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Special Section: Using Simulation to Convey Statistical Concepts
Tutorial

In this article, we walk through the simulation and analy-
sis of multilevel data with crossed random effects of 
subjects and stimuli. The article’s target audience is 
researchers who work with experimental designs that 
sample subjects and stimuli, such as is the case for a 
large amount of experimental research in face percep-
tion, psycholinguistics, and social cognition. Simulation 
is useful not only for understanding how models work, 
but also for estimating power when planning a study or 
performing a sensitivity analysis. The Tutorial assumes 
basic familiarity with R programming.

Generalizing to a Population of Encounters

Many research questions in psychology and neuroscience 
are questions about certain types of events: What hap-
pens when people encounter particular types of stimuli? 
For example, do people recognize abstract words faster 
than concrete words? What impressions do people form 
about a target person’s personality on the basis of the 
person’s vocal qualities? Can people categorize emotional 
expressions more quickly on the faces of social in-group 
members than on the faces of out-group members? How 
do brains respond to threatening versus nonthreatening 
stimuli? In all of these situations, researchers would like 

to be able to make general statements about phenomena 
that go beyond the particular participants and particular 
stimuli that they happen to have chosen for the specific 
study. Traditionally, people speak of such designs as 
having crossed random factors of participants and stimuli, 
and think of the goal of inference as being simultaneous 
generalization to both populations. However, it may be 
more intuitive to construe the goal as generalizing to a 
single population of events called encounters: That is, 
the goal is to say something general about what happens 
when the two types of sampling units meet—when a 
typical subject encounters (and responds to) a typical 
stimulus (Barr, 2018).

Most analyses using conventional statistical techniques, 
such as analysis of variance (ANOVA) and the t test, com-
mit the fallacy of treating stimuli as fixed rather than 
random. For example, imagine that a sample of partici-
pants are rating the trustworthiness of a sample of faces 
and the goal is to determine whether the faces of people 
born on even-numbered days look more trustworthy than 
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those born on odd-numbered days. Obviously, they do not. 
At the extreme, imagine that only a single face is sampled 
from each category, but 100 people rate each face. If the 
analysis treats the sample of faces as fixed, or a perfect 
representation of the larger population of faces on Earth, 
a significant difference in one direction or the other is 
almost guaranteed. There is sufficient power to detect even 
tiny differences in apparent trustworthiness, so this result 
will be highly replicable with large samples of raters. As 
the number of faces in the sample is increased, the problem 
gets better (the sample means are more likely to approxi-
mate the population means), but if the number of raters is 
increased (and thus power to detect small differences in 
the sample means is also increased), it gets worse again.

The problem, and the solutions to the problem, has 
been known in psycholinguistics for more than 50 years 
(Clark, 1973; Coleman, 1964), and most psycholinguistic 
journals require authors to demonstrate generalizability 
of findings over stimuli as well as over subjects. Even 
so, the quasi-F statistics for ANOVA (F ′ and min F ′) that 
Clark proposed as a solution were widely recognized as 
unreasonably conservative (Forster & Dickinson, 1976), 
and until fairly recently, most psycholinguists performed 
separate by-subjects (F1) and by-items analyses (F2), 
declaring an effect significant only if it was significant 
for both analyses. This F1 × F2 approach has been widely 
used, despite the fact that Clark had already shown it to 
be invalid, since both F statistics have higher than nomi-
nal false-positive rates in the presence of a null effect—
F1 because of unmodeled stimulus variance and F2 
because of unmodeled subject variance.

Recently, psycholinguists have adopted linear mixed-
effects modeling as the standard for statistical analysis, 
given its numerous advantages over ANOVA, including 
the ability to simultaneously model subject and stimulus 
variation, to gracefully deal with missing data or unbal-
anced designs, and to accommodate arbitrary types of 
continuous and categorical predictors or response vari-
ables (Baayen et  al., 2008; Locker et  al., 2007). This 
development has been facilitated by the lme4 package 
for R (Bates et al., 2015), which provides powerful func-
tionality for model specification and estimation. Appro-
priately specified mixed-effects models yield major 
improvements in power over quasi-F approaches and 
avoid the increased false-positive rate associated with 
separate F1 and F2 (Barr et al., 2013).

Despite mixed-effects modeling becoming the de facto 
standard for analysis in psycholinguistics, the approach 
has yet to take hold in other areas where stimuli are 
routinely sampled, despite repeated calls for improved 
analyses in social psychology ( Judd et  al., 2012) and 
neuroimaging (Bedny et al., 2007; Westfall et al., 2017). 
One of the likely reasons for the limited uptake outside 
of psycholinguistics is that mixed-effects models expose 
the analyst to a level of statistical and technical complexity 
far beyond most researchers’ training. Although some of 

this complexity is specific to mixed-effects modeling, 
some of it is simply hidden away from users of traditional 
techniques by graphical user interfaces and function 
defaults. The novice mixed-effects modeler is suddenly 
confronted with the need to make decisions about how 
to specify categorical predictors, which random effects 
to include or exclude, which of the statistics in the volu-
minous output to attend to, and whether and how to 
reconfigure the optimizer function when a convergence 
error or singularity warning appears.

We are optimistic that the increasing adoption of the 
mixed-effects approach will improve the generalizability 
and thus reproducibility of studies in psychology and 
related fields. Models that account for subjects and stim-
uli (or other factors) as nonessential, exchangeable fea-
tures of an experiment will better characterize the 
uncertainty in the resulting estimates and, thus, improve 
the generality of inferences drawn from them (Yarkoni, 
2020). That said, we empathize with the frustration—and 
sometimes, exasperation—expressed by many novices 
when they attempt to grapple with these models in their 
research. A profitable way to build understanding and 
confidence is through data simulation. If you can create 
data sets by sampling from a population for which you 
know the ground truth about the population parameters 
you are interested in (e.g., mean and standard deviation 
of each group), you can check how often and under 
what circumstances a statistical model will give you the 
correct answer. Knowing the ground truth also allows 
you to experiment with various modeling choices and 
observe their impact on a model’s performance.

Disclosures

The code to reproduce the analyses reported in this 
article is publicly available via OSF and can be accessed 
at https://osf.io/3cz2e. The OSF project page also 
includes appendices with the code for extended exam-
ples. The repository links to a Web app that performs 
data simulation without requiring knowledge of R code. 
The app allows users to change parameters and inspect 
the results of linear mixed-effects models and ANOVAs, 
as well as calculate power and false-positive rates for 
these analyses.

Simulating Data With Crossed  
Random Factors

Data simulation can play a powerful role in statistics 
education, enhancing understanding of the use and 
interpretation of statistical models and the assumptions 
behind them. The data-simulation approach to learning 
about statistical models differs from the standard 
approach in most statistics textbooks, which present the 
learner with a step-by-step analysis of a sample of data 
from some population of interest. Such exercises usually 

https://osf.io/3cz2e
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culminate in inferences about characteristics of the pop-
ulation of interest from model estimates. Although this 
reflects the typical uncertain situation of the analyst, the 
learner cannot fully appreciate the performance of the 
model without knowing the ground truth. In a data-
simulation approach, the learner starts out knowing the 
ground truth about the population and writes code to 
simulate the process of taking and analyzing samples 
from that population. Giving learners knowledge of the 
underlying population parameters as well as the ability 
to explore how population parameters are reflected in 
model estimates can yield powerful insight into the 
appropriate specification of models and the interpreta-
tion of statistical output.

Data simulation also has a wide variety of scientific 
uses, one of which is to estimate properties of statistical 
models in situations in which algorithms for computing 
those properties are unknown or can be applied only 
with difficulty. For instance, Forster and Dickinson 
(1976) used Monte Carlo simulation to explore the 
behavior of the quasi-F statistics for ANOVA (F ′ and min 
F ′) under various conditions. In a Monte Carlo simula-
tion, the long-run properties of a process are estimated 
by generating and analyzing many simulated data sets—
usually, thousands or tens of thousands of them.

One of the most important applications of Monte 
Carlo simulation is in the estimation of power for com-
plex models. The notion of power arises most frequently 
in the context of study planning, when a power analysis 
is used to determine the target N for a study. Power is 
the probability that a specified statistical test will gener-
ate a significant result for a sample of data of a specified 
size taken from a population with a specified effect. If 
you can characterize the population parameters, you can 
repeatedly simulate and analyze data from this popula-
tion. The proportion of times that this procedure pro-
duces a significant result provides an estimate of the 
power of your test given your assumed sample size and 
effect size. You can adjust any parameters in this simula-
tion in order to estimate other parameters. Instead of 
estimating power, you can perform a sensitivity analysis 

by varying the effect size while holding the sample size 
and desired power constant—for instance, to determine 
the minimum effect size that your analysis can detect 
with 80% power and an N of 200 per group. You can 
also set the population effect size to zero and calculate 
the proportion of significant results to check if your 
analysis procedure inflates the rate of false positives.

For most traditional statistical procedures, such as the 
t test or ANOVA, there are analytic procedures for esti-
mating power. Westfall et al. (2014) presented analytic 
power curves for simple mixed-effects designs such as 
the one described in this Tutorial (a corresponding app 
is available at https://jakewestfall.shinyapps.io/crossed 
power). But even when analytic solutions exist, simula-
tion can still be useful to estimate power or false-positive 
rates, because real psychological data nearly always 
deviate from the statistical assumptions behind tradi-
tional procedures. For instance, most statistical proce-
dures used in psychology assume a continuous and 
unbounded dependent variable, but it is often the case 
that researchers use discrete (e.g., Likert) response 
scales. When assumptions are not met, power simula-
tions can provide a more reliable estimate than analytic 
procedures.

In this Tutorial, we simulate data from a design with 
crossed random factors of subjects and stimuli, fit a 
model to the simulated data, and then see whether the 
resulting sample estimates are similar to the population 
values we specified when simulating the data. In this 
hypothetical study, subjects classify the emotional 
expressions of faces as quickly as possible, and we use 
their response time (RT) as the primary dependent vari-
able. Let us imagine that the faces are of two types: 
either from the subject’s in-group or from an out-group. 
For simplicity, we further assume that each face appears 
only once in the stimulus set. The key question is 
whether there is any difference in classification speed 
between the two types of faces. Because many of the 
technical terms used in discussing linear mixed-effects 
models will be unfamiliar to readers, we provide a glos-
sary of terms in Box 1.

Box 1.  Glossary of Terms

Term Explanation

Crossed random factors Refers to a design with multiple random factors, such as subjects and items, the 
levels of which are crossed (e.g., each subject encounters each stimulus)

Data-generating process (DGP) The mathematical model capturing assumptions about the processes giving rise to 
the data

Fixed effect An effect whose value is constant across realizations of the experiment
Random effect An effect whose value varies across potential realizations of the experiment (e.g., 

because of sampling)
Random intercept A random effect capturing the deviation of a sampling unit (subject or item) from 

the model intercept
Random slope A random effect capturing the deviation of a sampling unit (subject or item) from 

the model slope
Variance components Parameters describing the distribution of random effects in the population

https://jakewestfall.shinyapps.io/crossedpower
https://jakewestfall.shinyapps.io/crossedpower
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Required software

This Tutorial and associated materials use the following 
open-source research software: R (R Core Team, 2018), 
lme4 (Bates et  al., 2015), lmerTest (Kuznetsova et  al., 
2017), broom.mixed (Bolker & Robinson, 2019), afex 
(Singmann et al., 2019), tidyverse (Wickham, 2017); faux 
(DeBruine, 2020), and papaja (Aust & Barth, 2018).

To run the code, you will need to have some add-on 
packages available:

# load required packages
library("lme4") # model specification / 
estimation

library("lmerTest") # provides p-values 
in the output

library("tidyverse") # data wrangling and 
visualisation

Because the code uses random-number generation, 
if you want to reproduce the exact results below you 
will need to set the random-number seed at the top of 
your script and ensure that you are using R Version 3.6.0 
or higher:

# �ensure this script returns the same 
results on each run

set.seed(8675309)

If you change the seed or are using a lower version of 
R, your exact numbers will differ, but the procedure will 
still produce a valid simulation.

Establishing the data-generating parameters

The first thing to do is to set up the parameters that gov-
ern the process we assume to give rise to the data, the 
data-generating process, or DGP. Let us start by defining 
the sample size: In this hypothetical study, each of 100 
subjects will respond to all 50 stimulus items (25 in-group 
and 25 out-group), for a total of 5,000 observations.

Specify the data structure.  We want the resulting data 
to be in long format, with each row representing a single 
observation (i.e., a single trial; see Table 1). The variable 
subj_id runs from 1 to 100 and indexes the subject 
number; item_id runs from 1 to 50 and indexes the 
item number; category is whether the face is in-group 
or out-group (Items 1–25 always in-group and Items 26–50 
always out-group); and RT is the participant’s RT for that 
trial. Each trial is uniquely identified by the combination 
of the subj_id and item_id labels.

Note that for independent variables in designs in 
which subjects and stimuli are crossed, one cannot think 
of factors as being solely “within” or “between” because 
there are two sampling units; one must ask not only 
whether independent variables are within or between 

subjects, but also whether they are within or between 
stimulus items. Recall that a within-subjects factor is one 
for which each and every subject receives all of the 
levels, and a between-subjects factors is one for which 
each subject receives only one of the levels. Likewise, a 
within-items factor is one for which each stimulus 
receives all of the levels. For our current example, the 
in-group/out-group factor (category) is within sub-
jects but between items, given that each stimulus item 
is either in-group or out-group.

Specify the fixed-effects parameters.  Now that we 
have an appropriate structure for our simulated data set, 
we need to generate the RT values. For this, we need to 
establish an underlying statistical model. In this and the 
next section, we build up a statistical model step by step, 
defining variables in the code that reflect our choices for 
parameters. For convenience, Table 2 lists all of the vari-
ables in the statistical model and their associated variable 
names in the code.

Let us start with a basic model and build up from 
there. We want a model of RT for subject s and item i 
that looks something like the following:

	 RT X esi i si= + +β β0 1 . 	 (1)

According to the formula, response RTsi for subject s 
and item i is defined as the sum of an intercept term β0, 
which in this example is the grand mean RT for the 
population of stimuli; plus β1, the mean RT difference 
between in-group and out-group stimuli, multiplied by 
predictor variable Xi to obtain the offset for item i; plus 
random noise esi. To make β0 equal the grand mean and 
β1 equal the mean out-group minus the mean in-group 
RT, we code the item-category variable Xi as −0.5 for the 
in-group category and +0.5 for the out-group category.

In the model formula, we use Greek letters (β0, β1) to 
represent population parameters that are being directly 
estimated by the model. In contrast, Roman letters rep-
resent the remaining variables: observed variables whose 

Table 1.  The Target Data Structure

row subj_id item_id category RT

1 1 1 ingroup 750.2
2 1 2 ingroup 836.1
. . . . . . . . . . . . . . .
49 1 49 outgroup 811.9
50 1 50 outgroup 801.8
51 2 1 ingroup 806.7
52 2 2 ingroup 805.9
. . . . . . . . . . . . . . .
5000 100 50 outgroup 859.9

Note: See the text for an explanation of the terms in this table.
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values are determined by sampling (e.g., RTsi, T0s, esi) or 
fixed by the experimental design (Xi).

Although this model is incomplete, we can go ahead and 
choose parameters for β0 and β1. For this example, we set 
a grand mean of 800 ms and a mean difference of 50 ms:

# set fixed effect parameters
beta_0 <- 800 # intercept; i.e., the 
grand mean

beta_1 <- 50 # slope; i.e, effect of 
category

You will need to use disciplinary expertise and/or 
pilot data to choose these parameters for your own 
projects; by the end of this Tutorial, you will understand 
how to extract those parameters from an analysis.

The parameters β0 and β1 are fixed effects: They char-
acterize the population of events in which a typical 
subject encounters a typical stimulus. Thus, we set the 
mean RT for a “typical” subject encountering a “typical” 
stimulus to 800 ms and assume that responses are typi-
cally 50 ms slower for out-group than for in-group faces.

Specify the random-effects parameters.  This model is 
completely unrealistic, however, because it does not allow 
for any individual differences among subjects or stimuli. 
Subjects are not identical in their response characteristics: 
Some will be faster than average, and some slower. We 
can characterize the difference from the grand mean for 

each subject s in terms of a random effect T0s, where the 
first subscript, 0, indicates that the deflection goes with the 
intercept term, β0. This random-intercept term captures 
the value that must be added or subtracted to the intercept 
for subject s, which in this case corresponds to how much 
slower or faster this subject is relative to the average RT of 
800 ms. Just as it is unrealistic to expect the same intercept 
for every subject, it is also unrealistic to assume the same 
intercept for every stimulus; it will be easier to categorize 
emotional expressions on some faces than on others, and 
we can incorporate this assumption by including by-item 
random intercepts O0i, with the subscript 0 reminding us 
that it is a deflection from the β0 term, and the i indexing 
each of the 50 stimulus items (faces). Each face is assigned 
a unique random intercept that characterizes how much 
slower or faster responses to this particular face tend to be 
relative to the average RT of 800 ms. Adding these terms 
to our model yields

	 RT T O X esi s i i si= + + + +β β0 0 0 1 . 	 (2)

Now, whatever values of T0s and O0i we end up with in 
our sampled data set will depend on the luck of the draw, 
that is, on which subjects and stimuli we happened to 
have sampled from their respective populations. We 
assume that these values, unlike fixed effects, will differ 
across different realizations of the experiment with differ-
ent subjects and/or stimuli. In practice, we often reuse the 
same stimuli across many studies, but we still need to treat 
the stimuli as sampled if we want to be able to generalize 
our findings to the whole population of stimuli.1

It is an important conceptual feature of mixed-effects 
models that they do not directly estimate the individual 
random effects (T0s and O0i values), but rather, they 
estimate the random-effects parameters that characterize 
the distributions from which these effects are drawn.2 It 
is this feature that enables generalization beyond the 
particular subjects and stimuli in the experiment. We 
assume that each T0s comes from a normal distribution 
with a mean of zero and unknown standard deviation, 
τ0 (tau_0 in the code). The mean of zero reflects the 
assumption that each random effect is a deflection from 
the grand mean. Similarly, for the by-item random inter-
cepts, we assume the O0i values to be sampled from a 
normal distribution also with a mean of zero and with 
an unknown standard deviation, ω0 (omega_0). In our 
simulation, we set the by-subject random-intercept stan-
dard deviation to 100, and the by-item random-intercept 
standard deviation to 80:

# set random effect parameters
tau_0 <- 100 # by-subject random  
intercept sd

omega_0 <- 80 # by-item random  
intercept sd

Table 2.  Variables in the Data-Generating Model and 
Associated R Code

Model 
variable

Code 
variable Description

RTsi RT Reaction time for subject s responding 
to item i

Xi X_i Condition for item i (−0.5 = in-group, 
0.5 = out-group)

β0 beta_0 Intercept; grand-mean RT
β1 beta_1 Slope; mean effect of the in-group/

out-group manipulation
τ0 tau_0 Standard deviation of the by-subject 

random intercepts
τ1 tau_1 Standard deviation of the by-subject 

random slopes
ρ rho Correlation between the by-subject 

random intercepts and slopes
ω0 omega_0 Standard deviation of the by-item 

random intercepts
σ sigma Standard deviation of the residuals
T0s T_0s Random intercept for subject s
T1s T_1s Random slope for subject s
O0i O_0i Random intercept for item i
esi e_si Residual for the trial involving 

subject s and item i
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There is still a deficiency in our data-generating 
model related to β1, the fixed effect of category. Cur-
rently, our model assumes that each and every subject 
is exactly 80 ms faster to categorize emotions on in-
group faces than on out-group faces. Clearly, this 
assumption is totally unrealistic; some participants will 
be more sensitive to in-group/out-group differences than 
others are. We can capture this analogously to the way 
in which we captured variation in the intercept, namely, 
by including by-subject random slopes T1s:

	 RT T O T X esi s i s i si= + + + + +β β0 0 0 ( ) .1 1 	 (3)

The random slope T1s is an estimate of how much 
subject s’s difference in RT when categorizing in-group 
versus out-group faces differs from the population mean 
effect, β1, which we already set to 50 ms. Given how we 
coded the Xi variable, the mean effect for subject s is 
given by the β1 + T1s term. So, a participant who is 90 ms 
faster on average to categorize in-group than out-group 
faces would have a random slope T1s of 40 (β1 + T1s = 50 + 
40 = 90). As we did for the random intercepts, we assume 
that the T1s effects are drawn from a normal distribution, 
with a mean of zero and standard deviation of τ1 (tau_1 
in the code). For this example, we assume the standard 
deviation is 40 ms.

But note that we are sampling two random effects for 
each subject s, a random intercept T0s and a random 
slope T1s. It is possible for these values to be positively 
or negatively correlated, in which case we should not 
sample them independently. For instance, perhaps peo-
ple who are faster than average overall (negative random 
intercept) also show a smaller than average effect of the 
in-group/out-group manipulation (negative random 
slope) because they allocate less attention to the task. 
We can capture this by allowing for a small positive cor-
relation between the two factors, rho, which we assign 
to be .2.

Finally, we need to characterize the trial-level noise 
in the study (esi) in terms of its standard deviation. We 
simply assign this parameter value, sigma, to be twice 
the size of the by-subject random-intercept standard 
deviation:

# �set more random effect and error 
parameters

tau_1 <- 40 # by-subject random slope sd
rho <- .2 # correlation between  
intercept and slope

sigma <- 200 # residual (error) sd

To summarize, we established a reasonable statistical 
model underlying the data having the form

	 RT T O T X esi s i s i si= + + + + +β β0 0 0 ( ) .1 1 	 (4)

The response time for subject s on item i, RTsi, is decom-
posed into a population grand mean, β0; a by-subject 
random intercept, T0s; a by-item random intercept, O0i; 
a fixed slope, β1; a by-subject random slope, T1s; and a 
trial-level residual, esi. Our data-generating process is 
fully determined by seven population parameters, all 
denoted by Greek letters: β0, β1, τ0, τ1, ρ, ω0, and σ (see 
Table 2). In the next section, we apply this data-generating 
process to simulate the sampling of subjects, items, and 
trials (encounters).

Simulating the sampling process

Let us first define parameters related to the number of 
observations. In this example, we simulate data from 100 
subjects responding to 25 in-group faces and 25 out-
group faces. There are no between-subjects factors, so 
we can set n_subj to 100. We set n_ingroup and 
n_outgroup to the number of stimulus items in each 
condition:

# set number of subjects and items
n_subj <- 100 # number of subjects
n_ingroup <- 25 # number of ingroup stimuli
n_outgroup <- 25 # number of outgroup 
stimuli

Simulate the sampling of stimulus items.  We need to 
create a table listing each item i, which category it is in, 
and its random effect, O0i:

# simulate a sample of items
# �total number of items = n_ingroup + 

n_outgroup
items <- data.frame(
item_id = seq_len(n_ingroup + n_outgroup),
category = rep(c("ingroup",  
"outgroup"), c(n_ingroup, n_outgroup)),

O_0i = rnorm(n = n_ingroup +  
n_outgroup, mean = 0, sd = omega_0)

)

For the first variable in the data set, item_id, we 
have used seq_len() to assign a unique integer to 
each of the 50 stimulus faces; these IDs function like 
names. The category variable designates whether the 
face is in-group or out-group; the first 25 items are in-
group, and the last 25 are out-group. Finally, we sample 
the values of O0i from a normal distribution using the 
rnorm() function, with a mean of 0 and standard devi-
ation of ω0.

Let us introduce a numeric predictor to represent 
what category each stimulus item i belongs to (i.e., for 
the Xi in our model). Because we predict that responses 
to in-group faces will be faster than responses to 
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out-group faces, we set in-group to −0.5 and out-group 
to +0.5:

# effect-code category
items$X_i <- recode(items$category, 
"ingroup" = -0.5, "outgroup" = +0.5)

We will later multiply this effect-coded factor by the fixed 
effect of category (beta_1 = 50) to simulate data in 
which RTs for the in-group faces are, on average, −25 
ms different from the grand mean, and RTs for the out-
group faces are, on average, +25 ms different from the 
grand mean. After adding this variable, the resulting 
table items should look like Table 3, although the 
specific values you obtain for O0i may differ, depending 
on whether you set the random seed.

In R, most regression procedures can handle two-level 
factors, such as category, as predictor variables. By 
default, the procedure will create a new numeric predic-
tor that codes one level of the factor as 0 and the other 
as 1. Why not just use the defaults? The short explanation 
is that the default of 0, 1 coding is not well suited to the 
kinds of factorial experimental designs often found in 
psychology and related fields. For the current example, 
using the default coding for the X predictor would 
change the interpretation of β0: Instead of the grand 
mean, it would reflect the mean for the group coded as 
0. One could change the default, but we feel it is better 
to be explicit in the code about what values are being 
used. (See Barr, 2019, for further discussion; see also the 
R mixed-effects-modeling package afex, by Singmann 
et al., 2019, which provides better defaults for specifying 
categorical predictors in ANOVA-style designs.)

Simulate the sampling of subjects.  Now we simulate 
the sampling of individual subjects, which results in a 
table listing each subject and that subject’s two correlated 

random effects. This will be slightly more complicated 
than what we just did, because we cannot simply sample 
the T0s values from a univariate distribution using rnorm() 
independently from the T1s values. Instead, we must sam-
ple < T0s, T1s > pairs—one pair for each subject—from a 
bivariate normal distribution. To do this, we use the  
mvrnorm() function, a multivariate version of rnorm() 
from the MASS package that comes preinstalled with R. 
We need only this one function from MASS, so we can call 
it directly using the package::function() syntax instead 
of loading the library (specifically, MASS::mvrnorm() 
instead of library(MASS)).3 We specify the three param-
eters describing the distribution of the < T0s,T1s > pairs—
two variances and a correlation—by entering them into a 
2 × 2 variance-covariance matrix using the matrix() 
function, and then passing this matrix to mvrnorm() 
using the Sigma argument. This requires converting 
the standard deviations into variances (by squaring 
them) and calculating the covariance, which is the 
product of the correlation and two standard deviations 
(i.e., ρ × τ0 × τ1):

# simulate a sample of subjects

# �calculate random intercept / random 
slope covariance

covar <- rho * tau_0 * tau_1

# �put values into variance-covariance 
matrix

cov_mx <- matrix(
  c(tau_0^2, covar,
    covar, tau_1^2),
  nrow = 2, byrow = TRUE)

# generate the by-subject random effects
subject_rfx <- MASS::mvrnorm 
        (n = n_subj,

          mu = c(T_0s = 0, T_1s = 0),
          Sigma = cov_mx)

# combine with subject IDs
subjects <- data.frame(subj_id = 
seq_len(n_subj),

        subject_rfx)

The resulting table subjects should have the structure 
shown in Table 4.

An alternative way to sample from a bivariate distribu-
tion would be to use the function rnorm_multi() 
from the faux package (DeBruine, 2020), which gener-
ates a table of n simulated values from a multivariate 
normal distribution by specifying the means (mu) and 
standard deviations (sd) of each variable, plus the cor-
relations (r), which can be either a single value (applied 
to all pairs), a correlation matrix, or a vector of the values 
in the upper right triangle of the correlation matrix:

# simulate a sample of subjects

Table 3.  The Resulting Sample of Items

item_id category O_0i X_i

1 ingroup –79.7 -0.5
2 ingroup 57.7 -0.5
3 ingroup –49.4 -0.5
4 ingroup 162.4 -0.5
5 ingroup 85.2 -0.5
6 ingroup 79.0 -0.5
. . . . . . . . . . . .
44 outgroup 54.7 0.5
45 outgroup –20.2 0.5
46 outgroup –12.1 0.5
47 outgroup –70.0 0.5
48 outgroup –158.2 0.5
49 outgroup 19.0 0.5
50 outgroup 2.9 0.5

Note: See the text for an explanation of the terms in the column heads.
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# sample from a multivariate random 
distribution

subjects <- faux::rnorm_multi(
n = n_subj,
�mu = 0, # means for random effects 
are always 0

sd = c(tau_0, tau_1), # set SDs
�r = rho, # set correlation, see 
?faux::rnorm_multi

varnames = c("T_0s", "T_1s")
)

# add subject IDs
subjects$subj_id <- seq_len(n_subj)

Simulate trials (encounters).  Because all subjects 
respond to all items, we can set up a table of trials by 
making a table with every possible combination of the 
rows in the subject and item tables, using the tidyverse 

function crossing(). Each trial has random error asso-
ciated with it, reflecting fluctuations in trial-by-trial perfor-
mance due to unknown factors; we simulate this by 
sampling values from a normal distribution with a mean of 
0 and standard deviation of sigma:

# �cross subject and item IDs; add an 
error term

# �nrow(.) is the number of rows in the 
table

trials <- crossing(subjects, items) %>%
mutate(e_si = rnorm(nrow(.), mean = 0, 
sd = sigma)) %>%

select(subj_id, item_id, category, X_i, 
everything())

The resulting table should correspond to Table 5.

Calculate the response values.  With this resulting 
table, in combination with the constants beta_0 and 
beta_1, we have the full set of values that we need to 
compute the response variable RT according to the linear 
model we defined above:

RT T O T X esi s i s i si= + + + + +β β0 0 0 ( ) .1 1

Thus, we calculate the response variable RT by add-
ing together

•• the grand intercept (beta_0),
•• each subject-specific random intercept (T_0s),
•• each item-specific random intercept (O_0i),
•• each sum of the category effect (beta_1) and the 

subject-specific random slope (T_1s), multiplied 
by the numeric predictor (X_i), and

•• each residual error (e_si).

After this, we use dplyr::select() to keep the 
columns we need:

Table 4.  The Resulting Sample of Subjects

subj_id T_0s T_1s

1 –14.7 11.1
2 –8.4 –36.7
3 87.7 –47.5
4 209.3 62.9
5 –23.6 21.5
6 90.1 56.7
. . . . . . . . .
94 99.5 –31.0
95 44.3 69.3
96 12.2 37.1
97 –121.9 42.3
98 –49.9 –41.1
99 –134.5 16.6
100 –30.2 37.5

Note: See the text for an explanation of the terms in the column heads.

Table 5.  The Resulting Table of Trials (Encounters)

subj_id item_id category X_i T_0s T_1s O_0i e_si

1 1 ingroup –0.50 –14.65 11.13 –79.73 –66.54
1 2 ingroup –0.50 –14.65 11.13 57.75 –34.74
1 3 ingroup –0.50 –14.65 11.13 –49.38 –37.49
1 4 ingroup –0.50 –14.65 11.13 162.35 231.26
1 5 ingroup –0.50 –14.65 11.13 85.23 –187.64
1 6 ingroup –0.50 –14.65 11.13 78.98 104.81
. . . . . . . . . . . . . . . . . . . . . . . .
100 44 outgroup 0.50 –30.15 37.52 54.73 –3.38
100 45 outgroup 0.50 –30.15 37.52 –20.16 18.47
100 46 outgroup 0.50 –30.15 37.52 –12.08 87.92
100 47 outgroup 0.50 –30.15 37.52 –69.99 25.47
100 48 outgroup 0.50 –30.15 37.52 –158.15 91.23
100 49 outgroup 0.50 –30.15 37.52 19.01 78.14
100 50 outgroup 0.50 –30.15 37.52 2.89 –34.31

Note: See the text for an explanation of the terms in the column heads.
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# calculate the response variable
dat_sim <- trials %>%
�mutate(RT = beta_0 + T_0s + O_0i + 
(beta_1 + T_1s) * X_i + e_si) %>%

�select(subj_id, item_id, category, 
X_i, RT)

Note that the resulting table (Table 6) has the structure 
that we set as our goal at the start of this exercise, with 
the additional column X_i, which we will need when 
we analyze the simulated data later in the Tutorial.

Data-simulation function.  To make it easier to try out 
different parameters or to generate many data sets for the 
purpose of power analysis, you can put all of the code 
above into a custom function. Set up the function to take 
all of the parameters we set above as arguments. We set 
the defaults here to the values we used, but you can 
choose your own defaults. The code below is just all of 
the code above, condensed a bit. It returns one data set 
with the parameters specified:

# �set up the custom data simulation 
function

my_sim_data <- function(
n_subj = 100, # number of subjects
n_ingroup = 25, # number of ingroup 
stimuli

n_outgroup = 25, # number of outgroup 
stimuli

beta_0 = 800, # grand mean
beta_1 = 50, # effect of category
omega_0 = 80, # by-item random  
intercept sd

tau_0 = 100, # by-subject random 
intercept sd

tau_1 = 40, # by-subject random slope sd
rho = 0.2, # correlation between 
intercept and slope

sigma = 200) { # residual (standard 
deviation)

items <- data.frame(
item_id = seq_len(n_ingroup + 
n_outgroup),

category = rep(c("ingroup",  
"outgroup"), c(n_ingroup, n_outgroup)),

X_i = rep(c(-0.5, 0.5), c(n_ingroup, 
n_outgroup)),

O_0i = rnorm(n = n_ingroup +  
n_outgroup, mean = 0, sd = omega_0))

  # variance-covariance matrix
  cov_mx <- matrix(
    c(tau_0^2, rho * tau_0 * tau_1,
      rho * tau_0 * tau_1, tau_1^2 ),
    nrow = 2, byrow = TRUE)

  subjects <- data.frame(
    subj_id = seq_len(n_subj),
    MASS::mvrnorm(�n = n_subj,  

mu = c(T_0s = 0, T_1s = 0), 
Sigma = cov_mx))

  crossing(subjects, items) %>%
mutate(e_si = rnorm(nrow(.), mean = 
0, sd = sigma),
RT = beta_0 + T_0s + O_0i + 
(beta_1 + T_1s) * X_i + e_si) %>%

select(subj_id, item_id, category, 
X_i, RT)

}

Now you can generate a data set with the default 
parameters using my_sim_data() or, for example, a 
data set with 500 subjects and no effect of category using 
my_sim_data(n_subj = 500, beta_1 = 0).

Analyzing the Simulated Data

Setting up the formula

Now we are ready to analyze our simulated data. The first 
argument to lmer() is a model formula that defines the 
structure of the linear model. The formula for our design 
maps onto how we calculated the variable RT above:

RT ~ 1 + X_i + (1 | item_id) + (1 + X_i 
| subj_id)

The terms in this R formula are as follows:

Table 6.  The Final Simulated Data Set

subj_id item_id category X_i RT

1 1 ingroup –0.5 609
1 2 ingroup –0.5 778
1 3 ingroup –0.5 668
1 4 ingroup –0.5 1148
1 5 ingroup –0.5 652
1 6 ingroup –0.5 939
. . . . . . . . . . . . . . .
100 44 outgroup 0.5 865
100 45 outgroup 0.5 812
100 46 outgroup 0.5 889
100 47 outgroup 0.5 769
100 48 outgroup 0.5 747
100 49 outgroup 0.5 911
100 50 outgroup 0.5 782

Note: See the text for an explanation of the terms in the column heads.
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•• RT is the response;
•• 1 corresponds to the grand intercept (beta_0);
•• X_i is the predictor for the in-group/out-group 

manipulation for item i;
•• (1 | item_id) specifies an item-specific ran- 

dom intercept (O_0i);
•• (1 + X_i | subj_id) specifies a subject-

specific random intercept (T_0s) plus the subject-
specific random slope of category (T_1s).

The error term (e_si) is automatically included in all 
models, so it is left implicit. The fixed part of the formula, 
RT ~ 1 + X_i, establishes the RTsi = β0 + β1Xi + esi 
part of our linear model. Every model has an intercept 
(β0) term and residual term (esi) by default, so you could 
alternatively leave the 1 out and just write RT ~ X_i.

The terms in parentheses with the pipe separator (|) 
define the random-effects structure. For each of these 
bracketed terms, the left-hand side of the pipe names 
the effect or effects you wish to allow to vary, and the 
right-hand side names the variable identifying the levels 
of the random factor over which they vary (e.g., subjects 
or items). The first term, (1 | item_id), allows the 
intercept (1) to vary over the random factor of items 
(item_id). This is an instruction to estimate the param-
eter underlying the O_0i values, namely, omega_0. The 
second term, (1 + X_i | subj_id), allows both 
the intercept and the effect of category (coded by X_i) 
to vary over the random factor of subjects (subj_id). 
It is an instruction to estimate the three parameters that 
underlie the T_0s and T_1s values, namely, tau_0, 
tau_1, and rho.

Interpreting the output from lmer()

The other arguments to the lmer() function are the 
name of the data frame where the values are found 
(dat_sim). Because we loaded in lmerTest after lme4, 
the p values are derived using the Satterthwaite approxi-
mation, for which the default estimation technique in 
lmer()—restricted likelihood estimation (REML = 
TRUE)—is the most appropriate (Luke, 2017). Use the 
summary() function to view the results:

# fit a linear mixed-effects model to data
mod_sim <- lmer(�RT ~ 1 + X_i + (1 | item_

id) + (1 + X_i | subj_id), 
data = dat_sim)

summary(mod_sim, corr = FALSE)
## �Linear mixed model fit by REML. t-tests 

use Satterthwaite′s method [
## lmerModLmerTest]
## �Formula: RT ~ 1 + X_i + (1 | item_id) + 

(1 + X_i | subj_id)
## Data: dat_sim
##

## REML criterion at convergence: 67740.7
##
## Scaled residuals:
##	 Min	 1Q	 Median	 3Q	 Max
## -3.7370	 -0.6732	 0.0075	 0.6708	 3.5524
##
## Random effects:
## Groups	 Name	 Variance	Std.Dev.	Corr
## subj_id	(Intercept)	 8416	 91.74
##	 X_i	 3298	 57.43	 0.12
## item_id (Intercept)	 4072	 63.81
## Residual	 41283	203.18
## �Number of obs: 5000, groups: subj_id, 

100; item_id, 50
##
## Fixed effects:
##        Estimate Std. Error  df   t value   Pr(>|t|)
## �(Intercept) 807.72    13.19    119.05   61.258   <2e-16***
## X_i         39.47    19.79    56.30  1.994   0.051.

## ---
## �Signif. codes: 0 ′***′ 0.001 ′**′ 0.01 ′*′ 

0.05 ′.′ 0.1 ′ ′ 1

Let us break down the output step-by-step and try to 
find estimates of the seven parameters we used to gener-
ate the data: beta_0, beta_1, tau_0, tau_1, rho, 
omega_0, and sigma. If you analyze existing data with 
a mixed-effects model, you can use these estimates to 
help you set reasonable values for random effects in 
your own simulations.

After providing general information about the model 
fit, the output is divided into a Random effects sec-
tion and a Fixed effects section. The Fixed 
effects section should be familiar from other types 
of linear models:

## Fixed effects:
##         �Estimate Std. Error df  t value  Pr(>|t|)
## �(Intercept)807.72       13.19   119.05 61.258  <2e-16***
## X_i          39.47    19.79     56.30  1.994  0.051.

The Estimate column gives us parameter estimates 
for the fixed effects in the model, that is, β0 and β1, 
which are estimated at about 807.72 and 39.47. The next 
columns give us the standard errors, estimated degrees 
of freedom (using the Satterthwaite approach), t value, 
and, finally, p value.

The Random effects section is specific to mixed-
effects models, and will be less familiar:

## Random effects:
## Groups      Name  Variance Std.Dev. Corr
## subj_id (Intercept) 8416    91.74
## X_i                 3298    57.43   0.12
## item_id (Intercept) 4072    63.81
## Residual           41283   203.18
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These are the estimates for the variance components in 
the model. Note that there are no p values associated 
with these effects. If you wish to determine whether a 
random effect is significant, you need to run the model 
with and without the random-effect term and compare 
the log likelihoods of the models. But usually the 
random-effects parameters are not the target of statistical 
tests because they reflect the existence of individual 
variation, which can be trivially assumed to exist for any 
manipulation that has a nonzero effect.

To avoid confusion, it is best to think of the informa-
tion in the Random effects section as coming from 
three separate tables divided up by the values in the 
Groups column. The first subtable, where the value of 
Groups is subj_id , gives the estimates for the 
random-effects parameters defining the by-subject 
random effects:

## Groups      Name  Variance Std.Dev. Corr
## subj_id (Intercept) 8416    91.74
## X_i                 3298    57.43   0.12

We have estimates for the variance of the intercept and 
slope (X_i) in the Variance column. These estimates 
are just the squares of the standard deviations in the Std.
Dev. column. We obtain estimates for tau_0 and tau_1 
of 91.74 and 57.43, respectively. The Corr. column gives 
us the estimated correlation between the by-subject ran-
dom intercepts and slopes, estimated here as .12.

The second subtable gives us the by-item random-
effects parameter estimates, of which there is only one, 

63.81, corresponding to omega_0 . Again, the  
Variance column is just this value squared:

## Groups     Name  Variance Std.Dev. Corr
## item_id (Intercept) 4072   63.81

The last subtable gives us the estimate of the residual 
term, 203.18:

## Groups   Name  Variance   Std.Dev.  Corr
## Residual         41283      203.18

We have found all seven parameter estimates in the 
output. The estimated values are reasonably close to the 
original parameter values that we specified (Table 7).

You can also use broom.mixed::tidy() to output 
fixed and/or random effects in a tidy table (Table 8):

# get a tidy table of results
broom.mixed::tidy(mod_sim) %>%
mutate(sim = c(beta_0, beta_1, tau_0, 
rho, tau_1, omega_0, sigma)) %>%

  select(1:3, 9, 4:8)

This is especially useful when you need to combine the 
output from hundreds of simulations to calculate power. 
The effect column specifies whether a row is a fixed-
effect (fixed) or a random-effect (ran_pars) param-
eter. The group column specifies which random factor 
each random-effect parameter belongs to (or Residual 
for the residual term). The term column refers to the 
predictor term for fixed effects and also the parameter 
for random effects; for example, "sd__X_i" refers to 

Table 7.  The Simulation Parameters Compared to the Model Estimations

Variable Explanation
Simulated 

value
Estimate 

from model

beta_0 Intercept; grand-mean reaction time 800.0 807.72
beta_1 Slope; mean effect of the in-group/out-group manipulation 50.0 39.47
tau_0 Standard deviation of the by-subject random intercepts 100.0 91.74
tau_1 Standard deviation of the by-subject random slopes 40.0 57.43
rho Correlation between the by-subject random intercepts and slopes 0.2 0.12
omega_0 Standard deviation of the by-item random intercepts 80.0 63.81
sigma Standard deviation of the residuals 200.0 203.18

Table 8.  The Output of the Tidy Function From broom.mixed

effect group term sim estimate
std.
error statistic df p.value

fixed NA (Intercept) 800.0 807.72 13.2 61.3 119.1 0.000
fixed NA X_i 50.0 39.47 19.8 2.0 56.3 0.051
ran_pars subj_id sd__(Intercept) 100.0 91.74 NA NA NA NA
ran_pars subj_id cor__(Intercept).X_i 0.2 0.12 NA NA NA NA
ran_pars subj_id sd__X_i 40.0 57.43 NA NA NA NA
ran_pars item_id sd__(Intercept) 80.0 63.81 NA NA NA NA
ran_pars Residual sd__Observation 200.0 203.18 NA NA NA NA

Note: See the text for an explanation of the terms in this table. NA = not applicable.
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the standard deviation of the random slope for X_i, and 
"cor__(Intercept).X_i" refers to rho, the correla-
tion between the random intercept and slope for X_i. 
We added the sim column to the standard output of 
broom.mixed::tidy() so you can compare the 
simulated parameters we set above with the estimated 
parameters from this simulated data set, which are in 
the estimate column. The last four columns give the 
standard error, t statistic, estimated degrees of freedom, 
and p value for the fixed effects.

Setting parameters

Now that you see where each parameter we used to 
generate the data appears in the analysis output, you 
can use the analysis of pilot data to get estimates for 
these parameters for further simulation. For example, if 
you have pilot data from 10 participants on this task, 
you can analyze their data using the same code as above 
and estimate values for beta_0, beta_1, tau_0, 
tau_1, rho, omega_0, and sigma for use in a 
power calculation or a sensitivity analysis (see Appendix 
1C at our OSF project page). If you lack any pilot data 
to work with, you can start with the general rule of 
thumb and set the residual variance to about twice the 
size of the by-subject or by-item variance components 
(see Barr et al., 2012, for results from an informal con-
venience sample).

Calculate Power

Data simulation is a particularly flexible approach for 
estimating power when planning a study. The basic idea 
of a power simulation is to choose parameter values 
with which to generate a large number of data sets, fit 
a model to each data set, and then calculate the propor-
tion of models that reject the null hypothesis. This pro-
portion is an estimate of power for those particular 
parameter values. To estimate power accurately using 
Monte Carlo simulation, you need to generate and 

analyze a large number (typically, hundreds or thou-
sands) of data sets.

In a Monte Carlo power simulation, it is useful to cre-
ate a function that performs all the steps corresponding 
to a single Monte Carlo “run” of the simulation: generate 
a data set, analyze the data, and return the estimates. 
The function single_run() below performs all these 
actions:

# �simulate, analyze, and return a 
table of parameter estimates

single_run <- function(. . .) {
# �. . . is a shortcut that forwards 

any arguments to
# �my_sim_data(), the function created 

above
dat_sim <- my_sim_data(. . .)
mod_sim <- lmer(RT ~ X_i + (1 | item_
id) + (1 + X_i | subj_id),

        dat_sim)

  broom.mixed::tidy(mod_sim)
}
# run one model with default parameters
single_run()

You can also change parameters. For example, what 
would happen if you increase the number of items to 
50 in each group and decrease the effect of category to 
20 ms, as in the following code?

# run one model with new parameters
single_run(n_ingroup = 50, n_outgroup = 
50, beta_1 = 20)

Example results of a single run with these parameters 
are shown in Table 9.

You can use the purrr::map_df function to run 
the simulation repeatedly and save the results to a data 
table. This will take a while, so test the code first using 
just a few runs (n_runs) to debug it and check the 
output. Once you are satisfied that it is working properly, 
we suggest that you use at least a thousand runs to 

Table 9.  The Output of single_run() With 50 Items per Group and a Category Effect of 20 ms

effect group term estimate
std.
error statistic df p.value

fixed NA (Intercept) 832.38 12.6 66.1 174.0 0.000
fixed NA X_i 24.95 16.0 1.6 114.9 0.121
ran_pars item_id sd__(Intercept) 73.66 NA NA NA NA
ran_pars subj_id sd__(Intercept) 100.27 NA NA NA NA
ran_pars subj_id cor__(Intercept).X_i 0.00 NA NA NA NA
ran_pars subj_id sd__X_i 47.57 NA NA NA NA
ran_pars Residual sd__Observation 199.15 NA NA NA NA

Note: See the text for an explanation of the terms in this table. NA = not applicable.
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obtain stable estimates. It will save you a lot of time if 
you save the full results to disk:

# run simulations and save to a file
n_runs <- 100 # use at least 1000 to 
get stable estimates

sims <- purrr::map_df(1:n_runs, ~ 
single_run())

write_csv(sims, "sims.csv")

This way, you do not have to rerun this subroutine 
each time you execute your script; you can just comment 
out this code and load the saved data when you use this 
script in the future.

Note that some runs may throw warnings about noncon-
vergence or messages about boundary (singular) 
fit. Messages about the singular fit can usually be ignored 
(see the lme4 help documentation ?isSingular for 
information). Nonconvergence will be relatively rare with 
simulated data provided the sample is not unreasonably 
small relative to the number of estimated parameters; as 
long as there are not too many of these nonconvergence 
warnings relative to the number of runs, you can probably 
ignore them because they will not affect the overall esti-
mates. Alternatively, you can rewrite your function to trap 
the warning (see Appendix 1C at our OSF project page; 
for more information on trapping errors and warnings, 
see the chapter “Exceptions and Debugging” in Wickham’s, 
2019, Advanced R textbook).

Once our simulations are complete, let us read the 
data back in and have a look at the estimates for our 
fixed effects:

# read saved simulation data
sims <- read_csv("sims.csv", col_types = 
cols(

  # makes sure plots display in this order
  group = col_factor(ordered = TRUE),
  term = col_factor(ordered = TRUE)
  ))

sims %>%
  filter(effect == "fixed") %>%
  select(term, estimate, p.value)
## # A tibble: 200 x 3
## term estimate p.value
## <ord> <dbl> <dbl>
## 1 (Intercept) 813. 2.93e-86
## 2 X_i 83.4 3.53e- 4
## 3 (Intercept) 799. 1.25e-82
## 4 X_i 57.9 1.58e- 2
## 5 (Intercept) 782. 6.17e-88
## 6 X_i 63.9 4.54e- 3
## 7 (Intercept) 812. 1.97e-83
## 8 X_i 45.7 4.78e- 2
## 9 (Intercept) 824. 8.69e-77

## 10 X_i 1.78 9.45e- 1
## # . . . with 190 more rows

Each row in the table is an estimate of a fixed-effects 
parameter and associated p value from a single run of 
the Monte Carlo simulation ((Intercept) = β0 and 
X_i = β1). We need to calculate the proportion of runs 
with significant results. To start, we compute p.value 
< alpha, where alpha is the false-positive rate (e.g., .05):

# �calculate mean estimates and power 
for specified alpha

alpha <- 0.05

sims %>%
  filter(effect == "fixed") %>%
  group_by(term) %>%
  summarize(
    mean_estimate = mean(estimate),
    mean_se = mean(std.error),
    power = mean(p.value < alpha),
    .groups = "drop"
  )

This will yield a logical vector of TRUE whenever the 
effect was significant and FALSE when it was nonsignifi-
cant. Because TRUE is represented internally as a 1 and 
FALSE as a 0, you can take the mean of this logical vector, 
and it will yield the proportion of runs with significant 
results.

The results of our power analysis appear in Table 10. 
The attained power of .54 in the second row is the esti-
mated probability of finding a significant effect of cat-
egory (as represented by Xi) given our starting 
parameters. In other words, it is the probability of reject-
ing the null hypothesis (H0) for β1, which is the coeffi-
cient associated with Xi in the model (H0: β1 = 0). If we 
wanted to see how power changes with different param-
eter settings, we would need to rerun the simulations 
with different values passed to single_run().

Conclusion

Mixed-effects modeling is a powerful technique for ana-
lyzing data from complex designs. The technique is close 
to ideal for analyzing data with crossed random factors 
of subjects and stimuli: It gracefully and simultaneously 
accounts for subject and item variance within a single 
analysis and outperforms traditional techniques in terms 

Table 10.  Power Calculation for Fixed Effects

Term Mean estimate Mean standard error Power

(Intercept) 797.5 15.4 1.00
X_i   48.4 23.4   .54
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of Type I error and power (Barr et al., 2013). However, 
this additional power comes at the price of technical 
complexity. Through this article, we have attempted to 
make mixed-effects models more approachable using 
data simulation.

We have considered only a simple, one-factor design. 
However, the general principles are the same for higher-
order designs. For instance, consider a 2 × 2 design, with 
factors A and B both within subjects, but A within items 
and B between items. For such a design, you would have 
four instead of two by-subject random effects: the inter-
cept, main effect of A, main effect of B, and AB interac-
tion. You would also need to specify correlations between 
each pair of these effects. You would also have two by-
item random effects: one for the intercept and one for 
A. Our materials at OSF include such an extension of the 
example in this article with category as a within-
subjects and between-items factor and expression 
added as a within-subjects and within-items factor (see 
Appendix 2: Extended Examples, at https://osf.io/
ut3rx/). For further guidance and discussion on how to 
specify the random-effects structure in complex designs, 
see Barr (2013).

Here we have considered only a design with a nor-
mally distributed response variable. However, general-
ized linear mixed-effect models allow for response 
variables with different distributions, such as binomial 
distributions. Our materials at OSF illustrate the differ-
ences in simulation required for the study design dis-
cussed in this article if a binomial accuracy score 
(correct/incorrect) is the response variable (see Appen-
dix 3a: Binomial Example, at https://osf.io/vxnm8/, and 
Appendix 3b: Extended Binomial Example, at https://
osf.io/mt5nw/).

We also have not said much in this Tutorial about 
estimation issues, such as what to do when the fitting 
procedure fails to converge. Further guidance on this 
point can be found in Barr et al. (2013), as well as in the 
help materials in the lme4 package (?lme4:: 
convergence). We have also assumed that the random-
effects specification for the lmer() function should be 
based on the study design. However, we note that other 
researchers have argued in favor of data-driven 
approaches for random-effects specification (Matuschek 
et al., 2017). In this Tutorial, we have introduced the main 
concepts needed to get started with mixed-effects mod-
els. Through data simulation of your own study designs, 
you can develop your understanding and perform power 
calculations to guide your sample-size plans.
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Notes

1. To ensure that a finding is generalizable, when attempting a 
replication it is useful to sample new items, just as one would 
typically sample new participants.
2. You will sometimes see the assumption of random effects 
drawn from a normal distribution notated mathematically as, for 
example, O0i ~ N(0, ω0

2), which you can read as “the random 
intercept O0i for each subject i is drawn from a normal distribu-
tion with mean of zero and variance of ω0

2.”
3. Note that the MASS package has a function we do not need 
named select(), but loading it using library() would over-
write the function of the same name from the dplyr package that 
we often do need, so in general we find that it is a good idea to 
avoid loading MASS.
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