

Horn, R., Fowler, S. and Cheney, J. (2019) Language-Integrated Updatable
Views. In: 31st Symposium on Implementation and Application of
Functional Languages (IFL 2019), Singapore, 25-27 Sep 2019, p. 13. ISBN
9781450375627 (doi:10.1145/3412932.3412945)

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

© 2020 Association for Computing Machinery. This is the author's version
of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in the Proceedings of the
31st Symposium on Implementation and Application of Functional
Languages (IFL 2019), Singapore, 25-27 Sep 2019, ISBN 9781450375627,
p. 13 (doi:10.1145/3412932.3412945)

http://eprints.gla.ac.uk/223080/

Deposited on: 10 September 2020

Enlighten – Research publications by members of the University of
 Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1145/3412932.3412945
http://dx.doi.org/10.1145/3412932.3412945
http://eprints.gla.ac.uk/223080/
http://eprints.gla.ac.uk/

Language-Integrated Updatable Views
Rudi Horn

University of Edinburgh

United Kingdom

r.horn@ed.ac.uk

Simon Fowler

University of Edinburgh

United Kingdom

simon.fowler@ed.ac.uk

James Cheney

University of Edinburgh

The Alan Turing Institute

United Kingdom

jcheney@inf.ed.ac.uk

ABSTRACT
Relational lenses are a modern approach to the view update prob-
lem in relational databases. As introduced by Bohannon et al. [5],

relational lenses allow the definition of updatable views by the

composition of lenses performing individual transformations. Horn

et al. [20] provided the first implementation of incremental rela-
tional lenses, which demonstrated that relational lenses can be im-

plemented efficiently by propagating changes to the database rather
than replacing the entire database state.

However, neither approach proposes a concrete language design;

consequently, it is unclear how to integrate lenses into a general-

purpose programming language, or how to check that lenses satisfy

the well-formedness conditions needed for predictable behaviour.

In this paper, we propose the first full account of relational lenses

in a functional programming language, by extending the Links web

programming language. We provide support for higher-order predi-

cates, and provide the first account of typechecking relational lenses

which is amenable to implementation. We prove the soundness of

our typing rules, and illustrate our approach by implementing a

curation interface for a scientific database application.

ACM Reference Format:
Rudi Horn, Simon Fowler, and James Cheney. 2020. Language-Integrated

Updatable Views. In Proceedings of International Symposium on Implementa-
tion and Application of Functional Languages (IFL’19). ACM, New York, NY,

USA, 12 pages.

1 INTRODUCTION
Relational databases are considered the de facto standard for storing
data persistently, offering a ready-to-use method for storing and

retrieving data efficiently in a broad range of contexts.

Programs interface with relational databases using the Structured
Query Language (SQL). To query the database, the host application

needs to generate an SQL query from user input, issue it to the

database server, and then process the result in a way that aligns

with the result of the query.

As an example, we consider a music database, originally pro-

posed by Bohannon et al. [5] and shown in Figure 1. There are

two tables: the albums table, which details the quantities of albums

available, and the tracks table, which details the track name, year of

release, rating, and the album on which the track is contained. Our

application could generate a query by using string concatenation

IFL’19, September 2019, Singapore
© 2020 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
International Symposium on Implementation and Application of Functional Languages
(IFL’19).

albums

album quantity

Disintegration 6

Show 3

Galore 1

Paris 4

Wish 5

tracks

track year rating album

Lullaby 1989 3 Galore

Lullaby 1989 3 Show

Lovesong 1989 5 Galore

Lovesong 1989 5 Paris

Trust 1992 4 Wish

Figure 1: Music Database

and then assume the result will be in a known format containing

records of track names of type string and years of type int.
However, such an approach leaves many possible sources of

error, most of which are related to a lack of cross-checking of the

different stages of execution. The application could have bugs in

query generation, which might result in incorrect queries or even

security flaws. Furthermore, a generated query may not produce

a result of the type that the application expects, resulting in a

runtime error. The user experience of the programmer is also poor,

as tooling provides little help and the programmer must write code

in two different languages, while beingmindful not to introduce any

bugs in the application. We refer to this as an impedance mismatch
between the host programming language and SQL [9].

Existingwork on language integrated query (LINQ) allows queries
to be expressed in the host language [8, 30]. Rather than generating

an SQL query using string manipulation, the query is written in the

same syntax as the host programming language. The user need not

worry about how the query is generated, and the code that performs

the database query is automatically type-checked at compile time.

As an example of LINQ, consider the following function, written

in the Links [8] programming language, which queries the albums

table and returns all albums with a given album name:

fun getAlbumsByName(albumName) {
for (a <-- albums)
where (a.album == albumName)
[a]

}

The corresponding SQL for getAlbumsByName("Galore") would be:

SELECT * FROM albums AS a WHERE a.album == "Galore"

IFL’19, September 2019, Singapore Rudi Horn, Simon Fowler, and James Cheney

Database 𝑙1 𝑙2 𝑙3

get

put

get

put

get

put

get

put

Figure 2: Relational Lenses

LINQ approaches are convenient for querying databases, but still

take a relatively fine-grained approach to data manipulation (up-

dates). The programmer is required to explicitly determine which

changes were made at the application level. All modifications made

by the user must then be translated into equivalent insertions,

updates and deletions for each table. In contrast, a typical user

workflow consists of fetching a subset of the database, called a view,
making changes to this view, and then propagating the changes to

the database. Defining views that can be updated directly is known

as the view-update problem, a long-standing area of study in the

field of databases [4].

Relational Lenses. A recent approach to the view update problem

is to define views using composable relational lenses [5]. Lenses are
a form of bidirectional transformation [14]. With relational lenses,

instead of defining the view using a general SQL query, the pro-

grammer defines the view by combining individual lenses, which

are known to behave in a correct manner. Bohannon et al. [5] define

lenses for relational algebra operations, in particular, projections,

selections and joins. Figure 2 shows the composable nature of rela-

tional lenses.

A relational lens can be considered a form of asymmetric lens,
in which we have a forward (get) direction to fetch the data, and a

reverse (put) direction to make updates [16]. A bidirectional trans-

formation is well-behaved if it satisfies round-tripping guarantees:

GetPut put 𝑠 (get 𝑠) = 𝑠 PutGet get (put 𝑠 𝑣) = 𝑣

Relational lenses are equipped with typing rules which ensure op-

erations on lenses are well-behaved. The type system for relational

lenses tracks the attribute types of the defined view as well as con-

straints, including predicates and functional dependencies, which
are not easily expressible in an ML-like type system.

From theory to practice. The theory of relational lenses was de-

veloped over a decade ago by Bohannon et al. [5], but until recently

there has been little work on practical implementations. Horn et al.

[20] recently presented the first implementation using an incre-

mental semantics. However Horn et al. [20] focus on performance

rather than language integration, leaving two issues unresolved:

• How to integrate relational lenses, which are defined as a

sequential composition of primitives, into a functional lan-

guage, where lenses are composed using lens subexpressions.

• How to define and verify the correctness of a concrete selec-
tion predicate syntax for relational lenses.

Predicates. Some of the relational lens constructors, such as the

select lens, require user supplied functions for filtering rows. Such

functions, called predicates, determine whether or not an individual

record should be included. Predicates are a function of type 𝑅 →

bool where 𝑅 is the type of the input record and a return value of

true indicates that the predicate holds.
Bohannon et al. [5] treat predicates as abstract (finite or infinite)

sets, without giving a computational syntax. Sets allow predicates

to be defined in an abstract form while still being amenable to

mathematical reasoning, but such an approach does not scale to

a practical implementation. In practice the user should define a

predicate as a function from a record (in this case containing album

and year fields) to a Boolean value:

fun(x) { x.album = "Galore" && x.year == 1989 }

Some of the lens typing rules require static checks on predicates.

The above predicate contains only static information, and is thus a

closed function which can be checked at compile-time. We call such

predicates static predicates. Alas, such checks become problem-

atic when the programmer would like to define a function which

depends on information only available at runtime, such as a param-

eter in a web request. For example, consider the following function

which adapts the getAlbumsByName function to use relational lenses.

fun getAlbumsByNameL(albumName) {
var albumLens = lens albums where album -> quantity;
var selectLens = select from albumsLens where
fun(a) { a.album == albumName };

get selectLens;
}

The getAlbumsByNameL function begins by defining albumLens

as a lens over the albums table. A functional dependency −→
ℓ →−→

ℓ′

states that the columns in

−→
ℓ′ are uniquely determined by

−→
ℓ ; here,

the album -> quantity clause states that the quantity attribute is

uniquely determined by the album attribute.

As albumName is supplied as a parameter to the getAlbumsByNameL

function, the anonymous predicate supplied to select can only be

completely known at runtime. We call such predicates dynamic
predicates. Dynamic predicates are not closed, which means that

variables in the closure of a dynamic predicate may not be available

until runtime, and may themselves refer to functions. While it is

possible to statically know the type of the function, and thus rule

out a class of errors, relational lenses require finer-grained checks

which require a more in-depth analysis of the predicate. As an

example, a select lens is only well-formed if the predicate does not

rely on the output of a functional dependency.

If we required the function to be fully known at compile time, a

programmer could not define predicates that depend on user input.

Thus, there is a tradeoff between static correctness and program-

ming flexibility. In our design, we can perform checks on lenses

using static predicates at compile-time, and we can also support

dynamic predicates by performing the same checks at runtime.

Another obstacle is the handling of functional dependencies,

which are an important part of the type system for relational lenses.

Functional dependencies are constraints that apply to the data, and

specify which fields in a table uniquely determine other fields.

The typing rules given by Bohannon et al. [5] are important

for showing soundness of relational lenses: without ensuring all

the requirements are met, it is not possible to ensure the lenses

are well-behaved. We take the existing work by Bohannon et al.

[5] and concretise and adapt the design to allow the rules to be

implemented in practice.

Language-Integrated Updatable Views IFL’19, September 2019, Singapore

1.1 Contributions
The primary technical contribution of this paper is the first full

design and implementation of relational lenses in a typed functional

programming language, namely Links [8]. This paper makes three

concrete contributions:

(1) A design and implementation of predicates for relational
lenses, based on previous approaches to language-integrated

query. We define a language of predicates, and show how

terms can be normalised to a fragment both amenable to

typechecking of relational lenses, and translation to SQL.

(2) An implementation of the typing rules for relational lenses,

adapted to the setting of a functional programming language

(§3). We prove (§3.4) that our compositional typing rules

are sound with respect to the original rules proposed by Bo-

hannon et al. [5]. Static predicates can be fully checked at

compile time, whereas the same checks can be performed

on dynamic predicates at runtime.

(3) A curation interface for a real-world scientific database im-

plemented as a cross-tier web application, tying together

relational lenses with the Model-View-Update architecture

for frontend web development (§4).

We have packaged our implementation and example application

as an artifact [18]. Proofs of the technical results can be found in

the extended version of the paper [19].

The remainder of the paper proceeds as follows: §2 describes the

design and implementation of predicates; §3 describes the imple-

mentation of static typechecking for relational lenses; §4 describes

the case study; §5 describes related work; and §6 concludes.

2 PREDICATES
In their original proposal for relational lenses, Bohannon et al.

[5] define predicates using abstract sets. Although theoretically

convenient, such a representation is not suited to implementation in

a programming language. Our first task in implementing relational

lenses, therefore, is to define a concrete syntax for predicates.

As we are working in the setting of a functional programming

language, it is natural to treat predicates as functions from records

to Boolean values. As an example, recall our earlier example of the

select lens, which selects albums with a given name:

select from albumsLens where fun(a) { a.album == albumName }

Here, the predicate function is fun(a) {a.album == albumName}. In-

tuitively, this predicate includes a record a in the set of results if its

album field matches albumName.

In our approach, predicates are a well-behaved subset of Links

functions which take a parameter of the type of row on which the

lens operates. We define a simply-typed _-calculus for predicates,

and apply the normalisation approach advocated by Cooper [7] to

derive a form which is both amenable to SQL translation, and can

be used when typechecking lens construction.

2.1 Static and Dynamic Predicates
Ensuring relational lenses are well-typed requires some conditions

that require static knowledge of predicates. As an example, we

require that the predicate of a select lens does not refer to the

Syntax

Types 𝐴, 𝐵,𝐶 ::= 𝐴 → 𝐵 | (−−−→ℓ : 𝐴) | 𝐷
Base types 𝐷 ::= bool | int | string
Base record types 𝑅 ::= (−−−→ℓ : 𝐷)

Labels ℓ

Terms 𝐿,𝑀, 𝑁 ::= 𝑥 | 𝑐 | _𝑥. 𝑀 | 𝑀 𝑁

| (−−−−→ℓ = 𝑀) | 𝑀.ℓ

| if 𝐿 then𝑀 else 𝑁
| ⊙{−→𝑀}

Typing rules

T-Var

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴

T-Const

𝑐 of type 𝐴

Γ ⊢ 𝑐 : 𝐴

T-Abs

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ _𝑥 .𝑀 : 𝐴 → 𝐵

T-App

Γ ⊢ 𝑀 : 𝐴 → 𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝐵

T-Record

(Γ ⊢ 𝑀𝑖 : 𝐴𝑖)𝑖
for each𝑀𝑖 : 𝐴𝑖 ∈

−−−−→
𝑀 : 𝐴

Γ ⊢ (−−−−→ℓ = 𝑀) : (−−−→ℓ : 𝐴)

T-Project

Γ ⊢ 𝑀 : (ℓ𝑖 : 𝐴𝑖)𝑖∈𝐼 𝑗 ∈ 𝐼

Γ ⊢ 𝑀.ℓ𝑗 : 𝐴 𝑗

T-If

Γ ⊢ 𝐿 : bool
Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ if 𝐿 then𝑀 else 𝑁 : 𝐴

T-Op

⊙ : 𝐷1 × . . . × 𝐷𝑛 → 𝐷 (Γ ⊢ 𝑀𝑖 : 𝐷𝑖)𝑖∈1..𝑛
Γ ⊢ ⊙{−→𝑀} : 𝐷

Figure 3: Syntax and typing rules for predicate language

outputs of the functional dependencies of a table; we describe the

conditions more in detail in Section 3.

Our approach distinguishes two types of predicates: static
predicates, which rely on only static information; and dynamic
predicates, which can refer to arbitrary free variables. Refer-

ring to our previous example, fun(a) { a.album == albumName }

is a dynamic predicate, as albumName is a free variable, whereas

fun(a) { a.album == "Paris"} is a static predicate.

We can check the construction of lenses with static predicates

entirely statically, whereas lenses with dynamic predicates require

the same checks to be performed dynamically. Our formal results

are based on static predicates, however the same results apply for

dynamic predicates (which can be treated as closed at runtime).

2.2 Predicate Language
Syntax. Figure 3 shows the syntax of the predicate language.

Types, ranged over by𝐴, 𝐵,𝐶 , include function types𝐴 → 𝐵; record

types (−−−→ℓ : 𝐴) mapping labels ℓ to values of type 𝐴; and base types 𝐷 ,

ranging over the types of Boolean values, strings, and integers. It

is convenient to let 𝑅 range over records whose fields are of base

type. The unit type () is definable as a record with no fields.

IFL’19, September 2019, Singapore Rudi Horn, Simon Fowler, and James Cheney

Normal forms

𝑂 ::= 𝑥 | 𝑐 | _𝑥.𝑂 | (−−−−→ℓ = 𝑂) | 𝑥 .ℓ
| if 𝑂1 then 𝑂2 else 𝑂3 | ⊙ {−→𝑂 }

𝑃,𝑄 ::= if 𝑃1 then 𝑃2 else 𝑃3 | ⊙ {−→𝑃 } | 𝑥 .ℓ | 𝑐
Normalisation 𝑀 : 𝐴⇝ 𝑁

(_𝑥 .𝑁) 𝑀 : 𝐴 ⇝ 𝑁 [𝑀/𝑥]
(−−−−→ℓ = 𝑀) .ℓ : 𝐴 ⇝ 𝑀ℓ

if true then 𝐿 else𝑀 : 𝐴 ⇝ 𝐿

if false then 𝐿 else𝑀 : 𝐴 ⇝ 𝑀

(if 𝐿 then𝑀 else𝑀 ′) 𝑁 : 𝐴 ⇝ if 𝐿 then𝑀 𝑁 else𝑀 ′ 𝑁

if 𝐿 then𝑀 else𝑀 ′
: (−−−→ℓ : 𝐴) ⇝ (−−−−→ℓ = 𝑁)

with 𝑁ℓ =

if 𝐿 then𝑀.ℓ else𝑀 ′.ℓ

for each ℓ ∈ −→
ℓ

Evaluation 𝑀 ⇓ 𝑉

Values 𝑉 ::= 𝑐 | _𝑥.𝑀 | (−−−−→ℓ = 𝑉)

𝑉 ⇓ 𝑉

𝐿 ⇓ _𝑥.𝑁

𝑀 ⇓ 𝑉 𝑁 [𝑉 /𝑥] ⇓𝑊
𝐿 𝑀 ⇓𝑊

(𝑀𝑖 ⇓ 𝑉𝑖)𝑖
(−−−−→ℓ = 𝑀) ⇓ (−−−−→ℓ = 𝑉)

𝑀 ⇓ ((ℓ𝑖 = 𝑉𝑖)𝑖∈𝐼) 𝑗 ∈ 𝐼

𝑀.ℓ𝑗 ⇓ 𝑉𝑗

𝐿 ⇓ true 𝑀 ⇓ 𝑉

if 𝐿 then𝑀 else 𝑁 ⇓ 𝑉

𝐿 ⇓ false 𝑁 ⇓ 𝑉

if 𝐿 then𝑀 else 𝑁 ⇓ 𝑉

(𝑀𝑖 ⇓ 𝑉𝑖)𝑖
⊙{−→𝑀} ⇓ ⊙̂{−→𝑉 }

Figure 4: Normalisation and Evaluation

Terms, ranged over by 𝐿,𝑀, 𝑁 , are those of the simply-typed

_-calculus extended with base types, records, conditional state-

ments, and 𝑛-ary operators on base types ⊙{−→𝑀 }. We assume that

the set of available operators all have an SQL equivalent and as-

sume the existence of at least the comparison operators <, >,==

and Boolean negation, conjunction, and disjunction. We sometimes

find it convenient to use infix notation for binary operators.

Typing. Most typing rules are standard for the simply-typed _-

calculus extended with records. The only non-standard rule is T-Op,

which states that the arguments to an operator must be of base

type and match the type of the operator.

Normalisation. Given a functional language for predicates, we

wish to show that predicates can be normalised to a fragment easily

translatable to SQL and usable when typechecking lenses. Figure 4

introduces normal forms 𝑂 which include variables, constants, _-

abstractions, records whose fields are all values, record projection

from a variable, conditional expressions whose subterms are all in

normal form, and operations whose arguments are all in normal

form. Terms in predicate normal form, ranged over by 𝑃 , are a

restriction of terms in normal forms. Terms in predicate normal

form have a straightforward SQL equivalent, and can be used when

typechecking lenses.

Normalisation rules𝑀 ⇝ 𝑁 are a subset of the rules proposed

by Cooper [7]: the first four rules are standard 𝛽-reduction rules; the

fifth pushes function application inside branches of a conditional;

and the sixth pushes conditional expressions inside each component

of a record. Normalisation rules can be applied anywhere in a term,

so we do not require congruence rules.

The rewrite system is strongly normalising.

Proposition 1 (Strong normalisation). If Γ ⊢ 𝑀 : 𝐴, then
there are no infinite⇝ sequences from𝑀 .

Proof. A special case of the result shown by Cooper [7]. □

Static predicates refer only to constants and properties of a given
record. Let⇝∗

be the transitive, reflexive closure of the normali-

sation relation. Given a variable with base record type 𝑅, we can

show that normalisation results in a term in predicate normal form.

Proposition 2 (Normal forms). If 𝑥 : 𝑅 ⊢ 𝑀 : 𝐴 and 𝑀 ⇝∗

𝑁 ̸⇝, then 𝑁 is in normal form.

Proof. By induction on the derivation of 𝑥 : 𝑅 ⊢ 𝑀 : 𝐴. □

As a corollary, by considering only terms with type bool, we
can show that static predicates are in predicate normal form.

Corollary 3 (Predicate normal form). If 𝑥 : 𝑅 ⊢ 𝑀 : bool
and𝑀 ⇝∗ 𝑁 ̸⇝, then 𝑁 is in predicate normal form.

Consequently, any static predicate written in our predicate lan-

guage can be normalised to predicate normal form, allowing it to

be used in typechecking of lenses and for translation into SQL.

Furthermore, the normalisation procedure can be applied to any

dynamic predicate at runtime in order to allow the same checks to

be performed dynamically.

Evaluation. Figure 4 also introduces a standard big-step eval-

uation relation 𝑀 ⇓ 𝑉 , which states that term 𝑀 evaluates to a

value 𝑉 . We use the notation ⊙̂ {−→𝑉 } to describe the denotation of

operation ⊙ applied to arguments
−→
𝑉 : for example, +̂{5, 10} = 15.

The semantics enjoys a standard type soundness property.

Proposition 4 (Type Soundness). If · ⊢ 𝑀 : 𝐴, then there exists
some 𝑉 such that𝑀 ⇓ 𝑉 and · ⊢ 𝑉 : 𝐴.

3 TYPECHECKING RELATIONAL LENSES
In this section, we show how naïve composition of lens combinators

can give rise to ill-formed lenses, and show how such ill-formed

lenses can be ruled out using static and dynamic checks. We adapt

the rules proposed by Bohannon et al. [5] to the setting of a func-

tional programming language. We begin by discussing functional

dependencies, and then look at each lens combinator in turn.

3.1 Functional Dependencies
Functional dependencies are constraints restricting combinations of

records. A functional dependency
−→
ℓ →−→

ℓ′ requires that two records

with the same values for
−→
ℓ should have the same values for

−→
ℓ′ .

We use F and G to denote sets of functional dependencies. It is

possible to derive functional dependencies from other functional

dependencies. The judgement F ⊨
−→
ℓ →−→

ℓ′ specifies that the func-

tional dependency
−→
ℓ →−→

ℓ′ can be derived from the set of functional

Language-Integrated Updatable Views IFL’19, September 2019, Singapore

Table names 𝑆,𝑇

Types 𝐴, 𝐵 ::= · · · | table of (𝑆, 𝑅) | record set of 𝑅
| lens of (Σ, 𝑅, _𝑥 . 𝑃,F)

Terms 𝐿,𝑀, 𝑁 ::= · · · | table 𝑆 with 𝑅 | lens𝑀 with F

| select_𝑥. 𝑃 from𝑀

| join𝑀 with 𝑁 delete_left
| drop ℓ ′ determined by (−→ℓ ,𝑉) from𝑀

| get𝑀 | put𝑀 with 𝑁

Figure 5: Syntax of types and terms for tables and lenses

dependencies F following Armstrong’s axioms [2]; these (standard)
derivation rules can be found in the extended version of the pa-

per. The output fields of the functional dependencies F, written
outputs(F), is the set of fields constrained by F and is defined as:

Definition 1 (Output fields).

outputs(F) = {ℓ ∈ −→
ℓ | ∃

−→
ℓ ′ ∈ −→

ℓ . ℓ ∉
−→
ℓ ′ and F |=

−→
ℓ ′ → ℓ}.

Bohannon et al. [5] impose a special restriction on functional

dependencies called tree form. Tree form requires that functional

dependencies form a forest, meaning that column names can be

partitioned into pairwise-disjoint sets forming a directed acyclic

graph with at most one incoming edge per node. As an example,

{𝐴 → 𝐵,𝐴 → 𝐶,𝐶 → 𝐷} is in tree form. It is straightforward

to check whether a set of functional dependencies is in tree form

using a standard graph reachability algorithm.

Sets of functional dependencies which are semantically equiva-

lent to a set of functional dependencies in tree form are also consid-

ered to be in tree form. As an example, {𝐴 → 𝐵𝐶,𝐶 → 𝐷} is not
literally in tree form but is semantically equivalent to the previous

example, so can thus considered to be in tree form.

3.2 Lens Types
Figure 5 shows the additional types and terms for tables and lens

constructs. We let 𝑆,𝑇 range over table names. Type table of (𝑆, 𝑅)
is the type of a table with table name 𝑆 containing records of type

𝑅. The record set type record set of 𝑅 describes a set of records of

type 𝑅. The type of lenses, lens of (Σ, 𝑅, _𝑥 . 𝑃,F), consists of four
components: the set of underlying tables Σ; the base record type 𝑅;

a restriction predicate _𝑥 . 𝑃 ; and a set of functional dependencies

F. The base record type describes the type of rows which can be

retrieved or committed to the view, and the restriction predicate

describes the subset of records on which the lens operates.

In the remainder of the section, we describe each lens combinator

and its typing rule in turn.

3.3 Rules
We now introduce the rules we use to typecheck relational lenses,

adapted from the rules as defined by Bohannon et al. [5] to support

nested composition and to make use of our concrete predicate

syntax. We show a formal correspondence between our typing

rules and the typing rules of Bohannon et al. [5] in §3.4. We first

introduce some notation.

Definition 2 (Record concatenation).

• Given records 𝑟 = (ℓ1 = 𝑉1, . . . , ℓ𝑚 = 𝑉𝑚) and 𝑠 = (ℓ𝑚+1 =

𝑉𝑚+1, . . . , ℓ𝑛 = 𝑉𝑛) with disjoint field names, define the record
concatenation 𝑟 ⊗ 𝑠 = (ℓ1 = 𝑉1, . . . , ℓ𝑛 = 𝑉𝑛).

• Given record types 𝑅 = (ℓ1 : 𝐴1, . . . , ℓ𝑚 : 𝐴𝑚) and 𝑅′ = (ℓ𝑚+1 :
𝐴𝑚+1, . . . , ℓ𝑛 : 𝐴𝑛) with disjoint field names, define the record
type concatenation 𝑅 ⊕ 𝑅′ = (ℓ1 : 𝐴1, . . . , ℓ𝑛 : 𝐴𝑛).

Tables. Links defines a primitive table expression table 𝑆 with 𝑅

which defines a handle to a table in the database. The table expres-

sion assumes that the programmer has supplied a record type which

corresponds to the types in the underlying database schema.

T-Table

Γ ⊢ table 𝑆 with 𝑅 : table of (𝑆, 𝑅)

Lens Primitives. The rule T-Lens is used to create a relational

lens from a Links table. A lens primitive is assigned the default

predicate constraint true. All columns referred to by a set of func-

tional dependencies F, written names(F), should be part of the

table record type 𝑅.

T-Lens

Γ ⊢ 𝑀 : table of (𝑆, 𝑅)
⋃

names(F) ⊆ dom(𝑅)
Γ ⊢ lens𝑀 with F : lens of ({𝑆}, 𝑅, _𝑥 . true,F)

3.3.1 Select Lens. The select lens filters a view according to a given

predicate. Let us assume we have a lens 𝑙1 which is the join of the

two tables albums and tracks. We might first define a lens 𝑙2 to find

popular albums for which the stock is too low, by only returning

the albums where quantity < rating.

track year rating album quantity

Lullaby 1989 3 Galore 1

Lovesong 1989 5 Galore 1

Lovesong 1989 5 Paris 4

Trust 1992 4 Wish 4

We might then decide to further limit this view by defining a

lens 𝑙3 which only shows the tables with the album Galore.

track year rating album quantity

Lullaby 1989 3 Galore 1

Lovesong 1989 5 4 Galore 1

The user then notices that the rating for Lovesong is not correct,

and changes it from 5 to 4. Calling put on 𝑙3 would yield the updated
view for 𝑙2:

track year rating album quantity

Lullaby 1989 3 Galore 1

Lovesong 1989 5 4 Galore 1

Lovesong 1989 5 4 Paris 4

Trust 1992 4 Wish 4

Since the rating of the track Lovesong is 4 and not lower than

the quantity of the album Paris, the updated view for 𝑙2 violates the

predicate requirement quantity < rating.

To prevent such an invalid combination of lenses, the select

lens needs to ensure that the underlying lens has no predicate

constraints on any fields which may be changed by functional

dependencies. The set of fields which can be changed by functional

dependencies F is outputs(F). A predicate 𝑃 ignores the set
−→
ℓ if

IFL’19, September 2019, Singapore Rudi Horn, Simon Fowler, and James Cheney

the result of evaluating the predicate 𝑃 with respect to a row in the

database is not affected by changing any fields in
−→
ℓ .

Definition 3 (Predicate Ignores). We say 𝑃 ignores

−→
ℓ if there

exists an 𝑅 such that
−→
ℓ is disjoint from dom(𝑅) and 𝑥 : 𝑅 ⊢ 𝑃 : bool.

The T-Select rule also needs to ensure that the resulting lens

only accepts records that satisfy the given predicate _𝑥 . 𝑄 as well as

any existing constraints _𝑥. 𝑃 that already apply to the underlying

lens. The resulting lens’s constraint predicate can thus be defined

as _𝑥.𝑃 ∧𝑄 . The full select lens typing rule can be defined as:

Γ ⊢ 𝑀 : lens of (Σ, 𝑅, _𝑥 . 𝑃,F) 𝑥 : 𝑅 ⊢ 𝑄 : bool
F is in tree form 𝑃 ignores outputs(F)

Γ ⊢ select_𝑥. 𝑄 from𝑀 : lens of (Σ, 𝑅, _𝑥 . 𝑃 ∧𝑄,F)

3.3.2 Join Lens. The join lens joins two underlying views. A join

lens has limitations on the functional dependencies of the underly-

ing tables. Let us assume that there is another table reviews which

contains album reviews by users. The table has the functional de-

pendency user album -> review1.

user review album

musicfan 4 Galore

90sclassics 5 Galore

thecure 5 Paris

The reviews table is joined with the tracks table to produce the

lens 𝑙1. Suppose the user tries to delete the first “90sclassics” record:

user review track year rating album

musicfan 4 Lullaby 1989 3 Galore

musicfan 4 Lovesong 1989 5 Galore

90sclassics 5 Lullaby 1989 3 Galore

90sclassics 5 Lovesong 1989 5 Galore

thecure 5 Lovesong 1989 5 Paris

In this case, there is no way to define a correct behaviour for put.
If the user’s review is deleted then the other entry by the same user

would also be removed from the joined table. If the track is deleted,

then the entry from the other user for the same track would also

be removed.

The issue is resolved by requiring that one of the tables is com-

pletely determined by the join key. The added functional depen-

dency restriction ensures that each entry in the resulting view is

associated with exactly one entry in the left table. In this case,

if the reviews table contained a single review per track, it would

be possible to delete any individual record by only deleting the

entry in the reviews table. In practice we need to show that we

can derive the functional dependency
−→
ℓ ∩−→ℓ′→−→

ℓ′ , where
−→
ℓ ∩−→ℓ′ are the

join columns and

−→
ℓ′ is the set of columns of the right table. We can

check if this functional dependency can be derived by calculating

the transitive closure of
−→
ℓ ∩−→ℓ′ and then checking if

−→
ℓ′ is a subset.

Join lenses come in different variants with varying deletion be-

haviours: a variant that always deletes the entry from the left table, a

variant that tries to delete from the right table and otherwise deletes

from the left table, and a variant that deletes the entries from both

1
This example does not satisfy functional dependency tree form. If it instead only had

the functional dependencies user -> review, the same problem would occur.

tables if possible. The type checking for each variant is similar, so

we only discuss the delete left lens. The rule T-Join-Left requires us

to also show that 𝑃 ignores outputs(F) and 𝑄 ignores outputs(G).
The resulting lens should have the predicate 𝑃 ∧𝑄 since the record

constraints of both input lenses apply to the output lens.

T-Join-Left

Γ ⊢ 𝑀 : lens of (Σ, 𝑅, _𝑥 . 𝑃,F) Γ ⊢ 𝑁 : lens of (Δ, 𝑅′, _𝑥 . 𝑄,G)
G ⊨ dom(𝑅) ∩ dom(𝑅′) → dom(𝑅′)
F is in tree form G is in tree form

𝑃 ignores outputs(F) 𝑄 ignores outputs(G) Σ ∩ Δ = ∅
Γ ⊢ join𝑀 with 𝑁 delete_left : lens of (Σ ∪ Δ, 𝑅 ⊕ 𝑅′, _𝑥 .𝑃 ∧𝑄,F ∪ G)

3.3.3 Drop Lens. The drop lens allows a more fine-grained notion

of relational projection, allowing us to remove a column from a view.

Note that this is not to be confused with the SQL DROP statement,

which deletes a table. Let us assume we define the lens 𝑙1 as a select

lens with predicate year > 1990 ∨ rating > 4.

track year rating album

Lovesong 1989 5 Galore

Lovesong 1989 5 Paris

Trust 1992 4 Wish

We can then define the lens 𝑙2 as 𝑙1, but dropping column year

determined by track to yield the table:

track rating album

Lovesong 5 3 Galore

Lovesong 5 3 Paris

Trust 4 Wish

What would the new predicate constraint be? It cannot reference

the field year, since it does not exist anymore. If it were rating > 4

then the last record would be a violation in the output view. If the

predicate were true it would violate PutGet: Changing the rating

from 5 to 3 for the track Lovesong, would cause it to no longer

satisfy the parent lens’ predicate since it is from year 1989 and the

rating is only 3.

The underlying issue is the dependency between the dropped

field year and the field rating. It is not possible to define a predicate

𝑃 which specifies if any rating value is valid independently of the

drop column year. Without being able to construct such a 𝑃 , a lens

cannot be well-typed.

Lossless Join Decomposition. The typing rule for the drop lens

requires some finer-grained checks on predicates. We begin with

some preliminary definitions.

Definition 4 (Predicate satisfaction). We say that a record 𝑟
satisfies predicate _𝑥. 𝑃 , written sat(_𝑥. 𝑃, 𝑟), if 𝑃 [𝑟/𝑥] ⇓ true.

Definition 5 (Record type inhabitants). We define the inhab-
itants of a record type 𝑅, written inh(𝑅), as:

{𝑟 | · ⊢ 𝑟 : 𝑅}

We define set(_𝑥 . 𝑃, 𝑅) as the equivalent set of all records of

type 𝑅 satisfying a predicate 𝑃 . The definition of set(_𝑥 . 𝑃, 𝑅) is
used to show that our implementation is sound.

Language-Integrated Updatable Views IFL’19, September 2019, Singapore

Definition 6 (Predicate sets). We define the set representation
of predicate _𝑥. 𝑃 over 𝑅, written set(_𝑥 . 𝑃, 𝑅), as:

{𝑟 ∈ inh(𝑅) | sat(_𝑥. 𝑃, 𝑟)}

It is often helpful to consider only a subset of fields in a record.

Definition 7 (Record restriction). Given a record 𝑟 = (ℓ1 =
𝑉1, . . . , ℓ𝑚 = 𝑉𝑚, . . . , ℓ𝑛 = 𝑉𝑛), we define the record restriction of 𝑟

to ℓ1, . . . , ℓ𝑚 , written 𝑟 [ℓ1, . . . , ℓ𝑚], as (ℓ1 = 𝑉1, . . . , ℓ𝑚 = 𝑉𝑚).

Let Π,Π′
range over homogeneous sets of records, such as the

set representation of predicates. It is also convenient to be able to

consider a set where each constituent record is restricted to a given

set of fields.

Definition 8 (Predicate set restriction). We define the re-
striction of set Π to

−→
ℓ , written Π[−→ℓ], as {𝑟 [−→ℓ] | 𝑟 ∈ Π}.

It is also useful to be able to consider the natural join of two sets

of records.

Definition 9 (Set join). Suppose 𝑅 = 𝑅1 ⊕ 𝑅2, and suppose Π
contains records of type 𝑅1 and Π′ contains records of type 𝑅2.

We define the set join of Π and Π′, written Π Z Π′, as:

{𝑟 ∈ inh(𝑅) | 𝑟 [dom(𝑅1)] ∈ Π ∧ 𝑟 [dom(𝑅2)] ∈ Π′}

To check the safety of a drop lens, we need to show that the

predicate does not impose any dependency between the value of

the dropped field and any other field. We formalise this constraint

by defining the notion of a lossless join decomposition (LJD).

Definition 10 (Lossless join decomposition). A lossless join

decomposition of two record types 𝑅1 and 𝑅2 with respect to a predi-
cate 𝑃 of type 𝑥 : 𝑅1 ⊕𝑅2 ⊢ 𝑃 : bool, written LJD𝑅1,𝑅2

(_𝑥. 𝑃), means
that for all 𝑟1, 𝑟2 ∈ inh(𝑅1) and 𝑠1, 𝑠2 ∈ inh(𝑅2), it is the case that:
sat(_𝑥 . 𝑃, 𝑟1 ⊗ 𝑠1) ∧ sat(_𝑥. 𝑃, 𝑟2 ⊗ 𝑠2) =⇒ sat(_𝑥. 𝑃, 𝑟1 ⊗ 𝑠2)

Given 𝑅, 𝑅1, 𝑅2 such that 𝑅 = 𝑅1 ⊕ 𝑅2, our definition of lossless

join decomposition suffices to show that set(_𝑥 . 𝑃, 𝑅) can be ex-

pressed as the natural join of set(_𝑥 . 𝑃, 𝑅) restricted to the fields

of 𝑅1, with set(_𝑥. 𝑃, 𝑅) restricted to the fields of 𝑅2.

Lemma 1 (Predicate set decomposition). Suppose 𝑅 = 𝑅1 ⊕ 𝑅2
and 𝑥 : 𝑅 ⊢ 𝑃 : bool. If LJD𝑅1,𝑅2

(_𝑥 . 𝑃), then set(_𝑥 . 𝑃, 𝑅) =

set(_𝑥. 𝑃, 𝑅) [dom(𝑅1)] Z set(_𝑥 . 𝑃, 𝑅) [dom(𝑅2)].

Proof. Follows from the definitions of LJD𝑅1,𝑅2

(_𝑥. 𝑃), ·[·] and
· Z ·. □

Showing LJD𝑅,𝑅′ (_𝑥. 𝑃) is NP-hard and could be undecidable,

depending on the atomic formulae available in the predicates. Since

a predicate that satisfies LJD𝑅,𝑅′ (_𝑥 . 𝑃) can be rewritten as a con-

junction of predicates which depend only on either 𝑅 or 𝑅′
, we can,

however, define a sound but incomplete syntactic approximation

LJD†
𝑅,𝑅′ (_𝑥. 𝑃).

LJD
†
-1

𝑥 : 𝑅 ⊢ 𝑃 : bool

LJD†
𝑅,𝑅′ (_𝑥 . 𝑃)

LJD
†
-2

𝑥 : 𝑅′ ⊢ 𝑃 : bool

LJD†
𝑅,𝑅′ (_𝑥. 𝑃)

LJD
†
-And

LJD†
𝑅,𝑅′ (_𝑥. 𝑃)

LJD†
𝑅,𝑅′ (_𝑥 . 𝑄)

LJD†
𝑅,𝑅′ (_𝑥. 𝑃 ∧𝑄)

Lemma 2 (Soundness of LJD
†
). Given a predicate _𝑥 . 𝑃

and record types 𝑅, 𝑅′, it follows that LJD†
𝑅,𝑅′ (_𝑥 . 𝑃) implies

LJD𝑅,𝑅′ (_𝑥 . 𝑃).

Proof. By induction on the derivation of LJD†
𝑅,𝑅′ (_𝑥 . 𝑃).

□

Updates to the view will use the default value 𝑉 in place of the

given column. Therefore, in addition to showing that the predicate

does not impose any dependency between the value of the dropped

field and the other fields, we must show that the default value 𝑉

of the dropped column does not violate the predicate. Given the

set representation of a predicate set(_𝑥 . 𝑃, 𝑅), we must show that

{ℓ ′ = 𝑉 } ∈ set(_𝑥 . 𝑃, 𝑅) [ℓ ′].
We define a property DV𝑅,𝑅′ (_𝑥. 𝑃) 𝑟 and show that it is sound

with respect to the set semantics.

Definition 11. Given a predicate _𝑥. 𝑃 and record types 𝑅 and 𝑅′

such that LJD𝑅,𝑅′ (_𝑥 . 𝑃) and 𝑟 ∈ inh(𝑅′), we writeDV𝑅,𝑅′ (_𝑥. 𝑃) 𝑟
when set(_𝑥 . 𝑃, 𝑅 ⊕ 𝑅′) is not empty and there exists an 𝑠 ∈ inh(𝑅)
such that sat(_𝑥 . 𝑃, 𝑟 ⊗ 𝑠).

Lemma 3. Suppose𝑅 = 𝑅1⊕𝑅2, 𝑟 ∈ inh(𝑅2), and LJD𝑅1,𝑅2

(_𝑥. 𝑃).
Then DV𝑅1,𝑅2

(_𝑥. 𝑃) 𝑟 implies 𝑟 ∈ set(_𝑥 . 𝑃, 𝑅) [dom(𝑅2)].

Proof. By expansion of the definitions ofDV𝑅1,𝑅2
(_𝑥. 𝑃) 𝑟 and

of · ⊗ · and · ∈ ·. □

As with the definition of LJD𝑅,𝑅′ (_𝑥. 𝑃), determining if

DV𝑅,𝑅′ (_𝑥. 𝑃) 𝑟 holds in the general case is a difficult problem. To

simplify this problem we introduce an incomplete set of inference

rules to determine DV†
𝑅,𝑅′ (_𝑥 . 𝑃) 𝑟 , which covers the same set of

predicates as the LJD†
𝑅,𝑅′ (_𝑥. 𝑃) rule.

DV
†
-1

𝑥 : 𝑅 ⊢ 𝑃 :𝐷

DV†
𝑅,𝑅′ (_𝑥 . 𝑃) 𝑟

DV
†
-2

𝑥 : 𝑅′ ⊢ 𝑃 :𝐷

sat(_𝑥 . 𝑃, 𝑟)

DV†
𝑅,𝑅′ (_𝑥. 𝑃) 𝑟

DV
†
-And

DV†
𝑅,𝑅′ (_𝑥. 𝑃) 𝑟

DV†
𝑅,𝑅′ (_𝑥. 𝑄) 𝑟

DV†
𝑅,𝑅′ (_𝑥. 𝑃 ∧𝑄) 𝑟

Lemma 4. Given a predicate _𝑥. 𝑃 such that set(_𝑥 . 𝑃, 𝑅 ⊕ 𝑅′)
is not empty and record 𝑟 such that · ⊢ 𝑟 : 𝑅, it follows that
DV†

𝑅,𝑅′ (_𝑥 . 𝑃) 𝑟 implies DV𝑅,𝑅′ (_𝑥 . 𝑃) 𝑟 .

Proof. By induction on the derivation of DV†
𝑅,𝑅′ (_𝑥 . 𝑃) 𝑟 . □

Note that the soundness proof for DV†
𝑅,𝑅′ (_𝑥 . 𝑃) 𝑟 requires

that set(_𝑥. 𝑃, 𝑅 ⊕ 𝑅′) is not empty. This is problematic in theory,

because it requires us to show that the predicate is satisfiable. Ac-

cording to Bohannon et al. [5], a drop lens on a lens with predicate

that is false does not typecheck. In practice however, this lens is

well behaved as it returns an empty view and only takes an empty

view. The lens would therefore be useless, but not incorrect.

With the preliminaries in place, we can present the typing rule for

the drop lens. The term drop ℓ ′ determined by (−→ℓ ,𝑉) from𝑀

constructs a lens which removes column ℓ ′ from view𝑀 , given that

the functional dependencies of the view ensure that ℓ ′ is determined

by the columns
−→
ℓ . The typing rule is as follows:

IFL’19, September 2019, Singapore Rudi Horn, Simon Fowler, and James Cheney

T-Drop

F ≡ G ∪ {−→ℓ → ℓ′ } Γ ⊢ 𝑀 : lens of (Σ, 𝑅 ⊕ (ℓ′ : 𝐴), _𝑥 . 𝑃,F)
−→
ℓ ⊆ dom(𝑅) Γ ⊢ 𝑉 :𝐴 LJD𝑅,(ℓ′:𝐴) (_𝑥. 𝑃)
DV𝑅,(ℓ′:𝐴) (_𝑥. 𝑃) (ℓ′ = 𝑉) 𝑃 ′ = 𝑃 [𝑉 /𝑥.ℓ′]

Γ ⊢ drop ℓ′ determined by (−→ℓ ,𝑉) from𝑀 :lens of (Σ, 𝑅, _𝑥 . _𝑥 .𝑃 ′,G)

The clause F ≡ G∪{−→ℓ →ℓ′ } checks that the functional dependen-
cies of the underlying lens𝑀 imply that

−→
ℓ do indeed determine ℓ ′;

that
−→
ℓ are contained in the domain of the record type 𝑅 of under-

lying lens 𝑀 ; that 𝑉 has the same type as the dropped field; that

𝑅 and (ℓ ′ : 𝐴) define a lossless join decomposition with respect to

the lens predicate; and finally that𝑉 is a suitable default value with

respect to the predicate.

The resulting type lens of (Σ, 𝑅, _𝑥 . 𝑃 [𝑉 /𝑥 .ℓ ′],G) contains the
updated record type without the dropped column, and the updated

predicate with the default variable in place of all references to the

dropped column.

Lens Get. Finally we define typing rules for making use of rela-

tional lenses. Since Links is not dependently typed, we discard the

constraints which apply to the view, and specify that calling get
returns a set of records which all have the type 𝑅.

T-Get

Γ ⊢ 𝑀 : lens of (Σ, 𝑅, _𝑥 . 𝑃,F)
Γ ⊢ get𝑀 : record set of 𝑅

Lens Put. Just as with T-Get, we have no way of statically ensur-

ing that the input satisfies 𝑃 and F, so we only statically check that

the updated view is a set of records matching type 𝑅, deferring the

checks to ensure that the set of records satisfies F and 𝑃 to runtime.

To ensure that the constraint 𝑃 applies to each record 𝑟 in a view,

runtime checks ensure that sat(_𝑥 . 𝑃, 𝑟). Functional dependency
constraints can be checked by projecting the set of records down

to each functional dependency and determining if any two records

violate a functional dependency.

T-Put

𝑅 ⊢ 𝑀 : lens of (Σ, 𝑅, _𝑥 . _𝑥 .𝑃,F) Γ ⊢ 𝑁 : record set of 𝑅

Γ ⊢ put𝑀 with 𝑁 : ()

3.4 Correctness
Bohannon et al. [5] prove that lenses satisfying correctness con-

ditions are well-behaved (i.e., satisfy GetPut and PutGet, and

therefore safely compose). Their typing rules are not in a form

amenable to implementation, since predicates are defined as ab-

stract sets; lenses are composed using a sequential composition op-

erator rather than allowing arbitrarily-nested lenses as one would

in a functional language; and there is no distinction between a

relation and a lens on a relation.

Nevertheless, we must show that our typing rules also guarantee

well-behavedness. Our approach is to define a type-preserving

translation from our functional-style lenses into the sequential-

style lenses defined by Bohannon et al. [5].

Figure 6 shows the grammar of sequential-style lenses. We let Π
range over set-style predicates; 𝑆,𝑇 range over relation names; Σ,Δ
range over schemas (i.e., sets of relation names); and 𝐼 , 𝐽 range over

sequential-style lenses. The sort of a relation 𝑆 , written sort (𝑆) =

Syntax of sequential lenses

Set predicates Π,Π′
Schemas Σ,Δ

Sequential lenses 𝐼 , 𝐽 ::=

id | 𝐼 ; 𝐽
| select from 𝑆 where Π as 𝑇

| join_dl 𝑆1, 𝑆2 as 𝑇

| drop ℓ determined by (
−→
ℓ ′,𝑉) from 𝑆 as 𝑇

Flattening translation L𝑀M = Σ/𝐼/𝑆

Llens 𝑆 with FM = {𝑆}/id/𝑆
Lselect_𝑥. 𝑃 from𝑀M =

Σ/𝐼 ; select from 𝑆 where set(_𝑥. 𝑃, dom(𝑆)) as 𝑇 /𝑇
where L𝑀M = Σ/𝐼/𝑆 and 𝑇 is globally unique

Ljoin𝑀 with 𝑁 delete_leftM =
Σ ⊎ Δ/𝐼 ; 𝐽 ; join_dl 𝑆1, 𝑆2 as 𝑇 /𝑇

where L𝑀M = Σ/𝐼/𝑆1, L𝑁 M = Δ/𝐽/𝑆2 and 𝑇 is globally unique

Ldrop ℓ determined by (
−→
ℓ ′,𝑉) from𝑀M =

Σ/𝐼 ; drop ℓ determined by (
−→
ℓ ′,𝑉) from 𝑆 as 𝑇 /𝑇

where L𝑀M = Σ/𝐼/𝑆

Figure 6: Sequential-style lenses [5] and flattening

(−→ℓ ,Π,F), is a 3-tuple of the set of fields −→
ℓ in 𝑆 ; a set predicate Π,

and the set of functional dependencies F. If sort (𝑆) = (−→ℓ ,Π,F),
then dom(𝑆) = −→

ℓ .

Sequential-style lenses map source schemas to view schemas.

The id lens defines the identity lens, mapping a schema to itself,

and 𝐼 ; 𝐽 composes lenses 𝐼 and 𝐽 . The select from 𝑆 where Π as 𝑇

lens filters relation 𝑆 using predicate set Π, naming the resulting

relation 𝑇 . The join_dl 𝑆1, 𝑆2 as 𝑇 lens joins relations 𝑆1 and 𝑆2
using the delete-left strategy, naming the resulting relation 𝑇 .

Finally, drop ℓ determined by (−→ℓ′ ,𝑉) from 𝑆 as 𝑇 drops at-

tribute ℓ determined by attributes

−→
ℓ′ with default value 𝑉 from

relation 𝑆 , naming the resulting relation 𝑇 .

Figure 6 also shows the translation from functional lenses to

sequential-style lenses, which involves flattening functional lenses

by introducing intermediate relations with fresh table names. The

translation function L𝑀M = Σ/𝐼/𝑆 states that functional lens 𝑀

depends on tables Σ, translates to sequential lens 𝐼 , and produces a

view with name 𝑆 .

As an example of a typing rule for sequential-style lenses, con-

sider the typing rule for the select lens:

T-Select-RL

sort (𝑆) = (−→ℓ ,Π′,F) sort (𝑇) = (−→ℓ ,Π ∩ Π′,F)
F is in tree form Π′

ignores outputs(F)
select from 𝑆 where Π as 𝑇 ∈ Σ ⊎ {𝑆} ⇔ Σ ⊎ {𝑇 }

The sequential lens typing judgement has the shape 𝐼 ∈ Σ ⇔ Δ,
meaning that 𝐼 is a lens transforming the source schema Σ into the

view schema Δ. In the case of the select lens, given a predicate set

Π, the typing rule enforces the invariant that the source relation 𝑆

has sort (−→ℓ ,Π′,F); that the functional dependencies F are in tree

form; that Π′
ignores the outputs of F; and assigns the view 𝑇 the

sort (−→ℓ ,Π ∩ Π′,F).

Language-Integrated Updatable Views IFL’19, September 2019, Singapore

We can now state our soundness theorem, stating that once

translated, lenses typeable in our system are typeable using the

original rules proposed by Bohannon et al. [5], and can use the

incremental semantics described by Horn et al. [20].

Theorem 5 (Soundness of Translation).

If Γ ⊢ 𝑀 : lens of (Σ, 𝑅, _𝑥 . 𝑃,F) and L𝑀M = Σ/𝐿/𝑇 , then 𝐿 ∈ Σ ⇔
{𝑇 } and sort(𝑇) = (dom(𝑅), set(_𝑥. 𝑃, 𝑅),F).

Proof. By induction on the derivation of

Γ ⊢ 𝑀 : lens of (Σ, 𝑅, _𝑥 . 𝑃,F). □

3.5 Typechecking Dynamic Predicates
If a dynamic predicate is used in any lens combinator, the same

checks are performed, but checking of predicates must be deferred

to runtime. In this case, we require the programmer to acknowledge

that the lens construction may fail at run-time. We introduce a

special lens, the check lens, which the user must incorporate prior

to using the lens in a get or put operation.

4 CASE STUDY: CURATED SCIENTIFIC
DATABASES

In this section, we illustrate the use of relational lenses in the setting

of a larger Links application: part of the curation interface for a

scientific database. Scientific databases collect information about

a particular topic, and are curated by subject matter experts who

manually enter and update entries.

The IUPHAR/BPS Guide to Pharmacology (GtoPdb) [23] is a

curated scientific database which collects information on pharma-

cological targets, such as receptors and enzymes, and ligands such
as pharmaceuticals which act upon targets. GtoPdb consists of a

PostgreSQL database, a Java/JSP web application frontend to the

database, and a Java GUI application used for data curation.

In parallel work [15], we have implemented a workalike frontend

application in Links, using the Links LINQ functionality. In this

section, we demonstrate how we are beginning to use relational

lenses for the curation interface, and show how relational lenses

are useful in tandem with the Model-View-Update (MVU) paradigm

pioneered by the Elm programming language [1].

4.1 Disease Curation Interface
One section of GtoPdb collects information on diseases, such as the

disease name, description, crossreferences to other databases, and

relevant drugs and targets. In this section, we describe a curation

interface for diseases, where all interaction with the database occurs

using relational lenses.

Figure 7a shows the official Java curation interface. The main

data entries edited using the curation interface are the name and

description of the disease; the crossreferences for the disease which

refer to external databases; and the synonyms for a disease. As an

example, a synonym for “allergic rhinitis” is “hayfever”. Note that

this curation interface does not edit ligand or target information;

curation of ligand-to-disease and target-to-disease links are handled

by the ligand and target curation interfaces respectively.

(a) Java curation interface

(b) Links reimplementation

Figure 7: Curation interfaces for Diseases

4.2 Links Reimplementation
Figure 7b shows the curation interface as a Links web application.

In the original implementation of Links [8], requests invoked Links

as a CGI script. Modern Links web applications execute as follows:

(1) A Links application is executed, which registers URLs against

page generation functions, and starts the webserver

(2) A request is made to a registered URL, and the server runs

the corresponding page generation function

(3) The page generation function may spawn server processes,

make database queries, and register processes to run on the

client, before returning HTML to the client

(4) The client application spawns any client processes, and ren-

ders the HTML

(5) Client processes can communicate with server processes

over a WebSocket connection.

4.2.1 Architecture. The disease curation interface consists of a

persistent server process, and a client process which is spawned by

the Links MVU library.

Upon page creation, the application creates lenses to the under-

lying tables: the lenses retrieve data from, and propagate changes

to, the database. Since lenses only exist on the server and cannot be

IFL’19, September 2019, Singapore Rudi Horn, Simon Fowler, and James Cheney

serialised to the client, we spawn a process which awaits a message

from the client with the updated data.

4.2.2 Tables and Lenses. We begin by defining the records we need,

and handles to the underlying database and its tables.

First, we define a database handle, db, to the gtopdb database.

var db = database "gtopdb";

Next, we define type aliases for the types of records in each

table. The disease curation interface uses tables describing four

entity types: disease data (DiseaseData), metadata about exter-

nal databases (ExternalDatabase), links from diseases to external

databases (DatabaseLink), and disease synonyms (Synonym). (Note

that "prefix" appears in quotes as prefix is a Links keyword).

typename DiseaseData =
(disease_id: Int, name: String,
description: String, type: String);

typename ExternalDatabase =
(database_id: Int, name: String, url: String,
specialist: Bool, "prefix": String);

typename DatabaseLink =
(disease_id: Int, database_id: Int, placeholder: String);

typename Synonym = (disease_id: Int, synonym: String);

We will need to join the ExternalDatabase and DatabaseLink

tables in order to render the database name of each external database

link. It is therefore useful to define a type synonym for the record

type resulting from the join:

typename JoinedDatabaseLink =
(disease_id: Int, database_id: Int, placeholder: String,
name: String, url: String,
specialist: Bool, "prefix": String);

Next, we can define handles to each database table. The with

clause specifies a record type denoting the column name and type

of each attribute in the table, and the tablekeys clause specifies

the primary keys (i.e., sets of attributes which uniquely identify a

row in the database) for each table. We show only the definition of

diseaseTable; the definitions for databaseTable, dbLinkTable, and

synonymTable are similar.

var diseaseTable =
table "disease" with DiseaseData
tablekeys [["disease_id"]] from db;

The ID of the disease to edit (diseaseID) is provided as a GET

parameter to the page, and thus we need a dynamic predicate as

not all information is known statically. With the description of the

entities and tables defined, we can describe the relational lenses

over the tables. We work in a function scope where diseaseID has

been extracted from the GET parameters.

fun diseaseFilter(x) { x.disease_id == diseaseID }
Disease lenses
var diseasesLens = lens diseaseTable default;
var diseasesLens =
check (select from diseasesLens by diseaseFilter);

Database link lenses
var dbLens = lens databaseTable
with { database_id -> name url specialist "prefix" };

var dbLinksLens = lens dbLinkTable default;
var dbLinksLens =
check (select from dbLinksLens by diseaseFilter);

var dbLinksJoinLens = check (
join dbLinksLens with dbLens
on database_id delete_left);

Synonym lenses
var synonymsLens = lens synonymTable default;
var synonymsLens =
check (select from synonymsLens by diseaseFilter);

We create a lens over a table using the lens keyword, writ-

ing default when we do not need to specify functional depen-

dencies. The dbLens lens specifies a functional dependency from

database_id to each of the other columns, as knowledge of this

dependency is required when constructing a join lens.

We need not filter the databaseTable table since we wish to

display all external databases. The diseaseLens, dbLinksLens, and

synonymsLens lenses make use of the select lens combinator, allow-

ing us to consider only the records relevant to the given diseaseID.

Note that each entity has a disease_id field: as a result, we canmake

use of Links’ row typing system [22] to define a single predicate,
diseaseFilter, for each select lens using row polymorphism.

The dbLinksJoinLens lens joins the external database links with

the data about each external database by using the join lens com-

binator, stating that if a record is deleted from the view, then it

should be deleted from the dbLinkTable rather than the dbLens ta-

ble. Joining these two tables is only possible because database_id

uniquely determines each column of the databaseTable table; as the

lens uses a dynamic predicate, this property is checked at runtime.

4.2.3 Model. In implementing the case study, we make use of

the Model-View-Update (MVU) paradigm, pioneered by the Elm

programming language [1]. MVU is similar to the Model-View-

Controller design pattern in that it splits the state of the system

from the rendering logic. In contrast to MVC, MVU relies on explicit

message passing to update the model. The key interplay between

MVU and relational lenses is that MVU allows the model to be di-

rectly modified in memory, and relational lenses allow the changes

in the model to be directly propagated to the database without
writing any marshalling or query construction code.

typename DiseaseInfo =
(diseaseData: DiseaseData, databases: [ExternalDatabase],
dbLinks: [JoinedDatabaseLink], synonyms: [Synonym]);

typename Model =
Maybe(
(diseaseInfo: DiseaseInfo, selectedDatabaseID: Int,
accessionID: String, newSynonym:String,
submitDisease: (DiseaseInfo) {}~> ()));

The model (Model) contains all definitions retrieved from the data-

base (DiseaseInfo), as well as the current value of the various form

components for adding database links (selectedDatabaseID and

accessionID) and synonyms (newSynonym). Finally, the model con-

tains a function submitDisease which commits the information to

the database. Note that the {}~> function arrow denotes a function

which cannot be run on the database, and does not perform any

effects. The Model type is wrapped in a Maybe constructor to handle

the case where the application tries to curate a nonexistent disease.

Language-Integrated Updatable Views IFL’19, September 2019, Singapore

Initial model. To construct the initial model, we fetch the data

from each lens using the get primitive. We include type annotations

for clarity, but they are not required.

var (diseases: [DiseaseData]) = get diseasesLens;
var (dbs: [ExternalDatabase]) = get dbLens;
var (dbLinks: [JoinedDatabaseLink]) = get dbLinksJoinLens;
var (synonyms: [Synonym]) = get synonymsLens;

Next, we spawn a server process which awaits the submission of

an updated DiseaseInfo record. The Submit message contains the

updated record along with a client process ID notifyPid which is

notified when the query is complete.

The submitDisease function takes an updated DiseaseInfo pro-

cess ID and sends a Submit message to the server. The spawnWait

keyword spawns a process, waits for it to complete, and returns

the retrieved value. In our case, we use spawnWait to only navigate

away from the page once the query has completed.

var pid = spawn {
receive {
case Submit(diseaseInfo, notifyPid) ->
put diseasesLens with [diseaseInfo.diseaseData];
put dbLinksJoinLens with diseaseInfo.dbLinks;
put synonymsLens with diseaseInfo.synonyms;
notifyPid ! Done

}
};

sig submitDisease : (DiseaseInfo) {}~> ()
fun submitDisease(diseaseInfo) {
spawnWait {
pid ! Submit(diseaseInfo, self());
receive { case Done -> () }

};
redirect("/editDiseases")

}

Given the above, we can construct the initial model. Recall that

the result of get diseasesLens is a list of DiseaseInfo records. As
disease_id is the primary key for the disease table, we know that

the result set must be either empty or a singleton list. Finally, we

can initialise the model with the data retrieved from the database

along with the submitDisease function and default values for the

form elements.

var (initialModel: Model) = {
switch(diseases) {
case [] -> Nothing
case d :: _ ->
var diseaseInfo =
(diseaseData = d, databases = dbs,
dbLinks = dbLinks, synonyms = synonyms);

Just((diseaseInfo = diseaseInfo,
accessionID = "", newSynonym = "",
selectedDatabaseID = hd(dbs).database_id,
submitDisease = submitDisease))

}
};

The model is rendered to the page using a view function which

takes a model and produces some HTML to display. Interaction

with the page producesmessages which cause changes to the model.

Finally, submission of the form causes the submitDisease function

to be executed, which in turn sends a Submit message to the server

to propagate the changes to the database using the lenses.

4.3 Discussion
In this section, we have described part of the curation interface for

a scientific database. Our application is a tierless web application

with the client written using the Model-View-Update architecture.

Relational lenses allow seamless integration between all three

layers of the application. Lenses with dynamic predicates allow us

to retrieve the relevant data from the database; the data is used as

part of a model which is changed directly as a result of interaction

with the web page; and the updated data entries are committed

directly to the database. At no point does a user need to write a

query: every interaction with the database uses only lens primitives.

The primary limitation of the implementation at present is that it

does not currently support auto-incrementing primary keys, which

are commonly used in relational databases.

5 RELATEDWORK
Edit Lenses. Edit lenses are a form of bidirectional transformation

where, rather than translating directly between one data structure

and another, the changes to a data structure are tracked and then

translated into changes to the other data structure [17]. They can

be particularly useful in the case of symmetric lenses in situations

where neither of the data structures contain all of the data, and thus

none of the sources can be considered the ‘source’ [16]. Changes

could be described by insert, update and delete commands, and will

usually result in similar insert, update or deletion commands for

the other data structure.

Relational lenses are generally not considered edit lenses, as

they directly translate the entire view to an updated source when

performing get. Incremental Relational Lenses on the other hand

take the updated view and compute a delta which is then translated

into a delta to the source tables [20].

The language integration aspect of relational lenses is not depen-

dent on the semantics used to perform relational updates. Instead

it only relies on all of the relational lens typing rules in §3.3 to be

satisfied; in this case, both the incremental and the non-incremental

relational put semantics are guaranteed to be well-behaved.

Put-based Lenses. Bidirectional lenses are often defined in a form

that corresponds to the forward (get) direction and the reverse

direction. A common issue with this approach is that a get func-

tion might correspond to several well-behaved put functions, as

illustrated by drop and join relational lenses. As such, defining a

bidirectional transformation by only specifying the forward direc-

tion is generally not sufficient. An alternative approach recently

used is to rather have the programmer instead only specify the put
semantics, which then uniquely define the get semantics [13, 21].

A putback approach to bidirectional transformations has been

recently proposed by Asano et al. [3] for relational data. Asano et al.

define a language which allows the specification of update queries,

for which the forward query can automatically be derived. They

support splitting views vertically for defining behaviour specific to

columns and horizontally for behaviour specific to rows. For each

of the different sections of the view they can then define the update

behaviour, which can be simple checks or actual update semantics.

IFL’19, September 2019, Singapore Rudi Horn, Simon Fowler, and James Cheney

Cross-tier web programming. SMLServer [12] was among the

first functional frameworks to allow interaction with a relational

database. Ur/Web [6] is a cross-tier web programming language

which supports a statically-typed SQL DSL, along with atomic trans-

actions and functional combinators on results. Neither framework

supports language-integrated views.

Hop.js [28] builds on the Hop programming language [27] and

allows cross-tier web programming in JavaScript. Eliom [26] is a

cross-tier functional programming framework building on top of

the OCaml programming language. Eliom programs can explicitly

assign locations to functions and variables. ScalaLoci [29] is a Scala

framework for cross-tier application programming. A key concept

behind ScalaLoci is that data transfer between tiers uses the re-
active programming paradigm. Haste.App [11] is a Haskell EDSL

allowing web applications to be written directly in Haskell. Since

these are embedded DSLs or frameworks, it becomes possible to

use the database functionality provided by other libraries, but are

not aware of any work providing relational lenses as a library in

any programming language.

Task-oriented programming (TOP) [25] is a high-level paradigm

centred around the idea of a task, which can be thought of as a

unit of work with an observable value. TOP is implemented in

the iTask system [24]. An editor is a task which interacts with a

user. Editlets [10] are editors with customisable user interfaces,

which can allow multiple users to interact with shared data sources.

Much like incremental relational lenses [20], Editlets communicate

changes in the data as opposed to the entire data source, however

the user must specify this behaviour manually.

6 CONCLUSION
Relational lenses allow updatable views of database tables. Previous

work has concentrated on the semantics of relational lenses, but

has not proposed a concrete language design. As a result, previous

implementations imposed severe limitations on predicates, and

provided limited checking of the correctness of lens composition.

In this paper, we have presented the first full integration of

relational lenses in a functional programming language, by extend-

ing the Links programming language. Building on the approach

of Cooper [7], we use normalisation rules to rewrite functional

expressions into a form amenable to compilation to SQL and for

typechecking lenses. Furthermore, we have adapted the existing

typing rules for relational lenses to the setting of a functional pro-

gramming language and proved that our adapted rules are sound.

Previous implementations have provided only small example

applications. To demonstrate the use of relational lenses, we have

implemented part of the curation interface for a scientific database

as a cross-tier web application, and shown how relational lenses

can be used in tandem with the Model-View-Update architecture

for frontend web development.

As future work, we plan to explore integrating relational lenses

with auto-incrementing table fields.

ACKNOWLEDGMENTS
Thanks to the anonymous reviewers for their helpful comments

and to Simon Harding and Jo Sharman for discussion of the GtoPdb

curation interface. This work was supported by ERC Consolidator

Grant Skye (grant number 682315) and an ISCF Metrology Fel-

lowship grant provided by the UK government’s Department for

Business, Energy and Industrial Strategy (BEIS).

REFERENCES
[1] 2019. Elm: A delightful language for reliable webapps. http://www.elm-lang.org.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases:
the logical level. Addison-Wesley Longman Publishing Co., Inc.

[3] Yasuhito Asano, Soichiro Hidaka, ZhenjiangHu, Yasunori Ishihara, Hiroyuki Kato,

Hsiang-Shang Ko, Keisuke Nakano, Makoto Onizuka, Yuya Sasaki, Toshiyuki

Shimizu, et al. 2018. A View-based Programmable Architecture for Controlling

and Integrating Decentralized Data. arXiv preprint arXiv:1803.06674 (2018).
[4] François Bancilhon and Nicolas Spyratos. 1981. Update semantics of relational

views. ACM Transactions on Database Systems (TODS) 6, 4 (1981), 557–575.
[5] Aaron Bohannon, Benjamin C Pierce, and Jeffrey A Vaughan. 2006. Relational

lenses: a language for updatable views. In PODS. ACM, 338–347.

[6] Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming the Web. In

POPL. ACM, 153–165.

[7] Ezra Cooper. 2009. The Script-Writer’s Dream: How to Write Great SQL in Your

Own Language, and Be Sure It Will Succeed. In DBPL (Lecture Notes in Computer
Science), Vol. 5708. Springer, 36–51.

[8] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web

programming without tiers. In FMCO. Springer, 266–296.
[9] George Copeland and David Maier. 1984. Making smalltalk a database system. In

ACM Sigmod Record, Vol. 14. ACM, 316–325.

[10] László Domoszlai, Bas Lijnse, and Rinus Plasmeijer. 2014. Editlets: type-based,

client-side editors for iTasks. In IFL. ACM, 6:1–6:13.

[11] Anton Ekblad. 2016. High-performance client-side web applications through

Haskell EDSLs. In Haskell. ACM, 62–73.

[12] Martin Elsman and Niels Hallenberg. 2003. Web Programming with SMLserver.

In PADL (Lecture Notes in Computer Science), Vol. 2562. Springer, 74–91.
[13] Sebastian Fischer, Zhenjiang Hu, and Hugo Pacheco. 2015. The essence of bidi-

rectional programming. SCIENCE CHINA Information Sciences 58, 5 (2015), 1–21.
[14] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,

and Alan Schmitt. 2007. Combinators for bidirectional tree transformations: A

linguistic approach to the view-update problem. ACM Trans. Program. Lang. Syst.
29, 3 (2007), 17.

[15] Simon Fowler, Simon Harding, Joanna Sharman, and James Cheney. 2020. Cross-

tier web programming for curated databases: A case study. Under review.. http:

//arxiv.org/abs/2003.03845

[16] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. 2011. Symmetric lenses.

In POPL, Vol. 46. ACM, 371–384.

[17] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. 2012. Edit lenses. In

POPL. ACM, 495–508.

[18] Rudi Horn, Simon Fowler, and James Cheney. 2020. Artifact for "Language-

Integrated Updatable Views". https://doi.org/10.6084/m9.figshare.11907246

[19] Rudi Horn, Simon Fowler, and James Cheney. 2020. Language-Integrated Updat-

able Views (Extended version). https://arxiv.org/abs/2003.02191

[20] Rudi Horn, Roly Perera, and James Cheney. 2018. Incremental relational lenses.

Proceedings of the ACM on Programming Languages 2, ICFP (2018), 74.

[21] Zhenjiang Hu, Hugo Pacheco, and Sebastian Fischer. 2014. Validity checking of

putback transformations in bidirectional programming. In FM. Springer, 1–15.

[22] Sam Lindley and James Cheney. 2012. Row-based effect types for database

integration. In TLDI. ACM, 91–102.

[23] Adam J. Pawson, Joanna L. Sharman, Helen E. Benson, Elena Faccenda,

Stephen P.H. Alexander, O. Peter Buneman, Anthony P. Davenport, John C.

McGrath, John A. Peters, Christopher Southan, Michael Spedding, Wenyuan

Yu, Anthony J. Harmar, and NC-IUPHAR. 2013. The IUPHAR/BPS Guide to

PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their

ligands. Nucleic Acids Research 42, D1 (11 2013), D1098–D1106.

[24] Rinus Plasmeijer, Peter Achten, and Pieter W. M. Koopman. 2007. iTasks: ex-

ecutable specifications of interactive work flow systems for the web. In ICFP.
ACM, 141–152.

[25] Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter W. M.

Koopman. 2012. Task-oriented programming in a pure functional language. In

PPDP. ACM, 195–206.

[26] Gabriel Radanne, Vasilis Papavasileiou, Jérôme Vouillon, and Vincent Balat. 2016.

Eliom: tierless Web programming from the ground up. In IFL. ACM, 8:1–8:12.

[27] Manuel Serrano, Erick Gallesio, and Florian Loitsch. 2006. Hop: a language for

programming the web 2.0. In OOPSLA Companion. ACM, 975–985.

[28] Manuel Serrano and Vincent Prunet. 2016. A glimpse of Hopjs. In ICFP. ACM,

180–192.

[29] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Distributed

system development with ScalaLoci. PACMPL 2, OOPSLA (2018), 129:1–129:30.

[30] Limsoon Wong. 2000. Kleisli, a functional query system. Journal of Functional
Programming 10, 1 (2000), 19–56.

http://www.elm-lang.org
http://arxiv.org/abs/2003.03845
http://arxiv.org/abs/2003.03845
https://doi.org/10.6084/m9.figshare.11907246
https://arxiv.org/abs/2003.02191

	ACM Cover Sheet (AFV)
	223080
	ACM Cover Sheet (AFV)
	223080
	Abstract
	1 Introduction
	1.1 Contributions

	2 Predicates
	2.1 Static and Dynamic Predicates
	2.2 Predicate Language

	3 Typechecking Relational Lenses
	3.1 Functional Dependencies
	3.2 Lens Types
	3.3 Rules
	3.4 Correctness
	3.5 Typechecking Dynamic Predicates

	4 Case Study: Curated Scientific Databases
	4.1 Disease Curation Interface
	4.2 Links Reimplementation
	4.3 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

