonged hospital and those that that did not, but not at othertimepoints (Figure 2e).

Plasma suPAR levels preoperatively and postoperative day 2 were significant predictors of increased length of ICU and hospital stay, respectively. The predictive value of preoperative suPAR compared favourably to EuroSCORE II and CRP (Table 3, Figure 3a and 3b).

For predicting increased time in ICU, the optimum cut off point was for 260 preoperative suPAR as identified by ROC curve analysis with a concentration of 261 1.96ng/mL, giving a sensitivity of 52.9% and a specificity of 79.7%. This 262 263 corresponded to a positive predictive value of 30.8% and a negative predictive 264 value of 90.7%. For predicting a prolonged hospital stay, the optimum cut off point was for postoperative day two suPAR with a concentration of 2.37ng/mL, 265 266 sensitivity 63.2%, specificity 81.5%, positive predictive value (PPV) 54.5%, negative predictive value (NPV) 86.3%. 267

268 **Complications**

At least one of the composite complications developed in 40(45.5%) of the 88 269 270 patients: 31(35.2%) developed new onset atrial fibrillation, 16(18.2%) developed 271 postoperative renal failure with 5(5.6%) patients requiring renal replacement therapy, eight(9.1%) required prolonged ventilation, six(6.8%) required re-272 operation, three(3.4%) had a deep sternal wound infection and one patient had 273 274 prolonged neurological dysfunction. One patient died, equating to a mortality of 1.1% - for the purposes of analysis this patient was treated as having a prolonged 275 ICU and hospital stay. There was no difference in EuroSCORE II or suPAR levels 276 at any time-point between those patients who developed a composite 277

278 complication and those who did not. Median CRP levels were higher in patients 279 who went onto develop complications on postoperative days 1 and 2 (Figure 2f). 280 In post-hoc analyses, association between individual complications and suPAR and CRP levels were analysed. Patients requiring prolonged ventilation had 281 282 higher levels of suPAR preoperatively and at all postoperative time-points (Figure 2c). Preoperative suPAR was predictive of prolonged ventilation with an AUROC 283 of 0.74 (Table 3). The optimum cut off point for preoperative suPAR as identified 284 285 by AUROC analysis was a concentration of 1.40ng/mL, sensitivity 100%, specificity 46.6%, PPV 17.1% and NPV 100%. There was no difference in suPAR 286 levels between patients developing any of the other individual complications 287 compared with those who did not. 288

When CRP was analysed, levels were higher preoperatively in patients who developed AF (3mg/L compared with 1mg/L; p=0.002). This difference was present on postoperative day 1 (69mg/L compared with 47mg/L; p=0.001) and postoperative day 2 (179mg/L compared with 145mg/L; p=0.021). There was no difference in CRP levels between those patients developing any of the other individual complications compared with those who did not.

295 Surgical Procedure

suPAR levels were compared between the 56 patients who had coronary artery bypass grafting (CABG) and the 32 patients who had more complex cardiac surgeries (Table 1). Those patients who had more complex procedures had higher levels of suPAR on postoperative day 1 (2.37ng/mL compared with 1.57ng/mL; p=0.002), postoperative day 2 (2.42ng/mL compared with 1.86ng/mL; p=0.004) and on postoperative day 3 (2.77ng/mL compared with 1.85ng/mL;

- p=0.009, but not at baseline (1.81ng/mL compared with 1.44ng/mL; p=0.18).
- 303 There was no difference in CRP levels at any timepoint.

304 Combined Model

- 305 A combined model of EuroSCORE II and preoperative suPAR levels produced
- similar AUROC to preoperative suPAR levels alone (Table 3).

331 Discussion

suPAR increases following cardiac surgery and is higher in patients requiring
longer stays in the ICU and hospital and in those ventilated for more than 24
hours. This difference in suPAR concentrations was present preoperatively and
compared favourably to EuroSCORE II and CRP.

We found suPAR was elevated from baseline at all postoperative timepoints. A 336 study by Gozdzik and colleagues,²² did not find elevated suPAR levels following 337 cardiac surgery. This discrepancy in results could be explained by the difference 338 in time frames over which suPAR was investigated, and the patient populations. 339 340 Gozdzik and colleagues studied 60 patients undergoing isolated CABG surgery, 341 whilst we included patients undergoing a variety of cardiac surgery procedures. We found those patients having CABG surgery only had lower suPAR 342 postoperatively compared with those undergoing more complex procedures. Our 343 study demonstrated a sustained rise in suPAR that was apparent on 344 postoperative day 1, and beyond. This may not have been seen in Gozdzik and 345 colleague's study²² which looked at levels up to 24 hours only. 346

suPAR was higher in patients requiring prolonged ICU and hospital stay and 347 348 prolonged ventilation compared with those that did not; unexpectedly this 349 difference was demonstrated preoperatively. Increases in suPAR are associated with immune system activation⁶ suggesting these patients had higher levels of 350 351 inflammation at baseline. Some patients may have underlying co-morbidities which contribute to higher suPAR levels preoperatively and predispose to a more 352 complicated postoperative course. For example, suPAR has been shown to be 353 354 higher in those with coronary artery disease with levels increasing in parallel with severity of disease;²⁵ it is plausible that those patients requiring prolonged stay
and ventilation could have more severe disease at baseline, explaining the higher
suPAR and poorer outcome.

A recent study by Hodges and colleagues²⁶ demonstrated that preoperative suPAR levels predicted complications and mortality following aortic valve replacement. Our study provides further evidence of the value of preoperative suPAR levels in predicting outcomes following cardiac surgery.

Interestingly, CRP levels were not elevated in those who went on to require prolonged stays preoperatively or on postoperative days 1 and 3. CRP can take 2-3 days for levels to peak after a surgical insult²⁷ and this delay can make it difficult to differentiate between patients developing complications and those demonstrating a 'normal' response. It is possible that suPAR is a faster-reacting inflammatory biomarker, and therefore a better early discriminator, compared to CRP with values closer to peak on postoperative day 1.

In the current study, EuroSCORE II was higher in patients who had prolonged
hospital stay but performed poorly in predicting prolonged ICU stay (AUROC
0.55)(Table3, Figure 3). A combined model, using preoperative suPAR and
EuroSCORE II was better at predicting these outcomes than EuroSCORE alone.
However, the predictive capability of the combined model was driven by suPAR
(See Supplementary Table 1).

The composite of complications used in our study was based upon a list of serious complications following cardiac surgery as defined by the Society of Thoracic Surgeons,¹⁶ with the addition of atrial fibrillation which has been shown to significantly affect mortality and morbidity.²⁸ To further explore the apparent paradox that suPAR is predictive of prolonged intensive care and hospital stay,
but not associated with postoperative complications, whilst CRP is not predictive
of prolonged stay but is associated with complications, we conducted a post-hoc
analysis of suPAR and CRP against individual complications.

383 Elevated suPAR was predictive only for prolonged ventilation. Geboers and colleagues examined the ability of suPAR to predict outcomes of patients 384 admitted to ICU with acute respiratory distress syndrome, observing higher levels 385 in those with more severe disease.²⁹ It is plausible, therefore, that the association 386 between suPAR and prolonged ventilation reflects the development of lung injury. 387 As this relationship between suPAR and duration of mechanical ventilation was 388 also apparent preoperatively, we suggest suPAR may also serve as a predictor 389 of susceptibility to lung injury rather than simply a measure of disease severity. 390 Although the positive predictive value of suPAR in identifying patients who go on 391 392 to require prolonged mechanical ventilation was poor (17.1%), the high negative predictive value (100%) was such that preoperative measurement of suPAR 393 394 could help identify those patients unlikely to require prolonged ventilation. These 395 patients could therefore be suitable for triage to fast-track recovery programs; an

³⁹⁶ area of growing interest and study in the elective cardiac surgery population.³⁰

When assessing CRP, we found higher levels postoperatively were associated with the development of atrial fibrillation. Although a common complication (35% of patients in this study), atrial fibrillation following cardiac surgery often responds promptly to medical management and therefore the presence of this complications would not necessarily prolong intensive care or hospital stay, explaining the lack of association observed. 403 To our knowledge, this is one of the largest studies examining suPAR in patients undergoing various types of cardiac surgeries and to describe the use of suPAR 404 to predict outcomes. Given its retrospective nature, and the number of 405 comparisons made the results of this study must be considered 'hypothesis 406 407 generating' to support planning of subsequent, prospective studies. Further, the relatively small sample size of 90 patients and moderate predictive capability of 408 suPAR make it difficult to come to concrete conclusions on the ability of this 409 biomarker to predict prolonged stay and complications. It would be therefore 410 informative to examine any additional predictive value of plasma suPAR in 411 combination with other potential clinical predictors enabling robust multivariable 412 413 analysis and greater predictive capability.

414 **Conclusion**

415 We found that suPAR levels increased after cardiac surgery and that high suPAR 416 levels, both pre and postoperatively, were associated with prolonged ICU stay, prolonged hospital stay and prolonged duration of ventilation. In addition, suPAR 417 418 compared favourably to EuroSCORE II and CRP in predicting these outcomes. The next step is to explore the applicability and effectiveness of suPAR as a 419 predictive biomarker in conjunction with other currently utilised clinical prediction 420 scores in patients undergoing cardiac surgery in a larger study. The aim of this 421 would be to assess whether suPAR could improve prediction of outcomes in 422 combination with other biomarkers and clinical predictors. 423

424

425

427 Acknowledgements

We thank Lisa Jolly, from the Institute of Infection, Immunity and Inflammation at
the University of Glasgow who performed all lab analysis. We thank Professor
John Kinsella for his contributions to this research.

431 Funding

This work was supported by the National Institute of Academic Anaesthesia through the Royal College of Anaesthetists Research, Education and Travel grant via the Ernest Leach Fund to Dr Philip McCall. The funding body had no role in design of the study, collection, analysis and interpretation of data or writing of the

436 manuscript.

- 437 Conflicts of Interest
- 438 None declared.
- 439
- 440
- 441
- 442

443

444

445

446

447

448

450 **<u>References</u>**

- Nearman H, Klick JC, Eisenberg P, Pesa N. Perioperative complications
 of cardiac surgery and postoperative care. *Crit Care Clin* 2014;30(3): 527 55
- Azarfarin R, Ashouri A, Totonchi Z, Bakhshandeh H, Yaghoubi A. Factors
 influencing prolonged ICU stay after open heart surgery. *Res Cardiovasc Med* 2014; doi: 10.5812/cardiovascmed.20159
- Oliveira EK, Turquetto ALR, Tauil PL, Junqueira LF, Luiz Porto GG. Risk
 factors for prolonged hospital stay after isolated coronary artery bypass
 grafting. *Rev Bras Cir Cardiovasc* 2013;28(3):353-63
- 460 4. Preeshagul I, Gharbaran R, Jeong K, Abdel-Razek A, Lee L, Elman E et
 461 al. Potential biomarkers for predicting outcomes in CABG cardiothoracic
 462 surgeries. *J Cardiothorac Surgery* 2013;8:176
- 5. Huai Q, Mazar AP, Kuo A, Parry CP, Shaw D, Callahan J et al. Structure
- of human urokinase plasminogen activator in complex with its
 receptor. *Science* 2006; 311(5761):656-9
- 466 6. Thunø M, Macho B, Eugen-Olsen J. suPAR: the molecular crystal
 467 ball. *Dis Markers* 2009;27(3):157-72
- 468
 7. Lyngbaek S, Marott JL, Sehestedt T, Hansen TW, Olsen MH, Andersen
 469
 469 O et al. Cardiovascular risk prediction in the general population with use
 470 of suPAR, CRP, and Framingham Risk Score. *Int J Cardiol* 2013;167(6):
 471 2904-11
- 472 8. Hodges GW, Bang CN, Wachtell K, Eugen-Olsen J, Jeppensen JL.
 473 suPAR: A new biomarker for cardiovascular disease? *Can J Cardiol*474 2015;31(10):1293-302

9. Donadello K, Scolletta S, Taccone FS, Covajes C, Santonocito C, Cortes
DO et al. Soluble urokinase-type plasminogen activator receptor as a
prognostic biomarker in critically ill patients. *Crit Care* 2014;29(1):144-9

- 478 10. Koch A, Voigt S, Kruschinski C, Sanson E, Duckers H, Horn A et
 479 al. Circulating soluble urokinase plasminogen activator receptor is stably
 480 elevated during the first week of treatment in the intensive care unit and
 481 predicts mortality in critically ill patients. *Crit Care* 2011; doi:
 482 10.1186/cc10037
- 11. Suberviola B, Castellanos-Ortega A, Ruiz A, Lopez-Hoyos M, Santibanez
 M. Hospital mortality prognostication in sepsis using the new
 biomarkers suPAR and proADM in a single determination
 on ICU admission. *Intensive Care Med* 2013;39(11):1945-1952
- 487 12. Zeng M, Chang M, Zheng H, Li B, Chen Y, He W et al. Clinical value of
 488 soluble urokinase-type plasminogen activator receptor in the diagnosis,
 489 prognosis, and therapeutic guidance of sepsis. *Am J Emerg Med*490 2016;34(3):375-80
- 491 13. Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR et
 492 al. EuroSCORE II. *Eur J Cardiothorac Surg* 2012;41(4):734-45
- 493 14. Ettema RGA, Peelen LM, Schuurmans MJ, Nierich AP, Kalkman CJ,
 494 Moons KGM. Prediction models for prolonged intensive care unit stay
 495 after cardiac surgery systematic review and validation study. *Circulation*496 2010;122(7):682-689
- 497 15. Toumpoulis IK, Anagnostopoulos CE, Swistel DG, DeRose JJ Jr. Does
 498 EuroSCORE predict length of stay and specific postoperative

- complications after cardiac surgery? *Eur J Cardiothorac Surg*2005;27(1):128–33
- 501 16. The Society of Thoracic Surgeons. Quality performance measures: adult
 502 cardiac surgery composite measures. 2014. <u>http://www.sts.org/quality-</u>
 503 <u>research-patient-safety/quality/quality-performance-measures</u> (Accessed
 504 on 18 April 2018)
- 505 17. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG et
 506 al. Acute Kidney Injury Network: report of an initiative to improve
 507 outcomes in acute kidney injury. *Crit Care* 2007; doi: 10.1186/cc5713
- 18. Robert AM, Kramer RS, Dacey LJ, Charlesworth DC, Leavitt BJ, Helm RE
 et al. Cardiac surgery-associated acute kidney injury: a comparison of two
 consensus criteria. *Ann Thorac Surg* 2010;90(6):1939-43
- 19. Yende S, Wunderink R. Causes of prolonged mechanical ventilation after
 coronary artery bypass surgery. *Chest* 2002;122(1): 245-52
- Siddiqui MA, Paras I, Jalal A. Risk factors of prolonged mechanical
 ventilation following open heart surgery: what has changed over the last
 decade? *Cardiovasc Diagn Ther* 2012;2(3):192–199

516 21. Youden WJ. An index for rating diagnostic tests. *Cancer* 1950;3(1), 32-35

517 22. Gozdzik W, Adamik B, Gozdzik A, Rachwalik M, Kustrzycki W, Kubler A.
518 Unchanged plasma levels of the soluble urokinase plasminogen activator
519 receptor in elective coronary artery bypass graft surgery patients and
520 cardiopulmonary bypass use. *PLoS One* 2014;
521 doi: 10.1371/journal.pone.0098923

- 23. Cappabianca G, Paparella D, Visicchio G, Ferrara P, D'Agostino C, Luca
 L et al. Preoperative C-reactive protein predicts mid-term outcome after
 cardiac surgery. *Ann Thorac Surg* 2006;82(6):2170-2178
- 525 24. Balciunas M, Bagdonaite L, Samalavicius R, Griskevicius L, Vuylsteke A.
 526 Preoperative high sensitive C-reactive protein predicts cardiovascular
 527 events after coronary artery bypass grafting surgery: a prospective
 528 observational study. *Ann Card Anaesth* 2009;12(2):127-32
- 529 25. Eapen DJ, Manocha P, Ghasemzadeh N, Patel RS, Al Kassem H,
 530 Hammadah M, et al. Soluble urokinase plasminogen activator receptor
 531 level is an independent predictor of the presence and severity of coronary
 532 artery disease and of future adverse events. *J Am Heart Assoc* 2014; doi:
 533 10.1161/JAHA.114.001118
- 26. Hodges GW, Bang CN, Eugen-Olsen J, Olsen MH, Boman K, Ray S et
 al. suPAR predicts postoperative complications and mortality in patients
 with asymptomatic aortic stenosis. *Open Heart* 2018;
 doi:10.1136/openhrt-2017-000743
- 538 27. Cole DS, Watts A, Scott-Coombes D, Avades T. Clinical utility of peri 539 operative C-reactive protein testing in general surgery. *Ann R Coll Surg* 540 *Engl* 2008;90(4):317–321
- 28. Lapar DJ, Speir AM, Crosby IK, Fonner E, Brown M, Rich JB et al. 541 542 Postoperative atrial fibrillation significantly increases mortality, hospital readmission, hospital 543 and costs. Ann Thorac Surg 544 2004;98(2):527-533

545	29.	Geboers DG, de Beer FM, Boer AM, Poll T, Horn J, Cremer OL et al.
546		Plasma suPAR as a prognostic biological marker for ICU mortality in
547		ARDS patients. Intensive Care Med 2015;41(7):1281-90
548	30.	Salhiyyah K, Elsobky S, Raja S, Attia R, Brazier J, Cooper GJ. A clinical
549		and economic evaluation of fast-track recovery after cardiac surgery.
550		Heart Surg Forum 2011; doi: 10.1532/HSF98.20111029
551		
552		
553		
554		
555		
556		
557		
558		
559		
560		
561		
562		
563		
564		
565		
566		

567 Figure Legends

Figure 1 – Perioperative levels of (A) Soluble Urokinase Plasminogen Activator
Receptor (suPAR) and (B) C-Reactive Protein (CRP). Preoperative baseline
(PreOp), Postoperative Day 1 (POD1), Day 2 (POD2), and Day 3 (POD3). Bars
demonstrate differences between two time points (Wilcoxon Signed-Rank test
with applied Bonferroni adjustment) (*p<0.05; **p<0.01)

573

574 Figure 2 - Different levels of biomarkers and outcomes: Soluble Urokinase Plasminogen Activator (suPAR) levels between (A) Patients that required a 575 576 Prolonged Intensive Care Unit Length of Stay (PICULOS) and those that did not (Non-PICULOS) (B) Patients that required a Prolonged Hospital Length of Stay 577 (PHLOS) and those that did not (Non-PHLOS) and (C) Patients that required a 578 Prolonged Ventilation and those that did not; C-reactive Protein (CRP) levels 579 between (D) Patients that required a Prolonged Intensive Care Unit Length of 580 Stay (PICULOS) and those that did not (Non-PICULOS) © Patients that required 581 a Prolonged Hospital Length of Stay (PHLOS) and those that did not (Non-582 PHLOS) and (F) Patients that developed complications and those that did not 583 (No-Complications) over time-points: Preoperative (PreOp), Postoperative Day 1 584 (POD1), Day 2 (POD2) and Day 3 (POD3). Bars demonstrate differences 585 between groups (Mann-Whitney U Test) (*p<0.05; **p<0.01) 586

587

Figure 3 – Receiver Operator Characteristic Curves demonstrating the ability of Preoperative suPAR, labelled "PreOp suPAR", and EuroSCORE II to predict patients that will require (A) Prolonged Intensive Care Unit Length of Stay (PICULOS) (B) Prolonged Hospital Length of Stay (PHLOS) and (C) Prolonged Ventilation. Area Under the Receiver Operator Curve (AUROC) is shown with a corresponding *p*-value in parentheses.

- 594
- 595

596

 Table 1 – Baseline patient characteristics

Characteristics	All Patients	
	(n=88)	
Age (Years)	66 (59,72)	
Female Gender n (%)	19 (21.6)	
Weight (Kg)	81 (SD:15.8)	
EuroSCORE II	1.2 (0.71,1.57)	
Actual Mortality (%)	1 (1.1)	
Cardiovascular Co-Morbidities		
n (%)	68 (77.3)	
Any ^a	28 (31.8)	
Previous MI	59 (67.0)	
Arterial Hypertension	50/82 (61.0)	
Left Main Stenosis	42/82 (51.2)	
Triple Vessel Disease		
Intervention type n (%)		
CABG	56 (63.6)	
AVR	15 (17.0)	
MVR	8 (9.1)	
CABG + AVR	4 (4.5)	
Other	5 (5.7)	
CPB Time (Min)	84 (66,112.5)	
Aorta Clamp Time (Min)	58 (40.5,74.5)	
Surgical time (Min)	202.5 (180,255)	
Ventilation Duration (Hr)	7 (4.1,12.4)	
Intensive Care Unit Stay (Hr)	23 (21.5,46)	
Hospital stay (Days)	7 (6,12)	

Data presented as Median (IQR), mean (SD:) or frequency (%)

MI= Myocardial Infarction, CPB= Cardiopulmonary Bypass CABG= Coronary Artery Bypass Graft, AVR= Aortic Valve Repair, MVR= Mitral Valve Repair, Other= Unspecified, MVR + CABG, MVR + Foramen Ovale Closure, AVR + Ascending Aortic Aneurysm Repair ^aCardiovascular comorbidities refers to previous MI, Hypertension, Left Main Stenosis or Triple Vessel Disease

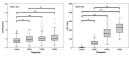
Characteristics	Prolonged ICU	Non-Prolonged	Prolonged	Non-Prolonged	Prolonged	Non-Prolonged
	Stay	ICU Stay	Hospital Stay	Hospital Stay	Ventilation	Ventilation
	(n=17)	(n=71)	(n=23)	(n=65)	(n=8)	(n=80)
Age (Years)	69(51,78)	66(59,72)	71(68,77)††	63(57,70)††	68(51,71)	66(59,73)
EuroSCORE II (%)	1.2(0.82,1.62)	1.1(0.71,1.59)	1.3(0.97,2.09)†	0.99(0.68,1.47)†	1.36(0.81,4.55)	1.14(0.71,1.49)
CPB Time (Min)	93(69.5,128.5)	80.5(63.8,108.8)	104(81,143)††	78(60.3,102.8)††	143(92.3,233.8)‡	81(64.5,108.5)‡
Aorta Clamp Time (Min)	70(39,75)	56(41,74)	70(56,81)†	51.5 (37,72)†	74.5(73,122.3)‡	56(39.5,72)‡
Surgical time (Min)	200(185,265)	205(180,251.3)	215(185,270)	200(177.5,247.5)	280(192.5,376.3)‡	200(180,243.8)‡
Ventilation Duration (Hr)	14.5(7,45.8)**	6.5(4,9)**	11.5(7,32)††	5.5(4,8.8)††	45.8(32.3,59)‡‡	6.5(4,9.8)‡‡
Intensive Care Unit Stay (Hr)	71(68.8,107.3)**	22.5(20,40.5)**	46(22,70.5)††	22.5(20.5,41.5)††	107.3(69.4,568.5)‡‡	23(21.5,44)‡‡
Hospital Stay (Days)	13(8.5,15)**	6 (6,9)**	14(13,16)††	6 (6,7)††	14(11.5,26.5)‡‡	7(6,10)‡‡

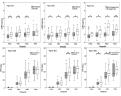
Data presented as Median (IQR)

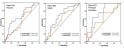
Symbols denote a difference between Prolonged ICU Stay vs Non-Prolonged ICU Stay (Mann-Whitney U Test) p<0.05, p<0.01Symbols denote a difference between Prolonged Hospital Stay vs Non-Prolonged Hospital Stay (Mann-Whitney U Test) p<0.05, p<0.01Symbols denote a difference between Prolonged Ventilation vs Non-Prolonged Ventilation (Mann-Whitney U Test) p<0.05, p<0.01CPB, Cardiopulmonary Bypass

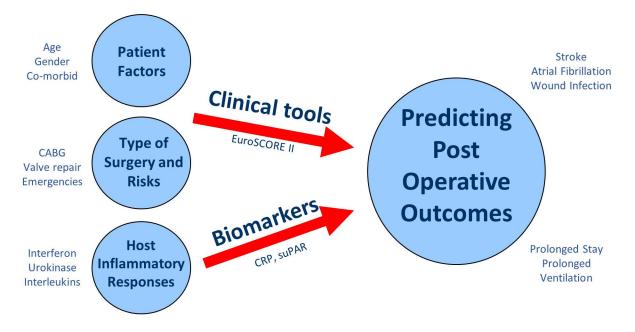
	Prolonged ICU	Prolonged Hospital	Prolonged Ventilation	
	Stay	Stay		
suPAR Levels ^a				
PreOp	0.66 (0.52,0.81)	0.67 (0.54,0.80)	0.75 (0.61,0.88)	
POD1	0.68 (0.53,0.82)	0.66 (0.52,0.79)	0.74 (0.53,0.95)	
POD2	-	0.71 (0.57,0.86)	-	
POD3	-	0.68 (0.52,0.84)	-	
EuroSCORE II				
PreOp	0.55(0.41,0.69)	0.64 (0.51,0.77)	0.61 (0.39,0.84)	
suPAR and				
EuroSCORE II				
PreOp	0.67 (0.53,0.81)	0.68 (0.55,0.81)	0.74 (0.58,0.90)	
CRP Levels ^a				
PreOp	0.43 (0.27,0.59)	0.59 (0.44,0.73)	0.56 (0.32,0.79)	
POD1	0.62 (0.48,0.76)	0.59 (0.45,0.73)	0.59 (0.42,0.76)	
POD2	-	0.70 (0.57,0.82)	-	
POD3	-	0.62 (0.42,0.82)	-	

Table 3 – Area Under the Receiver Operator Curve of suPAR and Logistic EuroScore II for each outcome


Values presented are Area Under the Receiver Operator Curve with (95% Confidence Intervals)


Values highlighted in bold are statistically significant p<0.05


^asuPAR and CRP beyond POD1 was not used to predict Prolonged ICU stay or prolonged ventilation as those


patients still in ICU or still ventilated on POD2 automatically qualified in those categories

PreOp = Preoperative; POD1, 2 or 3 = Postoperative days 1, 2 or 3

