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A common probabilistic approach to perform uncertainty allocation is to assign 

acceptable variability in the sources of uncertainty, such that pre-specified probabilities 

of meeting performance constraints are satisfied. However, the computational cost of 

obtaining the associated tradeoffs increases significantly when more sources of 

uncertainty and more outputs are considered. Consequently, visualizing and exploring the 

decision (trade) space becomes increasingly difficult, which, in turn, makes the decision-

making process cumbersome for practicing designers. To address this problem, proposed 

is a parameterization of the input probability distribution functions, to account for several 

statistical moments. This, combined with efficient uncertainty propagation and inverse 

computation techniques, results in a computational system that performs order(s) of 

magnitude faster than a state-of-the-art optimization technique. The approach is 

demonstrated by means of an illustrative example and a representative aircraft thermal 

system integration example. 
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Nomenclature 

𝒉  = Computational workflow, or model 

𝒀 = (𝑦1, … , 𝑦𝐽) ∈ ℝ𝐽  is the vector of random output variables, or outputs of interest. 

𝑿 = (𝑥1, … , 𝑥𝐼) ∈ ℝ𝐼 is the vector of random input variables. 

𝑓𝑥𝑖
(𝑥𝑖 , 𝒅𝑥𝑖,𝑝𝑖

) is the probability density function (PDF) of the 𝑖𝑡ℎ input random variable. 

𝓐 is the design space domain. 

𝒅𝑥𝑖,𝑝𝑖 = (𝑑𝑥𝑖,1, … , 𝑑𝑥𝑖,𝑝𝑖
) ∈ ℝ𝑝𝑖  is the vector of shape parameters that describe the shape of the input PDF, 

𝑓𝑥𝑖
(𝑥𝑖 , 𝒅𝑥𝑖,𝑝𝑖

). 

𝒅𝑦𝑗,𝑝𝑗
= (𝑑𝑦𝑗,1, … , 𝑑𝑦𝑗,𝑝𝑗

) ∈ ℝ𝑝𝑗 is the vector of parameters that describes the variability of the 𝑗𝑡ℎ  output of 

interest 

𝑔𝑗  = Constraint function of 𝑗𝑡ℎ  output of interest 

𝑃𝑔𝑗
 = Pre-defined probabilities of satisfying 𝑗𝑡ℎ  constraint 

𝜇𝑥 = Mean, first statistical moment 

𝜎𝑥  = Standard deviation, second statistical moment 

𝛾𝑥 = Skewness, third statistical moment 

Γ𝑥  = Kurtosis, fourth statistical moment 

𝑉𝑐𝑟𝑢𝑖𝑠𝑒  = Cruise velocity 

𝐿/𝐷 = Lift-to-drag ratio 

𝑊𝑒𝑚𝑝𝑡𝑦 = Empty weight 

𝑊𝑝 = Payload weight 

𝑊𝑓  = Fuel weight 

𝑠𝑓𝑐 = Specific fuel consumption 

𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙  = Total mean temperature, over all equipment surfaces 

𝑇𝑒𝑚𝑝𝑃𝐶  = Maximum surface temperature of the power center 

𝑇𝑒𝑚𝑝𝐵𝐴𝑇  = Maximum surface temperature of the battery 

�̇�𝑃𝐶  = Air mass flow extracted from power center 

𝑇𝑒𝑚𝑝𝐹𝑢𝑠  = Fuselage reference temperature 

𝑇𝑒𝑚𝑝𝑁𝐿𝐺  = Nose landing gear (NLG) reference temperature 

𝐻𝑇𝐶 = Factor of fuselage, NLG, cargo wall, floor heat transfer coefficient 

𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠  = Avionics equipment heat dissipation 
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1 INTRODUCTION 

 In order to make well-informed decisions early in the design stage, it is desirable to not only assess the 
impact of uncertainty due to a lack of knowledge, but also to reduce it [1],[2]. One approach is to quantify 
and assign acceptable variability in the sources of uncertainty. In this paper, this approach is referred to 
as ‘uncertainty allocation’. Allocating uncertainty is necessary to allow systems architects or designers to 
avoid situations where unknown variations in parameters or behaviors could lead to undesirable 
deviations in performance [2]. Uncertainty allocation is also useful for identifying different potential 
means of ensuring a desired probability of constraint satisfaction, or for assigning an appropriate 
tolerance limit for low-level geometrical characteristics. Our research, as part of recent and current 
industry led projects, including Thermal Overall Integrated Conception of Aircraft (TOICA) [3],[4] and 
Advanced Product Concept Analysis Environment (APROCONE) [5], indicates that uncertainty allocation is 
indeed considered as part of the decision-making process. However, it is based predominantly on 
experience and, as a result, the decision-maker may not be aware of the full set of options available for 
tradeoff.  

Current Uncertainty Quantification and Management (UQ&M) practices, such as robust design, 
optimization, and reliability analysis, involve minimizing or maximizing the outputs of interest (e.g., 
system performance), by systematically searching for design solutions that are robust against aleatory 
uncertainty and some classes of epistemic uncertainty (e.g., model uncertainty [6],[7]). While these 
approaches are effective in finding robust solutions, they are not suited to address the uncertainty 
allocation problem. Chen et al. [8] reported that inverse uncertainty propagation methods can be used as 
an enabler to solve the uncertainty allocation problem. Although several methods have been developed 
for inverse uncertainty propagation (e.g., the Gaussian process [9], Karhunen–Loève Expansion [10],[11], 
Polynomial Chaos [12], and maximum likelihood [13]) these may lead to relatively high computational 
cost. 

The ‘inverse uncertainty propagation’ method introduced by Chen et al. [8] demonstrated that a 
reduction in variability can be achieved by reversing (swapping) the standard deviation of an input variable 
with one of the standard deviations of the original output variables. It cannot, however, deal with many-
to-many reversals (i.e. multiple outputs with multiple inputs). Another limitation of this method concerns 
cases where contributions from two (or more) sources of uncertainty in the input variables have impact 
of similar magnitude on the output uncertainty. In such cases, the solution of the uncertainty allocation 
problem is non-unique, and the single-to-single workflow reversal setting is not adequate to handle the 
multiple combinations. 

Recently, a methodology for uncertainty  allocation has been proposed by Opgenoord and Willcox [14], 
which will be referred to here as the ‘resource allocation optimization method’. It incorporates a 
sensitivity-based method, surrogate modelling to alleviate the issue of expensive model evaluations, and 
a weighted-sum optimization approach to identify and select candidate uncertainty sources on which the 
reduction of uncertainty should be focused. In the resource allocation optimization method, only uniform 
probability distribution functions (PDFs) are considered for the uncertainty on the input variables. In Ref. 
[14], it was indicated that the extension of the resource allocation optimization method to include other 
distribution types is straightforward, although the resulting parameterization may have more degrees of 
freedom per input. One approach to set other types of input distributions is to consider all the statistical 
moments (e.g., first four moments), however, directly manipulating the statistical moments of the input 
distribution poses a problem of guaranteeing that the input PDFs can be reconstructed. 



Molina-Cristóbal et al. (2019) /Article in Advance, AIAA Journal 

 

 

 

4 

In this paper, we address these limitations by proposing a method intended to enhance the process of 
interactive uncertainty allocation. The aim is to enable the systematic investigation of tradeoff strategies 
regarding input-variability. The approach builds upon the ‘inverse uncertainty propagation’ method, 
introduced by Chen et al.[8]. The specific objectives of the work presented in this paper are to: a) Extend 
functionality, by introducing the ability to consider multiple outputs with multiple input reductions of 
uncertainty, by means of exploring the shapes of the parameterized distributions functions; b) Enable an 
interactive trade off process of multiple combinations of uncertainty allocation, by introducing 
visualization of the decision (trade) space; and c) combine (a) and (b) with an efficient uncertainty 
propagation method [15], to enable faster interactive uncertainty allocation. 

The paper is organized as follows: the problem and background information are presented in Section 
2. The proposed method is introduced in Section 3 and is demonstrated with an industrially relevant 
aircraft thermal system integration example in Section 4. The approach is evaluated by means of 
comparison against the state-of-the-art method in Section 5. Finally, conclusions are drawn and future 
work is outlined in Section 6. 

2 PROBLEM STATEMENT 

The problem addressed in this work is subject to the following definitions, scope, and assumptions: 

• There are two major classes of uncertainty – aleatory and epistemic [16],[17]. Aleatory uncertainty 
is classed as irreducible, and includes, for example, operational variability. Epistemic uncertainty is 
also known as reducible or lack of knowledge. We consider only epistemic uncertainty, and this is 
modelled with probability distributions. The distributions can be considered as representations of 
‘subjective beliefs’ of what the true values of the corresponding variables should be. For example, 
at the conceptual design stage, some material properties may be uncertain because the material 
itself has not yet been decided upon. Until all the relevant design studies have been conducted and 
a subsequent decision regarding the material to be used is made, the values for these properties 
cannot be fixed. 

• Quantifying the sources of uncertainty in probabilistic terms requires (expert) elicitation at the 
outset [18]. However, this is out of the scope of this paper and it will be assumed as given. 

• The input probability distributions are assumed independent. 

 • In order to calculate the probability of meeting a constraint, it is assumed that the output 
distributions are Gaussians. If one or all outputs are not Gaussian distributions, the method by 
Padulo and Guenov [19] can be employed to make assumptions on the type of output distribution, 
e.g., symmetric unimodal, or asymmetric unimodal output distribution. Alternatively, a study 
should be carried out to assess if the output can be approximated by another type of distribution 
that can be defined with the first two moments. 

Under the above assumptions, a formal definition of the problem is stated as follows: consider re-
shaping the probability distribution by manipulating parameters, 𝒅𝑥 , of the input probability density 
function, 𝑓𝑥, such that the required constraints are met. This can be formulated as: 
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 Given computational workflow, or model, 𝒀 = 𝒉(𝑿), 

𝑓𝑖𝑛𝑑
𝒅∈𝓐

 𝑓𝑥𝑖
(𝑥𝑖, 𝒅𝑥𝑖,𝑝𝑖

) ,  𝑖 = 1, … , 𝐼, 

such that 𝑔𝑗(𝑿) ≤ 0, 𝑗 = 1, … , 𝐽, 

(1) 

 

where 𝑔𝑗(𝑿) is the constraint function that can be recast as: 

1) 𝑔𝑗(𝑿) = 𝑑𝑦𝑗
(𝑦𝑗(𝑿)) − 𝑑𝑗

′ , where 𝑑𝑗
′  is the constraint value on the parameters describing the 

variability on the 𝑗𝑡ℎ output of interest, e.g., tolerance constraint. These parameters could be 
functions of the statistical moments of the output probability density function, 𝑓𝑦𝑗

. 

2) 𝑃(𝑔𝑗(𝑿) ≤ 0) ≥ 𝑃𝑔𝑗
, where  𝑃𝑔𝑗

 is the probability of satisfying the 𝑗𝑡ℎ  constraint, 𝑔𝑗(𝑿) =

𝑦𝑗(𝑿) − 𝑦𝑗
′; and 𝑦𝑗

′ is the quantile representing the constraint value of the 𝑗𝑡ℎ output of interest. 

Here, the variability is implicit in the probability of constraint satisfaction. 

 

The problem is illustrated in Figure 1. Suppose that, after propagating the uncertainty forward, the 
designer realizes that the probability of meeting a constraint, 𝑃(𝑔𝑗(𝑿) ≤ 0), affected by uncertainty, 𝑦𝑔𝑗

, 

is not satisfactory. One course of action is to investigate whether uncertainty in the inputs could be 
reduced. The problem is to decide where to allocate uncertainty affecting the input variables, 𝑿, for a pre-
defined probability of constraint satisfaction, 𝑃𝑔𝑗

. 

 

 

Figure 1. The process of allocating uncertainty. 
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 ILLUSTRATIVE EXAMPLE 
 Consider a simple aircraft-sizing problem, using the Breguet range equation: 

 

𝑅𝑎𝑛𝑔𝑒 = 𝑉𝑐𝑟𝑢𝑖𝑠𝑒  (
𝐿/𝐷

𝑠𝑓𝑐
) ln (

𝑊𝑒𝑚𝑝𝑡𝑦+𝑊𝑝+𝑊𝑓

𝑊𝑒𝑚𝑝𝑡𝑦+𝑊𝑝
),          (2) 

 

 The definitions and values of the parameters in Eq. (2) are given in Table 1, along with the associated 
variability, where applicable. It is assumed that only the airframe empty weight ( 𝑊𝑒𝑚𝑝𝑡𝑦 ) and the 

propulsion performance (𝑠𝑓𝑐) are affected by epistemic uncertainty. 

 The objective is to determine whether the requirement on 𝑅𝑎𝑛𝑔𝑒 ≥ 3000 nm can be met with ± 5% of 
variability in 𝑊𝑒𝑚𝑝𝑡𝑦 and sfc .  This problem can be formulated as finding the PDFs of the input 

uncertainties,  𝑓𝑊𝑒𝑚𝑝𝑡𝑦(𝑑𝑊𝑒𝑚𝑝𝑡𝑦) and 𝑓sfc(𝑑𝑠𝑓𝑐), by manipulating their distribution parameters, 𝒅, such 

that the constraints are met. This can be stated mathematically as follows: 

𝑓𝑖𝑛𝑑
𝒅∈𝓐

(𝑓𝑊𝑒𝑚𝑝𝑡𝑦(𝑑𝑊𝑒𝑚𝑝𝑡𝑦), 𝑓𝑠𝑓𝑐(𝑑𝑠𝑓𝑐)), 

 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝑃𝑅𝑛𝑔(𝑅𝑎𝑛𝑔𝑒(𝒅)  ≥  3000𝑛𝑚 ) ≥ 85%,

𝜎𝑅(𝒅) ≤ 𝜎𝑅,𝑏 ,

𝐶𝑜𝑠𝑡(𝒅) ≤ 𝐶𝑏 ,

         (3) 

where,  

𝒅 = (𝑑𝑊𝑒𝑚𝑝𝑡𝑦 , 𝑑𝑠𝑓𝑐) is the vector of two upper and lower bounds of the input variability, e.g., 𝑑𝑊𝑒𝑚𝑝𝑡𝑦
 

= 5%.  

𝜎𝑅,𝑏 is the budget on the output uncertainty, in this case determined by the standard deviation, 𝜎𝑅(𝒅), 

and 

𝐶𝑏 is the cost budget on the 𝐶𝑜𝑠𝑡(𝒅). 

Similar to Opgenoord and Willcox [14],[20], the uncertainty and cost budgets in Eq.(3) have been included 
as constraints, such that the cost budget enforces limits on the resources that can be expended to reduce 
uncertainty. For simplicity the following linear cost model was utilized: 

 

𝐶𝑜𝑠𝑡 = 10(10 − 𝑑𝑊𝑒𝑚𝑝𝑡𝑦 − 𝑑𝑠𝑓𝑐) .          (4) 
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Table 1. Parameter values for the simple aircraft-sizing example 

Parameter Nominal value 

𝑉𝑐𝑟𝑢𝑖𝑠𝑒 450 kts 

𝐿/𝐷 18.5 

𝑊𝑒𝑚𝑝𝑡𝑦 82500 lbs 

𝑊𝑝 54000 lbs 

𝑊𝑓 37000 lbs 

𝑠𝑓𝑐 0.657 lb/h/lb 

 

 The uncertainties were modelled as two independent Gaussian distributions. The ± 5% of variability 
can be fitted by truncating the Gaussian distribution at ±3𝜎. The means, (𝜇𝑊𝑒𝑚𝑝𝑡𝑦

, 𝜇𝑠𝑓𝑐) were equated to 

the nominal value of the design parameter. The standard deviation is modelled as proportional to ± 5% of 
variability, i.e., 𝜎 = ±5% · (μ/3), which results in 𝜎𝑊𝑒𝑚𝑝𝑡𝑦

=±1375 lb and 𝜎𝑠𝑓𝑐=±0.01095 lb/h/lb. 

 In order to determine the uncertainty in the range estimation, the forward propagation was conducted 
using Monte Carlo Simulations (MCS). The mean of 𝑅𝑎𝑛𝑔𝑒, 𝜇𝑅=3041.38 nm, and the standard deviation, 
𝜎𝑅=58.558 nm, were used to calculate the probability to meet the requirement 𝑃(𝑅𝑎𝑛𝑔𝑒  ≥   3000𝑛𝑚). 
The result of this assessment shows that there is a 75.85% probability of constraint satisfaction for the 
range. 

 Next, it is assumed that the probability to meet the requirement is not acceptable. A course of action 
would be to investigate the combinations of input variability, i.e., to determine how much uncertainty in 
𝑊𝑒𝑚𝑝𝑡𝑦 and 𝑠𝑓𝑐 should be reduced to achieve 85%  target probability of meeting the range constraint. 

 INDEPENDENT GAUSSIAN DISTRIBUTIONS TRANSFORMATION 
 Although stated in Section 2 that the input probability distributions are assumed independent, a 
transform into statistically independent distributions can be used. As proposed in Ref [21], for two joint 
Gaussian distributions with correlated coefficient 𝜌 , statistically independence can be achieved by 
applying linear transformation or coordinate rotation. Considering the illustrative example, rewriting the 

general joint Gaussian distribution, 𝑓(𝑠𝑓𝑐, 𝑊𝑒𝑚𝑝𝑡𝑦 , ),  as the normalized distribution, 𝑁(1,0), with 𝛼1 =

(𝑠𝑓𝑐 − 𝜇𝑠𝑓𝑐)/𝜎𝑠𝑓𝑐, 𝛼2 = (𝑊𝑒𝑚𝑝𝑡𝑦 − 𝜇𝑊𝑒𝑚𝑝𝑡𝑦
)/𝜎𝑊𝑒𝑚𝑝𝑡𝑦

, results in: 

 

𝑓𝛼(𝛼1, 𝛼2) =
1

2𝜋√1 − 𝜌2
exp {−

𝛼1
2 − 2𝜌𝛼1𝛼2 + 𝛼2

2

2(1 − 𝜌2)
} . (5) 
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Applying the linear transformation (𝛼1, 𝛼2) → (𝛽1, 𝛽2), in which 

 

𝛽1 = 𝛼1 cos(𝜋/4) + 𝛼2sin (𝜋/4), 

𝛽2 = −𝛼1 sin(𝜋/4) + 𝛼2cos (𝜋/4).  

 

 The exponent of 𝑓(𝛼1, 𝛼2) simplifies to 𝛼1
2 − 2𝜌𝛼1𝛼2 + 𝛼2

2 = 𝛽1
2(1 − 𝜌) + 𝛽2

2(1 + 𝜌). Subsequently, 
Eq. (5) can be rewritten as the product of two distributions (Eq. (6)). They are therefore statistically 
independent and, by definition, uncorrelated. 

𝑓𝛽(𝛽1, 𝛽2) =
1

√2𝜋(1 + 𝜌)
exp {−

𝛽1
2

2(1 + 𝜌)
} ∙

1

√2𝜋(1 − 𝜌)
exp {−

𝛽2
2

2(1 − 𝜌)
} . (6) 

 

 Eq. (6) can be rewritten as the non-normalized distribution with random variables, 𝑠𝑓𝑐′(𝛽1)  and 
𝑊𝑒𝑚𝑝𝑡𝑦

′ (𝛽2 ), by substituting 𝛽1 = (𝑠𝑓𝑐′ − 𝜇𝑠𝑓𝑐)/𝜎𝑠𝑓𝑐  and 𝛽2 = (𝑊𝑒𝑚𝑝𝑡𝑦
′ − 𝜇𝑊𝑒𝑚𝑝𝑡𝑦

)/𝜎𝑊𝑒𝑚𝑝𝑡𝑦
 into Eq. 

(6), defining  𝜎𝑠𝑓𝑐
′ = 𝜎𝑠𝑓𝑐√1 + 𝜌  and 𝜎𝑊𝑒𝑚𝑝𝑡𝑦

′ = 𝜎𝑊𝑒𝑚𝑝𝑡𝑦
√1 − 𝜌 , and normalizing by 1/𝜎𝑠𝑓𝑐   and 

1/𝜎𝑊𝑒𝑚𝑝𝑡𝑦
  respectively, results in two independent Gaussian distributions: 

 

𝑓𝑠𝑓𝑐
′ =

1

𝜎𝑠𝑓𝑐
𝑓𝛽1

(𝛽1) =
1

√2𝜋𝜎𝑠𝑓𝑐
′ 2

exp {−
(𝑠𝑓𝑐′ − 𝜇𝑠𝑓𝑐)

2

2𝜎𝑠𝑓𝑐
′ 2 }, 

𝑓𝑊𝑒𝑚𝑝𝑡𝑦
′ =

1

𝜎𝑊𝑒𝑚𝑝𝑡𝑦

𝑓𝛽2
(𝛽2) =

1

√2𝜋𝜎𝑊𝑒𝑚𝑝𝑡𝑦

′ 2
exp {−

(𝑊𝑒𝑚𝑝𝑡𝑦
′ − 𝜇𝑊𝑒𝑚𝑝𝑡𝑦

)
2

2𝜎𝑊𝑒𝑚𝑝𝑡𝑦

′ 2 }. 

(7) 

 

Finally, if the correlated coefficient is 𝜌 =0.5, the standard deviation of the independent Gaussian 
distribution result in 𝜎𝑊𝑒𝑚𝑝𝑡𝑦

′ =±972.27 lb and 𝜎𝑠𝑓𝑐
′ =±0.0134 lb/h/lb. Percentage wise, these standard 

deviations correspond to ±~3.54% and ±~6.12% variability in 𝑊𝑒𝑚𝑝𝑡𝑦 and sfc respectively. The rest of the 

analysis can be carried out in the transformed space, 𝑠𝑓𝑐′(𝛽1)  and 𝑊𝑒𝑚𝑝𝑡𝑦
′ (𝛽2 ). Note that, for the 

remainder of the paper, the input probability distributions are assumed independent. 
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3 PROPOSED METHOD FOR ALLOCATING UNCERTAINTY AND 

TRADEOFF STRATEGY 

As stated in the introduction, the aim of this work is to enhance the process of interactive uncertainty 
allocation, including the systematic investigation of tradeoff strategies regarding input-variability. 

The intended novelty of the proposed approach, compared with the state-of-the-art methods [8],[14], is 
twofold: 

a) the introduction of parameterization of the input distributions which allows varying all first four 
statistical moments, and 

b) efficient visualization of the entire trade space, as opposed to only ‘optimal’ solutions. This enables 
the interactive exploration of the reversal of multiple outputs with multiple uncertainty input reductions. 

In mathematical terms, the proposed method is concerned with the problem described by Eq. (1). The 
method consists of four steps: 

 IDENTIFICATION OF MAJOR CONTRIBUTING SOURCES OF UNCERTAINTY  
As in the method by Chen et al. [8], the aim of this step is to identify the major contributing sources of 

input uncertainty that impact the output variables of interest. Applying a global sensitivity analysis can 
aid the designer to decide on which input variables efforts for reducing uncertainty should be focused. 
Once the major contributing sources of input uncertainty have been identified, their PDFs can be 
parameterized, as described next. 

 PARAMETERIZATION OF THE INPUT PROBABILITY DENSITY FUNCTIONS 
One approach to find a suitable set of solutions that solve the problem described in Eq. (1), is to 

manipulate the statistical moments of the input PDFs, 𝑓𝑥𝑖
(𝑥𝑖, 𝑑𝑥𝑖,𝑝𝑖

), until all the probability of constraints 

satisfaction are met. In other words, the standard deviation could be reduced and/or the mean could be 
shifted and the same for the other moments, such as the skewness and kurtosis. Formulating the problem 
of finding multiple possible reductions of uncertainty, by directly manipulating the statistical moments of 
all input PDFs poses the problem of guaranteeing that the input PDFs are realizable (not all combinations 
of moments can represent a PDF). To address this, we propose parameterizing the function that defines 
the shape of the PDFs, by linking the first fourth statistical moments (μx, σx , γx, Γx) of a particular PDF with, 
if possible, a single parameter, 𝑑𝑥. The parameterization must consider the fundamental properties of a 

PDF. The first property is that the density function be nonnegative (  𝑓𝑥𝑖
(𝑥𝑖, 𝑑𝑥𝑖

) ≥ 0) for all 𝑥𝑖 , whereas 

the second property is that a PDF has to have an area of unity (i.e. ∫ 𝑓𝑥𝑖
(𝑥𝑖, 𝑑𝑥𝑖

) 𝑑𝑥𝑖  = 1). 

However, the statistical moments might not have explicit definition in terms of ‘engineering’ 
quantities. Here, the parameterization aims at manipulating the shape of the PDF with variables that 
design practitioners are familiar with, such as the lower and upper bounds that define the range of 
variation (𝑥𝑙𝑏𝑖

 and 𝑥𝑢𝑏𝑖
). Also, the variations are often described as a percentage of the nominal value, 𝑥𝑛𝑖

. 

For example, considering the illustrative example in Section 2.1, the shapes of the Gaussian distributions, 
𝑓𝑊𝑒𝑚𝑝𝑡𝑦(𝑑𝑊𝑒𝑚𝑝𝑡𝑦) and 𝑓sfc(𝑑𝑠𝑓𝑐), can be parameterized with respect to the width of the distribution 

(i.e., lower and upper bounds). Subsequently, the width parameter can be related to the statistical 
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moments of the Gaussian distribution. It is assumed that the nominal value should not be changed, 
therefore the means of the Gaussians are equated to the nominal values. The standard deviations can be 
modelled as proportional to the upper and lower bounds of the variability, i.e., 𝜎𝑊𝑒𝑚𝑝𝑡𝑦

=𝑑𝑊𝑒𝑚𝑝𝑡𝑦
𝜇𝑊𝑒𝑚𝑝𝑡𝑦

/

3 and 𝜎𝑠𝑓𝑐=𝑑𝑠𝑓𝑐𝜇𝑠𝑓𝑐/3. Here, we specifically introduce a parameterization for two types of PDF, namely 

triangular and Gaussian mixture, although this parameterization is not limited to these two. 

 

3.2.1 Parameterization for triangular distributions 

The triangular PDF 𝑓𝑡(𝑥) is defined with the bounds (𝑥𝑙𝑏 and 𝑥𝑢𝑏) and the mode at 𝑥𝑛, as shown in 
Figure 2a. The parameterization is defined using the width (𝑑𝑥 = 𝑥𝑢𝑏 − 𝑥𝑙𝑏) of the distribution. The PDF 
can then be re-shaped by scaling the width with respect to the nominal value, 𝑥𝑛. For a new width, 𝑑𝑥

′ , 
the new parameters of the PDF are calculated with geometrical proportions and the unity area property 
of the triangle. The corresponding widths, the distance between 𝑥𝑛 and the new bounds have lengths of 
the same ratio, as follows: 

 

𝑑𝑥
′

𝑑𝑥
=  

(𝑥𝑛−𝑥𝑙𝑏
′ )

(𝑥𝑛−𝑥𝑙𝑏)
;

𝑑𝑥
′

𝑑𝑥
= 

(𝑥𝑛−𝑥𝑢𝑏
′ )

(𝑥𝑛−𝑥𝑢𝑏)
.

              (8) 

 

The new bounds 𝑥𝑙𝑏
′  and 𝑥𝑢𝑏

′  can therefore be obtained from Eq. (8). After the new shape of the PDFs 
is defined, its first four moments are calculated:  

 

𝜇𝑥
′ =

(𝑥𝑛+𝑥𝑢𝑏
′ +𝑥𝑙𝑏

′ )

3
;

𝑣𝑎𝑟𝑥
′ =

(𝑥𝑢𝑏
′ −𝑥𝑙𝑏

′ )2

18
(1 −

(𝑥𝑛−𝑥𝑙𝑏
′ )(𝑥𝑢𝑏

′ −𝑥𝑛)

(𝑥𝑢𝑏
′ −𝑥𝑙𝑏

′ )2 ) ;

𝛾𝑥
′ =

√2(𝑥𝑙𝑏
′ +𝑥𝑢𝑏

′ −2𝑥𝑛)(2𝑥𝑙𝑏
′ −𝑥𝑢𝑏

′ −𝑥𝑛)(𝑥𝑙𝑏
′ −2𝑥𝑢𝑏

′ +𝑥𝑛)

5((𝑥𝑙𝑏
′ )2+(𝑥𝑢𝑏

′ )2+𝑥𝑛
2−𝑥𝑙𝑏

′ 𝑥𝑢𝑏
′ −𝑥𝑙𝑏

′ 𝑥𝑛−𝑥𝑢𝑏
′ 𝑥𝑛)

3/2 .

         (9) 

 

The excess kurtosis, Γ𝑥 = −3

5
 , remains invariant for a triangular PDF. Parameterization of uncertainty 

reduction can also be achieved by simply modifying either 𝑥𝑢𝑏  or/and 𝑥𝑙𝑏  with respect to 𝑥𝑛, thereby 
reducing the width. 

Note that, the set of all possible shapes of the triangular distributions can be explored by varying 
independently, 𝑥𝑙𝑏, 𝑥𝑢𝑏, and 𝑥𝑛. In this case, the parameterization linked three statistical moments with 
a single parameter. However, this reduction in the degrees of freedom comes at the expense of reducing 
the space of all possible shapes of the triangular distribution. 
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3.2.2 Parameterization for Gaussian mixture distributions 

In Figure 2b, the Gaussian mixture probability distribution [22], 𝑓𝑔𝑚, is defined by two component 

functions with variances (𝜎1
2 and 𝜎2

2) and means (𝜇1 and 𝜇2), with proportions (𝛼1 and 𝛼2 = 1 − 𝛼1), so 
that 

 

 𝑓𝑔𝑚(𝑥) = 𝛼1∅(𝑥; 𝜇1, 𝜎1
2) + 𝛼2∅(𝑥; 𝜇2, 𝜎2

2),          (10) 

 

where ∅(𝑥;  𝜇, 𝜎2)  denotes the univariate Gaussian PDF. The range of variability can be fitted by 
truncating ∅  at 3𝜎 . The means can then be defined as: 𝜇1 = 𝑥𝑙𝑏 + 3𝜎1  and 𝜇2 = 𝑥𝑢𝑏 − 3𝜎2 

(assuming  𝜇1 < 𝜇2 ); the standard deviations by  𝜎1 = 𝜎2 =
𝑥𝑢𝑏−𝑥𝑙𝑏

8
; the proportions by  𝛼1 =

|𝜇𝑥0−𝜇2|

𝜇2−𝜇1
; 

whereas the mean , 𝜇𝑥0, of the Gaussian mixture PDF coincides with the nominal value, 𝑥𝑛. 𝑓𝑔𝑚 is left-

skewed, if 𝑥𝑛 >
𝑥𝑢𝑏+𝑥𝑙𝑏

2
,  otherwise is right-skewed. Other Gaussian mixture parametric models can be 

found in McLachlan and Peel [21]. 

It is suggested that the Gaussian mixture PDF be parameterized in such a way that the skewness of the 
PDF can be manipulated by changing the position of the mean, 𝜇𝑥0

. For example, it might be desirable to 

change the shape of 𝑓𝑔𝑚 from left-skewed (with mean 𝜇𝑥0
= 𝜇𝑥𝑙

) to right-skewed (with mean 𝜇𝑥𝑟
), as 

shown in Figure 2b. This can be achieved by switching the proportions of 𝑓𝑔𝑚 the skewness changes from 

being left-skewed to right-skewed, where the respective means are given by 

 

𝜇𝑥𝑙
= 𝛼1𝜇1 + 𝛼2𝜇2;

𝜇𝑥𝑟
= 𝛼2𝜇1 + 𝛼1𝜇2.            (11) 

 

 

Figure 2. Parameterization of the input probability density function, a) triangular distribution and b) Gaussian mixture 
distribution. 
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For the shapes, in between the left- and right-skewed distributions (for example, a symmetric 
distribution),  𝑓𝑔𝑚  can be re-shaped by defining the nominal value, 𝑥𝑛 = 𝑑𝑥 , as input parameter, 𝜇𝑥

′  

(which is bound in the range 𝜇𝑥
′ ∈ [𝜇𝑥𝑟

, 𝜇𝑥𝑙
]). The parameterization involves the linear transformation of 

component functions of Eq. (10) (i.e. new means, 𝜇1
′ , 𝜇2

′ , and new standard deviations, 𝜎1
′, 𝜎2

′) by making 
changes to the position, 𝜇𝑥

′ , as follows: 

 

𝜇1
′ = 𝜇1 + Δ𝜇; 𝜇2

′ = 𝜇2 − Δ𝜇;

𝜎1
′ =

(𝜇1
′ −𝑥𝑙𝑏)

3
; 𝜎2

′ =
(𝑥𝑢𝑏−𝜇2

′ )

3
,
            (12) 

 

where Δμ is given by: 

 

∆𝜇 = {
(𝜇2 − 𝜇1) (

𝜇𝑥𝑙
−𝜇𝑥

′

𝜇𝑥𝑙
−𝜇𝑥𝑟

);  𝛼1 =
|𝜇𝑥𝑙

−𝜇2|

𝜇2−𝜇1
;  𝛼2 = 1 − 𝛼1;   if 𝜇𝑥

′ > 𝜇𝑥𝑟
+

(𝜇𝑥𝑙
−𝜇𝑥𝑟)

2

(𝜇2 − 𝜇1) (
𝜇𝑥

′ −𝜇𝑥𝑟
𝜇𝑥𝑙

−𝜇𝑥𝑟
) ;  𝛼2 =

|𝜇𝑥𝑙
−𝜇2|

𝜇2−𝜇1
;  𝛼1 = 1 − 𝛼2; otherwise.

    (13) 

 

where 𝜇𝑥𝑙
 and 𝜇𝑥𝑟

are given in Eq. (11). As mentioned before in the parameterization of the triangular 

PDF, after the new shape of the PDFs is defined, its first four moments are calculated and used for 
uncertainty propagation methods. Calculating the first four moments of a Gaussian mixture is well 
understood and can be found in McLachlan and Peel [21]. 

 WORKFLOW COMPOSITION FOR UNCERTAINTY ALLOCATION 
The objective of this step is to create a workflow that enables inverse uncertainty propagation (see 

Figure 1) by means of reversing the default workflow. Reversal refers to the capability of ‘swapping’ input 
and output variables of a computational workflow. In this work, the workflow reversal is based on a 
computational workflow management (CWM) method, developed by Balachandran and Guenov [23]. The 
CWM method enables the automatic formulation of the reversed workflow into an optimization problem, 
which is solved using optimization algorithms (e.g., Gauss-Newton, or fixed-point iteration). This capability 
allows the investigation of ‘what-if’ scenarios and conducting flexible computational studies. 

It was demonstrated by Chen et al.[8] that the standard deviation of an input variable of a default 
workflow (original sequencing) can be swapped with one of the standard deviations of the original output 
variables. However, this approach can only be applied to input distributions with only one statistical 
moment as a degree of freedom. The parameterization presented in Section 3.2 overcomes this limitation 
and enables the exploration of shapes of the parameterized distributions functions by varying more than 
one statistical moment. 
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Consider the illustrative example in Section 2.1 and Figure 3. The workflow is created in the following 
sequence: 

1) An outer workflow [8] is created to associate the statistical moments (𝜎𝑊𝑒𝑚𝑝𝑡𝑦
 , 𝜇𝑊𝑒𝑚𝑝𝑡𝑦

, 𝜎𝑠𝑓𝑐, 

𝜇𝑠𝑓𝑐, 𝜇𝑅, and 𝜎𝑅, the skewness , 𝛾𝑥, and kurtosis , Γ𝑥  remain constant) with the inputs and two 

moments of the output variables of the Breguet equation Eq.(2). (refer to the center of Figure 3). 
2) The parameterization (𝑑𝑊𝑒𝑚𝑝𝑡𝑦 and 𝑑𝑠𝑓𝑐) of the Gaussian distributions (left of Figure 3) and the 

probability of constraint satisfaction of the parameter 𝑅𝑎𝑛𝑔𝑒 are linked to the ‘outer workflow’. 

The result is a global workflow which links parameters 𝑑𝑊𝑒𝑚𝑝𝑡𝑦 and 𝑑𝑠𝑓𝑐 of the parameterized PDFs 

to the probability of constraint satisfactions of the outputs of interest. Subsequently, in order to compute 
how much uncertainty can be accepted from the inputs, the reversed workflow could be used. A possible 
scenario could be to swap the input variability on propulsion performance,𝑑𝑠𝑓𝑐, with the output variable 

related to the probability of constraint satisfaction of 𝑃𝑅𝑛𝑔, which is indicated by the dotted arrows in 

Figure 3. 

 

 

Figure 3. Global workflow creation. 

Once established, the workflow reversal can be used to generate a particular solution. However, often 
the contributions from two (or more) sources of uncertainty in the input variables could have impact of 
similar magnitude on the output uncertainty. In this case, the solution will have multiple combinations of 
reduced distributions. In other words, the solution of the uncertainty allocation problem is non-unique, 
and the workflow reversal setting is not fully adequate to handle multiple combinations. This issue can be 
explored by means of visualization of the multiple combinations as proposed in the next section. 

 TRADEOFF SPACE VISUALIZATION 
The objective of this step is to visualize the multiple combinations in a trade space. The tradeoff space 

can be visualized with 2-d ‘slices’ (2-dimensional cross-sectional plots) of the trade space. Although the 
illustrative example involves two-dimensional trade spaces, this technique can be applied to a multi-
dimensional trade space in the following way: 

1. The 𝑛-dimensional input space can be broken into parameter pairs, e.g., (𝑥1, 𝑥2), (𝑥3, 𝑥4), …, 
(𝑥𝑛−1, 𝑥𝑛). All 𝑛 parameters should be visualised in pairs. In the case of odd numbers, one of 
the parameters can be repeated.  

2. Each pair will represent a plane (slice) of the hyper-cube. The planes are intersected at a point 
of interest (e.g., nominal value). 
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3. The 𝑚-dimensional output space can be visualized with two-dimensional cross-sections of the 
space that contain iso-contours representing the constraints (which are either deterministic 
or probabilistic). There is, in essence, no limit on the number of contours that could be 
considered but trying to compute and visualize too many could prove impractical. The aim of 
computing the contours is to identify feasible regions encompassed by them. This is done by 
computing and drawing the iso-contours corresponding to a particular value of the probability 
of constraint satisfaction. Considering the illustrative example in Section 2.1, the generalized 
isocontour-based constraint analysis method [24], was employed to visualize all possible 
combinations that could lead to 85% of probability of meeting the 3000 nm range constraint. 
The workflow was employed to compute the full factorial sampling of the discretized design 
space, which was carried out in the following manner: 𝑑𝑊𝑒𝑚𝑝𝑡𝑦

× 𝑑𝑠𝑓𝑐={0, 1.25,2.5, 3.75,5}% 

× {0, 1.25,2.5, 3.75,5}%.  

4. The exploration can take place by moving the intersection point to visualize other planes. 
 

 Scaling to higher input (and output) dimensions increases the number of possible planes or slices, and 
thus the complexity of the analysis. However, this approach could immediately provide information about 
the possible action to be taken, depending on the local behavior of the constraints in the design space. 
This is demonstrated in the industrial example (Section 4). 

Regarding the illustrative example, the trade space is presented in Figure 4 where the green dots 
represent sampled points. The designer can select the value of the constraint, for example, to visualize 
the feasible region associated with Eq. (3). In this case, the feasible region was determined by setting  
𝑃𝑅𝑛𝑔 to 85%, the uncertainty budget, 𝜎𝑅,𝑏 , to 40lb and the cost budget, 𝐶𝑏, to 40. In Figure 4a, the feasible 

region is represented by the area colored in white. Note that the constraint 𝜎𝑅 is inactive. The exploration 
of possible options for allocating uncertainty can now be sought, for example, some solutions along the 
active constraint, 𝑃𝑅𝑛𝑔, marked as ‘A’, ‘B’ and ‘C’  Solution ‘A’ is one in which only the uncertainty in the 

𝑠𝑓𝑐  should be reduced (to almost 50% of its original value). Solutions ‘B’ or ‘C’ constitute compromises, 
in which uncertainty should be reduced in both 𝑠𝑓𝑐 and airframe empty weight. 

 Other scenarios can be easily be explored. For example, 𝑃𝑅𝑛𝑔  could be set to, say, 95% for the 

probability of constraint satisfaction, and the cost budget, 𝐶𝑏, relaxed, by increasing it to 70. The new 
tradeoff space associated with such changes can then be revisualized (see Figure 4b) without extra 
computational workflow executions. Similarly, further combinations of possible options for allocating 
uncertainty can be sought in Figure 4b.  
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Figure 4. The tradeoff space of the illustrative example. 

 

 

Figure 5. Results of uncertainty allocation in the illustrative example. 

 

 Once the iso-contours have been generated, the workflow reversal can be utilized to obtain improved 
estimates of the numerical values for solutions, such as ‘A’, ‘B’ and ‘C’ in Figure 4a. Specifically, the input 
variability on propulsion performance, 𝑑𝑠𝑓𝑐, is swapped with the probability of constraint satisfaction of 

𝑃𝑅𝑛𝑔. The numerical results for ‘A’ to ‘C’ are presented in Table 2 and the corresponding input and output 

PDFs of ‘A’ and ‘ B’ are presented in Figure 5. The uncertainty propagation was conducted using the fast 
propagation Univariate Reduced Quadrature (URQ) [15] method. The URQ method is a suitable choice 
because it can be used in combination with the parameterization proposed in Section 3.2, i.e., it employs 
the first four statistical moments of the uncertainty sources as input. MCS was also used to confirm that 
the output distribution can be approximated as a Gaussian. In addition, the Kolmogorov-Smirnov test has 

𝑑𝑠𝑓𝑐 = −5% 𝑑𝑠𝑓𝑐 = +5% 𝑑𝑊𝑒𝑚𝑝𝑡𝑦 = −5% 𝑑𝑊𝑒𝑚𝑝𝑡𝑦 = +5% 
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been carried out on the output distributions for the datum and solutions, and the numerical results 
returned show that the data generated with MCS comes from a standard normal distribution. 

 

Table 2. Comparison of the input variability before and after uncertainty allocation. 

Allocations Input variable 
reversed 𝑑𝑠𝑓𝑐  

Input variable 
𝑑𝑊𝑒𝑚𝑝𝑡𝑦 

Probability of constraint 
Satisfaction 

   𝑃𝑅𝑛𝑔 𝜎𝑅[nm] 𝐶𝑜𝑠𝑡 

Datum ±5% ±5% 75.85% 57.558 0 
Solution A ±2.646% a ±5% 85% b 38.215 23.540 
Solution B ±3.274% a ±3.5% 85% b 38.266 32.260 
Solution C ±3.527% a ±2.5% 85% b 38.254 39.730 

aOutput value calculated with the workflow reversal, bPre-defined, input value to the workflow reversal. 

 

4 INDUSTRIAL EXAMPLE: AIRCRAFT THERMAL INTEGRATION 

DESIGN 

To demonstrate how the method can handle more complex parameterization of the input probability 
distribution functions, it was applied to a representative industrial problem concerning avionics thermal 
integration of a single-aisle aircraft [3]. It is assumed that the design variables are affected by epistemic 
uncertainty and its impact needs to be assessed. 

 PROBLEM SPECIFICATION  
The thermal performance of the avionics equipment was computed with a surrogate model of the 

Zonal Thermal Model (ZTM; model provided by M. Cappitelli, F. Mangeant, and M. Fouquembergh, TOICA 
Partners from Airbus Group Innovations, Feb. 2016) which has five input variables and 69 output variables. 
For illustration purposes, we considered three outputs of interest, with the following respective thermal 
constraint (requirements): 

 

• Total mean temperature, over all equipment surfaces: 𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙   ≤  325.15 K (52°C) 

• Maximum surface temperature of the power center: 𝑇𝑒𝑚𝑝𝑃𝐶   ≤  319.15 K (46°C) 

• Maximum surface temperature of the battery: 𝑇𝑒𝑚𝑝𝐵𝐴𝑇   ≤  324.15 K (51°C) 

 

Uncertainty quantification was applied, under the following assumptions: 

• Each uncertainty input could be modelled in the form of an independent probability distribution 
function (e.g. a triangular or Gaussian mixture distribution, as was shown in Figure 2). The 
parameters of the probability distributions were based on expert opinions from practicing 
designers in the TOICA project. The detailed specification for the problem is shown in Table 3. 
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• Variability in the inputs was considered to be the main source of uncertainty, whereas model 
uncertainty (simulation errors) was assumed to be negligible (in comparison with the sources of 
uncertainty listed in Table 3). 

 

Table 3. Sources of uncertainty for the ZTM use case (data provided by M. Cappitelli,  F. Mangeant, TOICA 
Partners from Airbus Group Innovations, Feb. 2016). 

No
. 

Input 
variable 

Nominal value and 
range of variability 

Description of 
uncertainty 

Probability distribution function 

 
1 

 
�̇�𝑃𝐶  0.0274 kg/s; 

[0.0232, 0.0348] 
Range of fluctuations 

Rayleigh, 

𝑓�̇�𝑃𝐶
=

2

𝑏
(�̇�𝑃𝐶 − 𝑎)𝑒

−(�̇�𝑃𝐶−𝑎)
2

𝑏  

𝑎=0.0232, 𝑏 = 2 (
0.0348−𝑎

3.5
)

2.5
 

2 𝑇𝑒𝑚𝑝𝐹𝑢𝑠 
-8°C ± 5°C 

Lack of definition (i.e. 
epistemic) 

Gaussian, 𝑓𝑇𝑒𝑚𝑝𝐹𝑢𝑠
 

𝜇=-8°C,   𝜎=5/3°C 

 

3 
 

𝐻𝑇𝐶 
1; 

-50%,+100% 

Lack of definition (e.g. the 
material hasn’t been 
selected yet) 

Triangular, 𝑓𝐻𝑇𝐶 
𝑥𝑙𝑏=0.5, 𝑥𝑢𝑏=2, 𝑥𝑛=1 

 

4 
 

𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 105 W/m2; 
[85, 120] 

Range of fluctuations of 
dissipated power 

Normal Mixture, 𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠
 

𝜇1=785/8 W/m2,   𝜎1=35/8 W/m2 
𝜇2=855/8 W/m2,   𝜎2=𝜎1 

5 𝑇𝑒𝑚𝑝𝑁𝐿𝐺 
10 °C ± 5°C 

Lack of definition (i.e. 
epistemic) 

Gaussian, 𝑓𝑇𝑒𝑚𝑝𝑁𝐿𝐺
 

𝜇=10°C,   𝜎=5/3°C 

 

The forward propagation was conducted by means of the URQ method, which returns the mean and 
standard deviation of all output variables of interest. The numerical results are reported in Figure 6. As 
can be seen in Figure 6, five thousand MCS points are sufficient to reach a 95% confidence level on the 
estimate of the constraint satisfaction probability. Also, the MCS results can be approximated by Gaussian 
distributions. This is confirmed by plotting a Gaussian PDF in Figure 6 (output distributions), using the 
mean and standard deviation from the URQ forward propagation. 

The result of this assessment confirmed that the probability of constraint satisfaction 
(𝑃𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙

=74.78%, 𝑃𝑇𝑒𝑚𝑝𝑃𝐶
=67.99%, and 𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇

=60.15%) was not sufficient and it was required to 

be increased (to 95%). This problem could subsequently be formulated as an uncertainty allocation 
problem. The objective was therefore to find the parameters, 𝒅𝑥, of the marginal probability distributions 
(see Table 3) that reduce the input uncertainty such that the probability to meet the thermal constraints 
of the avionics equipment is equal or greater to the requested probability of 95%. This can be stated 
mathematically as follows: 
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𝑓𝑖𝑛𝑑
𝒅∈𝓐

(𝑓�̇�𝑃𝐶

′ (𝒅1), 𝑓𝑇𝑒𝑚𝑝𝐹𝑢𝑠

′ (𝒅2), 𝑓𝐻𝑇𝐶
′ (𝒅3) , 𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠

′ (𝒅4), 𝑓𝑇𝑒𝑚𝑝𝑁𝐿𝐺

′ (𝒅5) ) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝑃(𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙   ≤   325.15 𝐾 ) ≥ 95%

𝑃(𝑇𝑒𝑚𝑝𝑃𝐶   ≤   319.15 𝐾 ) ≥ 95%

𝑃(𝑇𝑒𝑚𝑝𝐵𝐴𝑇   ≤   324.15 𝐾 ) ≥ 95%

         (14) 

 

To this end, we have the scenario depicted in Figure 1 and the proposed method can be applied, as 
described next. 

 

 

 

 

Figure 6. Forward propagation of uncertainty in the ZTM use case. 

 

  

𝑃𝑇𝑒𝑚𝑝
𝑡𝑜𝑡𝑎𝑙

=74.78% 𝑃𝑇𝑒𝑚𝑝
𝑃𝐶

=67.99% 𝑃𝑇𝑒𝑚𝑝
𝐵𝐴𝑇

=60.15% 
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 IDENTIFICATION OF MAJOR UNCERTAINTY CONTRIBUTORS FOR THE ZTM USE 

CASE 
The aim of this step is to determine which sources of uncertainty have contributed the most to the 

variation in the output. A sensitivity analysis method, known as Fourier Amplitude Sensitivity Test (FAST) 
[25] was employed. The results in Figure 7 show that, among all the inputs with uncertainty, 𝐻𝑇𝐶 and 
𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 were the main contributors  and it was decided that they had to be reduced. 

 

 

Figure 7. Sensitivity analysis results to identify contributions from different sources of 
uncertainty of the ZTM use case. 

 UNCERTAINTY PARAMETERIZATION OF PDFS OF THE ZTM USE CASE 
The parameterization of the triangular distribution, 𝑓𝐻𝑇𝐶, and the Gaussian mixture PDFs, 𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠

, 

was then performed as described in step two of Section 3. The shape of 𝑓𝐻𝑇𝐶 was parameterized with 
respect to the base, or width, of the triangular distribution. Because high values of thermal material 
properties defined by 𝐻𝑇𝐶 are desirable, only the variability on the left-hand side of the nominal value 
was reduced. The parameter used for uncertainty reduction was  𝑑𝐻𝑇𝐶 . The shape of 𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠

 was 

parameterized in two ways: first, the skewness was parameterized as illustrated in Figure 2b, where the 
parameter used for uncertainty reduction was 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇 of the Gaussian mixture PDF. The second way 

to reduce uncertainty was using the width, 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤, of the PDF, where the parameterization employed 

was the same as the triangular PDF illustrated in Figure 2a. A summary of the PDF parameter vector 𝒅 =
( 𝑑𝐻𝑇𝐶 , 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇 , 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤) and its relation to the trade space is shown in Table 4. 

 

Table 4. Specification of parameters of 𝒇𝑯𝑻𝑪 and 𝒇𝑯𝒆𝒂𝒕𝒅𝒊𝒔𝒔
. 

PDF & parameters relation Parameter vector, 𝒅 ∈ 𝑨  

𝑥𝑙𝑏
′ = 𝑥𝑢𝑏 −  𝑑𝐻𝑇𝐶   𝑑𝐻𝑇𝐶 ∈ {1, 1.125, 1.25, 1.375, 1.5} 

𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇 = 𝜇𝑥
′  𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇 ∈{100, 101.25,102.5,103.75,105}; 

[W/m2] 
𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤 = 𝑥𝑢𝑏

′ − 𝑥𝑙𝑏
′  𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤 ∈ {5, 12.5, 20, 27.5, 35}; [W/m2] 
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 CREATING THE WORKFLOW FOR THE THERMAL INTEGRATION PROBLEM 
As described in Section 3.3 and in similar fashion as depicted in Figure 3, an ‘outer workflow’ of the 

ZTM was created to associate the statistical moments with the input and output variables of the model. 
These moments were further reformulated with parameterization of the 𝑓𝐻𝑇𝐶  and 𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠

 PDFs. The 

parameterization models, the outer workflow and the probability of constraint satisfaction model of the 
outputs of interest (𝑃𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙

, 𝑃𝑇𝑒𝑚𝑝𝑃𝐶
, and 𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇

) constituted the entire workflow. Therefore, the 

user could specify the parametric variables  𝑑𝐻𝑇𝐶 , 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇  , and 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤  and then obtain the 

probability of output constraint satisfaction (indicated by the black arrows in Figure 3). Subsequently, 
employing the workflow reversal method, the probability of output constraint satisfaction can be 
specified as a target. The execution of a reversed workflow could then be used to compute how much 
uncertainty can be accepted from the respective inputs (i.e. the parameterized input PDFs) to achieve the 
target probability. Here, two possible workflow reversal cases could be set up: 

 

1) Reversal of the input variable related to the width, 𝑑𝐻𝑇𝐶, of the HTC PDF, with the output variable 
related to the probability of constraint satisfaction 𝑃𝑇𝑒𝑚𝑝𝑃𝐶

, while selecting the value of the 

parameters, 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝜇 and 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤, of the heat dissipation PDF (input). 

2) Reversal of the input variable related to the skewness 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝜇 of the heat dissipation PDF, with 

the output variable related to the probability of constraint satisfaction of 𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇
, while 

selecting the value of the input parameters, 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤 and  𝑑𝐻𝑇𝐶.  

As the solution to the uncertainty allocation problem is non-unique, several combinations of values for 
the parametric variables could potentially lead to 95% probability of constraint satisfaction. The next step 
is to visualize all these combinations.  

 TRADE SPACE VISUALIZATION OF THE ZTM USE CASE 
As described earlier, the proposed approach enables the visualization of multiple possible 

combinations of reduction in uncertainty and supports interactive decision-making regarding the 
allocation of uncertainty. Following the steps proposed in Section 3.4, the three-dimensional tradeoff 
space can be visualized with 2-d slices (2-dimensional plots) as follows: 

1. The 3-dimensional input space can be represented by means of two perpendicular slices form 
with the two variable pairs, (𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇,  𝑑𝐻𝑇𝐶) and (𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤,  𝑑𝐻𝑇𝐶). 

2. The generalized isocontour-based constraint method [24] is then employed. In this case, a full 
factorial sampling of the design space is specified by discretizing the PDF parameters into five 
levels each, as shown in Table 4. Figure 8d illustrates two intersection points. The one marked 
with a triangle shows the intersection of the two planes, whereas the other intersection, 
marked with a large dot  (𝑑𝐻𝑇𝐶 , 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇 , 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤) = (1, 105, 5) is at one of the corners of 

the 3-dimensional cube (trade space). The dot represents the nominal intersection and the 
intersecting planes at this point can be seen in Figure 8a-c. Note that two slices are sufficient 
for visualization of the input parameters (three in this case). 
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3. In Figure 8a-b, the output space is visualized with three probabilities of constraint satisfaction 
as iso-contours. One of the slices shows the feasible region in white, where the probability of 
satisfaction is higher than 95% for all the three outputs of interest, while the grey areas are 
infeasible. Exploration of the trade space shows that 𝑃𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙

= 95% is an inactive constraint, 

whereas the 𝑃𝑇𝑒𝑚𝑝𝑃𝐶
 and 𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇

 contours at 95% are active constraints and form a ‘Pareto 

front’. 

 

 

Figure 8. Slices of the trade space of the ZTM use case. 
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4. The design space can be explored further by visualizing different combinations of slices. These 
can be obtained by ‘moving’ this intersection point. The purpose of such an exploration would 
be to find a region of the trade space in which the Pareto front contains a combination of the 
parameters, 𝒅, with a minimum uncertainty reduction that meets the desired probability of 
constraint satisfaction. A satisfactory compromise regarding the reduction of all three 
parameters can be seen in Figure 9, where the slices are associated with an intersection point 
at  𝒅 = (1.25,101.25,12.5) (represented by the black triangle in Figure 8d).  

 

Figure 9. Tradeoff space for uncertainty allocation. 

Using  the new slices shown in Figure 9, the decision maker can explore possible options for allocating 
uncertainty to the two sources of uncertainty, by examining points from the full factorial sampling results. 
For example, Sample I in Figure 9 will not be chosen, since it is infeasible, i.e., only 𝑃𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙

 is satisfied, 

but not 𝑃𝑇𝑒𝑚𝑝𝑃𝐶
, or 𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇

. Sample II is a candidate, since it satisfies all constraints. However, regarding 

the 95% probability of constraint satisfaction, it may be reduced more than necessary. The ideal reduction 
will lie on the ‘Pareto front’, for example solution ‘A’ (see Figure 9a-b), or ‘B’ (see Figure 9b). Recall that a 
point in the trade space represents a new shape of the input PDFs. To illustrate this, the effects of selecting 
solution ‘A’ or ‘B’ on the shapes of the parameterized input distributions can be been seen in Figure 10. 
As proposed in Section 3.3, such solutions can be obtained by utilizing the workflow reversal scenarios 
formulated at the beginning of Section 4.4. 

The designer needs to decide which tradeoff strategy better suits the scenario. For this study, a 
tradeoff scenario was assumed where it is known that the fluctuation of the heat dissipation of the 
equipment will not exceed 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝑤 =12.5 W/m2 and that the PDF could be skewed to the right with 

mean, 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝜇 = 101.2 W/m2. In such a case, it is desired to determine how much variability,  𝑑𝐻𝑇𝐶 , is 

acceptable in the value of the thermal property of the materials (heat transfer coefficient) in order to 
guarantee a 95% probability of satisfying the thermal constraint. To answer this, the designer may choose 
to set up the first workflow reversal case from the two possible cases discussed at the beginning of this 
subsection, in order to obtain the parameters of the PDFs for allocating uncertainty. In Figure 10, the 
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detailed descriptions of solutions ‘A’ and ‘B’ of the Pareto front are presented. Table 5 contains a summary 
of the results. 

 

 
 

 

 

 

 

 

 

Figure 10. Results of uncertainty allocation in the ZTM use case. 

 
Table 5. Comparison of input variability between before and after uncertainty allocation. 

Allocati
ons 

Input variable 
𝐻𝑇𝐶 [W/m2/K] 

Input variable 
𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 [W/m2] 

Probability of constraint 
satisfaction via URQ & MCS 
*Pre-defined 

Nominal 
value and 
range of 
variability 

 𝑑𝐻𝑇𝐶  

Nominal 
value and 
range of 
variability 

𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝑤 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝜇 𝑃𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙
 𝑃𝑇𝑒𝑚𝑝𝑃𝐶

 𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇
 

Datum 

1 
-50% 
/+100% 
 

1.5 
105 
[85,102] 

35 105 74.78% 67.99% 60.15% 

Solution 
A 

1 
-27.3% 
/+100% 
 

1.27 
101.25 
[95.44, 
107.94] 

12.5 101.25 98.309% 95%* 95.77% 

Solution 
B 

1 
-12.5% 
/+100% 

1.12
5 

101.25 
[92.812, 
110.983] 

18.169 101.25 99.065% 97.412% 95%* 

𝑑𝐻𝑇𝐶 

𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,   𝜇
 

𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,   𝑤 
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5 EVALUATION 

 Presented in this section is a comparative study of the state-of-the art “Resource Allocation 
Optimization” method, developed by Opgenoord and Willcox[14],[20] and the proposed approach.. 

 QUALITATIVE COMPARISON  
 The problem stated in Eq. (3) is recast in order to be solved by following the ‘resource allocation 
optimization method’. That is, an objective function is constructed that expresses designer preferences 
on cost, standard deviation, and risk (100 − 𝑃𝑅𝑛𝑔(𝒅)). The optimization problem is stated as follows: 

 

min
𝒅∈𝓐

ℱ(𝒅) = 𝛼
100 − 𝑃𝑅𝑛𝑔(𝒅)

𝑃𝑏
+ 𝛽

𝜎𝑅(𝒅)

𝜎𝑅,𝑏
+ 𝛾

𝐶(𝒅)

𝐶𝑏
 

 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

100 − 𝑃𝑅𝑛𝑔(𝑅𝑎𝑛𝑔𝑒(𝒅)   ≥   3000𝑛𝑚 ) ≤ 𝑃𝑏 = 15%

𝜎𝑅 ≤ 𝜎𝑅,𝑏 = 40𝑙𝑏

𝐶𝑜𝑠𝑡 ≤ 𝐶𝑏 = 40,

       (15) 

 

where the designer selects the weighting factors 𝛼, 𝛽, and 𝛾 to be assigned to the risk, standard deviation 
of the output uncertainty, and cost, respectively. As in Ref. [14], a Pareto front was generated by running 
the optimization for different values of weighting factors, using the Method of Moving Asymptotes [26] 
(implemented in the nonlinear optimization library, NLopt [27]) and the Gauss-Legendre Quadrature 
method for uncertainty propagation. The selection of weighting factors that produces the Pareto front 
presented in Figure 11a are 30 equally-spaced values of 𝛾 between 0.4 and 0.6, with 𝛼 and 𝛽 constant at 
𝛼 = 0.5 and 𝛽 = 0. These particular values were obtained by a trial and error process, in which different 
combinations of weighting factors and initial conditions for the optimization setup were attempted. It was 
found that several combinations of the weighting factors can lead to the same value of the objective 
function and some of these converged to the extreme values of the Pareto front. Therefore, the Pareto 
front does not have a unique set of weighting factors. For the purposes of the comparison, the Pareto 
front solutions were projected onto the trade/decision-space, Figure 11b. It can be seen that all the Pareto 
front options from Figure 11a, except for one, imply reducing uncertainty on the propulsion performance, 
𝑠𝑓𝑐.  
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Figure 11. Pareto front projected onto a) objective space of the 
cost and standard deviation of range and b) design space. 

 

A qualitative comparison of the proposed method and the ‘optimization method’ can be made by 
observing the results in Figure 11. With the optimization method, the Pareto front (Figure 11a) represents 
a set of optimal options for uncertainty reduction, from the perspective of a tradeoff between cost, 
standard deviation, and probability of constraint satisfaction. With the proposed method, the Pareto front 
can be identified within the feasible region. In Figure 11, the Pareto front is mapped between the objective 
and design spaces (highlighted by gray dash-dot rectangles). In Figure 11(b), each solution of the Pareto 
front can be determined by exploring the iso-contours (constraints). For example, for a given value of risk 
=15% (100-𝑃𝑅𝑛𝑔=15%) or 𝑃𝑅𝑛𝑔=85%, the minimum cost value (dotted black line) that can be achieved is 

located at the intersection of the cost=38.3 iso-contour and the 𝑃𝑅𝑛𝑔=85% iso-contour. This intersection 

is at the “yellow” point at 𝑑𝑊𝑒𝑚𝑝𝑡𝑦=5%, 𝑑𝑠𝑓𝑐  =2.66%, indicated as solution ‘A’. If the cost iso-contour is 

re-positioned, such that it intersects any other part of the iso-contour 𝑃𝑅𝑛𝑔=85%, the cost will always 

increase. 

Moreover, the proposed here method provides a visualization of the entire trade space of uncertainty 
reduction options (as opposed to only ‘optimal’ solutions). This is significant, because in the scenario 
where, for example, multidisciplinary teams seek a compromise between the sources of uncertainty, the 
proposed method provides alternative options such as the ‘A’, ‘B’ and ‘C’ (Figure 11b). Moreover, the 
proposed method enables exploration of other scenarios in which the constraints can be relaxed or 
tightened, while guaranteeing feasible solutions, without additional computational effort. 
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 QUANTITATIVE COMPARISON 

5.2.1 Computational Efficiency with regard to the Illustrative Example (Section 2.1) 

The number of simulation runs required to solve the problem stated in Eq. (3) and Eq. (15) is reported 
in Table 6. Since the computational time (CPU time) to solve Eq. (2) is negligible, it was not taken into 
account and a surrogate model is not required as proposed in Ref. [14]. As can be seen in Table 6, the 
proposed method performs faster than the ‘optimization method’. 

Table 6. Computational cost comparison between the proposed method and the optimisation approach. 

Approach 

Evaluations required by the 
uncertainty propagation 
method with n = 2 input 
variables 

Evaluations required by 
trade space 
visualization/ 

Optimization algorithms 

Total number of 
evaluations 

 

Proposed 
Uncertainty 
Allocation 
Method 

URQ, 2·n+1, requires  

5 function evaluations 

DoE  = 5·5=25; 

Gauss-Newton algorithm 
iterations = 3; 

6 iteration in total to 
obtain Solution A, B and 
C. 

(25+2)·5=155 
model 
evaluations 

 

Resource 
Allocation 
Optimization 
Formulation 
[14] 

 

Reduced Gauss-Legendre 

quadratures, (
𝑛
2

) 𝑁𝑞
2, with 𝑁𝑞= 

7 quadrature points, requires 
49 function evaluations 

 

Number of evaluations by 
the optimizer algorithm 
to obtain the Pareto 
front, reported in Figure 
11a, was 1577.   

 

49  model 
evaluations and 
1577 surrogate 
evaluations  

 

5.2.2 Computational Efficiency in the Industrial Example (Section 4)  
 Although the ‘resource allocation optimization method’ has been demonstrated for uniform input 
PDFs, extension to other distribution types may be possible. To the best of our knowledge, re-casting Eq. 
(14) as a weighted-sum optimization problem and solved as in Ref. [14] is not possible in the case of the 
types of distributions listed in Table 3 (e.g., Rayleigh, non-symmetric Triangular, normal mixture). One 
approach maybe to formulate the optimization problem including all the statistical moments (e.g., first 
four moments) of other types of distributions. However, in Section 3.2, we discuss the difficulties of 
directly manipulating the statistical moments of the input distribution and the resulting problem of 
guaranteeing that the input PDFs are realizable. Shown in Table 7 is a notional comparison of the proposed 
uncertainty allocation method with the weighted-sum optimization problem. The computational effort to 
perform uncertainty propagation with the reduced Gauss-Legendre quadratures and to build the 
surrogate model will be 32 min.  In comparison, the CPU time used to perform uncertainty propagation 
with the URQ method will be 44 sec, which leads to a total computational CPU time of approximately one 
hour and 33 minutes to solve the uncertainty allocation problem. 
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Table 7. Computational cost comparison between the uncertainty allocation method and the optimisation 
approach for the industrial example.  

Approach 

Uncertainty propagation 
method with n = 5 input 
variables — a single evaluation 
of the ZTM  is ≈ 4 sec 

Evaluations required for 
trade space 
visualization/ 

optimization 

Estimated total 
number of CPU 
time 

 

Proposed 
Uncertainty 
Allocation 
Method 

URQ, 2·n+1, requires  

11 function evaluations or 

44 sec of CPU time 

DoE  = 5·5·5=125; 

Gauss-Newton algorithm 
iterations = 2 

(125+2)·11=1397, 
Total CPU time 
=93.13 min 

 

Resource 
Allocation 
Optimization 
Formulation 
[14] 

 

Reduced Gauss-Legendre 

quadratures, (
𝑛
2

) 𝑁𝑞
2, with 𝑁𝑞= 

7 quadrature points, requires 
490 function evaluations or 

32 min of CPU time 

 

Pareto front was not 
obtained 

 

N/A 

 

The proposed method is the most appropriate for early design stages in which models are not 
computationally expensive (e.g., empirical or physics-based approximations used for aircraft conceptual 
design [28]). If the model is expensive to evaluate (in terms of CPU time), the use of surrogate models, as 
proposed in Ref [14], could be used. However, the surrogate modeling process may require a large number 
of training points to construct an accurate surrogate [29]. Also, an important advantage of the 
optimization approach is that no assumptions regarding the output distributions (e.g., Gaussian) need to 
be made. Moreover, the proposed method will not be appropriate for problems involving distributions 
that require more statistical moments to describe them adequately. This is because URQ can only provide 
the first two moments of the output distribution. 

6 SUMMARY AND CONCLUSIONS 

Presented in this paper is an efficient uncertainty allocation method which utilizes (shape) 
parameterization of the input probability distribution functions, allowing the manipulation of several 
statistical moments.  The method was compared with state-of-the art approaches proposed by Chen et 
al.[8] and Opgenoord and Willcox[14] and was found to offer the following advantages: 

• The ability to vary all the first four statistical moments of the PDF allows more freedom for 
exploration, and ultimately for allocating input uncertainty. Moreover, the shape 
parameterization enables the magnitude and spread of the uncertainty to be treated as 
decision variables, thereby allowing the exploration of the design space using ‘engineering’ 
quantities, rather than having to think in terms of statistical parameters. 
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• The ability to visualize the entire trade space to search for combinations of multiple input 
uncertainties, or PDFs, that could reduce uncertainty on multiple outputs.  

• In early design stages where a surrogate model is not required, the shape parameterization, 
combined with efficient uncertainty propagation and inverse computation techniques, results 
in an efficient computational system which performs order(s) of magnitude faster, compared 
with an optimization technique. 

 

When compared with the optimization approach, it was found that interactively visualizing the entire 
trade space not only enables several uncertainty reduction options to be explored (as opposed to only 
‘Pareto optimal’ solutions), but also that other possible ‘what-if’ scenarios could be investigated. For 
example, multidisciplinary teams could negotiate (tradeoff) acceptable levels of uncertainty in the 
different sources, or could explore scenarios where the constrains can be relaxed or tightened. These can 
swiftly be investigated using the proposed approach. 

 

Currently the proposed method has the following limitations: 

• Although it was shown that two correlated Gaussian distributions can be transformed into an 
uncorrelated random space, the coordinate rotation (linear transformation) may not be 
generalizable with regard to other types of probability distributions. Therefore, the 
parameterization and the propagation methods are currently assumed to only be valid if the 
input probability distributions are independent. 

• Although assumptions can be made regarding output distributions other than Gaussian, a 
study to determine appropriate approximations for other types of distributions will need to be 
carried out. 

• With the full-factorial sampling technique, the number of samples grow exponentially with 
additional levels and this can impact the computational cost when visualizing the trade space. 

Future work will focus on addressing the limitations listed above and also on further development of 
visualization and interactive techniques. Specifically, methods for dealing with correlated inputs, e.g. a 
transform, such as a spectral decomposition, could be used to obtain an uncorrelated set of input 
variables. 
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