
https://doi.org/10.1177/2515245920965119

Advances in Methods and
Practices in Psychological Science
January-March 2021, Vol. 4, No. 1,
pp. 1 –15
© The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/2515245920965119
www.psychologicalscience.org/AMPPS

ASSOCIATION FOR
PSYCHOLOGICAL SCIENCE

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission

provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Special Section: Using Simulation to Convey Statistical Concepts
Tutorial

In this article, we walk through the simulation and analy-
sis of multilevel data with crossed random effects of
subjects and stimuli. The article’s target audience is
researchers who work with experimental designs that
sample subjects and stimuli, such as is the case for a
large amount of experimental research in face percep-
tion, psycholinguistics, and social cognition. Simulation
is useful not only for understanding how models work,
but also for estimating power when planning a study or
performing a sensitivity analysis. The Tutorial assumes
basic familiarity with R programming.

Generalizing to a Population of Encounters

Many research questions in psychology and neuroscience
are questions about certain types of events: What hap-
pens when people encounter particular types of stimuli?
For example, do people recognize abstract words faster
than concrete words? What impressions do people form
about a target person’s personality on the basis of the
person’s vocal qualities? Can people categorize emotional
expressions more quickly on the faces of social in-group
members than on the faces of out-group members? How
do brains respond to threatening versus nonthreatening
stimuli? In all of these situations, researchers would like

to be able to make general statements about phenomena
that go beyond the particular participants and particular
stimuli that they happen to have chosen for the specific
study. Traditionally, people speak of such designs as
having crossed random factors of participants and stimuli,
and think of the goal of inference as being simultaneous
generalization to both populations. However, it may be
more intuitive to construe the goal as generalizing to a
single population of events called encounters: That is,
the goal is to say something general about what happens
when the two types of sampling units meet—when a
typical subject encounters (and responds to) a typical
stimulus (Barr, 2018).

Most analyses using conventional statistical techniques,
such as analysis of variance (ANOVA) and the t test, com-
mit the fallacy of treating stimuli as fixed rather than
random. For example, imagine that a sample of partici-
pants are rating the trustworthiness of a sample of faces
and the goal is to determine whether the faces of people
born on even-numbered days look more trustworthy than

965119 AMPXXX10.1177/2515245920965119DeBruine, BarrSimulating for Linear Mixed-Effects Modeling
research-article2021

Corresponding Author:
Lisa M. DeBruine, Institute of Neuroscience & Psychology, University of
Glasgow
E-mail: lisa.debruine@glasgow.ac.uk

Understanding Mixed-Effects Models
Through Data Simulation

Lisa M. DeBruine and Dale J. Barr
Institute of Neuroscience & Psychology, University of Glasgow

Abstract
Experimental designs that sample both subjects and stimuli from a larger population need to account for random effects
of both subjects and stimuli using mixed-effects models. However, much of this research is analyzed using analysis of
variance on aggregated responses because researchers are not confident specifying and interpreting mixed-effects models.
This Tutorial explains how to simulate data with random-effects structure and analyze the data using linear mixed-effects
regression (with the lme4 R package), with a focus on interpreting the output in light of the simulated parameters. Data
simulation not only can enhance understanding of how these models work, but also enables researchers to perform
power calculations for complex designs. All materials associated with this article can be accessed at https://osf.io/3cz2e/.

Keywords
simulation, mixed-effects models, power, lme4, R, open materials

Received 6/2/19; Revision accepted 9/5/20

https://us.sagepub.com/en-us/journals-permissions
https://www.psychologicalscience.org/AMPPS
mailto:lisa.debruine@glasgow.ac.uk
https://osf.io/3cz2e/
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2515245920965119&domain=pdf&date_stamp=2021-03-23

2 DeBruine, Barr

those born on odd-numbered days. Obviously, they do not.
At the extreme, imagine that only a single face is sampled
from each category, but 100 people rate each face. If the
analysis treats the sample of faces as fixed, or a perfect
representation of the larger population of faces on Earth,
a significant difference in one direction or the other is
almost guaranteed. There is sufficient power to detect even
tiny differences in apparent trustworthiness, so this result
will be highly replicable with large samples of raters. As
the number of faces in the sample is increased, the problem
gets better (the sample means are more likely to approxi-
mate the population means), but if the number of raters is
increased (and thus power to detect small differences in
the sample means is also increased), it gets worse again.

The problem, and the solutions to the problem, has
been known in psycholinguistics for more than 50 years
(Clark, 1973; Coleman, 1964), and most psycholinguistic
journals require authors to demonstrate generalizability
of findings over stimuli as well as over subjects. Even
so, the quasi-F statistics for ANOVA (F ′ and min F ′) that
Clark proposed as a solution were widely recognized as
unreasonably conservative (Forster & Dickinson, 1976),
and until fairly recently, most psycholinguists performed
separate by-subjects (F1) and by-items analyses (F2),
declaring an effect significant only if it was significant
for both analyses. This F1 × F2 approach has been widely
used, despite the fact that Clark had already shown it to
be invalid, since both F statistics have higher than nomi-
nal false-positive rates in the presence of a null effect—
F1 because of unmodeled stimulus variance and F2
because of unmodeled subject variance.

Recently, psycholinguists have adopted linear mixed-
effects modeling as the standard for statistical analysis,
given its numerous advantages over ANOVA, including
the ability to simultaneously model subject and stimulus
variation, to gracefully deal with missing data or unbal-
anced designs, and to accommodate arbitrary types of
continuous and categorical predictors or response vari-
ables (Baayen et al., 2008; Locker et al., 2007). This
development has been facilitated by the lme4 package
for R (Bates et al., 2015), which provides powerful func-
tionality for model specification and estimation. Appro-
priately specified mixed-effects models yield major
improvements in power over quasi-F approaches and
avoid the increased false-positive rate associated with
separate F1 and F2 (Barr et al., 2013).

Despite mixed-effects modeling becoming the de facto
standard for analysis in psycholinguistics, the approach
has yet to take hold in other areas where stimuli are
routinely sampled, despite repeated calls for improved
analyses in social psychology (Judd et al., 2012) and
neuroimaging (Bedny et al., 2007; Westfall et al., 2017).
One of the likely reasons for the limited uptake outside
of psycholinguistics is that mixed-effects models expose
the analyst to a level of statistical and technical complexity
far beyond most researchers’ training. Although some of

this complexity is specific to mixed-effects modeling,
some of it is simply hidden away from users of traditional
techniques by graphical user interfaces and function
defaults. The novice mixed-effects modeler is suddenly
confronted with the need to make decisions about how
to specify categorical predictors, which random effects
to include or exclude, which of the statistics in the volu-
minous output to attend to, and whether and how to
reconfigure the optimizer function when a convergence
error or singularity warning appears.

We are optimistic that the increasing adoption of the
mixed-effects approach will improve the generalizability
and thus reproducibility of studies in psychology and
related fields. Models that account for subjects and stim-
uli (or other factors) as nonessential, exchangeable fea-
tures of an experiment will better characterize the
uncertainty in the resulting estimates and, thus, improve
the generality of inferences drawn from them (Yarkoni,
2020). That said, we empathize with the frustration—and
sometimes, exasperation—expressed by many novices
when they attempt to grapple with these models in their
research. A profitable way to build understanding and
confidence is through data simulation. If you can create
data sets by sampling from a population for which you
know the ground truth about the population parameters
you are interested in (e.g., mean and standard deviation
of each group), you can check how often and under
what circumstances a statistical model will give you the
correct answer. Knowing the ground truth also allows
you to experiment with various modeling choices and
observe their impact on a model’s performance.

Disclosures

The code to reproduce the analyses reported in this
article is publicly available via OSF and can be accessed
at https://osf.io/3cz2e. The OSF project page also
includes appendices with the code for extended exam-
ples. The repository links to a Web app that performs
data simulation without requiring knowledge of R code.
The app allows users to change parameters and inspect
the results of linear mixed-effects models and ANOVAs,
as well as calculate power and false-positive rates for
these analyses.

Simulating Data With Crossed
Random Factors

Data simulation can play a powerful role in statistics
education, enhancing understanding of the use and
interpretation of statistical models and the assumptions
behind them. The data-simulation approach to learning
about statistical models differs from the standard
approach in most statistics textbooks, which present the
learner with a step-by-step analysis of a sample of data
from some population of interest. Such exercises usually

https://osf.io/3cz2e

Simulating for Linear Mixed-Effects Modeling 3

culminate in inferences about characteristics of the pop-
ulation of interest from model estimates. Although this
reflects the typical uncertain situation of the analyst, the
learner cannot fully appreciate the performance of the
model without knowing the ground truth. In a data-
simulation approach, the learner starts out knowing the
ground truth about the population and writes code to
simulate the process of taking and analyzing samples
from that population. Giving learners knowledge of the
underlying population parameters as well as the ability
to explore how population parameters are reflected in
model estimates can yield powerful insight into the
appropriate specification of models and the interpreta-
tion of statistical output.

Data simulation also has a wide variety of scientific
uses, one of which is to estimate properties of statistical
models in situations in which algorithms for computing
those properties are unknown or can be applied only
with difficulty. For instance, Forster and Dickinson
(1976) used Monte Carlo simulation to explore the
behavior of the quasi-F statistics for ANOVA (F ′ and min
F ′) under various conditions. In a Monte Carlo simula-
tion, the long-run properties of a process are estimated
by generating and analyzing many simulated data sets—
usually, thousands or tens of thousands of them.

One of the most important applications of Monte
Carlo simulation is in the estimation of power for com-
plex models. The notion of power arises most frequently
in the context of study planning, when a power analysis
is used to determine the target N for a study. Power is
the probability that a specified statistical test will gener-
ate a significant result for a sample of data of a specified
size taken from a population with a specified effect. If
you can characterize the population parameters, you can
repeatedly simulate and analyze data from this popula-
tion. The proportion of times that this procedure pro-
duces a significant result provides an estimate of the
power of your test given your assumed sample size and
effect size. You can adjust any parameters in this simula-
tion in order to estimate other parameters. Instead of
estimating power, you can perform a sensitivity analysis

by varying the effect size while holding the sample size
and desired power constant—for instance, to determine
the minimum effect size that your analysis can detect
with 80% power and an N of 200 per group. You can
also set the population effect size to zero and calculate
the proportion of significant results to check if your
analysis procedure inflates the rate of false positives.

For most traditional statistical procedures, such as the
t test or ANOVA, there are analytic procedures for esti-
mating power. Westfall et al. (2014) presented analytic
power curves for simple mixed-effects designs such as
the one described in this Tutorial (a corresponding app
is available at https://jakewestfall.shinyapps.io/crossed
power). But even when analytic solutions exist, simula-
tion can still be useful to estimate power or false-positive
rates, because real psychological data nearly always
deviate from the statistical assumptions behind tradi-
tional procedures. For instance, most statistical proce-
dures used in psychology assume a continuous and
unbounded dependent variable, but it is often the case
that researchers use discrete (e.g., Likert) response
scales. When assumptions are not met, power simula-
tions can provide a more reliable estimate than analytic
procedures.

In this Tutorial, we simulate data from a design with
crossed random factors of subjects and stimuli, fit a
model to the simulated data, and then see whether the
resulting sample estimates are similar to the population
values we specified when simulating the data. In this
hypothetical study, subjects classify the emotional
expressions of faces as quickly as possible, and we use
their response time (RT) as the primary dependent vari-
able. Let us imagine that the faces are of two types:
either from the subject’s in-group or from an out-group.
For simplicity, we further assume that each face appears
only once in the stimulus set. The key question is
whether there is any difference in classification speed
between the two types of faces. Because many of the
technical terms used in discussing linear mixed-effects
models will be unfamiliar to readers, we provide a glos-
sary of terms in Box 1.

Box 1. Glossary of Terms

Term Explanation

Crossed random factors Refers to a design with multiple random factors, such as subjects and items, the
levels of which are crossed (e.g., each subject encounters each stimulus)

Data-generating process (DGP) The mathematical model capturing assumptions about the processes giving rise to
the data

Fixed effect An effect whose value is constant across realizations of the experiment
Random effect An effect whose value varies across potential realizations of the experiment (e.g.,

because of sampling)
Random intercept A random effect capturing the deviation of a sampling unit (subject or item) from

the model intercept
Random slope A random effect capturing the deviation of a sampling unit (subject or item) from

the model slope
Variance components Parameters describing the distribution of random effects in the population

https://jakewestfall.shinyapps.io/crossedpower
https://jakewestfall.shinyapps.io/crossedpower

4 DeBruine, Barr

Required software

This Tutorial and associated materials use the following
open-source research software: R (R Core Team, 2018),
lme4 (Bates et al., 2015), lmerTest (Kuznetsova et al.,
2017), broom.mixed (Bolker & Robinson, 2019), afex
(Singmann et al., 2019), tidyverse (Wickham, 2017); faux
(DeBruine, 2020), and papaja (Aust & Barth, 2018).

To run the code, you will need to have some add-on
packages available:

load required packages
library("lme4") # model specification /
estimation

library("lmerTest") # provides p-values
in the output

library("tidyverse") # data wrangling and
visualisation

Because the code uses random-number generation,
if you want to reproduce the exact results below you
will need to set the random-number seed at the top of
your script and ensure that you are using R Version 3.6.0
or higher:

ensure this script returns the same
results on each run

set.seed(8675309)

If you change the seed or are using a lower version of
R, your exact numbers will differ, but the procedure will
still produce a valid simulation.

Establishing the data-generating parameters

The first thing to do is to set up the parameters that gov-
ern the process we assume to give rise to the data, the
data-generating process, or DGP. Let us start by defining
the sample size: In this hypothetical study, each of 100
subjects will respond to all 50 stimulus items (25 in-group
and 25 out-group), for a total of 5,000 observations.

Specify the data structure. We want the resulting data
to be in long format, with each row representing a single
observation (i.e., a single trial; see Table 1). The variable
subj_id runs from 1 to 100 and indexes the subject
number; item_id runs from 1 to 50 and indexes the
item number; category is whether the face is in-group
or out-group (Items 1–25 always in-group and Items 26–50
always out-group); and RT is the participant’s RT for that
trial. Each trial is uniquely identified by the combination
of the subj_id and item_id labels.

Note that for independent variables in designs in
which subjects and stimuli are crossed, one cannot think
of factors as being solely “within” or “between” because
there are two sampling units; one must ask not only
whether independent variables are within or between

subjects, but also whether they are within or between
stimulus items. Recall that a within-subjects factor is one
for which each and every subject receives all of the
levels, and a between-subjects factors is one for which
each subject receives only one of the levels. Likewise, a
within-items factor is one for which each stimulus
receives all of the levels. For our current example, the
in-group/out-group factor (category) is within sub-
jects but between items, given that each stimulus item
is either in-group or out-group.

Specify the fixed-effects parameters. Now that we
have an appropriate structure for our simulated data set,
we need to generate the RT values. For this, we need to
establish an underlying statistical model. In this and the
next section, we build up a statistical model step by step,
defining variables in the code that reflect our choices for
parameters. For convenience, Table 2 lists all of the vari-
ables in the statistical model and their associated variable
names in the code.

Let us start with a basic model and build up from
there. We want a model of RT for subject s and item i
that looks something like the following:

 RT X esi i si= + +β β0 1 . (1)

According to the formula, response RTsi for subject s
and item i is defined as the sum of an intercept term β0,
which in this example is the grand mean RT for the
population of stimuli; plus β1, the mean RT difference
between in-group and out-group stimuli, multiplied by
predictor variable Xi to obtain the offset for item i; plus
random noise esi. To make β0 equal the grand mean and
β1 equal the mean out-group minus the mean in-group
RT, we code the item-category variable Xi as −0.5 for the
in-group category and +0.5 for the out-group category.

In the model formula, we use Greek letters (β0, β1) to
represent population parameters that are being directly
estimated by the model. In contrast, Roman letters rep-
resent the remaining variables: observed variables whose

Table 1. The Target Data Structure

row subj_id item_id category RT

1 1 1 ingroup 750.2
2 1 2 ingroup 836.1
.
49 1 49 outgroup 811.9
50 1 50 outgroup 801.8
51 2 1 ingroup 806.7
52 2 2 ingroup 805.9
.
5000 100 50 outgroup 859.9

Note: See the text for an explanation of the terms in this table.

Simulating for Linear Mixed-Effects Modeling 5

values are determined by sampling (e.g., RTsi, T0s, esi) or
fixed by the experimental design (Xi).

Although this model is incomplete, we can go ahead and
choose parameters for β0 and β1. For this example, we set
a grand mean of 800 ms and a mean difference of 50 ms:

set fixed effect parameters
beta_0 <- 800 # intercept; i.e., the
grand mean

beta_1 <- 50 # slope; i.e, effect of
category

You will need to use disciplinary expertise and/or
pilot data to choose these parameters for your own
projects; by the end of this Tutorial, you will understand
how to extract those parameters from an analysis.

The parameters β0 and β1 are fixed effects: They char-
acterize the population of events in which a typical
subject encounters a typical stimulus. Thus, we set the
mean RT for a “typical” subject encountering a “typical”
stimulus to 800 ms and assume that responses are typi-
cally 50 ms slower for out-group than for in-group faces.

Specify the random-effects parameters. This model is
completely unrealistic, however, because it does not allow
for any individual differences among subjects or stimuli.
Subjects are not identical in their response characteristics:
Some will be faster than average, and some slower. We
can characterize the difference from the grand mean for

each subject s in terms of a random effect T0s, where the
first subscript, 0, indicates that the deflection goes with the
intercept term, β0. This random-intercept term captures
the value that must be added or subtracted to the intercept
for subject s, which in this case corresponds to how much
slower or faster this subject is relative to the average RT of
800 ms. Just as it is unrealistic to expect the same intercept
for every subject, it is also unrealistic to assume the same
intercept for every stimulus; it will be easier to categorize
emotional expressions on some faces than on others, and
we can incorporate this assumption by including by-item
random intercepts O0i, with the subscript 0 reminding us
that it is a deflection from the β0 term, and the i indexing
each of the 50 stimulus items (faces). Each face is assigned
a unique random intercept that characterizes how much
slower or faster responses to this particular face tend to be
relative to the average RT of 800 ms. Adding these terms
to our model yields

 RT T O X esi s i i si= + + + +β β0 0 0 1 . (2)

Now, whatever values of T0s and O0i we end up with in
our sampled data set will depend on the luck of the draw,
that is, on which subjects and stimuli we happened to
have sampled from their respective populations. We
assume that these values, unlike fixed effects, will differ
across different realizations of the experiment with differ-
ent subjects and/or stimuli. In practice, we often reuse the
same stimuli across many studies, but we still need to treat
the stimuli as sampled if we want to be able to generalize
our findings to the whole population of stimuli.1

It is an important conceptual feature of mixed-effects
models that they do not directly estimate the individual
random effects (T0s and O0i values), but rather, they
estimate the random-effects parameters that characterize
the distributions from which these effects are drawn.2 It
is this feature that enables generalization beyond the
particular subjects and stimuli in the experiment. We
assume that each T0s comes from a normal distribution
with a mean of zero and unknown standard deviation,
τ0 (tau_0 in the code). The mean of zero reflects the
assumption that each random effect is a deflection from
the grand mean. Similarly, for the by-item random inter-
cepts, we assume the O0i values to be sampled from a
normal distribution also with a mean of zero and with
an unknown standard deviation, ω0 (omega_0). In our
simulation, we set the by-subject random-intercept stan-
dard deviation to 100, and the by-item random-intercept
standard deviation to 80:

set random effect parameters
tau_0 <- 100 # by-subject random
intercept sd

omega_0 <- 80 # by-item random
intercept sd

Table 2. Variables in the Data-Generating Model and
Associated R Code

Model
variable

Code
variable Description

RTsi RT Reaction time for subject s responding
to item i

Xi X_i Condition for item i (−0.5 = in-group,
0.5 = out-group)

β0 beta_0 Intercept; grand-mean RT
β1 beta_1 Slope; mean effect of the in-group/

out-group manipulation
τ0 tau_0 Standard deviation of the by-subject

random intercepts
τ1 tau_1 Standard deviation of the by-subject

random slopes
ρ rho Correlation between the by-subject

random intercepts and slopes
ω0 omega_0 Standard deviation of the by-item

random intercepts
σ sigma Standard deviation of the residuals
T0s T_0s Random intercept for subject s
T1s T_1s Random slope for subject s
O0i O_0i Random intercept for item i
esi e_si Residual for the trial involving

subject s and item i

6 DeBruine, Barr

There is still a deficiency in our data-generating
model related to β1, the fixed effect of category. Cur-
rently, our model assumes that each and every subject
is exactly 80 ms faster to categorize emotions on in-
group faces than on out-group faces. Clearly, this
assumption is totally unrealistic; some participants will
be more sensitive to in-group/out-group differences than
others are. We can capture this analogously to the way
in which we captured variation in the intercept, namely,
by including by-subject random slopes T1s:

 RT T O T X esi s i s i si= + + + + +β β0 0 0 () .1 1 (3)

The random slope T1s is an estimate of how much
subject s’s difference in RT when categorizing in-group
versus out-group faces differs from the population mean
effect, β1, which we already set to 50 ms. Given how we
coded the Xi variable, the mean effect for subject s is
given by the β1 + T1s term. So, a participant who is 90 ms
faster on average to categorize in-group than out-group
faces would have a random slope T1s of 40 (β1 + T1s = 50 +
40 = 90). As we did for the random intercepts, we assume
that the T1s effects are drawn from a normal distribution,
with a mean of zero and standard deviation of τ1 (tau_1
in the code). For this example, we assume the standard
deviation is 40 ms.

But note that we are sampling two random effects for
each subject s, a random intercept T0s and a random
slope T1s. It is possible for these values to be positively
or negatively correlated, in which case we should not
sample them independently. For instance, perhaps peo-
ple who are faster than average overall (negative random
intercept) also show a smaller than average effect of the
in-group/out-group manipulation (negative random
slope) because they allocate less attention to the task.
We can capture this by allowing for a small positive cor-
relation between the two factors, rho, which we assign
to be .2.

Finally, we need to characterize the trial-level noise
in the study (esi) in terms of its standard deviation. We
simply assign this parameter value, sigma, to be twice
the size of the by-subject random-intercept standard
deviation:

set more random effect and error
parameters

tau_1 <- 40 # by-subject random slope sd
rho <- .2 # correlation between
intercept and slope

sigma <- 200 # residual (error) sd

To summarize, we established a reasonable statistical
model underlying the data having the form

 RT T O T X esi s i s i si= + + + + +β β0 0 0 () .1 1 (4)

The response time for subject s on item i, RTsi, is decom-
posed into a population grand mean, β0; a by-subject
random intercept, T0s; a by-item random intercept, O0i;
a fixed slope, β1; a by-subject random slope, T1s; and a
trial-level residual, esi. Our data-generating process is
fully determined by seven population parameters, all
denoted by Greek letters: β0, β1, τ0, τ1, ρ, ω0, and σ (see
Table 2). In the next section, we apply this data-generating
process to simulate the sampling of subjects, items, and
trials (encounters).

Simulating the sampling process

Let us first define parameters related to the number of
observations. In this example, we simulate data from 100
subjects responding to 25 in-group faces and 25 out-
group faces. There are no between-subjects factors, so
we can set n_subj to 100. We set n_ingroup and
n_outgroup to the number of stimulus items in each
condition:

set number of subjects and items
n_subj <- 100 # number of subjects
n_ingroup <- 25 # number of ingroup stimuli
n_outgroup <- 25 # number of outgroup
stimuli

Simulate the sampling of stimulus items. We need to
create a table listing each item i, which category it is in,
and its random effect, O0i:

simulate a sample of items
total number of items = n_ingroup +

n_outgroup
items <- data.frame(
item_id = seq_len(n_ingroup + n_outgroup),
category = rep(c("ingroup",
"outgroup"), c(n_ingroup, n_outgroup)),

O_0i = rnorm(n = n_ingroup +
n_outgroup, mean = 0, sd = omega_0)

)

For the first variable in the data set, item_id, we
have used seq_len() to assign a unique integer to
each of the 50 stimulus faces; these IDs function like
names. The category variable designates whether the
face is in-group or out-group; the first 25 items are in-
group, and the last 25 are out-group. Finally, we sample
the values of O0i from a normal distribution using the
rnorm() function, with a mean of 0 and standard devi-
ation of ω0.

Let us introduce a numeric predictor to represent
what category each stimulus item i belongs to (i.e., for
the Xi in our model). Because we predict that responses
to in-group faces will be faster than responses to

Simulating for Linear Mixed-Effects Modeling 7

out-group faces, we set in-group to −0.5 and out-group
to +0.5:

effect-code category
items$X_i <- recode(items$category,
"ingroup" = -0.5, "outgroup" = +0.5)

We will later multiply this effect-coded factor by the fixed
effect of category (beta_1 = 50) to simulate data in
which RTs for the in-group faces are, on average, −25
ms different from the grand mean, and RTs for the out-
group faces are, on average, +25 ms different from the
grand mean. After adding this variable, the resulting
table items should look like Table 3, although the
specific values you obtain for O0i may differ, depending
on whether you set the random seed.

In R, most regression procedures can handle two-level
factors, such as category, as predictor variables. By
default, the procedure will create a new numeric predic-
tor that codes one level of the factor as 0 and the other
as 1. Why not just use the defaults? The short explanation
is that the default of 0, 1 coding is not well suited to the
kinds of factorial experimental designs often found in
psychology and related fields. For the current example,
using the default coding for the X predictor would
change the interpretation of β0: Instead of the grand
mean, it would reflect the mean for the group coded as
0. One could change the default, but we feel it is better
to be explicit in the code about what values are being
used. (See Barr, 2019, for further discussion; see also the
R mixed-effects-modeling package afex, by Singmann
et al., 2019, which provides better defaults for specifying
categorical predictors in ANOVA-style designs.)

Simulate the sampling of subjects. Now we simulate
the sampling of individual subjects, which results in a
table listing each subject and that subject’s two correlated

random effects. This will be slightly more complicated
than what we just did, because we cannot simply sample
the T0s values from a univariate distribution using rnorm()
independently from the T1s values. Instead, we must sam-
ple < T0s, T1s > pairs—one pair for each subject—from a
bivariate normal distribution. To do this, we use the
mvrnorm() function, a multivariate version of rnorm()
from the MASS package that comes preinstalled with R.
We need only this one function from MASS, so we can call
it directly using the package::function() syntax instead
of loading the library (specifically, MASS::mvrnorm()
instead of library(MASS)).3 We specify the three param-
eters describing the distribution of the < T0s,T1s > pairs—
two variances and a correlation—by entering them into a
2 × 2 variance-covariance matrix using the matrix()
function, and then passing this matrix to mvrnorm()
using the Sigma argument. This requires converting
the standard deviations into variances (by squaring
them) and calculating the covariance, which is the
product of the correlation and two standard deviations
(i.e., ρ × τ0 × τ1):

simulate a sample of subjects

calculate random intercept / random
slope covariance

covar <- rho * tau_0 * tau_1

put values into variance-covariance
matrix

cov_mx <- matrix(
 c(tau_0^2, covar,
 covar, tau_1^2),
 nrow = 2, byrow = TRUE)

generate the by-subject random effects
subject_rfx <- MASS::mvrnorm
 (n = n_subj,

 mu = c(T_0s = 0, T_1s = 0),
 Sigma = cov_mx)

combine with subject IDs
subjects <- data.frame(subj_id =
seq_len(n_subj),

 subject_rfx)

The resulting table subjects should have the structure
shown in Table 4.

An alternative way to sample from a bivariate distribu-
tion would be to use the function rnorm_multi()
from the faux package (DeBruine, 2020), which gener-
ates a table of n simulated values from a multivariate
normal distribution by specifying the means (mu) and
standard deviations (sd) of each variable, plus the cor-
relations (r), which can be either a single value (applied
to all pairs), a correlation matrix, or a vector of the values
in the upper right triangle of the correlation matrix:

simulate a sample of subjects

Table 3. The Resulting Sample of Items

item_id category O_0i X_i

1 ingroup –79.7 -0.5
2 ingroup 57.7 -0.5
3 ingroup –49.4 -0.5
4 ingroup 162.4 -0.5
5 ingroup 85.2 -0.5
6 ingroup 79.0 -0.5
.
44 outgroup 54.7 0.5
45 outgroup –20.2 0.5
46 outgroup –12.1 0.5
47 outgroup –70.0 0.5
48 outgroup –158.2 0.5
49 outgroup 19.0 0.5
50 outgroup 2.9 0.5

Note: See the text for an explanation of the terms in the column heads.

8 DeBruine, Barr

sample from a multivariate random
distribution

subjects <- faux::rnorm_multi(
n = n_subj,
 mu = 0, # means for random effects
are always 0

sd = c(tau_0, tau_1), # set SDs
 r = rho, # set correlation, see
?faux::rnorm_multi

varnames = c("T_0s", "T_1s")
)

add subject IDs
subjects$subj_id <- seq_len(n_subj)

Simulate trials (encounters). Because all subjects
respond to all items, we can set up a table of trials by
making a table with every possible combination of the
rows in the subject and item tables, using the tidyverse

function crossing(). Each trial has random error asso-
ciated with it, reflecting fluctuations in trial-by-trial perfor-
mance due to unknown factors; we simulate this by
sampling values from a normal distribution with a mean of
0 and standard deviation of sigma:

cross subject and item IDs; add an
error term

nrow(.) is the number of rows in the
table

trials <- crossing(subjects, items) %>%
mutate(e_si = rnorm(nrow(.), mean = 0,
sd = sigma)) %>%

select(subj_id, item_id, category, X_i,
everything())

The resulting table should correspond to Table 5.

Calculate the response values. With this resulting
table, in combination with the constants beta_0 and
beta_1, we have the full set of values that we need to
compute the response variable RT according to the linear
model we defined above:

RT T O T X esi s i s i si= + + + + +β β0 0 0 () .1 1

Thus, we calculate the response variable RT by add-
ing together

•• the grand intercept (beta_0),
•• each subject-specific random intercept (T_0s),
•• each item-specific random intercept (O_0i),
•• each sum of the category effect (beta_1) and the

subject-specific random slope (T_1s), multiplied
by the numeric predictor (X_i), and

•• each residual error (e_si).

After this, we use dplyr::select() to keep the
columns we need:

Table 4. The Resulting Sample of Subjects

subj_id T_0s T_1s

1 –14.7 11.1
2 –8.4 –36.7
3 87.7 –47.5
4 209.3 62.9
5 –23.6 21.5
6 90.1 56.7
.
94 99.5 –31.0
95 44.3 69.3
96 12.2 37.1
97 –121.9 42.3
98 –49.9 –41.1
99 –134.5 16.6
100 –30.2 37.5

Note: See the text for an explanation of the terms in the column heads.

Table 5. The Resulting Table of Trials (Encounters)

subj_id item_id category X_i T_0s T_1s O_0i e_si

1 1 ingroup –0.50 –14.65 11.13 –79.73 –66.54
1 2 ingroup –0.50 –14.65 11.13 57.75 –34.74
1 3 ingroup –0.50 –14.65 11.13 –49.38 –37.49
1 4 ingroup –0.50 –14.65 11.13 162.35 231.26
1 5 ingroup –0.50 –14.65 11.13 85.23 –187.64
1 6 ingroup –0.50 –14.65 11.13 78.98 104.81
. .
100 44 outgroup 0.50 –30.15 37.52 54.73 –3.38
100 45 outgroup 0.50 –30.15 37.52 –20.16 18.47
100 46 outgroup 0.50 –30.15 37.52 –12.08 87.92
100 47 outgroup 0.50 –30.15 37.52 –69.99 25.47
100 48 outgroup 0.50 –30.15 37.52 –158.15 91.23
100 49 outgroup 0.50 –30.15 37.52 19.01 78.14
100 50 outgroup 0.50 –30.15 37.52 2.89 –34.31

Note: See the text for an explanation of the terms in the column heads.

Simulating for Linear Mixed-Effects Modeling 9

calculate the response variable
dat_sim <- trials %>%
 mutate(RT = beta_0 + T_0s + O_0i +
(beta_1 + T_1s) * X_i + e_si) %>%

 select(subj_id, item_id, category,
X_i, RT)

Note that the resulting table (Table 6) has the structure
that we set as our goal at the start of this exercise, with
the additional column X_i, which we will need when
we analyze the simulated data later in the Tutorial.

Data-simulation function. To make it easier to try out
different parameters or to generate many data sets for the
purpose of power analysis, you can put all of the code
above into a custom function. Set up the function to take
all of the parameters we set above as arguments. We set
the defaults here to the values we used, but you can
choose your own defaults. The code below is just all of
the code above, condensed a bit. It returns one data set
with the parameters specified:

set up the custom data simulation
function

my_sim_data <- function(
n_subj = 100, # number of subjects
n_ingroup = 25, # number of ingroup
stimuli

n_outgroup = 25, # number of outgroup
stimuli

beta_0 = 800, # grand mean
beta_1 = 50, # effect of category
omega_0 = 80, # by-item random
intercept sd

tau_0 = 100, # by-subject random
intercept sd

tau_1 = 40, # by-subject random slope sd
rho = 0.2, # correlation between
intercept and slope

sigma = 200) { # residual (standard
deviation)

items <- data.frame(
item_id = seq_len(n_ingroup +
n_outgroup),

category = rep(c("ingroup",
"outgroup"), c(n_ingroup, n_outgroup)),

X_i = rep(c(-0.5, 0.5), c(n_ingroup,
n_outgroup)),

O_0i = rnorm(n = n_ingroup +
n_outgroup, mean = 0, sd = omega_0))

 # variance-covariance matrix
 cov_mx <- matrix(
 c(tau_0^2, rho * tau_0 * tau_1,
 rho * tau_0 * tau_1, tau_1^2),
 nrow = 2, byrow = TRUE)

 subjects <- data.frame(
 subj_id = seq_len(n_subj),
 MASS::mvrnorm(n = n_subj,

mu = c(T_0s = 0, T_1s = 0),
Sigma = cov_mx))

 crossing(subjects, items) %>%
mutate(e_si = rnorm(nrow(.), mean =
0, sd = sigma),
RT = beta_0 + T_0s + O_0i +
(beta_1 + T_1s) * X_i + e_si) %>%

select(subj_id, item_id, category,
X_i, RT)

}

Now you can generate a data set with the default
parameters using my_sim_data() or, for example, a
data set with 500 subjects and no effect of category using
my_sim_data(n_subj = 500, beta_1 = 0).

Analyzing the Simulated Data

Setting up the formula

Now we are ready to analyze our simulated data. The first
argument to lmer() is a model formula that defines the
structure of the linear model. The formula for our design
maps onto how we calculated the variable RT above:

RT ~ 1 + X_i + (1 | item_id) + (1 + X_i
| subj_id)

The terms in this R formula are as follows:

Table 6. The Final Simulated Data Set

subj_id item_id category X_i RT

1 1 ingroup –0.5 609
1 2 ingroup –0.5 778
1 3 ingroup –0.5 668
1 4 ingroup –0.5 1148
1 5 ingroup –0.5 652
1 6 ingroup –0.5 939
.
100 44 outgroup 0.5 865
100 45 outgroup 0.5 812
100 46 outgroup 0.5 889
100 47 outgroup 0.5 769
100 48 outgroup 0.5 747
100 49 outgroup 0.5 911
100 50 outgroup 0.5 782

Note: See the text for an explanation of the terms in the column heads.

10 DeBruine, Barr

•• RT is the response;
•• 1 corresponds to the grand intercept (beta_0);
•• X_i is the predictor for the in-group/out-group

manipulation for item i;
•• (1 | item_id) specifies an item-specific ran -

dom intercept (O_0i);
•• (1 + X_i | subj_id) specifies a subject-

specific random intercept (T_0s) plus the subject-
specific random slope of category (T_1s).

The error term (e_si) is automatically included in all
models, so it is left implicit. The fixed part of the formula,
RT ~ 1 + X_i, establishes the RTsi = β0 + β1Xi + esi
part of our linear model. Every model has an intercept
(β0) term and residual term (esi) by default, so you could
alternatively leave the 1 out and just write RT ~ X_i.

The terms in parentheses with the pipe separator (|)
define the random-effects structure. For each of these
bracketed terms, the left-hand side of the pipe names
the effect or effects you wish to allow to vary, and the
right-hand side names the variable identifying the levels
of the random factor over which they vary (e.g., subjects
or items). The first term, (1 | item_id), allows the
intercept (1) to vary over the random factor of items
(item_id). This is an instruction to estimate the param-
eter underlying the O_0i values, namely, omega_0. The
second term, (1 + X_i | subj_id), allows both
the intercept and the effect of category (coded by X_i)
to vary over the random factor of subjects (subj_id).
It is an instruction to estimate the three parameters that
underlie the T_0s and T_1s values, namely, tau_0,
tau_1, and rho.

Interpreting the output from lmer()

The other arguments to the lmer() function are the
name of the data frame where the values are found
(dat_sim). Because we loaded in lmerTest after lme4,
the p values are derived using the Satterthwaite approxi-
mation, for which the default estimation technique in
lmer()—restricted likelihood estimation (REML =
TRUE)—is the most appropriate (Luke, 2017). Use the
summary() function to view the results:

fit a linear mixed-effects model to data
mod_sim <- lmer(RT ~ 1 + X_i + (1 | item_

id) + (1 + X_i | subj_id),
data = dat_sim)

summary(mod_sim, corr = FALSE)
Linear mixed model fit by REML. t-tests

use Satterthwaite′s method [
lmerModLmerTest]
Formula: RT ~ 1 + X_i + (1 | item_id) +

(1 + X_i | subj_id)
Data: dat_sim
##

REML criterion at convergence: 67740.7
##
Scaled residuals:
Min 1Q Median 3Q Max
-3.7370 -0.6732 0.0075 0.6708 3.5524
##
Random effects:
Groups Name Variance Std.Dev. Corr
subj_id (Intercept) 8416 91.74
X_i 3298 57.43 0.12
item_id (Intercept) 4072 63.81
Residual 41283 203.18
Number of obs: 5000, groups: subj_id,

100; item_id, 50
##
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 807.72 13.19 119.05 61.258 <2e-16***
X_i 39.47 19.79 56.30 1.994 0.051.

Signif. codes: 0 ′***′ 0.001 ′**′ 0.01 ′*′

0.05 ′.′ 0.1 ′ ′ 1

Let us break down the output step-by-step and try to
find estimates of the seven parameters we used to gener-
ate the data: beta_0, beta_1, tau_0, tau_1, rho,
omega_0, and sigma. If you analyze existing data with
a mixed-effects model, you can use these estimates to
help you set reasonable values for random effects in
your own simulations.

After providing general information about the model
fit, the output is divided into a Random effects sec-
tion and a Fixed effects section. The Fixed
effects section should be familiar from other types
of linear models:

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept)807.72 13.19 119.05 61.258 <2e-16***
X_i 39.47 19.79 56.30 1.994 0.051.

The Estimate column gives us parameter estimates
for the fixed effects in the model, that is, β0 and β1,
which are estimated at about 807.72 and 39.47. The next
columns give us the standard errors, estimated degrees
of freedom (using the Satterthwaite approach), t value,
and, finally, p value.

The Random effects section is specific to mixed-
effects models, and will be less familiar:

Random effects:
Groups Name Variance Std.Dev. Corr
subj_id (Intercept) 8416 91.74
X_i 3298 57.43 0.12
item_id (Intercept) 4072 63.81
Residual 41283 203.18

Simulating for Linear Mixed-Effects Modeling 11

These are the estimates for the variance components in
the model. Note that there are no p values associated
with these effects. If you wish to determine whether a
random effect is significant, you need to run the model
with and without the random-effect term and compare
the log likelihoods of the models. But usually the
random-effects parameters are not the target of statistical
tests because they reflect the existence of individual
variation, which can be trivially assumed to exist for any
manipulation that has a nonzero effect.

To avoid confusion, it is best to think of the informa-
tion in the Random effects section as coming from
three separate tables divided up by the values in the
Groups column. The first subtable, where the value of
Groups is subj_id , gives the estimates for the
random-effects parameters defining the by-subject
random effects:

Groups Name Variance Std.Dev. Corr
subj_id (Intercept) 8416 91.74
X_i 3298 57.43 0.12

We have estimates for the variance of the intercept and
slope (X_i) in the Variance column. These estimates
are just the squares of the standard deviations in the Std.
Dev. column. We obtain estimates for tau_0 and tau_1
of 91.74 and 57.43, respectively. The Corr. column gives
us the estimated correlation between the by-subject ran-
dom intercepts and slopes, estimated here as .12.

The second subtable gives us the by-item random-
effects parameter estimates, of which there is only one,

63.81, corresponding to omega_0 . Again, the
Variance column is just this value squared:

Groups Name Variance Std.Dev. Corr
item_id (Intercept) 4072 63.81

The last subtable gives us the estimate of the residual
term, 203.18:

Groups Name Variance Std.Dev. Corr
Residual 41283 203.18

We have found all seven parameter estimates in the
output. The estimated values are reasonably close to the
original parameter values that we specified (Table 7).

You can also use broom.mixed::tidy() to output
fixed and/or random effects in a tidy table (Table 8):

get a tidy table of results
broom.mixed::tidy(mod_sim) %>%
mutate(sim = c(beta_0, beta_1, tau_0,
rho, tau_1, omega_0, sigma)) %>%

 select(1:3, 9, 4:8)

This is especially useful when you need to combine the
output from hundreds of simulations to calculate power.
The effect column specifies whether a row is a fixed-
effect (fixed) or a random-effect (ran_pars) param-
eter. The group column specifies which random factor
each random-effect parameter belongs to (or Residual
for the residual term). The term column refers to the
predictor term for fixed effects and also the parameter
for random effects; for example, "sd__X_i" refers to

Table 7. The Simulation Parameters Compared to the Model Estimations

Variable Explanation
Simulated

value
Estimate

from model

beta_0 Intercept; grand-mean reaction time 800.0 807.72
beta_1 Slope; mean effect of the in-group/out-group manipulation 50.0 39.47
tau_0 Standard deviation of the by-subject random intercepts 100.0 91.74
tau_1 Standard deviation of the by-subject random slopes 40.0 57.43
rho Correlation between the by-subject random intercepts and slopes 0.2 0.12
omega_0 Standard deviation of the by-item random intercepts 80.0 63.81
sigma Standard deviation of the residuals 200.0 203.18

Table 8. The Output of the Tidy Function From broom.mixed

effect group term sim estimate
std.
error statistic df p.value

fixed NA (Intercept) 800.0 807.72 13.2 61.3 119.1 0.000
fixed NA X_i 50.0 39.47 19.8 2.0 56.3 0.051
ran_pars subj_id sd__(Intercept) 100.0 91.74 NA NA NA NA
ran_pars subj_id cor__(Intercept).X_i 0.2 0.12 NA NA NA NA
ran_pars subj_id sd__X_i 40.0 57.43 NA NA NA NA
ran_pars item_id sd__(Intercept) 80.0 63.81 NA NA NA NA
ran_pars Residual sd__Observation 200.0 203.18 NA NA NA NA

Note: See the text for an explanation of the terms in this table. NA = not applicable.

12 DeBruine, Barr

the standard deviation of the random slope for X_i, and
"cor__(Intercept).X_i" refers to rho, the correla-
tion between the random intercept and slope for X_i.
We added the sim column to the standard output of
broom.mixed::tidy() so you can compare the
simulated parameters we set above with the estimated
parameters from this simulated data set, which are in
the estimate column. The last four columns give the
standard error, t statistic, estimated degrees of freedom,
and p value for the fixed effects.

Setting parameters

Now that you see where each parameter we used to
generate the data appears in the analysis output, you
can use the analysis of pilot data to get estimates for
these parameters for further simulation. For example, if
you have pilot data from 10 participants on this task,
you can analyze their data using the same code as above
and estimate values for beta_0, beta_1, tau_0,
tau_1, rho, omega_0, and sigma for use in a
power calculation or a sensitivity analysis (see Appendix
1C at our OSF project page). If you lack any pilot data
to work with, you can start with the general rule of
thumb and set the residual variance to about twice the
size of the by-subject or by-item variance components
(see Barr et al., 2012, for results from an informal con-
venience sample).

Calculate Power

Data simulation is a particularly flexible approach for
estimating power when planning a study. The basic idea
of a power simulation is to choose parameter values
with which to generate a large number of data sets, fit
a model to each data set, and then calculate the propor-
tion of models that reject the null hypothesis. This pro-
portion is an estimate of power for those particular
parameter values. To estimate power accurately using
Monte Carlo simulation, you need to generate and

analyze a large number (typically, hundreds or thou-
sands) of data sets.

In a Monte Carlo power simulation, it is useful to cre-
ate a function that performs all the steps corresponding
to a single Monte Carlo “run” of the simulation: generate
a data set, analyze the data, and return the estimates.
The function single_run() below performs all these
actions:

simulate, analyze, and return a
table of parameter estimates

single_run <- function(. . .) {
. . . is a shortcut that forwards

any arguments to
my_sim_data(), the function created

above
dat_sim <- my_sim_data(. . .)
mod_sim <- lmer(RT ~ X_i + (1 | item_
id) + (1 + X_i | subj_id),

 dat_sim)

 broom.mixed::tidy(mod_sim)
}
run one model with default parameters
single_run()

You can also change parameters. For example, what
would happen if you increase the number of items to
50 in each group and decrease the effect of category to
20 ms, as in the following code?

run one model with new parameters
single_run(n_ingroup = 50, n_outgroup =
50, beta_1 = 20)

Example results of a single run with these parameters
are shown in Table 9.

You can use the purrr::map_df function to run
the simulation repeatedly and save the results to a data
table. This will take a while, so test the code first using
just a few runs (n_runs) to debug it and check the
output. Once you are satisfied that it is working properly,
we suggest that you use at least a thousand runs to

Table 9. The Output of single_run() With 50 Items per Group and a Category Effect of 20 ms

effect group term estimate
std.
error statistic df p.value

fixed NA (Intercept) 832.38 12.6 66.1 174.0 0.000
fixed NA X_i 24.95 16.0 1.6 114.9 0.121
ran_pars item_id sd__(Intercept) 73.66 NA NA NA NA
ran_pars subj_id sd__(Intercept) 100.27 NA NA NA NA
ran_pars subj_id cor__(Intercept).X_i 0.00 NA NA NA NA
ran_pars subj_id sd__X_i 47.57 NA NA NA NA
ran_pars Residual sd__Observation 199.15 NA NA NA NA

Note: See the text for an explanation of the terms in this table. NA = not applicable.

Simulating for Linear Mixed-Effects Modeling 13

obtain stable estimates. It will save you a lot of time if
you save the full results to disk:

run simulations and save to a file
n_runs <- 100 # use at least 1000 to
get stable estimates

sims <- purrr::map_df(1:n_runs, ~
single_run())

write_csv(sims, "sims.csv")

This way, you do not have to rerun this subroutine
each time you execute your script; you can just comment
out this code and load the saved data when you use this
script in the future.

Note that some runs may throw warnings about noncon-
vergence or messages about boundary (singular)
fit. Messages about the singular fit can usually be ignored
(see the lme4 help documentation ?isSingular for
information). Nonconvergence will be relatively rare with
simulated data provided the sample is not unreasonably
small relative to the number of estimated parameters; as
long as there are not too many of these nonconvergence
warnings relative to the number of runs, you can probably
ignore them because they will not affect the overall esti-
mates. Alternatively, you can rewrite your function to trap
the warning (see Appendix 1C at our OSF project page;
for more information on trapping errors and warnings,
see the chapter “Exceptions and Debugging” in Wickham’s,
2019, Advanced R textbook).

Once our simulations are complete, let us read the
data back in and have a look at the estimates for our
fixed effects:

read saved simulation data
sims <- read_csv("sims.csv", col_types =
cols(

 # makes sure plots display in this order
 group = col_factor(ordered = TRUE),
 term = col_factor(ordered = TRUE)
))

sims %>%
 filter(effect == "fixed") %>%
 select(term, estimate, p.value)
A tibble: 200 x 3
term estimate p.value
<ord> <dbl> <dbl>
1 (Intercept) 813. 2.93e-86
2 X_i 83.4 3.53e- 4
3 (Intercept) 799. 1.25e-82
4 X_i 57.9 1.58e- 2
5 (Intercept) 782. 6.17e-88
6 X_i 63.9 4.54e- 3
7 (Intercept) 812. 1.97e-83
8 X_i 45.7 4.78e- 2
9 (Intercept) 824. 8.69e-77

10 X_i 1.78 9.45e- 1
. . . with 190 more rows

Each row in the table is an estimate of a fixed-effects
parameter and associated p value from a single run of
the Monte Carlo simulation ((Intercept) = β0 and
X_i = β1). We need to calculate the proportion of runs
with significant results. To start, we compute p.value
< alpha, where alpha is the false-positive rate (e.g., .05):

calculate mean estimates and power
for specified alpha

alpha <- 0.05

sims %>%
 filter(effect == "fixed") %>%
 group_by(term) %>%
 summarize(
 mean_estimate = mean(estimate),
 mean_se = mean(std.error),
 power = mean(p.value < alpha),
 .groups = "drop"
)

This will yield a logical vector of TRUE whenever the
effect was significant and FALSE when it was nonsignifi-
cant. Because TRUE is represented internally as a 1 and
FALSE as a 0, you can take the mean of this logical vector,
and it will yield the proportion of runs with significant
results.

The results of our power analysis appear in Table 10.
The attained power of .54 in the second row is the esti-
mated probability of finding a significant effect of cat-
egory (as represented by Xi) given our starting
parameters. In other words, it is the probability of reject-
ing the null hypothesis (H0) for β1, which is the coeffi-
cient associated with Xi in the model (H0: β1 = 0). If we
wanted to see how power changes with different param-
eter settings, we would need to rerun the simulations
with different values passed to single_run().

Conclusion

Mixed-effects modeling is a powerful technique for ana-
lyzing data from complex designs. The technique is close
to ideal for analyzing data with crossed random factors
of subjects and stimuli: It gracefully and simultaneously
accounts for subject and item variance within a single
analysis and outperforms traditional techniques in terms

Table 10. Power Calculation for Fixed Effects

Term Mean estimate Mean standard error Power

(Intercept) 797.5 15.4 1.00
X_i 48.4 23.4 .54

14 DeBruine, Barr

of Type I error and power (Barr et al., 2013). However,
this additional power comes at the price of technical
complexity. Through this article, we have attempted to
make mixed-effects models more approachable using
data simulation.

We have considered only a simple, one-factor design.
However, the general principles are the same for higher-
order designs. For instance, consider a 2 × 2 design, with
factors A and B both within subjects, but A within items
and B between items. For such a design, you would have
four instead of two by-subject random effects: the inter-
cept, main effect of A, main effect of B, and AB interac-
tion. You would also need to specify correlations between
each pair of these effects. You would also have two by-
item random effects: one for the intercept and one for
A. Our materials at OSF include such an extension of the
example in this article with category as a within-
subjects and between-items factor and expression
added as a within-subjects and within-items factor (see
Appendix 2: Extended Examples, at https://osf.io/
ut3rx/). For further guidance and discussion on how to
specify the random-effects structure in complex designs,
see Barr (2013).

Here we have considered only a design with a nor-
mally distributed response variable. However, general-
ized linear mixed-effect models allow for response
variables with different distributions, such as binomial
distributions. Our materials at OSF illustrate the differ-
ences in simulation required for the study design dis-
cussed in this article if a binomial accuracy score
(correct/incorrect) is the response variable (see Appen-
dix 3a: Binomial Example, at https://osf.io/vxnm8/, and
Appendix 3b: Extended Binomial Example, at https://
osf.io/mt5nw/).

We also have not said much in this Tutorial about
estimation issues, such as what to do when the fitting
procedure fails to converge. Further guidance on this
point can be found in Barr et al. (2013), as well as in the
help materials in the lme4 package (?lme4::
convergence). We have also assumed that the random-
effects specification for the lmer() function should be
based on the study design. However, we note that other
researchers have argued in favor of data-driven
approaches for random-effects specification (Matuschek
et al., 2017). In this Tutorial, we have introduced the main
concepts needed to get started with mixed-effects mod-
els. Through data simulation of your own study designs,
you can develop your understanding and perform power
calculations to guide your sample-size plans.

Transparency

Action Editor: Mijke Rhemtulla
Editor: Daniel J. Simons
Author Contributions

D. J. Barr drafted the substantive explanation, and L. M.
DeBruine drafted the tutorial example. Both authors revised

the draft of the manuscript and approved the final submitted
version. L. M. DeBruine created the app (https://shiny.psy
.gla.ac.uk/lmem_sim/).

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of inter-
est with respect to the authorship or the publication of this
article.

Funding
L. M. DeBruine is supported by European Research Council
Grant 647910.

Open Practices
Open Data: not applicable
Open Materials: https://osf.io/3cz2e/
Preregistration: not applicable
All materials have been made publicly available via OSF
and can be accessed at https://osf.io/3cz2e/. This article
has received the badge for Open Materials. More informa-
tion about the Open Practices badges can be found at
http://www.psychologicalscience.org/publications/
badges.

ORCID iDs

Lisa DeBruine https://orcid.org/0000-0002-7523-5539
Dale J. Barr https://orcid.org/0000-0002-1121-4608

Notes

1. To ensure that a finding is generalizable, when attempting a
replication it is useful to sample new items, just as one would
typically sample new participants.
2. You will sometimes see the assumption of random effects
drawn from a normal distribution notated mathematically as, for
example, O0i ~ N(0, ω0

2), which you can read as “the random
intercept O0i for each subject i is drawn from a normal distribu-
tion with mean of zero and variance of ω0

2.”
3. Note that the MASS package has a function we do not need
named select(), but loading it using library() would over-
write the function of the same name from the dplyr package that
we often do need, so in general we find that it is a good idea to
avoid loading MASS.

References

Aust, F., & Barth, M. (2018). papaja: Create APA manuscripts
with R Markdown (Version 0.1.0.9997) [Computer soft-
ware]. GitHub. https://github.com/crsh/papaja

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-
effects modeling with crossed random effects for subjects
and items. Journal of Memory and Language, 59(4), 390–412.

Barr, D. (2019, April 2). Coding categorical predictor variables
in factorial designs. talklab. https://talklab.psy.gla.ac.uk/
tvw/catpred/

Barr, D. J. (2013). Random effects structure for testing interac-
tions in linear mixed-effects models. Frontiers in Psychology,
4, Article 328. https://doi.org/10.3389/fpsyg.2013.00328

Barr, D. J. (2018). Generalizing over encounters: Statistical and
theoretical considerations. In S.-A. Rueschemeyer & M. G.
Gaskell (Eds.), Oxford handbook of psycholinguistics (pp.
917–929). Oxford University Press.

https://osf.io/ut3rx/
https://osf.io/ut3rx/
https://osf.io/vxnm8/
https://osf.io/mt5nw/
https://osf.io/mt5nw/
https://shiny.psy.gla.ac.uk/lmem_sim/
https://shiny.psy.gla.ac.uk/lmem_sim/
https://osf.io/3cz2e/
https://osf.io/3cz2e/
http://www.psychologicalscience.org/publications/badges
http://www.psychologicalscience.org/publications/badges
https://orcid.org/0000-0002-7523-5539
https://orcid.org/0000-0002-1121-4608
https://github.com/crsh/papaja
https://talklab.psy.gla.ac.uk/tvw/catpred/
https://talklab.psy.gla.ac.uk/tvw/catpred/
https://doi.org/10.3389/fpsyg.2013.00328

Simulating for Linear Mixed-Effects Modeling 15

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2012). Random
effects in real datasets. talklab. https://talklab.psy.gla
.ac.uk/simgen/realdata.html

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random
effects structure for confirmatory hypothesis testing: Keep
it maximal. Journal of Memory and Language, 68(3),
255–278.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015).
Fitting linear mixed-effects models using lme4. Journal
of Statistical Software, 67(1). https://doi.org/10.18637/jss
.v067.i01

Bedny, M., Aguirre, G. K., & Thompson-Schill, S. L. (2007).
Item analysis in functional magnetic resonance imaging.
NeuroImage, 35(3), 1093–1102.

Bolker, B., & Robinson, D. (2019). broom.mixed: Tidying
methods for mixed models (Version 0.2.5) [Computer soft-
ware]. Comprehensive R Archive Network. https://CRAN.R-
project.org/package=broom.mixed

Clark, H. H. (1973). The language-as-fixed-effect fallacy: A cri-
tique of language statistics in psychological research. Journal
of Verbal Learning and Verbal Behavior, 12(4), 335–359.

Coleman, E. B. (1964). Generalizing to a language population.
Psychological Reports, 14(1), 219–226.

DeBruine, L. (2020). faux: Simulation for factorial designs
(Version 0.0.1.5) [Computer software]. Zenodo. https://
doi.org/10.5281/zenodo.2669586

Forster, K., & Dickinson, R. (1976). More on the language-as-
fixed-effect fallacy: Monte Carlo estimates of error rates
for F1,F2,F′, and min F ′. Journal of Verbal Learning and
Verbal Behavior, 15(2), 135–142.

Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli
as a random factor in social psychology: A new and com-
prehensive solution to a pervasive but largely ignored
problem. Journal of Personality and Social Psychology,
103(1), 54–69.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B.
(2017). lmerTest package: Tests in linear mixed effects

models. Journal of Statistical Software, 82(13). https://doi
.org/10.18637/jss.v082.i13

Locker, L., Hoffman, L., & Bovaird, J. A. (2007). On the use
of multilevel modeling as an alternative to items analysis
in psycholinguistic research. Behavior Research Methods,
39(4), 723–730.

Luke, S. G. (2017). Evaluating significance in linear mixed-
effects models in R. Behavior Research Methods, 49(4),
1494–1502.

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D.
(2017). Balancing Type I error and power in linear mixed
models. Journal of Memory and Language, 94, 305–315.

R Core Team. (2018). R: A language and environment for sta-
tistical computing (Version 4.0.1) [Computer software].
R Foundation for Statistical Computing. https://www
.Rproject.org/

Singmann, H., Bolker, B., Westfall, J., & Aust, F. (2019).
afex: Analysis of factorial experiments (Version 0.27.2)
[Computer software]. Comprehensive R Archive Network.
https://CRAN.R-project.org/package=afex

Westfall, J., Kenny, D. A., & Judd, C. M. (2014). Statistical
power and optimal design in experiments in which sam-
ples of participants respond to samples of stimuli. Journal
of Experimental Psychology: General, 143(5), 2020–2045.

Westfall, J., Nichols, T. E., & Yarkoni, T. (2017). Fixing the
stimulus-as-fixed-effect fallacy in task fMRI. Wellcome
Open Research, 1, Article 23. https://doi.org/10.12688/
wellcomeopenres.10298.2

Wickham, H. (2017). tidyverse: Easily install and load the
‘tidyverse (Version 1.2.1) [Computer software]. Com-
prehensive R Archive Network. https://CRAN.R-project
.org/package=tidyverse

Wickham, H. (2019). Advanced R. CRC Press. http://adv-r
.had.co.nz/

Yarkoni, T. (2020). The generalizability crisis. Behavioral and
Brain Sciences. Advance online publication. https://doi
.org/10.1017/S0140525X20001685

https://talklab.psy.gla.ac.uk/simgen/realdata.html
https://talklab.psy.gla.ac.uk/simgen/realdata.html
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=broom.mixed
https://CRAN.R-project.org/package=broom.mixed
https://doi.org/10.5281/zenodo.2669586
https://doi.org/10.5281/zenodo.2669586
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://www.Rproject.org/
https://www.Rproject.org/
https://CRAN.R-project.org/package=afex
https://doi.org/10.12688/wellcomeopenres.10298.2
https://doi.org/10.12688/wellcomeopenres.10298.2
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
http://adv-r.had.co.nz/
http://adv-r.had.co.nz/
https://doi.org/10.1017/S0140525X20001685
https://doi.org/10.1017/S0140525X20001685

