Molecular simulation of chevrons in confined smectic liquid crystals

Webster, R. E., Mottram, N. J. and Cleaver, D. J. (2003) Molecular simulation of chevrons in confined smectic liquid crystals. Physical Review E, 68(2), 021706. (doi: 10.1103/PhysRevE.68.021706) (PMID:14524992)

Full text not currently available from Enlighten.


Chevron structures adopted by confined smectic liquid crystals are investigated via molecular dynamics simulations of the Gay-Berne model. The chevrons are formed by quenching nematic films confined between aligning planar substrates whose easy axes have opposing azimuthal components. When the substrates are perfectly smooth, the chevron formed migrates rapidly towards one of the confining walls to yield a tilted layer structure. However, when substrate roughness is included, by introducing a small-amplitude modulation to the particle-substrate interaction well depth, a symmetric chevron is formed which remains stable over sufficiently long run times for detailed structural information, such as the relevant order parameters and director orientation, to be determined. For both smooth and rough boundaries, the smectic order parameter remains nonzero across the entire chevron, implying that layer identity is maintained across the chevron tip. Also, when the surface-stabilized chevron does eventually revert to a tilted layer structure, it does so via surface slippage, such that layer integrity is maintained throughout the chevron to tilted layer relaxation process.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Mottram, Professor Nigel
Authors: Webster, R. E., Mottram, N. J., and Cleaver, D. J.
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Journal Name:Physical Review E
Publisher:American Physical Society
ISSN (Online):1095-3787
Published Online:26 August 2003

University Staff: Request a correction | Enlighten Editors: Update this record