Data-driven re-referencing of intracranial EEG based on independent component analysis (ICA)

Michelmann, S. et al. (2018) Data-driven re-referencing of intracranial EEG based on independent component analysis (ICA). Journal of Neuroscience Methods, 307, pp. 125-137. (doi: 10.1016/j.jneumeth.2018.06.021) (PMID:29960028)

Full text not currently available from Enlighten.


Background: Intracranial recordings from patients implanted with depth electrodes are a valuable source of information in neuroscience. They allow for the unique opportunity to record brain activity with high spatial and temporal resolution. A common pre-processing choice in stereotactic EEG (S-EEG) is to re-reference the data with a bipolar montage. In this, each channel is subtracted from its neighbor, to reduce commonalities between channels and isolate activity that is spatially confined. New Method: We challenge the assumption that bipolar reference effectively performs this task. To extract local activity, the distribution of the signal source of interest, interfering distant signals, and noise need to be considered. Referencing schemes with fixed coefficients can decrease the signal to noise ratio (SNR) of the data, they can lead to mislocalization of activity and consequently to misinterpretation of results. We propose to use Independent Component Analysis (ICA), to derive filter coefficients that reflect the statistical dependencies of the data at hand. Results: We describe and demonstrate this on human S-EEG recordings. In a simulation with real data, we quantitatively show that ICA outperforms the bipolar referencing operation in sensitivity and importantly in specificity when revealing local time series from the superposition of neighboring channels. Comparison with Existing Method(s): We argue that ICA already performs the same task that bipolar referencing pursues, namely undoing the linear superposition of activity and will identify activity that is local. Conclusions: When investigating local sources in human S-EEG, ICA should be preferred over re-referencing the data with a bipolar montage.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Hanslmayr, Professor Simon and Wimber, Professor Maria
Authors: Michelmann, S., Treder, M. S., Griffiths, B., Kerrén, C., Roux, F., Wimber, M., Rollings, D., Sawlani, V., Chelvarajah, R., Gollwitzer, S., Kreiselmeyer, G., Hamer, H., Bowman, H., Staresina, B., and Hanslmayr, S.
College/School:College of Medical Veterinary and Life Sciences > School of Psychology & Neuroscience
Journal Name:Journal of Neuroscience Methods
ISSN (Online):1872-678X
Published Online:28 June 2018

University Staff: Request a correction | Enlighten Editors: Update this record