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 Abstract—This letter proposes a novel successive 

weighted received signal strength (RSS) indoor localization 

and tracking system that projects previous time instance 

estimated mobile device (MD) position to provide projected 

RSS values. Such RSS projection increases the number of 

available RSS from Nm to Nm + NAP, where NAP is the total 

number of access points  and Nm is the number of RSS 

values measured by MD, ranging from 0 to NAP. Our 

proposed system thus resolves the issues associated with 

insufficient or no RSS values received by MD. Inertial 

navigation system (INS) is merged with RSS localization 

system to provide a weighted fusion of projected and 

measured RSS values. The weighting factors are derived 

based on the INS and RSS localization accuracy where the 

former is initially accurate but deteriorates with time and 

the latter is time-independent but environment-dependent. 

The proposed system was tested in indoor environments 

and outperformed other existing localization systems such 

as RSS and INS fusion using extended Kalman filter and 

non-line-of-sight selection scheme, especially in heavy 

multipath environment, by 42% and 75%, respectively. 

 
Index Terms— indoor localization and tracking, received signal 

strength, strapdown inertial navigation system.  

 

I. INTRODUCTION 

NDOOR localization and tracking systems are rapidly 

developing due to an increasing number of available sensors. 

A variety of wireless infrastructure presently exist, including 

wireless local area network (WLAN), radio-frequency 

identification (RFID), and ultra-wideband (UWB) [1]-[3]. 

Information often required for localization include time of 

arrival (TOA), angle of arrival (AOA), and received signal 

strength (RSS) [4]-[8]. RSS systems offer advantages over  

other systems, such as low implementation costs and simple 

measurement acquisition. RSS can be used to compute ranges 

either through signal propagation models [9] or by constructing 

a fingerprinting database [10], the latter of which involves a 

particularly labor-extensive training process, which may not 

always be feasible. RSS system using the propagation approach 

is cost-effective, practical, and has statistically time-

independent localization performance. However, localization 

accuracy is affected by the accuracy of the propagation model 

parameters used in complex indoor environments [11]. 

Insufficient or sometimes absent RSS measurements are 

another hindrance that degrades localization performance. Such 

issues can be mitigated by cooperating with other systems. For 

example, inertial navigation system (INS) is readily available 

for handheld devices and uses measurements from inertial 

measuring units (IMU), which normally includes 

accelerometers and gyroscopes. Strapdown INS pedestrian 

dead reckoning (PDR) transforms tri-axial accelerations and 

angular velocity measurements from the IMU body frame to the 

global navigation frame before integration to track a user’s 

location and orientation [12]. The propagation of measurement 

errors through coordinate transformation and integration causes 

accumulation of localization and orientation errors despite it is 

accurate during the initial movement stage [13]. Hence INS has 

time-dependent localization performance. 

Current research is focusing on the fusion of INS and RSS 

using Bayesian filters. Zero velocity updating (ZUPT) using 

extended Kalman filter (EKF) has been applied as a 

recalibration method [14], and particle filter (PF) together with 

a layout map has been used to model nonlinear systems [15]. 

The EKF scheme requires accurate real-time covariance values, 

which are difficult to obtain, and the PF scheme relies heavily 

on map constraints, which is challenging to implement in cases 

of inaccurate mapping or in environments with scarce physical 

constraints. In this letter, we propose a novel successive 

weighted RSS localization and tracking system fused with 

strapdown INS PDR to increase the number of available RSS 

values from Nm to Nm + NAP, where NAP is the total number of 

access points (APs) and Nm is the number of RSS values 

measured by a mobile device (MD), ranging from 0 to NAP. It 

resolves the issue of insufficient RSS measurements for 

localization, especially in heavy multipath environments. 

Furthermore, time-dependent weighting factors are derived on 

the basis of  accuracy characteristics of RSS system and INS. 

To the best of our knowledge, no reported literature has 

proposed successive RSS projection with time-dependent 

weighting factors for indoor localization and tracking. This 

letter is organized as follows. The proposed fusion system is 

described in section II, followed by a presentation of the 

experimental results and comparison with other fused systems 

in section III, and conclusion in section IV. 

II. PROPOSED SUCCESSIVE WEIGHTED RSS SYSTEM 

The RSS localization accuracy suffers when insufficient RSS 

measurements occur. INS projection from previously estimated 

location at ti-1 is used to provide additional projected RSS 

values at ti. The measured and projected RSS values are 

weighted and linearly combined to obtain the fused RSS values. 

The weighting factors are time-dependent and derived based on 

the relative accuracy of measured and projected RSS values at 

ti. The fused RSS values are used to obtain the estimated 
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location at ti  which complete the successive weighted RSS 

localization and tracking system.  

A three-dimensional IMU measures the tri-axial angular 

velocity and specific force at ti, which can be expressed as 

ωxyz,i
b  = �ωx,i

b , ωy,i
b , ωz,i

b �T
 and fxyz,i

 b
 = �f

x,i

 b
, f

y,i

 b
, f

z,i

 b �
T

, where the 

superscript b indicates the body frame. The accelerations are 

mapped to navigation frame N using transformation matrix Cb
N

, 

whose change rate C�
b

N
 can be formulated as C�

b,i

N
 = Cb,i

N
Ω where 

Ω is a matrix with its rows expressed as Ω1,1…3 = �0, -ωz,i
b , ωy,i

b �, 
Ω2,1…3 = �ωz,i

b , 0, -ωx,i
b �  and Ω3,1…3 = �-ωy,i

b , ωx,i
b , 0�  [16]. 

Gyroscope and accelerometer measurements are used to form 

the attitude estimator to estimate ωxyz,i
b  biases and improve Cb

N
 

estimation. When the IMU is stationary or moving at a constant 

speed, the attitude estimator that uses the relationship between 

G and fxyz,i
 b

 is formulated as fxyz,i
 b  = (Cb,i

N  )
T�0, 0, G	T  where G is 

the gravitational acceleration. The third row of Cb
N

 and ωxyz,i
b  

biases form the adaptive EKF states, which use the formulation 

of C�
b

N
 and fxyz,i

 b
 as propagation and measurement stage models, 

respectively [16]. Magnetometer can also be incorporated to 

further improve the heading estimation [17]. The navigation 

frame acceleration is calculated as axyz,i
N  = Cb,i

N  fxyz,i
 b 
 �0, 0, G	T. 

Its navigation frame velocity vXYZ,i
N  and location p

XYZ,i
N  can be 

obtained using single and double integration of aXYZ,i
N , 

respectively. The INS-calculated location propagates the MD 

into its projected location and the standard deviation of the 

localization error σi
INS  is tracked. Instantaneous variances of 

aXYZ
N , Var(a

XYZ,i

N
) are formulated by substituting the variances of 

gaussian noise in IMU measurements ωxyz,i
b  and fxyz,i

 b
 which are 

acquired using Allan variance technique into the formulation of 

aXYZ,i
N . The details can be found in our previous paper [13]. The 

Var(a
XYZ,i

N
) are integrated to find velocity variances Var(v

XYZ,i

N
) 

and position variances Var(p
XYZ,i

N
).The �σ

i

INS
)2 is expressed as 

Var(p
X,i

N
) + Var(p

Y,i

N
) + Var(p

Z,i

N
), which grows over time due to 

the accumulation of Var(a
XYZ,0…i

N
). Both projected location and 

σi
INS are used to form the successive weighted RSS system. 

The above-mentioned INS projection is illustrated in Fig. 1 

where the ground truth path and true MD locations at ti-1 and ti  

are depicted. The distance from kth AP (APk) to the true MD 

location at ti is denoted as di,k
 o

 where k = 1…NAP where NAP is 

total number of APs. Three INS projection scenarios with 

different accuracies are represented by σi
INS,S = 1,2,3

 where 

σi
INS,1 ≪ σi

INS,2 ≪ σi
INS,3 and three loci of the estimated MD 

using measured RSS at ti are shown. The estimated path using 

only INS for scenario 2 is also provided whereas scenario 1 and 

3 are omitted for brevity. Estimated locations at ti-1 are projected 

to their locations at ti based on the INS calculation. Two sets of 

distances are now available: the first distance set di,k
 INS,S

 is 

calculated from APk to the projected MD location at ti and the 

second distance set di,k
 RSS,S

 is based on RSS measurement from 

APk. The di,k
 o

 can be estimated using wi,k
 INS,S

di,k
 INS,S + wi,k

 RSS,S
di,k

 RSS,S
 

where wi,k
 INS,S

 and wi,k
 RSS,S

 are weighting factors. When INS is 

accurate (scenario 1), wi,k
 INS,1

 should be much larger than wi,k
 RSS,1

. 

When INS is less accurate (scenario 2), wi,k
 INS,2 should be 

smaller than wi,k
 INS,1

 while wi,k
 RSS,2

 is larger than wi,k
 RSS,1

. When 

INS is not accurate (scenario 3), wi,k
 RSS,3

should be much larger 

than wi,k
 INS,3

. Thus, the weighting factors are designed as  

 

 
, , , ,

, , , , ,/ ( ),  1INS S S S INS S RSS S INS S

i k i k i k i i k i kw w wσ= ∆ ∆ + = −   (1) 

 

where ∆i,k
S

 = �di,k
 RSS,S 
 di,k

 INS,S� . Assuming σi
INS,1 ≪ ∆i,k

1
 in 

scenario 1, wi,k
 INS,1 ≈ 1  and wi,k

 RSS,1 ≈ 0 , which indicates that the 

estimated distance relies on the INS projection. 

Assuming  σi
INS,2 = ∆i,k

2
 in scenario 2, wi,k

 INS,2 = wi,k
 RSS,2 = 0.5 , 

which means that the INS projection and RSS measurement 

carry equal weight of the distance estimation. Assuming 

σi
INS,3 ≫ ∆i,k

3
 in scenario 3, wi,k

 RSS,3 ≈ 1  and wi,k
 INS,3 ≈ 0 , which 

indicates that the estimated distance relies on the RSS 

measurement. The estimated MD location at ti is obtained using 

the weighted distance estimations from all APs. As shown in 

Fig. 1, the estimated MD location at ti (yellow circle)  using all 

APs is closer to true location (red circle) as compared to 

projected MD location (yellow star) for scenario 2.  

A detailed implementation is given as follows. The initial 

MD and AP locations are assumed to be known with the 

measured RSS value at ti from APk expressed as 

 

 ( ), 10 ,10 log /m o

i k r i k rRSS RSS n d d υ= − +   (2) 

 

where RSSr is the mean RSS at reference distance dr, di,k
 o

 is the 

distance between the true MD location and APk, n is the path-

loss exponent, and �  is used to account for the shadowing 

effect, which is modeled as a Gaussian random variable with 

standard deviation συ  [18], [19]. The maximum likelihood 

estimation of distance di,k
 RSS

, can be expressed as 

dr10
(RSSr�RSSi,k

m
) / (10n)

. In Fig. 1, the RSS difference between the 

estimated MD location at ti-1 and its projected location at ti is 

computed using (2) as ∆RSSi,k = -10nlog
10

(di,k
 INS

/d'i-1,k)  where 

d'i-1,k  and di,k
 INS

 are the distances from APk to the estimated MD 

Fig. 1.  Illustration of INS projection at ti (yellow star) from estimated MD 

location at ti-1 (yellow circle) under different INS accuracy scenarios. 
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location at ti-1 and its projected location at ti using INS 

projection, respectively, independent of RSS at ti. Hence the 

projected RSS at ti, RSSi,k
 p

 can be expressed as RSSi-1,k + ∆RSSi,k 

where RSSi-1,k is the fused RSS value at ti-1. The fused RSS 

value at ti is then obtained by combining the projected and 

measured RSS values using weighting factors as 

 

 , , , , ,

INS p RSS m

i k i k i k i k i kRSS w RSS w RSS= +   (3) 

 

where wi,k
 INS  and wi,k

 RSS  are the weighting factors explained in 

(1). The estimated distance di,k  is then expressed as 

dr10
(RSSr�RSSi,k) / (10n)

. The estimated MD location  (X�i,Y� i) can be 

obtained using the weighted least square (LS) as  

  

 { }
2

2 2

, , , ,
( ) 1,

ˆ ˆ( , ) arg min ( ) ( )
A

i i

PN

i i i k i AP k i AP k i

kY
k

X

X Y w X X Y Y d
=

 = − + − −     (4) 

 

where (XAP,k,YAP,k) represent APk coordinates, and wi,k  = 1/di,k 

which is equivalent to 1/σdi,k
 where σdi,k

 is the standard 

deviation of di,k since σdi,k
 = di,kσυln(10)/(-10n) [14]. Assuming 

Nm is the number of APs with measurable RSS values (Nm ≤ 

NAP), Nm measured RSS values are used to fuse with NAP 

projected RSS values to form RSSi,k=1…NAP
. The NAP projected 

RSS values are obtained using INS projection from estimated 

MD location at ti-1. Thus, the RSS projection increases the 

number of available RSS values from Nm to Nm + NAP. Our 

proposed system resolves the issue where insufficient or no 

RSS values are received by the MD. Equations (3) and (4) form 

a recursive tracking system. 

To further reduce time-dependent error, the weighting factor 

in (4) is extended to account for unmeasurable RSS value by 

introducing a scaling term w'i,k as outlined by cases 2-4 in Table 

I. When the MD fails to measure RSS from APk at ti in case 2, 

less weight should be placed on the fused RSS as it is solely 

based on the projection. The (wi-L,k
 INS )

L
 term is introduced to 

further account for projection deterioration when RSS 

measurement remains absent in case 3 where L is the number of 

consecutive times that RSS is not measured. In case 4 when MD 

measures RSS value from previously unmeasurable APk,  w'i,k  
equals to max{ (wi-L,k

 INS )
L

, wi,k
 RSS } by considering the relative 

weight of successive projections and RSS measurement. The 

weighting factor in (4) for APk becomes wi,kw'i,k. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

An experimental campaign was conducted in an indoor 

environment of level B2 at the School of Electrical and 

Electronic Engineering, Nanyang Technological University, 

Singapore. Fig. 2 shows a panorama view of the 40 m × 100 m 

experimental layout covered by 14 APs.  The environment is an 

office environment featuring numbers of meeting rooms, 

hallways, and pillars. All APs are Alcatel-Lucent Enterprise 

OmniAccess OAW-AP225 IEEE 802.11ac wireless access 

points. Sony XZ Premium smartphone and Xsens Mtw were 

used as the MD and IMU, whose sampling frequencies are 1 Hz 

and 100 Hz, respectively. Fusion is done at every second. In this 

experimental environment, the average reference RSS value for 

all APs was found to be -53 dBm. The n was estimated by 

collecting measurements from 280 scattered locations with 

known coordinates. The distances d between those locations 

and 14 APs range from 7.4 m to 73.4 m. The relationship 

between RSSr 
 RSS m
 and 10log10(d) are fitted using linear 

regression and n was found to be 2.34, which is similar to 2.3 

reported in [14]. Walking routes 1 and 2 displayed in Fig. 2 are 

in relatively open and heavily blocked region, respectively. The 

ground truth paths are labeled by markers at every meter point 

for reference. Magnetometers measurements were omitted in 

this study because the magnetic field strength measurements 

fluctuated between 16.8 A/m and 63.8 A/m in this environment, 

whereas the value measured in an outdoor open field was 34.3 

A/m. EKF scheme is included for localization performance 

comparison. Reference [14] proposed a tight-coupling fusion 

system that uses the calculated range from RFIDs to the INS 

location and the estimated range using a path-loss model at the 

current time as measurements. The συ is required for EKF and 

was set to 6 dB in [14]. It is found that EKF performance is 

insensitive to συ, varying from 3 to 9 dB in the experimental 

environment while 6 dB yields the smallest cumulative error. 

Hence 6 dB was used in our test. Another RSS with INS 

localization scheme [20] is added for comparison. Reference 

[20] applied user-specific step-length based PDR to provide 

preliminary localization as the first part of the system. The 

center point of the LS localization results from the four highest 

RSS values is used to replace the PDR localization if the non-

line-of-sight (NLOS) signal is not detected.  

Tracking trajectories from various schemes of both routes are 

shown in Fig. 3. Our proposed scheme with modified weighted 

 
Fig. 2.  Experiment floor plan with 14 access points (green dots), route 1 (solid 

red line), route 2 (dash red line), and the panorama view (from blue dot). 

 

TABLE I 

MODIFIED WEIGHT UNDER DIFFERENT RSS CASES AT -1it  AND it  
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m
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m
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i L kw−  

4 �  , , , ,

INS p RSS m

i k i k i k i kw RSS w RSS+  
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,
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L
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i L k
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 = RSS measured, � = RSS not measured. 
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LS remains closer to the true paths during nearly the entire time. 

Fluctuations of the tracking path are mainly owing to an 

insufficient number of APs detected by the MD. An average of 

9 and 5 RSS measurements were collected at each time instance 

for routes 1 and 2, respectively, reducing to 6 and 3 at route 

corners. Our proposed scheme increases the number of RSS to 

provide 14 fused RSS values at any time. For illustration at 10 

s along route 1 (before first turn) in Fig. 2 when 9 RSS 

measurements were available, the INS provided accurate 

projected RSS values for all APs including 5 unavailable APs. 

Our proposed scheme using 14 fused RSS values yields 2.1 m 

localization error compared to 7.7 m from the one using 9 RSS 

values, which achieves 73% improvement. At 40 s (before 

second turn), only 7 RSS measurements were available. Our 

proposed scheme added additional 7 projected RSS values 

using methodology described in Table I. The additional RSS 

values reduces error from 12.4 m to 5.3 m (57% improvement) 

even with larger σINS. Another factor causing fluctuations is the 

poor distance estimation. This is a result of inaccurate RSS 

measurements owing to small scale fading caused by multipath 

signals. Recalibration on INS or adding more APs can be used 

to further contain fluctuations. Weighting factors wINS and wRSS 

together with �INS along route 1 are shown in Fig. 4. As given 

in (1), the weighting factor wINS  decreases over time, which 

indicates that the contribution of the projected RSS decreases 

due to deterioration of the INS projection. The wINS reaches 0.5 

at roughly 23 s and it drops to 0.4 around 40 s. To further 

enhance the proposed scheme, recalibration on IMU can be 

done through stationary or known IMU state when wINS  and 

wRSS  intersect which happens at 23 s. The wINS, wRSS, and �INS 

are reset to initial values after recalibration. The subsequent 

recalibrations happen at 48 s and 69 s. Fig. 5 depicts cumulative 

and absolute localization errors of the fusion schemes at every 

second for route 1. RSS stand-alone localization results using 

either LS or weighted LS are added for performance 

comparison. For route 1, the cumulative (and mean absolute) 

error at 84 s determined by the proposed scheme without 

recalibration, EKF, RSS with LS, RSS with weighted LS, and 

NLOS selection scheme are 348  (4.1) m, 490 (5.8) m, 635 (7.6) 

m, 469 (5.6) m, and 540 (6.4) m, respectively. Our proposed 

scheme shows a 29% and 36% performance advantage over 

EKF and NLOS selection scheme, respectively. Recalibration 

has reduced cumulative (and mean absolute) error from 348 

(4.1) m to 217 (2.6) m, with a 38% improvement compared to 

the proposed scheme without recalibration. Error plot for route 

2 is omitted for brevity. For route 2, the cumulative error at 53 

s are 328 m, 564 m, 619 m, 610 m, and 1305 m, respectively, 

yielding a 42% and 75% performance advantage of the 

proposed scheme without recalibration over EKF and NLOS 

selection scheme, respectively. Tests were also performed 

under other n to investigate the robustness of these schemes. 

Since n values typically fall within 2.0 to 4.0 in office 

environment [18], tests are also conducted when n = 2.0, 3.0, 

and 4.0. For route 1, our proposed scheme without recalibration     

has 32%, 20%, and 23% less cumulative error than EKF when 

n =  2.0, 3.0, and 4.0, respectively, and 43%, 34%, and 45% less 

cumulative error than the NLOS selection scheme. The 

cumulative error fluctuations are 134 m, 277 m, and 315 m for 

proposed scheme without recalibration, EKF, and NLOS 

selection scheme, respectively. Similar results are obtained for 

route 2. This verifies that the proposed scheme is more accurate 

and more robust than the other two fusion schemes. 

IV. CONCLUSION 

In this letter, we have proposed a novel weighted successive 

RSS localization and tracking system with strapdown INS PDR 

assistance. The RSS projection that increases the number of 

available RSS values is explained. This projection addresses the 

issue of insufficient RSS measurements for localization and 

tracking, which is useful for handling heavy multipath 

environments. The time-dependent weighting factors and �INS 

are elaborated and displayed. Experiments in relatively open 

and heavily blocked environments show that our proposed 

system is more robust with superior performance over other 

localization systems such as RSS and INS fusion using EKF 

and NLOS selection scheme by 29% (42%) and 36% (75%) in 

light (heavy) multipath environments, respectively. 

 
Fig. 4.  Weighting factors wINS and wRSS with �INS for route 1.  

 

 
Fig. 5.  Cumulative and absolute localization errors for route 1.  

 

 
Fig. 3.  Route 1 and route 2 tracking trajectories comparison. 
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