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Abstract 

This study numerically investigates heat convection and entropy generation in a hybrid nanofluid 

(Al2O3-Cu-water) flowing around a cylinder embedded in porous media. An artificial-neural-network 

is used for predictive analysis, in which numerical data are generated to train an intelligence algorithm 

and to optimize the prediction errors. Results show that the heat transfer of the system increases when 

the Reynolds number, permeability parameter, or volume fraction of nanoparticles increases. 

However, the functional forms of these dependencies are complex. In particular, increasing the 

nanoparticle concentration is found to have a non-monotonic effect on entropy generation. The 

simulated and predicted data are subjected to particle swarm optimization to produce correlations for 

the shear stress and Nusselt number. This work demonstrates the capability of artificial intelligence 

algorithms in predicting the thermohydraulics and thermodynamics of thermal and solutal systems. 

 

Nomenclature  

 

𝐴1, 𝐴2, 𝐴3, 𝐴4 

𝐴5 

Constants 𝑅𝑒 Freestream Reynolds number  𝑅𝑒 =
�̅�.𝑎2

2𝜐
 

𝑎 Cylinder radius  �̇�𝑔𝑒𝑛  ́ ́ ́ Rate of entropy generation 

ANN Artificial neural network �̇�0  ́ ́ ́ Characteristic entropy generation 

rate 

𝐵𝑒 Bejan number 𝑇 Temperature 

𝐵𝑟 
Brinkman number 𝐵𝑟 =  

𝜇𝑓(�̅�.𝑎)2

𝑘𝑓(𝑇𝑤−𝑇∞)
 

𝑢 , 𝑤 Velocity components along (𝑟 − 𝑧)- 

axis 

𝐶𝑝 Specific heat at constant pressure 𝑧 Axial coordinate 

𝑓(𝜂) Radial velocity function Greek symbols 

𝑓 ́(𝜂) Axial velocity function 𝛼 Thermal diffusivity 

GA Genetic algorithm 𝜂 
Similarity variable, 𝜂 = (

𝑟

𝑎
)
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ℎ Heat transfer coefficient 𝜃(𝜂) Non-dimensional temperature 

ICA Imperialist competition algorithm 𝜆 Permeability parameter, 𝜆 =
𝑎2

4𝑘1
 

𝑘 Thermal conductivity 𝜎 Shear stress 

�̅� Freestream strain rate 𝜀 Porosity 

𝑘1 Permeability of the porous medium Λ Non-dimensional temperature 

difference  Λ =
(𝑇𝑤−𝑇∞)

𝑇∞
 

𝑚 Shape factor 𝜇 Dynamic viscosity 

MLP Multi-layer perception 𝜐 Kinematic viscosity 

𝑁𝐺  
Entropy generation number 𝑁𝐺 =

�̇�𝑔𝑒𝑛 ́ ́ ́

�̇�0 ́ ́ ́
 

𝜌 Fluid density 

𝑁𝑢 Nusselt number 𝜙1, 𝜙2 Volume fraction of nanoparticles 

𝑝 Pressure of fluid Subscripts 

𝑃 Pressure of fluid (non-dimensional) 𝑤 External wall of the cylinder 

𝑃0 Initial fluid pressure ∞ Far field 

𝑃𝑟 Prandtl number ℎ𝑛𝑓 Hybrid nanofluid 

PSO Particle swarm optimization 𝑛𝑓 Nanofluid 

𝑞𝑤 Heat flux on the wall 𝑓 Fluid 

𝑟 Radial coordinate   

 

1. Introduction 

The wide applicability and potential of hybrid nanofluids and porous media have led to a growing 

interest in combining them to achieve higher rates of heat transfer [1,2]. This has intensified the need 

to better understand and predict the characteristics of such combined systems, which in turn calls for 

parametric studies. However, heat transfer problems involving nanofluids and porous media often 

involve a large number of governing parameters [3-5]. This complicates the analysis, requiring a very 

large number of computationally costly simulations. The present study aims to address this issue by 

leveraging techniques from machine learning and combining them with computational fluid 

dynamics.   

The general problem of heat transfer and entropy generation in nanofluid−porous-media systems has 

received considerable attention in the literature. For example, Ting et al. [6] investigated the entropy 

generation and heat transfer of a nanofluid (Al2O3-water) moving through a porous microchannel. 

They found that entropy generation is mostly attributed to wall-heat generation, and that 

irreversibilities are dependent on the degree of symmetric heating, the Reynolds number, and the size 

and concentration of nanoparticles. Those researchers [6] also found that differences in the predictions 

between non-equilibrium and local-thermal-equilibrium models can be reduced by adding heat to the 

walls or by introducing nanoparticles to the base fluid. The work of Ting et al. [6] was later extended 

to microchannels with thick walls [7-9], demonstrating that such a geometry can contribute 

significantly to entropy generation.   

Using numerical simulations, Kefayati [10] analyzed the heat transfer and thermodynamics of a non-

Newtonian nanofluid flowing in a porous cavity. They found that increasing the volume fraction of 
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nanoparticles, the Rayleigh number or the Darcy number can increase the Nusselt number and 

enhance entropy generation. In a similar study involving a Newtonian nanofluid, Hoseinpour et al. 

[11] found that larger Darcy and Rayleigh numbers can cause a flow to penetrate more readily into 

porous media, thus enhancing heat transfer. The total entropy generated was found to increase with 

porosity, as the fluid friction rose.  

Siavashi et al. [12] numerically simulated a cavity of Cu-water nanofluid equipped with porous fins. 

They found that the deployment of fins at large Darcy numbers can improve heat transfer by 

convection but impaired entropy generation, while a lower concentration of nanoparticles was found 

to lead to enhanced heat transfer. Flow friction was shown to be the main source of energy loss. To 

explore the sedimentation of Al2O3 nanoparticles in water, Baghsaz et al. [13] performed transient 

numerical simulations of a porous cavity. During the sedimentation stage, the Nusselt number was 

found to fluctuate as a result of deformations in the flow streamlines. Both the heat transfer and 

irreversibility were reduced in low-permeability enclosures.   

Hussain et al. [14] examined the mixed convection of nanofluids in a chemically-reactive porous 

cavity. They showed that heat transfer increased with increasing volume fraction of nanoparticles, 

Darcy number and Richardson number, but that it decreased with increasing Lewis number and 

chemical reaction rate. The heat transfer mechanism responded to higher values of entropy generation, 

which increased with Richardson number.  

Various studies have been conducted to investigate entropy generation in microchannel heat sinks 

filled with nanofluids, including those subjected to a magnetic field [15-18]. It was demonstrated that 

irreversibilities weakened with the introduction of a magnetic field [8]. Entropy generation near the 

walls was found to be the most important source of irreversibility in microchannels [15,16]. In some 

cases, Brownian motion was identified as the dominant process in the energy loss of closed tanks 

[18]. In those cases, the trends in heat transfer and entropy generation were in the same direction [16]. 

In such problems, there are many governing parameters, including the Reynolds number, Hartmann 

number, porosity, nanoparticle diameter, radiation number and volume fraction. Therefore, 

optimization methods should be used to identify a balanced trade-off between heat transfer and 

irreversibility [16,17]. Mansour et al. [19] examined the magnetohydrodynamic free-convection of a 

nanofluid (Al2O3-Cu-water) in a porous enclosure. The Nusselt number and entropy generated were 

found to decrease in response to a decreasing volume fraction of nanoparticles and a strengthening 

magnetic field.  

As the number of governing parameters rises, so does the dimensionality of the system, making it 

more difficult to gain a complete understanding of the problem using conventional analyses. 

Furthermore, conventional analyses tend to be inefficient when used to examine the interactions 

among many different contributing parameters [20, 21]. As an alternative solution, machine learning 
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can offer an improved means of prediction for a wide range of parameters using fewer simulation 

runs. Predictor correlations developed via machine learning can be used to solve problems involving a 

large number of inter-related variables. It is therefore not surprising that artificial intelligence 

algorithms have been increasingly used in thermal analysis (see Refs. [22, 29] for examples). 

However, such studies are still rather limited, implying that further efforts are needed to exploit more 

effectively the broad capabilities of artificial intelligence in thermodynamic analysis.  

By combining particle swarm optimization (PSO) and artificial neural networks (ANNs), Rashidi et 

al. [22] investigated entropy generation in a transient flow across a rotating disc in a magnetic field. 

Siavashi et al. [23] performed an optimization study to maximize the heat transfer and minimize the 

pressure drop of a heat exchanger tube filled with multi-layered porous foam and nanofluids. The 

porosity and nanoparticle concentration were found to have substantial effects on the target 

parameters. Using a genetic algorithm (GA), Shahsavar et al. [24] optimized the non-Newtonian 

nanofluid flow in a concentric annulus, with the aim of minimizing irreversibilities and maximizing 

heat transfer. The geometric parameters and nanoparticle concentration were found to be the most 

influential parameters. Bahiraei et al. [25] used a multi-layer perception (MLP) neural network to 

analyze nanofluid-based solar equipment fitted with a thermoelectric module. They found that in 

comparison with pure MLP, ensemble algorithms, such as GA-MLP and imperialist competition 

algorithm (ICA)-MLP, can generate improved predictions. Using PSO, Keykhan et al. [26] optimized 

a porous-volume tube filled with an Ag-water nanofluid. By increasing the porosity or decreasing the 

nanoparticle concentration, they were able to decrease the Nusselt number and friction factor. The 

transport characteristics of a reactive flow of hybrid nanofluid in a porous medium were analyzed by 

Mohebbi Najm Abad et al. [27] and Alizadeh et al. [28]. These researchers trained a neural network 

so that it could predict the response of a thermal system to changes in the key parameters. PSO was 

used to develop estimator correlations for improved accuracy. Those studies demonstrated the 

potential of predictor intelligence algorithms in unravelling complex thermochemical problems. 

Ebrahimi-Moghadam et al. [29] used an ANN and a quadratic algorithm to minimize entropy 

generation and identify the optimum volume fraction in a parabolic collector. Introducing 

nanoparticles to the base fluid was found to decrease thermal entropy generation and increase 

irreversibilities due to friction.  

As mentioned earlier, using conventional computational-fluid-dynamics algorithms to solve complex 

thermo-hydrodynamic problems can be numerically costly. As an alternative tool, estimator methods 

are preferred because they are well suited to tackling problems involving many inter-related variables. 

Leveraging the power of ANNs, the present study aims to uncover new physical insight into the 

thermodynamics and thermal convection of a hybrid nanofluid flowing around a cylinder in porous 

media. A number of estimator correlations for the target parameters are developed with the aid of 

PSO.  
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 2. Numerical methodology 

2.1.  Problem description and governing equations  

Fig. 1 shows a diagram of the present flow system. A cylinder of radius a is embedded inside a porous 

medium. A nanofluid of strain rate k  flows externally around the surface of the cylinder, producing a 

stagnation point. The assumptions made in the analysis are:  

• The fluid is Newtonian. 

• The study assumes a single-phase nanofluid. 

• The flow of nanofluid is steady, laminar and incompressible. 

• The cylinder is infinite in length with a constant wall temperature. 

• The porous medium is in local thermal equilibrium, as well as being homogenous and 

isotropic. 

• Viscous heating, gravitational acceleration, thermal radiation and dissipation are ignored. 

• The thermophysical properties are constant. 

• The Reynolds number, based on the pore dimension in the porous medium, is low to 

moderate, implying that nonlinear momentum transfer is negligible. 

 

Fig. 1 Diagram of the present flow system. 

 

Numerical simulation of the present flow system involves the two-dimensional Darcy−Brinkman 

momentum model along with the one-equation energy equation in cylindrical coordinates [30-33]. 

The governing equations are those for continuity, momentum (radial and axial) and energy, 

respectively: 

𝜕(𝑟𝑢)

𝜕𝑟
+ 𝑟

𝜕𝑤

𝜕𝑧
= 0, 

(1) 

 

𝜌ℎ𝑛𝑓

𝜀2 (𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) =  −

𝜕𝑝

𝜕𝑟
+

𝜇ℎ𝑛𝑓

𝜀
(

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2 +
𝜕2𝑢

𝜕𝑧2  ) −
𝜇ℎ𝑛𝑓

𝑘1
𝑢, (2) 
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𝜌ℎ𝑛𝑓

𝜀2
(𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) =  −

𝜕𝑝

𝜕𝑧
+

𝜇ℎ𝑛𝑓

𝜀
(

𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
+

𝜕2𝑤

𝜕𝑧2
 ) −

𝜇ℎ𝑛𝑓

𝑘1
𝑤, 

(3) 

𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
=

 𝑘ℎ𝑛𝑓

(𝜌.𝐶𝑝)
ℎ𝑛𝑓

(
𝜕2𝑇

𝜕𝑟2 +
1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2 ). (4) 

 

In Eqs. (1)-(4), 𝜌ℎ𝑛𝑓, 𝑝, 𝜇ℎ𝑛𝑓, 𝑇, 𝑘ℎ𝑛𝑓 , (𝜌. 𝐶𝑝)
ℎ𝑛𝑓

,  and 𝑘1 are the density, pressure, dynamic 

viscosity, temperature, thermal conductivity, heat capacitance and permeability of the porous medium, 

respectively.  

The velocity boundary conditions are:  

𝑟 = 𝑎:     𝑢 = 0  , 𝑤 = 0   , (5) 

𝑟 = ∞:     𝑢 = −�̅� (𝑟 −
𝑎2

𝑟
)  ,   𝑤 = 2�̅�𝑧  . (6) 

Hydrodynamic no-slip conditions are applied to the external surface of the cylinder, as per Eq. (5), 

while the velocity approaches that given by the potential flow assumption at a distance of infinity, as 

per Eq. (6) [30,31,34]. 

The thermal boundary conditions are:  

𝑟 = 𝑎:     𝑇 = 𝑇𝑤 = constant = temperature of the cylinder surface, 

𝑟 = ∞:     𝑇 = 𝑇∞ = free-stream temperature, 

(7) 

2.2. Flow solutions 

Through the following transformation, the governing equations [Eqs. (1)-(4)] are simplified:  

𝑢 = −
�̅�. 𝑎

√𝜂
𝑓(𝜂) ,          𝑤 = [2�̅�𝑓 ́(𝜂)]𝑧 ,          𝑝 = 𝜌𝑓�̅�2𝑎2𝑃, 

(8) 

where 𝜂 = (
𝑟

𝑎
)

2
 is the non-dimensional radial variable. Substitution of Eq. (8) into Eq. (1) turns Eqs. 

(2) and (3) into a system of coupled ordinary differential equations: 

𝜀. [𝜂𝑓 ́ ́ ́ + 𝑓 ́ ́] + 𝐴1. 𝐴2. 𝑅𝑒[1 + 𝑓𝑓 ́ − (𝑓 ́)2] + 𝜀2. 𝜆[1 − 𝑓 ́] = 0, (9) 

𝑃 − 𝑃0 = −
𝐴2

2𝜀2 (
𝑓2

𝜂
) −

1

𝐴1. 𝜀
[(

𝑓 ́

𝑅𝑒
) +

𝜆

𝐴1. 𝑅𝑒
∫

𝑓

𝜂
𝑑𝜂

𝜂

1

] − 2 [
𝐴2

𝜀2
+

𝜆

𝐴1. 𝑅𝑒
] (

𝑧

𝑎
)

2

, 
(10) 

where  𝑅𝑒 =
�̅�.𝑎2

2𝜐𝑓
 is the Reynolds number (at 𝑇∞), 𝜆 =

𝑎2

4𝑘1
 is the permeability parameter (Definition of 

permeability parameter is the inverse of Darcy number), and the prime symbol denotes derivatives 

with respect to  𝜂. Using Eqs. (5), (6) and (8), we transform the boundary conditions for Eqs. (9) and 

(10) into: 

𝜂 = 1:          𝑓 ́(1) = 0 ,          𝑓(1) = 0, (11) 
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𝜂 → ∞:          𝑓 ́(∞) = 1. (12) 

Introducing equation 13 then yields: 

𝜃(𝜂) =
𝑇(𝜂) − 𝑇∞

𝑇𝑤 − 𝑇∞
, 

(13) 

and through Eq. (8), the energy equation [Eq. (4)] becomes the following non-dimensional equation: 

𝜂𝜃 ́ ́ + 𝜃 ́ + 𝑅𝑒. 𝑃𝑟.
𝐴3

𝐴4
(𝑓. 𝜃 ́) = 0, (14) 

while the thermal boundary conditions become: 

𝜂 = 1:          𝜃(1) = 1 

𝜂 → ∞:          𝜃(∞) = 0. 

(15) 

(16) 

Through the use of an implicit iterative finite-difference algorithm [35,36], Eqs. (9), (10) and (14), 

along with their boundary conditions [Eqs. (11), (12), (15) and (16)], are solved numerically.  

2.3.  Hybrid nanofluid 

Here we use a mix of water and nanoparticles of alumina (Al2O3) and copper (Cu) as our hybrid 

nanofluid. The Cu nanoparticles are added to a homogenous mixture of water and Al2O3. When the 

Cu volume fraction (𝜙2) is varied, the Al2O3 volume fraction (𝜙1) is held constant, and vice versa. 

The thermophysical properties of this hybrid nanofluid are listed in Table 1.  

Table 1. Mathematical formulae of the thermophysical properties of the Cu-Al2O3-water hybrid 

nanofluid [37]. 

Thermophysical 

properties 
Mathematical formulae 

Fluid density 
𝜌ℎ𝑛𝑓 = 𝜌𝑓(1 − 𝜙2) [(1 − 𝜙1) + 𝜙1 (

𝜌𝑠1

𝜌𝑓
)]

+ 𝜙2𝜌𝑠2
 

Heat capacity 

(𝜌. 𝐶𝑝)
ℎ𝑛𝑓

= (𝜌. 𝐶𝑝)
𝑓

(1 − 𝜙2) [(1 − 𝜙1)

+ 𝜙1

(𝜌. 𝐶𝑝)
𝑠1

(𝜌. 𝐶𝑝)
𝑓

]

+ 𝜙2(𝜌. 𝐶𝑝)
𝑠2

 

Viscosity 𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1 − 𝜙1)2.5(1 − 𝜙2)2.5
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Thermal 

conductivity 

 

𝑘ℎ𝑛𝑓

𝑘𝑏𝑓

=
𝑘𝑠2

+ (𝑚 − 1)𝑘𝑏𝑓 − (𝑚 − 1)𝜙2(𝑘𝑏𝑓 − 𝑘𝑠2
)

𝑘𝑠2
+ (𝑚 − 1)𝑘𝑏𝑓 + 𝜙2(𝑘𝑏𝑓 − 𝑘𝑠2

)
 

 

𝑘𝑏𝑓

𝑘𝑓

=
𝑘𝑠1

+ (𝑚 − 1)𝑘𝑓 − (𝑚 − 1)𝜙1(𝑘𝑓 − 𝑘𝑠1
)

𝑘𝑠1
+ (𝑚 − 1)𝑘𝑓 + 𝜙1(𝑘𝑓 − 𝑘𝑠1

)
 

 

In Table 1,  𝑚 is the shape factor, which is set to 3 for spherical particles and 5.7 for platelet-shaped 

particles. Table 2 lists the thermophysical properties of the individual components of the nanofluid at 

25°C: the base fluid (water) and the constituent nanoparticles (Al2O3 and Cu). 

Table 2. Thermophysical properties of the individual components of the Al2O3-Cu-water hybrid 

nanofluid at 25°C [38]. 

Thermophysical 

properties 
H2O Al2O3 Cu 

𝜌   (
kg

m3
) 997.0 3970 8933 

𝐶𝑝   (
J

kg. K
) 4180 765 385 

𝑘   (
W

m. K
) 0.6071 40 400 

 

3. Numerical parameters 

3.1.  Nusselt number and non-dimensional shear stress  

The cylinder wall experiences a shear stress due to the hybrid nanofluid flow, which is given by 

[32,39]: 

𝜎 = 𝜇ℎ𝑛𝑓[
𝜕𝑤

𝜕𝑟
]𝑟=𝑎, (17) 

where 𝜇ℎ𝑛𝑓 is the dynamic viscosity of the hybrid nanofluid. Eq. (12) is used to obtain a semi-similar 

solution for the shear stress:  

𝜎 = 𝜇ℎ𝑛𝑓
2

𝑎
[2�̅�𝑧𝑓″(1)] ⇒

𝜎𝑎

4𝜇𝑓�̅�𝑧
=

1

𝐴1
𝑓″(1). (18) 

The local coefficient of heat transfer on the external cylinder wall is defined as: 
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ℎ =
𝑞𝑤

𝑇𝑤−𝑇∞
=

−𝑘ℎ𝑛𝑓(
𝜕𝑇

𝜕𝑟
)𝑟=𝑎

𝑇𝑤−𝑇∞
= −

2𝑘ℎ𝑛𝑓

𝑎

𝜕𝜃(1)

𝜕𝜂
, 

(19) 

where the heat flux 𝑞𝑤 is given by: 

𝑞𝑤 = −
2𝑘ℎ𝑛𝑓

𝑎

𝜕𝜃(1)

𝜕𝜂
(𝑇𝑤 − 𝑇∞). (20) 

Consequently, the Nusselt number can be expressed as: 

𝑁𝑢 =
ℎ𝑎

2𝑘𝑓
= −

𝑘ℎ𝑛𝑓

𝑘𝑓
𝜃′(1) = −𝐴4. 𝜃′(1). 

(21) 

3.2.  Entropy generation 

The entropy generated in the present flow system is computed via the following [40,41]: 

�̇�‴
𝑔𝑒𝑛 =

𝑘ℎ𝑛𝑓

𝑇𝑊
2 (

𝜕𝑇

𝜕𝑟
)2 +

2𝜇ℎ𝑛𝑓

𝑇𝑊
[(

𝜕𝑢

𝜕𝑟
)2 + (

𝑢

𝑟
)2 + (

𝜕𝑤

𝜕𝑧
)2 +

1

2
(
𝜕𝑤

𝜕𝑟
)2] +

+
𝜇ℎ𝑛𝑓

𝑘1. 𝑇𝑊
[𝑢2 + 𝑤2].

 

 

(22) 

Substituting the similarity variables from Eq. (12) into Eq. (22), we simplify the expression for the 

local generation of entropy to: 

�̇�‴
𝑔𝑒𝑛 =

4𝑘ℎ𝑛𝑓(𝑇𝑊 − 𝑇∞)2

𝑎2𝑇𝑊
2 [𝜂𝜃′2

]

+
4�̅�2𝜇ℎ𝑛𝑓

𝑇𝑊
[𝜂𝑓″2

+ 4𝑓′2
+

𝑓2

𝜂2
−

2𝑓𝑓′

𝜂
] +

�̅�2𝜇ℎ𝑛𝑓𝑎2

𝑘1𝑇𝑊
[(

𝑓

𝜂
)2 + 4𝑓′2

],

 (23) 

where 𝑁𝐺 =
�̇�‴

𝑔𝑒𝑛

𝑆‴
0

 and 𝑆‴
0 =

4𝑘𝑓(𝑇𝑊−𝑇∞)

𝑎2𝑇𝑊
 is the characteristic rate of entropy generation. 

By incorporating the similarity variables from the local volumetric rate of entropy generation, we find 

𝑁𝐺  via: 

𝑁𝐺 = 𝛬. 𝐴4[𝜂𝜃′2
]

+
𝐵𝑟

𝐴1
{[𝜂𝑓″2

+ 4𝑓′2
+

𝑓2

𝜂2
−

2𝑓𝑓′

𝜂
] + 𝜆[(

𝑓

𝜂
)2 + 4𝑓′2

]},
 

 

(24) 

 

where 𝛬 =
(𝑇𝑊−𝑇∞)

𝑇𝑊
 is the non-dimensional temperature difference, and 𝐵𝑟 =

𝜇𝑓(�̅�.𝑎)2

𝑘𝑓(𝑇𝑊−𝑇∞)
 is the 

Brinkman number. Meanwhile, the Bejan number (
𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑎𝑙𝑢𝑒

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
), is used here to gain 

physical insight into the contributions of the different thermal mechanisms to the total energy loss. 

This metric is defined here as: 

𝐵𝑒 =
𝛬. 𝐴4[𝜂𝜃′2

]

𝐵𝑟
𝐴1

{[𝜂𝑓″2 + 4𝑓′2 +
𝑓2

𝜂2 −
2𝑓𝑓′

𝜂 ] + 𝜆[(
𝑓
𝜂)2 + 4𝑓′2]}

. 
 

(25) 
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4. Grid independence and validation 

To test for grid independence, we compare five different meshes (Fig. 2): 51 × 18, 102 × 36, 

204 × 72, 408 × 144 and 816 × 288 cells, corresponding to 𝜂 and 𝜑. Fig. 2 shows that the 408 ×

144 mesh achieves grid independence. For all the governing equations, the convergence criteria, 

defined as the difference between two successive residuals, are set to 10−7. Discretization of the 

governing equations to algebraic form is performed to second-order numerical accuracy [35,42].  

 

 

Fig. 2 Grid independence test at 𝑅𝑒 = 10 , 𝜆 = 10 ,   𝜆1 = 1.0 , 𝑀 = 1.0 , 𝐵𝑖 = 0.1  , 𝑅𝑑 =

1.0 , 𝜃𝑤 = 1.2  

 

To validate this numerical framework, we compare the present results against previous work. In 

particular, the axial velocity and temperature on the external surface of the cylinder are inspected for 

comparison, with the cylinder removed from the porous layer (large permeability). Fig 3 shows that 

there is close agreement between the two sets of axial velocity and temperature data. 
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(a) 

 

(b) 

 

Fig. 3 Comparison of the present results against those of Gorla [51] at different values of Re. 

5. Estimator and optimization algorithms 

5. 1. Feed-forward artificial neural network  

Originally inspired by biological neural networks [46], an ANN is a versatile tool for 

optimization and estimation. An ANN needs to learn (or be trained) to perform specific tasks, but it 

does not usually require task-specific rules to be defined. It consists of a series of artificial neurons, 

acting analogously to biological neurons [47]. In the present study, a MLP network is used to estimate 

selected parameters. The network has three primary layers: (i) an input layer, (ii) a hidden layer, and 

https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Artificial_neuron
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(iii) an output layer. Input signals are first transmitted to the neurons (shown as circles in Fig. 4), 

which are linked by connections (lines) that are adjustable via a weight factor.    

 

Fig. 4. Graphic representation of a typical ANN with three layers. 

 

The input layer contains 𝑛 +  1 neurons for 𝑛 input(s). All neurons receive input data, except 

the first neuron, which receives an assigned value of 1. In the hidden layer, the total number of 

neurons is 𝑚 + 1. During the construction of a network, the correct value of 𝑚 is evaluated by 

running a series of tests. In the hidden layer, there is one neuron that plays a bias role, with the other 

neurons subjected to an activation function. The sum of the weighted outputs for the output layer is 

given by [47]: 

𝑓𝑖 = 𝑔 (𝑤0,𝑖 + ∑ 𝑤𝑗,𝑖 𝑥𝑗

𝑛

𝑗=1

), 

(26) 

 

 

where 𝑤0,𝑖 is the weight applied to the 𝑖-th neuron in the hidden layer. Meanwhile, 𝑤𝑗,𝑖 represents the 

weight factor applied to the 𝑗-th input of the 𝑖-th neuron in the hidden layer. Moreover, 𝑥𝑗 and 𝑓𝑖 

respectively represent the 𝑗-th input of the ANN as well as the output of the 𝑖-th neuron. The 

activation function 𝑔 can be exponential, logistic or hyperbolic. 

The neurons of the output layer further operate on the network outputs. This is similar to the 

processes in the hidden layer and can be expressed as [47]:  

𝑂𝑢𝑡𝑖 = ℎ (𝑣0,𝑖 + ∑ 𝑣𝑗,𝑖 𝑓𝑗

𝑚

𝑗=1

), 

(27) 

 

 

Input Layer Hidden Layer Output Layer
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where 𝑣0,𝑖 denotes the weights applied to the bias and the 𝑗-th input in the hidden layer. Furthermore, 

𝑣𝑗,𝑖 is the 𝑖-th neuron of the output layer. 

In the present study, an error propagation algorithm is used for ANN training. Such a process 

trains the weights applied to the ANN layers via a supervised learning procedure. The difference 

between the ANN outputs and the anticipated outputs within the learning dataset is used to calculate 

the learning error rate. It is worth noting that the configuration of the MLP network can have major 

effects on its performance. In the interest of a lower error rate, the optimal configuration of the 

network is found by repeating tests with different choices. Thus, the activation function used for the 

neurons in the hidden and output layers, as well as the number of neurons in the hidden layer, are 

found via iteration. In this process, we consider different parameter values and compute the errors of 

the model. 

 

5.2. Selecting features via mutual information  

Features are selected by maximizing a criterion for the outputs of the model and by 

minimizing the mutual information (MI) among all the considered features.  Here, the MI is calculated 

as: 

𝐼(𝑥; 𝑦) = ∬ 𝑝(𝑥, 𝑦) log
𝑝(𝑥)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦, 

(28) 

 

where 𝑝(𝑥), 𝑝(𝑦) and 𝑝(𝑥, 𝑦) are the probability density functions of 𝑥, 𝑦, and their mutual 

occurrence, respectively.  

To reduce the model error, the maximum dependency on the model outputs is required. To 

this end, the minimum-redundancy-maximum-relevance (MRMR) algorithm is used to identify a 

group of features with the strongest correlations among the model outputs and with the weakest 

correlations among the model inputs. The temporal dependence of MRMR is exponential, implying 

that mathematical operations are needed to retrieve a large number of parameters. To achieve this, we 

use the mutual information difference (MID) and the F-test correlation difference (FCD) [48]. The 

latter is computed as follows [49]: 

𝑀𝐼𝐷 = 𝑚𝑎𝑥𝑖∈𝜑(𝑆) [𝐼(𝑖, ℎ) −
1

|𝑆𝑓|
∑ 𝐼(𝑖, 𝑗)

𝑗∈𝑆

], 

(29) 

 

 

where 𝑆𝑓 is a group of selected features.  

 

5.2. Particle swarm optimization (PSO) 
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In PSO, random solutions are first collected, then updates are generated, and finally an 

optimal solution is sought [50]. During each iteration, the two best values are fed to the particles. The 

best solution obtained by a particle during its motion represents the first of these and is known as the 

𝑝𝑏𝑒𝑠𝑡 value. The other ‘best’ refers to the value obtained by all the particles, known as the 𝑔𝑏𝑒𝑠𝑡 

value. 

To find the best solution, it is assumed that the particles enter the search space. The following 

equation is used [52]: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)], (30) 

 

where t and 𝑖 are the iteration and index numbers, respectively. Furthermore, 𝑥 and 𝑣 are the location 

and velocity of the particle, and 𝑟1 and 𝑟2 are the random values produced each time the equation is 

implemented. Meanwhile 𝑐1 and 𝑐2 are acceleration coefficients, whose values are usually between 

zero and two [53]. Once the velocity of a particle is found, its position can be calculated via the 

following equation [52]: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1). (31) 

 

  

6. Results and discussion 

Simulations are performed to generate the data required for ANN training. Several neural intelligence 

models – such as MLP, radial basis function (RBF), support vector regression (SVR) [43] and least 

mean squares (LMS) [44] − are compared so as to identify the optimal method. Fig. 5 shows this 

comparison in terms of the entropy generated. Although similar procedures are performed for the 

other parameters (i.e. the Nusselt and Bejan numbers), they are not shown here as they are in 

qualitative agreement with Fig. 5. This figure confirms the more accurate results of the MLP method 

in comparison with the other algorithms, through an evaluation of the mean absolute error (MAE). 

Thus, the MLP method is used here. Fig. 5 shows that the MLP method exhibits progressively better 

performance as the number of features grows. The full ordering of the feature prioritization for 

entropy generation, the Nusselt number, and the Bejan number are listed in Tables 3, 4 and 5, 

respectively. 
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Fig. 5. Mean absolute error (MAE) in estimating the entropy generation with various potential 

models. 

 

Table 3. Order of prioritization for features related to the entropy generation number. 

Ordering 1 2 3 4 5 6 7 8 9 

Feature 𝐵𝑟 𝜆 𝜂 𝑅𝑒 𝑃𝑟 𝜙1 𝜙2 𝑀 𝐷 

 

Table 4. Order prioritization for features related to the Nusselt number. 

Ordering 1 2 3 4 5 6 

Feature 𝜙2 𝑅𝑒 𝜙1 𝑃𝑟 𝑀 𝜆 

 

Table 5. Order of prioritization for features related to the Bejan number. 

Ordering 1 2 3 4 5 6 7 8 9 

Feature 𝜂 𝐷 𝑃𝑟 𝜆 𝑅𝑒 𝐵𝑟 𝑀 𝜙1 𝜙2 

 

The default values of the parameters used in Figs. 6-10 are listed in Table 6. Fig. 6 shows predictions 

of the temperature in non-dimensional form. It can be seen that increasing the shape factor (i.e. 

platelet-shaped nanoparticles) improves heat transfer and reduces the non-dimensional temperature. 

As the permeability parameter increases, the non-dimensional temperature begins to saturate (Fig. 6a). 

Thus, reducing the permeability of the porous medium enhances the heat transfer from the cylinder. It 

is worth noting that similar findings have been reported before for simpler flows moving through 

porous media [2,3]. Furthermore, as the volume fraction of nanoparticles increases, so too does the 

difference between the local temperature and its value at infinity. This is because the thermal 

boundary layer becomes thicker owing to the higher thermal conductivity of the nanofluid arising 
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from the higher nanoparticle concentration [31]. In turn, this increases the non-dimensional 

temperature, as discussed in Ref. [21]. Fig. 6b shows that this behavior can be reproduced by 

increasing the concentration of either one of the two nanoparticle components. Moreover, Fig. 6b 

shows that increasing the Reynolds number causes the non-dimensional temperature to drop. This is 

attributed to the enhanced forced convection at higher Reynolds numbers, a phenomenon that has 

been reported in previous studies [21,30].  

Table 6. Default numerical values of the parameters in Figs. 6-10. 

Parameter 𝑅𝑒 𝜆1 𝜙2 𝑃𝑟 m 𝜙1 𝛬 𝜆 𝐾  𝐵𝑖 Br 𝜆 𝑆𝑐 

Numerical values 10.0 10.0 0.05 1.0 3 0.05 1 100 1.0 0.1 1 1.5 0.1 

 

 

 

(a) 

 

(b) 

Fig. 6. Non-dimensional temperature (𝜃) response to (a) the shape factor of nanoparticles and (b) the 

Reynolds number (𝑅𝑒). Data are shown for several values of the permeability parameter (𝜆), the 

volume fraction of Al2O3 nanoparticles (𝜙1), and that of Cu nanoparticles (𝜙2). 

 



17 
  

Fig. 7 shows the non-dimensional entropy generation (𝑁𝐺) as several key parameters are varied. 

Smaller Brinkman numbers indicate smaller fluid viscosities and larger thermal conductivities. Both 

of these effects tend to reduce irreversibilities. At smaller Brinkman numbers, the fluid conductivity is 

high, so adding nanoparticles has no considerable effect on the generation of entropy. Nonetheless, 

increasing the Brinkman number causes the flow friction to increase, contributing to greater 

irreversibilities. Fig. 7a shows a single-maximum response surface, indicating a complex contribution 

of the nanoparticle concentration to the thermal and frictional behavior of the system. Reducing the 

Reynolds number is seen to suppress convective heat transfer, strengthening gradients in flow 

temperature and contributing to greater irreversibilities, as shown in Fig. 7b. Furthermore, reducing 

the permeability parameter promotes entropy generation by impeding flow through the porous 

medium [37]. However, it also impairs heat transfer [31], amplifying temperature gradients and 

generating more entropy.   

 

(a) 

 

(b) 

Fig. 7. Non-dimensional entropy generation (𝑁𝐺) response to (a) the Brinkman number (𝐵𝑟) and 

(b) the permeability parameter (𝜆). Data are shown for several values of the Reynolds number (𝑅𝑒), 

the volume fraction of Al2O3 nanoparticles (𝜙1), and that of Cu nanoparticles (𝜙2). 
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Fig. 8 shows the variation in the Bejan number (
𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
). From Fig. 8a, it can be 

seen that increasing the shape factor of nanoparticles enhances heat transfer, thus weakening thermal 

gradients and impairing entropy generation. Although increasing the permeability parameter increases 

entropy generation, it has no significant effect on the Bejan number, owing to greater frictional 

irreversibilities and greater total entropy generation. Increasing the Prandtl number decreases thermal 

diffusivity and hence thermal convection, but it also increases thermal entropy generation, giving rise 

to higher Bejan numbers. As Fig. 8b shows, increasing the Reynolds number also increases the Bejan 

number. Fig. 7 already showed that increasing the Brinkman number weakens temperature gradients 

and impairs the generation of entropy. 

 

(a) 

 

(b) 
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(c) 

Fig. 8. Bejan number (𝐵𝑒) response to (a) the shape factor of nanoparticles, (b) the permeability 

parameter (𝜆) and (c) the volume fraction of Cu nanoparticles (𝜙2). Data are shown for several 

values of the Prandtl number (𝑃𝑟), Brinkman number (𝐵𝑟), Reynolds number (𝑅𝑒), and the ratio of 

the temperature at the cylinder wall to that at infinity (Λ). 

 

It will be shown later that increases in the concentration of nanoparticles can enhance the heat transfer 

rate, thus suppressing thermal entropy generation. This explains the trend seen in Fig. 8c, in which the 

Bejan number drops at higher values of the nanoparticle volume fraction. Increasing Λ − the ratio of 

the temperature at the wall to that at infinity − increases the thermal gradient and hence the Bejan 

number.   

Fig. 9 shows the non-dimensional shear stress as a function of various parameters. The shear stress is 

an important consideration in engineering analyses because it affects pumping losses. It can be seen 

that the non-dimensional shear stress grows as the Reynolds number rises. This occurs because, near 

the surface of the cylinder, the velocity gradient steepens as the Reynolds number increases. The 

velocity gradient also steepens as the permeability parameter increases, which can be attributed to a 

greater resistance to fluid motion. However, the opposite trend is observed when the nanoparticle 

concentration increases. This could be due to the direct effect of the nanoparticles on the fluid 

viscosity, which appears in the denominator of the non-dimensional shear stress and therefore acts to 

reduce it. 
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(a) 

 

(b) 

Fig. 9. Non-dimensional shear stress (
𝜎.𝑎

4𝜇𝑓�̅�.𝑧
) response to (a) the permeability parameter (𝜆) and (b) 

the Reynolds number (𝑅𝑒). Data are shown for several values of the volume fraction of Al2O3 

nanoparticles (𝜙1) and that of Cu nanoparticles (𝜙2). 

 

Figure 10a shows that, consistent with the literature [6-8], the Nusselt number increases as the 

nanoparticle concentration increases. This trend is further demonstrated in Fig. 10b. As expected from 

classic heat transfer research, Fig. 10a shows a direct correlation between the Nusselt number and the 

Reynolds number. However, the dependence of the Nusselt number on the Prandtl number is weaker 

(Figs. 10a and 10b). Furthermore, the dependence of the Nusselt number on the permeability 

parameter is particularly strong at low values of this parameter (Fig. 10b).  
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(a) 

 

(b) 

Fig. 10. Nusselt number (𝑁𝑢) response to (a) 𝜙2 and (b) the Prandtl number (𝑃𝑟). Data are shown 

for several values of the Reynolds number (Re) and the permeability parameter (𝜆). 

Returning to Fig. 6, it was shown that the temperature discrepancy can be reduced by increasing the 

permeability parameter, which enhances heat transfer, causing the Nusselt number to rise.  

The results presented above have demonstrated the complex behavior of this flow system from 

thermal, thermodynamic and hydraulic viewpoints. For practical engineering analysis, it is often 

useful to know the mathematical correlations relating the system characteristics to various control 

parameters. The predicted results are now used to develop such correlations. It should be noted, 

however, that the accuracy of the method used to extract the correlations should be within acceptable 

limits. This requirement can be met by using an optimization algorithm with a high level of accuracy 

and affordability. Here a PSO algorithm is used to develop heat transfer and hydraulic correlations. 

The range of parameters used in the correlations are listed in Table 7. The correlations for the Nusselt 

number are listed in Table 8, along with the MAE. The MAE drops as the number of parameters in the 

correlations increases. For the most global correlation (with six effective parameters), the MAE is less 

than 0.5, which is considered acceptable in this study. Table 9 lists the correlations for the non-

dimensional shear stress. The effective parameters chosen for this are found via importance ordering 
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and by considering the MAE. As well as being an engineering design tool, these correlations can be 

analyzed to gain fundamental insight into the underlying flow physics. For example, the numerical 

values of the individual exponents in the correlations represent their relative influences on the non-

dimensional shear stress and the Nusselt number.   

Table 7. Ranges of the parameters used in the correlation extracting procedure.  

0 ≤ 𝜙2 ≤ 0.4 0.1 ≤ 𝑅𝑒 ≤ 100 0 ≤ 𝜙1 ≤ 0.4 0.1 ≤ 𝑃𝑟 ≤ 7.0 3 ≤ 𝑀 ≤ 5.7 0.1 ≤ 𝜆 ≤ 1000 

 

Table 8. Correlations for the Nusselt number. 

Correlation for the Nusselt number Parameters Mean 

absolute 

error  

𝑁𝑢 =  4.099 + 12.015 × 𝜙2
1.383

 𝜙2 1.8293 

𝑁𝑢 =  2.258 + 0.800 × 𝜙2
0.574 × 𝑅𝑒1.040 𝜙2, 𝑅𝑒  1.0218 

𝑁𝑢 =  3.782 + 3.083 × 𝜙2
1.048 × 𝑅𝑒1.471 × 𝜙1

1.001
 𝜙2, 𝑅𝑒 , 𝜙1 0.9962 

𝑁𝑢 =  4.343 + 11.082 × 𝜙2
1.870 × 𝑅𝑒1.971 × 𝜙1

1.742 × 𝑃𝑟2.124 𝜙2, 𝑅𝑒 , 𝜙1, 𝑃𝑟 0.5249 

𝑁𝑢 = 4.277 + 6.967 × 𝜙2
1.663 × 𝑅𝑒1.869 × 𝜙1

1.586 × 𝑃𝑟2.006 × 𝑀0.074 𝜙2, 𝑅𝑒 , 𝜙1, 𝑃𝑟, 𝑀 0.4932 

𝑁𝑢 = 3.988 + 6.062 × 𝜙2
1.252 × 𝑅𝑒1.594 × 𝜙1

1.157 × 𝑃𝑟1.684 × 𝑀0.368

× 𝜆0.028 

𝜙2, 𝑅𝑒 , 𝜙1, 𝑃𝑟, 𝑀, 𝜆 0.4383 

 

Table 9. Correlations for the non-dimensional shear stress. 

Correlation for the non-dimensional shear stress  Parameters  Mean 

absolute 

error 

𝜎. 𝑎

4𝜇𝑓�̅�𝑧
=  4.294 + 12.649 × 𝜙1

1.620
 𝜙1 1.843 

𝜎. 𝑎

4𝜇𝑓�̅�𝑧
=  4.186 + 349.156 × 𝜙1

1.427 × 𝜙2
1.502

 𝜙1, 𝜙2  1.718 

𝜎. 𝑎

4𝜇𝑓�̅�𝑧
=  4.572 + 158.364 × 𝜙1

3.335 × 𝜙2
3.418 × 𝑅𝑒2.961 𝜙1, 𝜙2, 𝑅𝑒  1.174 

𝜎. 𝑎

4𝜇𝑓�̅�𝑧
=  4.540 + 63.787 × 𝜙1

2.823 × 𝜙2
2.894 × 𝑅𝑒2.642 × 𝜆0.003 𝜙1, 𝜙2, 𝑅𝑒 , 𝜆 1.145 

𝜎. 𝑎

4𝜇𝑓�̅�𝑧
= 4.511 + 46.080 × 𝜙1

2.556 × 𝜙2
2.618 × 𝑅𝑒2.470 × 𝜆0.061 × 𝑃𝑟2.715 𝜙1, 𝜙2, 𝑅𝑒 , 𝜆, 𝑃𝑟 0.633 

𝜎. 𝑎

4𝜇𝑓�̅�𝑧
= 4.458 + 421.910 × 𝜙1

2.142 × 𝜙2
2.225 × 𝑅𝑒2.228 × 𝜆0.189 × 𝑃𝑟2.429

× 𝑀−2.702 

𝜙1, 𝜙2, 𝑅𝑒 , 𝜆, 𝑃𝑟, 𝑀 0.584 
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7. Conclusions 

We have numerically investigated the heat convection and thermodynamic irreversibilities of a flow 

of Al2O3-Cu-water hybrid nanofluid moving around a cylinder in porous media. A similarity solution 

aided by a finite difference scheme was used to solve for the flow and thermal fields. Although this 

approach gave accurate results, the large number of variables and their mutual interactions 

complicated the problem. Consequently, a parametric study would have required a large number of 

simulations to be performed. Instead, we applied a data-driven predictor that leverages machine 

learning to develop correlations for the flow and heat transfer characteristics. Numerical data were 

generated and then fed to a multi-layer perception neural network. After the network was trained, the 

response of the heat transfer and irreversibility to variations in the control parameters was examined. 

The predictions showed that decreasing the porosity or increasing the Reynolds number led to 

enhanced heat transfer via intensification of the forced convection process. Similar changes were 

observed when increasing the volume fraction of nanoparticles. Spherical-shaped nanoparticles were 

found to produce higher rates of heat transfer than platelet-shaped nanoparticles. As expected, all the 

trends associated with enhanced heat transfer were found to reduce the thermal and total 

irreversibilities. Moreover, it was shown that increasing the porosity of the medium or the Reynolds 

number led to an increase in shear stress. Machine learning techniques were then further exploited to 

develop thermohydraulic correlations, which provided a deeper fundamental understanding of the 

flow physics as well as being useful for engineering design analysis. In particular, particle swarm 

optimization was used, and correlations were developed for the Nusselt number and the non-

dimensional shear stress as a function of various control parameters. The present study highlights the 

potential of using neural networks and particle swarm optimization in predicting the thermodynamic 

and thermohydraulic characteristics of complex thermal and solutal systems.   
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