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Abstract—In this paper, a low drop-out (LDO) linear regulator
with high power supply rejection ratio(PSR) and fast transient
response is proposed for various applications. To achieve fast
transient response, this work employs variable bias and transient-
boost capacitance. The variable bias structure enhance the slew
rate and PSR of LDO. The transient-boost capacitance (TBC) is
set in a proper location, using its voltage characteristic to enhance
transient response without consuming quiescent current, and it
also improves circuit’s stability. This circuit is designed based
on TSMC 65nm CMOS Technology and verified by Cadence
simulation environment. According to the simulation results, the
LDO achieves a PSR of 68.3dB and 51.4dB at 10kHz and 1MHz.
Undershoot and overshoot of Vout are 190mV and 143mV under
a varying load current from 20mA to 80mA with edge time of
1ns.

Index Terms—Variable bias, transient-boost capacitance, LDO,
fast transient response, high PSR

I. INTRODUCTION

In CMOS circuit systems, with improvement of the system-
on-chip integration and combination of analog and digital
circuits in a single chip, ripple from power supply has a great
influence on signal propagation. [1] In this case, low dropout
linear regulators are always employed as power management
to solve this problem. In many portable device applications,
it is common for the digital circuit to have many different
operation modes. When the digital circuit switches from one
operation mode to another, load and output voltage of the
LDO can change quickly. [2] Because most digital circuits do
not react favorably to large voltage transients, it is necessary
to improve the LDO’s transient response. In addition, due to
large noise generated by RF blocks and DC-DC converter,
it is also important for the LDO to have high power supply
rejection ratio(PSR) to prevent these noise from being coulped
to transmission track. [3] Therefore, designing a stable low
dropout linear regulator (LDO) with high PSR, low quiescent
current and fast transient response is very important for various
applications. However, many previous techniques achieve only
one of these advantages or use relatively complicated structure.

In [4], a cross-coupled common gate input stage and adap-
tive bias circuit is employed to get fast transient response.
However, it has a relatively large undershoot/overshoot of
Vout, and the transient response can be more fast. Structure

The work of ** was supported by **.

and technology also limit its bandwidth and power consump-
tion. Paper [5] presents a LDO with a high pass filter, dual-
input transconductance error amplifier, and a mirror NMOS.
It achieves good transient response in a wide range of load
current change and high PSR over a wide temperature range,
and its output current maximum can reach 3 A. Circuit in [6]
uses dynamically-biased gain stage and overshoot reduction
structure to improve transient response. Its feedback network
help lower the quiescent current of LDO and the chip’s
area. Nevertheless, setting time is relatively long and PSR is
relatively low.

This paper presents a LDO circuit that achieves high PSR
and fast transient response with variable bias, transient-boost
capacitance and NMOS regulation FET. When Vout changes
in a short time, the difference from Vref will be amplified and
reversed by the folded cascode EA, then goes through unity-
gain buffer and NMOS regulation FET to restore the output
voltage to the former value. The rest of this paper is divided
into three sections. The proposed LDO is discussed in Section
2. The simulation results of the LDO is shown in section 3,
and Section 4 is the conclusion of this paper.

II. DESIGN OF THE PROPOSED LDO

Fig.1 shows the schematic of the proposed LDO. This
LDO consists of a buffer, an error amplifier (EA) with
variable bias and transient-boost capacitance (TBC), and an
NMOS regulation FET (MN ). The EA in this circuit uses
a folded cascode structure to amplify small signal, which
provides high voltage gain and high PSR. M17,M18 is the
input stage of EA, and M15,M16,M7,M8,M9,M10 generate
bias current for EA. Variable bias structure, which consist
of M9,M10,M11,M12,M13,M14,M15, is used to change
the bias current of EA when transient load change, thus
provides higher slew rate (SR) of EA to enhance transient
response. C2 is used to lower undershoot and overshoot of
Vout when transient load change. C1 is the transient-boost
capacitance (TBC), and its voltage coupling characteristic help
to improve transient response. Because this circuit use NMOS
as regulation FET, an extra supply power voltage (VDD) is
used to power EA, variable bias and buffer to ensure low
dropout voltage.
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Fig. 1. The Proposed LDO

The dominant pole of this circuit is set at the output node
of EA (ampout) due to high output resistance of EA and
TBC. And because of lower Ro in TSMC 65nm CMOS
Technology, this pole ωampout is at relatively high frequency,
hence obtain bigger GBW(gain-bandwidth product), faster
transient response and better PSR. NMOS Regulation FET
and cascode structure of EA ensure big resistance seen from
VDD to Vout, thus improve the PSR.

A. Variable Bias

In Fig.1, variable bias structure consists of sensing stage
(M11,M12,M13 ,M14), PMOS bias stage (M15) and NMOS
bias stage (M9,M10). M13 sense a fraction (1/K1) of IL
flowing through MN , and M12,M14 copy and amplify this
current by K2 times. M9,M10 are placed in parallel with
M7,M8 to copy a fraction (1/K3) of the current flowing
through M14. M15 is placed in parallel with M16 to copy
a fraction (1/K4) of the current flowing through M11,M13.
During transient load change when Vout sees an undershoot
(∆Vout), M13 will detects ∆Vout and currents flowing through
M9,M10,M12,M14, M15 will increase, hence the bias current
of EA will increase. Assume the increased current of M15 all
flow though M18, slew rate(SR) of EA can be expressed as:

SR =
IM8 + ( K2

K1×K3
− 1

K1×K4
) × (IL + ∆IL)

C1

IM8, IL is the current flowing through M8,MN in quiescent
mode (IL hasn’t changed). Because K2

K1×K3
� 1

K1×K4
, so the

SR of EA is improved when Vout undershoots (∆IL>0).
As shown in Fig.1, PMOS bias stage (M15) forms another

negative feedback loop (Path 1) for the ripple of input voltage
(Vin), hence enhance the PSR of LDO. When voltage ripple
of Vin couple to Vout, the conventional negative feedback
loop is through M6,M18,MN and buffer to dampen the
ripple coupled to Vout, which is a main function of a

traditional LDO. In this work, with PMOS bias stage of
variable bias structure, another negative feedback loop consist
of M6,M11,M13,M15,M18,buffer is employed to enhance the
dampening effect, thus significantly improve the PSR of the
circuit.

B. Transient-boost Capacitance (TBC)

The TBC (C1) is employed between the gate of NMOS
bias stage (M9,M10) in variable bias and output node of
EA (ampout). During transient load change, Vout will in-
crease/decrease, and Vampout will decrease/increase due to
the negative feedback loop. Using the characteristic of a
capacitance that transient voltage change of one end of C1
will be coupled into the other end, increase/decrease of
ampout will help the gate voltage(VG) of M14,M10,M9

to increase/decrease and vice versa. And because VG of
M14,M10,M9 have the same trend of Vampout during tran-
sient load change, a capacitance between these two nodes will
improve transient response.

In small signal analysis, because ωampout is the dominant
pole, TBC will push this pole to a lower frequency, hence
improve LDO’s phase margin and stability. Moreover, em-
ploying TBC brings an zero as shown in Fig.2, which improve
gain bandwidth (GBW) and phase margin. While achieving all
these advantages mentioned above, employing TBC doesn’t
bring any more quiescent current.

C. Buffer Stage

In a LDO, output resistance of EA is usually big due to
its high gain, and gate parasitic capacitance of regulation
FET is also big because of its large width-length ratio. So,
if EA directly connect to regulation FET, there will be a
pole at very low frequency, which could cause small GBW
and slow transient response. To avoid this situation, a buffer
is always employed in LDO circuits to separate the big
resistance and capacitance. In this paper, an unity-gain buffer



with operational transconductance amplifier and current mirror
serves that function.
M20 and M21 form the input stage of this unity-gain buffer,

and M22 generates the bias current for the amplifier inside.
M19,M23,M24,M25,M26,M27 copy and amplify the current
flowing through M20,M21 to the output side, putting big
current in just one road, thus consume less quiescent current
compared to conventional unity-gain buffer and improve SR
at the same time. Because higher SR brings faster speed when
voltage changing, this buffer helps to improve LDO’s transient
response.

D. NMOS Regulation FET

Because gate parasitic capacitance(CG) of NMOS regu-
lation FET is much smaller than PMOS FET, the second
dominant pole ωvg(this pole is at the gate of MN ) is at higher
frequency, so it can achieve a wider gain bandwidth and a
fast slew rate. It also improves the load transient response
including settling time and undershoot/ overshoot of output
voltage, and the PSR of the LDO in high frequency. Besides,
NMOS regulation FET forms a source follower structure
which has relatively low output resistance. It ensures the output
pole at high frequency in a wide range of load change, thus
maintains a good loop stability even in light current load.
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III. SIMULATION RESULTS

The proposed LDO regulator is designed in TSMC 65nm
CMOS Technology and simulated by Cadence simulation
environment. Vout of this LDO is 1V and Vin is 1.2V, thus
the dropout voltage is 200mV. The simulated IQ of the whole
circuit is 58.2 µA. The loop-gain and phase of this LDO is
shown in Fig.2 at IL = 5, 20, 80mA , CL = 0pF .

In Fig.3, transient load response is simulated at CL = 0pF .
Setting time of Vout from undershoot/overshoot is 137ns/99ns
when load current varies from 20mA to 80mA with a rise/fall
time of 1ns. The undershoot/overshoot voltage of Vout is
190mV/143mV.

Fig.4 shows the simulated PSR of 68.3dB and 48dB at
10kHz and 1MHz. The figure also shows the simulated PSR of
60dB at 10kHz when PMOS bias stage (M15) of variable bias
is disabled. By comparison, PMOS bias stage help increase
PSR at low frequency by 14%.

Table.I summarizes different performance parameters of the
presented LDO and compares them with prior arts designed



TABLE I
COMPARISON WITH PRIOR ARTS

Parameter This work 2014 [3] 2013 [6] 2012 [7] 2014 [8] 2018 [9] 2016 [10] 2019 [11]

Max IL (mA) 80 10 100 200 50 100 30 10

Vin/Vout (V) 1.2/1 1.15/1 1.2/1 2.07-
5.5/1.03

0.75-
1.2/0.55

1.2/1 2.4-2.6/1 1.2/0.9-1.1

IQ (µA) 58.2 50 0.9-82.4 176 200 102 161 28/3

∆Vout (mV) 190 43 68.8 104 24 37 195 40

sim/measured simulated measured measured measured measured simulated measured simulated

Tsetting (ns) 137 0.65 6000 ∼60 250 ∼340 ∼500 <1000

Edge time (ns) 1 0.2 300 16 100 80 0.2 100

∆IL (mA) 60 10 100 149 49 98 30 9

PSR(dB)@Hz 68.3@10k
51.4@1M

15.5@1G 58@10k 50@1k 51@1k - 40@10k 26@1M

FOM(mV) [6] 0.92 0.22 0.93 9.8 48.98 15.4 1.05 6.67

with the same 65nm technology. To compare the load-transient
response performance of different LDO, the edge-time of load
step, undershoot of Vout voltage and IQ are all key factors.
In [6], the figure-of-merit (FOM) is presented to compare
transient response performance:

FOM = K(
∆Vout × IQ

∆ILOAD
)

K is a ratio:

K =
∆t used in the measurement

the smallest ∆t among designs for comparison

A small FOM means the LDO achieves good transient re-
sponse. FOM of this LDO is calculated as 0.92mV, and is
relatively small due to low IQ and small edge time. PSR is
relatively high as shown in Table.I, and maintains a high value
over 1 MHz.

IV. CONCLUSION

In this paper, an NMOS low dropout regulator using vari-
able bias and transient-boost capacitance is presented. With
zero load capacitance, the proposed LDO has 190/143 mV
undershoot/overshoot of output voltage and 135 ns settling
time when load current changing from 20 to 80 mA in 1 ns
edge-time. And it achieves a PSR of 68.3dB and 51.4dB at
10kHz and 1MHz.
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