
 

 
 
 
 
 

McKendrick, M., Yang, S. and McLeod, G.A. (2021) The use of artificial 

intelligence and robotics in regional anaesthesia. Anaesthesia, 76(S1), pp. 171-

181. (doi: 10.1111/anae.15274). 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 

 
This is the peer reviewed version of the following article:  
McKendrick, M., Yang, S. and McLeod, G.A. (2021) The use of artificial 

intelligence and robotics in regional anaesthesia. Anaesthesia, 76(S1), pp. 171-181, 

which has been published in final form at 10.1111/anae.15274. This article may be 

used for non-commercial purposes in accordance with Wiley Terms and Conditions 

for Self-Archiving. 
 
 
 

http://eprints.gla.ac.uk/223423/ 
     

 
 
 
 
 

 
Deposited on: 23 September 2020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1111/anae.15274
http://dx.doi.org/10.1111/anae.15274
http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms
http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms
http://eprints.gla.ac.uk/197263/
http://eprints.gla.ac.uk/197263/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


1 
 

Title The use of artificial intelligence and robotics in regional anaesthesia 
 
 
Type of article 
Review 
 
 
M. McKendrick,1 2 S Yang3, G. A. McLeod4 5 6 
1 Assistant Professor, Department of Psychology, School of Social sciences, Heriot-Watt University, 
Edinburgh, UK 2 CEO & Research Psychologist, Optomize Ltd, Glasgow, 
3 Lecturer, James Watt School of Engineering, University of Glasgow 
4 Consultant Anaesthetist, Ninewells Hospital, NHS Tayside 
5 Honorary Professor of Anesthesia, Institute of Academic Anaesthesia, University of Dundee, UK. 
DD2 9SY 
6 Co-Lead MSc in Regional Anaesthesia, Honorary Senior Lecturer, University of East Anglia 
 
 
Correspondence to 
G. A. McLeod 
g.a.mcleod@dundee.ac.uk 
 

Twitter @gamcleod2@HeriotWattMEL 

Key words: artificial intelligence, robotics, technology, regional anaesthesia, ultrasonography, 
 

Running header 
Artificial intelligence and robotics  
 
 
Submitting author:  
Graeme McLeod 
Consultant & Honorary Professor of Anesthesia 
Institute of Academic Anaesthesia 
Ninewells Hospital & University of Dundee, UK. 
g.a.mcleod@dundee.ac.uk 
 
 
 
 
 
  



2 
 

The current Fourth Industrial Revolution is a distinct technological era characterised by the blurring of 

physics, computing and biology. The driver of change is data, powered by artificial intelligence. The 

NHS Topol Report embraced this digital revolution and emphasised the importance of artificial 

intelligence to the NHS. Application of artificial intelligence within regional anaesthesia, however, 

remains limited. An example of the use of a convoluted neural network applied to visual detection of 

nerves on ultrasound images is described. New technologies that may impact on regional anaesthesia 

include robotics and artificial sensing. Robotics in anaesthesia fall into three categories. The first, used 

commonly, is pharmaceutical, typified by targeted controlled anaesthesia using EEG within a feed-

back loop. Other types include mechanical robots that provide precision and dexterity better than 

humans, and cognitive robots that act as decision support systems. Our feeling is that the latter 

technology will expand considerably over the next decades and provide an auto-pilot for anaesthesia. 

Technical robotics will focus on the development of accurate sensors for training that incorporate 

visual and motion metrics. These will be incorporated into augmented reality and visual reality 

environments that will provide training at home or the office on life-like simulators. Real-time 

feedback will be offered that stimulates and rewards performance. In discussing the scope, 

applications, limitations and barriers to adoption of these technologies, we plan to stimulate 

discussion towards a framework for the most optimal application of current and emerging 

technologies in regional anaesthesia.  
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We are living within the Fourth Industrial Revolution - a distinct technological era characterised by 

the blurring of physics, computing and biology, that will disrupt humanity, and transform the way we 

work and live. The driver of change is data, powered by artificial intelligence - a means of finding 

solutions to complex problems by imitating neural activity. Artificial intelligence will impact on 

scientific disciplines as diverse as data analytics, artificial sensing, robotics, connectivity, 

nanotechnology, biotechnology, materials science, energy storage, quantum computing, and 3-D 

printing. The scope for artificial intelligence within regional anaesthesia is enormous. Applications 

include the creation of advanced clinical decision support tools, analysis of performance metrics 

during simulation training, and ultimately the development of robots that optimise needle tip 

accuracy and local anaesthetic injection. 

 

Artificial intelligence 

Artificial intelligence is forecast to contribute 16% to UK gross domestic product by 2030 [1], and 

save £115 billion from the US healthcare economy by 2026 [2]. Artificial intelligence forms one of 

the four Grand Challenges of the UK Industrial Strategy alongside dealing with an ageing society, 

clean growth and the future of mobility [3]. The Topol Report [4] acknowledged the importance of 

artificial intelligence, informatics and genetics to the NHS. Amongst its recommendations were that 

the NHS should expand research and development programmes to co-create digital technologies 

and work within Industry Exchange Networks. In response, NHS England appointed 18 clinical digital 

fellows in September 2019 in order to lead digital health improvements and innovation [5]. The basic 

mechanisms underpinning artificial intelligence actually reflect biology rather than computing. 

Interconnected processing elements or nodes communicate dynamically in the same way as human 

neurons and behave as an artificial neural network. A glossary of terms is given in Table 1 and 

examples of artificial neural networks used in imaging are shown in Fig 1.[6,7] 
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The application of artificial intelligence to regional anaesthesia will require a transformative change 

to patient data and digital image collection, linkage to pre-operative data, surgical functional 

outcome registries, prescription databases, deprivation indexes and cancer databases. The 

advantage of machine learning is that it can find patterns in large unwieldy, complex datasets and 

provides an attractive alternative to the rigidity of classical statistical methods. The NHS is uniquely 

placed to merge data from all hospitals, and artificial intelligence offers an opportunity to answer 

how much regional anaesthesia impacts on short and long-term clinical outcomes and side effects.  

 

For regional anaesthesia, tracking of nerves ideally lends itself to application of AI-driven computer 

vision, but is more difficult than facial recognition because the area of interest is constantly changing 

its appearance. Acoustic impedance is similar between nerves and surrounding tissues [8], and the 

brightness and shape of nerves changes along their course. A typical example of the latter is the 

change in shape of the sciatic nerve from round/oval in the posterior thigh to triangular in the 

subgluteal region. Analysis of images requires interrogation of all pixels in ultrasound scans recorded 

at 20 images per second for between 30 and 60 seconds. This is a slow, inefficient, computer 

intensive process. 

The discovery in 1962 by Hubel and Wiesel [9] that the transmission of visual information from the 

retina to the brain was attributed to multi-level receptive fields inspired Fukushima to design a 

multi-layered neural network named Neocognitron [10]. This was the prototype for a convolutional 

neural network (Table 1 and Fig 1), a self-organizing multilayer artificial neural network which could 

recognise handwritten numbers and characters [11]. Today, the study of images, otherwise termed 

Computer Vision, has become ubiquitous with convolutional neural networks which capture the 

sophisticated spatial and temporal features of images using filtering and pooling and can be divided 

into two types: 2D [12] and 3D [13]. V-Net networks, for example, are used for volumetric medical 

image segmentation of MRI images [14]. 
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Three studies have been conducted in regional anaesthesia using convolutional neural networks. The 

objective of the first study was to quantify texture, a metric that reflects the grayscale spatial 

arrangement pixels within ultrasound images. The median nerve was scanned in 10 anonymous 

patients [15]. The authors compared seven texture feature extraction methods and showed that a 

method termed Adaptive Median Binary Pattern showed better performance than six other tracking 

algorithms. Although automatic, the method used a frame by frame tracking system. The 

disadvantage of this method is that within the time course of each frame, echoes will have changed, 

and measurements lag behind screen changes. 

 

The second study evaluated the performance of 13 deep learning networks when used to identify 

the median and sciatic nerves during scanning of the upper arm and posterior thigh [16]. Twenty-five 

median nerves and 17 sciatic nerves were scanned on 42 anonymous patients. Accuracy (%), based 

on the ratio of pixels kept within a predefined bounding box was 0.94 for the median nerve and 0.80 

for the sciatic nerve, indicating that the median nerve was easier to track. 

 

A recent, as yet unpublished study from our group built a convolutional neural network to identify 

the sciatic nerve as it was scanned over the posterior thigh. The network consisted of six parts 

highlighted in Fig 2. The aim was to teach the system to pay attention, i.e. focus on important 

information and ignore irrelevant information. This is tricky because each frame has a unique 

background which reduces the accuracy of segmentation. Five scans of the sciatic nerve were 

conducted on soft embalmed Thiel cadavers from the popliteal fossa to the upper sub-gluteal area 

of the thigh. In total 3,789 frames were analysed. The performance of the convolutional network 

was compared with a traditional 2D U-Net network using the Dice Score and Intersection-over-Union 

score (Table 1). The in-house study approach performed better (Intersection-over-Union score and 

Dice score 0.87 and 93.2 respectively compared to the standard 2D U-Net approach (0.82 and 90.2). 
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The aforementioned studies demonstrate that nerve detection is possible in regional anaesthesia 

but more research is required to develop a more robust tracking system for application to patients.  

 

Robotics 

The uptake of robotics in Healthcare is now set to expand within a global marketplace worth over £15 

billion by 2023. Until now, medical robotics has focused on telepresence, surgical assistance, 

rehabilitation, medical transportation, sanitation and drug dispensing [17]. Even for surgery, use of 

robotics is not universal. Whilst the distant future may yield self-autonomous machines, robots are 

presently used to improve surgical accuracy and efficiency, albeit this may interfere with anaesthesia 

by modifying patient position and hindering communication [18]. 

 

Robotics in anaesthesia fall into three categories [19]. The most common are pharmaceutical, typified 

by targeted controlled anaesthesia using EEG within a feed-back loop. Others include mechanical 

robots that provide precision and dexterity better than humans, and cognitive robots that act as 

decision support systems. Pharmaceutical robots have been used for hypnosis and ventilation and to 

assist with pain temperature control and homeostasis, with evidence of reductions in workload and 

increased safety compared to manual systems. Systems such as McSleepy, designed to autonomously 

control hypnosis, analgesia and neuromuscular block can be overridden by the anaesthetist [20].  

 

The use of mechanical robots for anaesthesia is still in its relative infancy. Most of the work has been 

trialled for tracheal intubation or regional anaesthesia to date. COVID-19 has heralded rapid 

redeployment of anaesthetists and there is a clear need to enhance airway skills [21]. An example of 

robotic application to anaesthesia airway management is the robotic endoscope-automated via 

laryngeal imaging for tracheal intubation device (REALITI) [22]. This provides real-time image 

recognition and automated distal tip orientation towards the glottis. A proof of concept study on 
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manikins showed that lay participants with no medical training performed the procedure faster in 

the automated mode compared to manual control [22].  

 

In regional anaesthesia, a recent training study used a robotic arm (Magellan) driven by a joystick to 

assess learning curves. When tested by five anaesthetists on a nerve phantom [23], learning curves 

were improved across 10 needle insertions compared to manual insertion. However, the study was 

limited by sample size, few repetitions, and lack of performance criteria. The steeper learning curve 

likely reflected the novelty of the technology as performance times were considerably longer in the 

earlier trials. This phenomenon was also witnessed during testing of a regional block needle tip tracker 

system [24] and underlines the need for thorough training when adopting new technology. Moreover, 

there is a potential danger of overreliance on robotic-assistance during training. Although variability 

may be reduced amongst trainees, overall competence may be inadequate. Such deskilling would 

expose anaesthetists during airway emergencies and equipment failure. Therefore, it is important to 

carefully design robotic interventions in training as a feedback system to aide and not supersede the 

learning process.  

 

Future clinical systems will have the capacity to not only inform the anaesthetist of a problem but may 

also suggest or administer treatment [20]. Cognitive robots [25] may be passive (operated by a manual 

trigger based on a pre-defined decision) or active (provide real-time alerts and assessments). Recent 

examples [26] include medical devices such as SAFIRA (safer injection for regional anaesthesia). This 

eliminates the need for an assistant during nerve block but retains the capacity to aspirate and cuts 

off flow when injection pressure exceeds 17psi (117kPa). it seems likely that robots will be compliment 

anaesthetic practice, given the multiple skill set required to understand complex medical histories, 

monitor vital signs and make critical judgments in anomalous situation. In the near future, robotic 

systems are likely to work in autopilot mode until manual override is required, but clinical decision 

making will remain in the human domain. Even when artificial intelligence attains competencies 
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without human error and cognitive biases, it must be remembered that they are still potentially open 

to error through programming errors or anomalous events.  

 

Future developments 

We envisage artificial intelligence and robotics in the future informing mixed reality technologies 

including advanced sensing systems, display systems and simulation platforms [27]. Augmented and 

virtual reality (Table 1) are already available and are impacting on training and practice. Sensory 

modalities such as movement, sight and touch will not only add realism to augmented and virtual 

environments and provide operator feedback, but will also be incorporated onto autonomous 

mechanical robots in the future. Thus, virtual environments and physical robots will both contain 

integrated objective metrics that will measure training and guide clinical performance. 

 

Motion 

Fine motor control is an essential element of safe regional blockade. The Imperial College 

Surgical Assessment Device (ICSAD) is a validated measure of hand movement during surgical 

training. Application to supraclavicular block showed differences in performance between 

experts and novices on time taken, number of movements, and path length [28], as well as 

improvements in performance over the course of regional anaesthesia fellowships. More 

recently, hand motion analysis was used to evaluate needle tip tracking technology on a pork 

phantom. Again, reduction in hand movements and path length were seen but only for out-

of-plane blocks [29]. A study of volunteers undergoing lumbar plexus block confirmed these 

initial results [30]. Hand motion analysis provides some explanation about the role of hand 

movements in specific tasks and the relationship between these movements and efficiency 

but does not provide a full index of hand eye coordination. Tools to address the acquisition 

of hand eye-coordination have been developed for UGRA using self-assessment video-based 
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methods [31] but, without a precise way of measuring visual attention, these remain partially 

subjective.  

 

Vision 

The identification and interpretation of anatomy of ultrasound scans is a key skill that takes 

time to develop. Novices rely mostly on a selective visual processing pathway using limited top-down 

processing [32]. Visual search is time consuming, based on a serial search for one feature at a time 

that matches their explicit expectation but depends on the extent of trainees’ knowledge [33]. Experts 

combine top down knowledge with holistic visual pattern recognition (termed bottom up saliency) to 

produce an implicit priority map [34] enabling faster and more accurate visual scanning and attend 

more to task relevant areas according to the Information Reduction Hypothesis [35].   Eye tracking has 

been used in laparoscopy, radiology, pathology [36] and more recently in ultrasound guided regional 

anaesthesia to objectively assess decision making and attention allocation (Fig 3). By doing so, it can 

help to explain difficulties in the learning experience. It can also be used to cluster trainee 

performance levels and track the learning curve. Technical advances include neural network linked 

automatic calibration of glasses and software that allows provides real time updates of performance 

that can be tracked over repeated blocks. UGRA studies using eye tracking technology [37-39] indicate 

that eye movements can distinguish between experienced UGRA practitioners from novices. 

Furthermore, reflective feedback based on real-time performance has potential to accelerate the 

UGRA learning process.  

 

Touch 

Whilst scanning procedures rely heavily on visual attention, injection needs haptic feedback. An 

example of a haptic simulator is the SAILOR system used 3-D rendering on a desk mounted 

virtual system with mouse and keyboard control [40]. However, validation was limited to self-

report subjective scores of satisfaction. The Regional Anaesthesia Simulator and Assistant 
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(RASimAs) system combined virtual feedback using MRI or CT images of a real patients [41] 

coupled with haptic feedback using grounded haptics. More widely, grounded kinaesthetic 

haptics have introduced a somewhat realistic experience of feedback, but this has not always 

transferred into performance in other domains such as laparoscopy [42,43]. More progress 

has been gained from ungrounded cutaneous haptics with vibration feedback and this 

approach had been used with the Intuitive Surgical da Vinci Standard robot with some 

evidence of performance improvement [44]. 

 

Virtual, augmented and mixed realities 

Two studies enhanced the navigation of epidural needles using augmented reality. In the first, 

identification of vertebral spaces in volunteers was more accurate than traditional palpation 

[45]. The second was more complex. Both the B-mode ultrasound transducer and the needle were 

visualized in a 3-D augmented environment, and the epidural space identified using a single-element 

transducer at the needle tip. All trials were successful in a phantom compared to only 50% of trials 

using ultrasound alone [46]. In addition to anatomical navigation, augmented reality may be useful in 

regional anaesthetic training. Whilst high fidelity cadaveric training provides realistic simulation for 

mastery learning, poor accessibility and high cost reduce widespread use. There is a pressing need for 

virtual training platforms in order to provide cadaver-like simulation training. 

 

Application of virtual reality (VR) to UGRA has also focused on patient centred anxiety reduction and 

training. Use of VR distraction has met with mixed results. Two studies [47,48] reported this  as a 

successful distraction method for UGRA, with increased satisfaction and reduced pre-operative to 

mid-operate anxiety compared to conventional care but another reported no differences [49].  

Virtual gamification worlds have also been created to reward learning in a fun environment. Success 

is scored on leader boards as points, badges, performance graphs. Avatars, may be either patients or 

team members [50]. A study of cardiothoracic trainees found that engaging in a live ‘Top Gun’ 
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competition improved performance on anastomosis techniques [51]. A commercial Nintendo WiiU 

game ‘Underground’ (Cutting Edge Surgical Games, the Netherlands) has been validated for 

laparoscopy as the gameplay manoeuvres are based on the dexterity skills required in laparoscopy but 

without haptic feedback and a similar approach can be developed for regional anaesthesia. Another 

potential application is non-technical virtual skills training [52] within scenarios that emphasise 

teamwork, human factors and ergonomics [53], all  of which are relevant to patient care. 

 

More recently a gamification approach with haptic forces has been developed for epidural anaesthesia 

[54]. This was based on a grounded haptics needle with force models using Unity, a cross-

platform game engine (Unity Technologies, US). Nerves were modelled in virtual space using data 

from magnetic resonance imaging (MRI) and magnetic resonance angiography [55] but scans were 

limited to only a few individuals, thus limiting scope for anatomic variation. In an eLearning 

programme [56], trainee anaesthetists were randomised to watching an educational video 

with or without moving a virtual ultrasound (US) probe over a cartoon anatomical schematic 

of the thigh muscles whilst viewing the MRI and ultrasound images. Written test results were 

enhanced in the virtual simulation group, but there were no differences in performance in live 

scanning. This may reflect different learning rates for knowledge and skill acquisition.  

 

Cross reality (XR), Internet of things and Digital Twins 

Combinations of robotics, extended realities and objective metrics have the potential to 

provide a comprehensive educational and clinical experience. Evidence from manufacturing, 

indicates that robots can reduce costs and exceed human performance for tasks that are 

repetitive, tiresome and induce physical strain. Extended realities offer an opportunity for 

clinicians to be actively involved in procedures in a cognitively rewarding way [57]. Potential 

applications of extended realities, the internet of things and digital twins (Table 1) include 

drug dosage decision making [58], or mapping patient data directly into simulator 

about:blank
about:blank
about:blank
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environments prior to a procedure to enable practice. This would be beneficial both for 

learning UGRA and for practice before undertaking complex cases.  

 

Reinforcement learning uses goal-oriented algorithms which learn how to achieve a strategic 

outcome over many steps. Reinforcement algorithms are penalised when they make the wrong 

decisions and rewarded when they make the right ones. The advantage of machine learning is that it 

can find patterns in large unwieldy, complex datasets and provides an attractive alternative to the 

rigidity of classical statistical methods. Besides deep learning, reinforcement learning is frequently 

used in robotic control, especially for solving complex sequential decision-making problems [59]. The 

control of robotic movement, which can be regarded as a multi-agent system, needs comprehensive 

multi-agent reinforcement learning methods [60]. Another interesting area for future developments 

lies within high frequency band 5G networks. These will cover three application scenarios in the 

future: enhanced mobile broadband, Massive Machine-type Communications and Ultra-Reliable and 

Low-Latency Communications. Whilst these technologies appear to not have much in common, if 

they were to be applied together, this could make the use of smart robotics in anaesthesia an 

everyday occurrence.  

 

Barriers to technology implementation 

The governance of AI is important. Governance needs to provide stability and transparency but 

account for rapid change that innovation brings. Similar to clinical research, ethical considerations 

alleviate potential harm by providing values and principles that guide researchers. Governance 

procedures should be adopted, like a clinical trial, for each project. The Alan Turing Institute 

provides guidance on AI ethics and safety [61]. Its framework of ethical values is called ‘SUM Values’. 

These embrace respectfulness, openness, inclusivity and justice. Because AI systems lack 

accountability, the Institute has developed ‘FAST Track Principles’ based on fairness (data, design, 
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implementation, outcomes); accountability, sustainability (safety, accuracy, reliability, security, and 

robustness); and transparency in order to gain public trust. 

 

Cost remains a significant barrier to robotic large platforms but over the longer term can be cost 

effective if fewer complications ensue. Robotic assistance does not necessarily increase procedural 

efficiency and the evidence on reducing learning curves is mixed across surgical contexts [62]. 

Regulatory processes can be a barrier to technology implementation in clinical areas. However, an 

opportunity exists to develop medical technologies for medical education purposes in the first 

instance. This would: create a testbed for medical devices and provide a means of enhancing skills and 

reducing clinician variability.  In fact, reduction of inter-operator variability has been a key driver of 

robotics technology but may also be achieved with simulation training and the appropriate objective 

performance metrics.  

 

 

Simulation teaching and technology can offer opportunities for a learning experience that exposes 

clinicians to procedures and context that will reflect the skills requires for them to develop expertise, 

rather than rely entirely on a robot. However, at this point in time, barriers still exist [63]. Some 

technologies may not offer a realistic enough environment, leading to an uncanny valley effect or a 

mismatch between confidence in completing simulated procedures and ability to perform these in 

real life. It is therefore important to develop objective and subjective assessments for core technical 

and non-technical skills that may be required in practice. More research into formative and summative 

assessment types and a standardised approach is required.  

 

In conclusion, we envisage the main thrust of AI in regional anaesthesia to be the support of clinical 

decision making. However, this will require a seismic change in attitudes in departments of 

anaesthesia towards the routine collection of accurate pre-operative, interventional and post-
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operative pain and functional outcome data.  Clinicians will, as in all AI-driven industries, have to 

become mathematically and computing literate. AI, as in radiology will help recognise structures on 

ultrasound images. However, interpretation of ultrasound videos is difficult and not yet accurate 

enough for clinical application. We recognise a need for the application of AI to robotics for training 

regional anaesthesia rather than clinical practice at this moment in time. Training will change towards 

mastery learning and dedicated practice on both low and high-fidelity simulators. Performance will be 

measured using validated accurate sensors that incorporate visual and motion metrics and offer real-

time feedback. These will be incorporated into augmented reality and visual reality environments. 

Eventually training will be possible at home or in the office on life-like virtual simulators, but detailed 

environments, such as an aircraft simulator, will take many years to achieve. Autonomous robots will 

be a hallmark of the 5th industrial revolution. Whatever their form, successful development of 

technology in the 4th industrial revolution will influence their role in future regional anaesthesia. 
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Table 
Table 1 Concepts and definitions 
 
Figures  

 

Fig 1 Fig. Examples of neural networks used in imaging. The simplest network has two input cells and 

one output cell and is termed a perceptron (a). The extension of this network contains a parallel 

hidden layer (b) and is termed a feed forward neural network (FF or FFNN). Their use is limited but 

they can be combined with other networks. Autoencoders (AE) compress (encode) information (c). 

They are characterised by small hidden layers and symmetry around the mid-point (termed the 

code). Up to this point layers are encoding; after it they decode. Variational autoencoders (VAE) use 

Bayesian mathematics and thus apply probabilities (d). Convolutional neural networks (CNN or deep 

convolutional neural networks, DCNN) are used for recognition of objects during image processing 

(e). They use a small square scanning matrix that passes pixel by pixel over the image. This data is 

fed through convolutional layers that only connect to neighbouring cells. The number of 

convolutional cells decrease with sequential layers. Pooling layers act as filters. Deconvolutional 

networks (DN) are reversed convolutional neural networks (f). They can produce images from data. 

Deep convolutional inverse graphics networks (DCIGN) are VAEs but with CNNs and DNNs for the 

respective encoders and decoders (g). Images can be re-rendered to different viewpoints, lighting 

conditions, and variations in shape. Deep residual networks (DRN) are very deep FFNNs that are 

efficient at training hundreds of layers (h). Connections pass from one layer to a later layer as well as 

the next layer.  

 
 
 
Fig 2 Convolutional network structure designed to identify the sciatic nerve on scanning of the 

posterior thigh on soft embalmed Thiel cadavers. Manually labelled frames for training are shown in 

(a).  The prediction from the trained neural network is shown in (b-d) Images sequentially reduced 
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into a form which is easier to process, and takes less computer power without losing accuracy. The 

vital element involved in carrying out convolution is the filter or kernel(K). It is much smaller than 

the image and moves over the image until it has been fully scanned. The first convolutional layer 

captures low-level features such as lines and colour. Extra layers add high-level features as shapes. 

Pooling acts a noise suppressant and dimension reducer by identifying either the maximum or 

averaged value from the kernel. Maximum pooling is generally regarded as better. Data is then fed 

to a conventional neural network. 

 

 
 
Fig 3 Example of sensor technology in regional anaesthesia. Trainee anaesthetist (a) shown before 

undergoing formal video assessment of interscalene block on a patient as part of a trial funded by 

the NIAA (BJA/RCoA and RA-UK project grants). The trainee is wearing Pupil Core 200 Hz binocular 

eye tracking glasses (Pupil Lab, Berlin). The glasses are connected to Optimal analysis software V1.14 

(Optomize Ltd., Glasgow, UK). A calibration check is being carried out. Image (b), from a 

development study, shows an example of metric based feedback. Eye gaze fixation points (red 

circles) linked by saccades (red lines). The blue circle shows the final eye fixation point and the 

number in green indicates the number of eye fixations measured (n = 9) to completion of the task. 

Image (c), from a third study, shows an overall reduction in the number of eye gaze fixations per task 

over ten repeated procedures. The best-fit line is shown and suggests a clear improvement in 

performance. 
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