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Abstract

A low-jerk attitude guidance method is developed, based on an analytical smoothing

of a bang-off-bang maneuver. A set of closed-form equations are derived and used to

plan constrained low-jerk maneuvers, with prescribed boundary conditions, inertia, time

and maximum control torque. The guidance law is first developed for one-dimensional

and then three-dimensional rotations using two different approaches: (i) by designing a

rotation about the Euler axis and (ii) by using the inverse kinematics equations. A generic

model of the torque induced by a multi-body appendage is derived using the lumped-

parameter method. This method can also be used to approximate the dynamic behavior

of flexible appendages. The simulations results show that the smoothing techniques

reduce the excitation of multi-body and flexible structures during a slew maneuver.
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c damping coefficient

EI bending stiffness5

f disturbance torque produced by the oscillation of the flexible appendages (flexi-

bility torque)

I inertia matrix

IRF inertial reference frame

k torsional spring coefficient10

L length of the flexible beam

M mass of the flexible beam

q generic quaternion

q generic quaternion imaginary or vector part

q4 generic quaternion real or scalar part15

u control torque

θ angular displacement

θ̇ angular speed in one-dimensional motio

θ̈ angular acceleration in one-dimensional motion

κ proxy for the fixed parameters of a rotation maneuver20

Λ total angular impulse

ω angular velocity in three-dimensional motion

ω̇ angular acceleration in three-dimensional motion
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1. Introduction

Advances in space technology have led to the development of new spacecraft con-25

cepts. Moreover, the introduction of propulsion technology such as solar sail propulsion

means that control needs to consider the effects of large flexible appendages. In addition,

new mission concepts require the use of multi-body appendages such as robotic arms.

However, such structures which store and release elastic energy can have a detrimental

effect on pointing accuracy; moreover, strong oscillations may also have an impact on the30

structure itself, possibly leading to damages to the structure over time. Thus, the atti-

tude control of spacecraft which employ multi-body or flexible appendages must mitigate

this by performing smooth motions that avoid exciting the modes.

The main goal of this paper is to develop an efficient guidance technique that enables

the attitude control of spacecraft that minimize the oscillation of spacecraft with multi-35

body and flexible appendages.

The problem of controlling the attitude of flexible spacecraft has been extensively

studied in literature. Different control laws have been applied in order to mitigate or

compensate the effects of the flexible part during the motion. Many approaches rely

on robust control methods. For example, Ref. [1] presents an input-shaping technique40

for use with constant-amplitude actuators on slewing flexible spacecraft; it is robust to

modeling errors in the vibration frequency of the appendages. Also, Ref. [2] presents the

application of the super-twisting sliding mode control for the three-axis attitude tracking

and vibration suppression of a flexible spacecraft. Another approach consists in estimat-

ing the disturbance and canceling it using the control; in Ref. [3] a dynamic disturbance45

compensator is developed to achieve disturbance rejection of the rigid-flexible coupling

effects during attitude maneuvers, together with a robust state feedback controller which

is derived by analyzing the dynamic characteristics of the flexible part. Ref. [4] presents

a control which employs an extended disturbance observer to achieve high-precision at-

titude stabilization for a spacecraft in the presence of space environmental disturbances,50

unmodeled dynamics and elastic vibration of flexible appendages. Smart structures have

been been proposed to reduce the effect of mode excitation using active vibration sup-

pression, for example in Ref. [5]; however, smart materials are expensive solutions and

can be applied to specific structures only. An approach based on optimal control is stud-
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ied in Ref. [6], where the attitude stabilization of a flexible spacecraft is achieved using55

a linear quadratic regulator. Finally, Ref. [7] deals with intelligent control techniques: a

neuro-controller is used to determine optimal control laws to minimize the strain energy

of flexible arrays during the maneuvers.

While the majority of control methods try to cancel the torque induced by the flexible

part to improve pointing and robustness, other approaches use the guidance to plan60

a smooth motion first, which alleviates the need for a complex control structure. In

order to measure the smoothness of a generic motion, it is necessary to introduce a

physical quantity which is suitable to represent it. Ref. [8] shows that smoothness can

be quantified as a function of jerk, i.e. the time derivative of acceleration, while Ref. [9]

compares the minimum jerk, snap and crackle trajectories, finding that the optimization65

of a smoothness-based cost function for a given trajectory is equivalently achieved by

minimizing the jerk. Inspired by these works, the attitude guidance system is designed

here so as to reduce the angular jerk as much as possible without exceeding the maximum

time allowed for a given maneuver. It is shown in Ref. [10] that the time-optimal three-

axis reorientation maneuver is a bang-bang rotation in all three control components,70

instead of an eigenaxis rotation about a chosen control axis, which provides the minimum

angular path instead. This is due to the fact that the complex geometry of the three-

axis bang-bang has substantial nutational components which provide more torque along

the reorientation axis, thus allowing to complete the maneuver in less time. However,

a time-optimal bang-bang motion cannot be smoothed without changing the time, so75

the bang-off-bang structure is considered here. As the bang-off-bang control profile has

infinite jerk, it is unsuitable for the control of flexible structures, so a solution proposed

by Ref. [11] simply substitutes the bang-off-bang profile with a smoothed curve based

on the trigonometric function versine. However, the simple substitution of the steps

of the bang-off-bang maneuver with smooth curves has the drawback of increasing the80

total time of the maneuver. A new analytical application of such smoothing technique is

developed in this paper: when substituting the the steps of the bang-off-bang maneuver

with smooth curves, the ”off” part of acceleration is reduced to zero and the phases of

maximum acceleration are increased, so as to to keep the same displacement and total

time of the original bang-off-bang maneuver while smoothing the motion.85
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In Refs. [12] and [13] some geometrical smoothing techniques are derived to reduce

the excitation of flexible degrees of freedom. First the authors exploit such techniques

in order to find a reference angular trajectory; then they use the inverse kinematics

to get the three-dimensional (3-D) reference velocity and acceleration, which are then

used to determine a pre-planned feed-forward torque to track the spacecraft trajectory.90

Also, in Ref. [14] a torque profile is fed forward to a controller in order to perform a

planned smooth attitude slew maneuver. Ref. [15] presents a method to determine ana-

lytical acceleration profiles for single-axis, spin-to-spin slew maneuvers under a finite-jerk

constraint. In Ref. [16] an optimization method is used to generate smooth and approx-

imate time-optimal trajectories for attitude maneuvers by minimizing a cost function95

which takes into account the maneuver duration and the integral of the squared control

torque derivatives; however, such methods are numerically solved and computationally

expensive relative to the proposed analytical approach of this paper.

The behavior of appendage-like flexible structures is well described in the literature.

For example, Ref. [17] provides a model of flexible thin beams in multi-body systems,100

Ref. [18] presents a general model for flexible multi-body systems based on Kane’s method

and Ref. [6] shows how to model the dynamics of a flexible spacecraft through Lagrangian

mechanics. However, modeling flexible parts as disturbance torques in attitude dynam-

ics is often limited to particular structure cases. For example, in Ref. [19] the flexible

appendages are approximated as homogeneous cantilever beams symmetric with respect105

to the rotation axes, so that only anti-symmetric deformations occur during rotation. In

Ref. [7] the spacecraft has a very simple geometry, where the solar arrays are symmetrical

with respect to the main body. In Ref. [20] another mathematical model is derived for

the attitude dynamics of a spacecraft with flexible appendages, focusing on a spacecraft

composed of a rigid body with a long flexible boom with constant cross-sectional prop-110

erties; the authors developed a complete model for the attitude dynamics which takes

into account both the rigid-body dynamics and the oscillatory dynamics of the flexible

appendage (in this case a thin beam) by means of the principle of virtual work. Finally,

Ref. [21] models the behavior of a satellite with two symmetric panels by means of Kane’s

dynamics, but considering panels as rigid, with flexible hinges.115

A number of possible ways to model a flexible structure exist. Among them, the Ritz
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method, the finite element method and the lumped-parameter method are examples of

widely used techniques (Refs. [22] and [23]). For testing the algorithms presented in this

paper, any of these models can be employed. The lumped-parameter method is chosen

here since not only can it provide an approximate model for flexible appendages, but120

it also can be used to represent a range of multi-body structures, from boom antennas

(modeled as a large number of lumped elements) to rigid multi-body structures such as

deployables and robotic arms (which can be represented by fewer lumped element mod-

els). This model does not require any specific position or orientation of the appendages

with respect to the spacecraft main body or the rotation axis – apart from the alignment125

with the center of mass of the spacecraft – and it does not require the assumptions of

homogeneity and isotropy, provided that the material can be considered perfectly elas-

tic. Once the behavior of the flexible/multi-body structure is modeled, the effects of the

oscillation are treated as a disturbance torque to the spacecraft. The resulting model

is simple to implement and can easily be extended if multiple flexible parts are present.130

This model requires the assumption of small elastic deformations, the damping coefficient

and the elasticity properties as parameters.

The paper develops as follows. In Sec. 2, a simple model of a thin, flexible structure is

derived through the lumped-parameter method and its 3-D behavior is modeled, in order

to show how it interacts with the spacecraft main body during the motion. In Sec. 3, the135

guidance law is developed by means of a trigonometric smoothing technique whose aim

is to reduce the sharpness of a generic bang-off-bang rotation. This is first developed

for one-dimensional (1-D) rotations, then extended to 3-D maneuvers by means of two

approaches: (i) by performing a smooth 1-D rotation about the Euler axis and (ii) by

applying the 1-D smoothing technique about each rotation axis separately and combining140

them through the inverse kinematics equations. In Sec. 4, two simulations are carried

out: the first one deals with a planar (1-D) bang-off-bang rotation subjected to the

above-mentioned trigonometric smoothing technique, while in the second one the actual

behavior of the two approaches for the 3-D smooth guidance is simulated in two different

test cases and the results of each of them are compared, in order to show the advantages145

and disadvantages of the analytical method.
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2. Modeling flexible structures

2.1. Discretization of a thin beam

Being necessary to have a simple structural flexible model, the lumped-parameter

method is used to discretize the 1-D behavior of a thin flexible beam (i.e. bending in150

one plane only), as it is shown in Fig. 1, which can represent a long flexible appendage

such as a boom antenna or a solar panel. This model is also especially well-suited for

modeling a multi-body spacecraft structure, such as a robotic arm. The beam has mass

M , bending stiffness EI and length L, and it is attached to the spacecraft main body

through a hinge of torsional spring coefficient kr and damping coefficient cr. All the155

structural parameters are known and the mass and the bending stiffness of the beam are

assumed to be uniform, i.e. the structure is homogeneous.

The flexible beam has been discretized into two rigid segments joined by a fictitious

hinge located at the middle of the beam. The segments are massless, thus two masses

have been placed in the middle of each segment to represent the mass of the whole beam.160

Real

beam

Lumped

elements

model

Discretization

Hinge
kr, cr

Real
hinge
kr, cr

M, EI, L

L/4 L/4 L/4 L/4

Fictitious
hinge

kf = 0.75EI/L

cf from references

M/2 M/2

Figure 1: Discretization of a thin beam.

The fictitious hinge has its own torsional spring coefficient kf and damping coefficient

cf , representing the flexibility and the damping capability of the full beam. kf can be

recovered from the bending stiffness of the beam under two assumptions:

• the contribution of the shear stiffness is small enough to be neglected without

introducing a significant error;165

• the inertia forces acting on each infinitesimal point of the structure are considered

uniform along the beam and may be represented by a uniform distributed load;
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this is more true as the length of the beam is shorter, meaning that the accuracy

of the model increases by increasing the number of fictitious hinges and masses.

(a) Inertia load. (b) Equivalent concentrated

load.

(c) Equivalent hinge.

Figure 2: Model of the bending stiffness of the fictitious hinge.

Therefore the structure subjected to its own inertia during the motion is now repre-170

sented as a beam subjected to a uniformly-distributed force p, as it is shown in Fig. 2a.

Such force produces a displacement δ at the end of the beam that can be computed

through Castigliano’s method (Ref. [24, p. 330]), obtaining:

δ =
pL4

8EI
(1)

The distributed load p is then converted into a concentrated one P which is located

at the tip of the beam and produces the same displacement of the distributed load:175

δ =
PL3

3EI
(2)

as it is shown in Fig. 2b. By equating the displacements it is possible to get a relation

between p and P :

P =
3

8
pL (3)

Now the beam is discretized into two rigid segments coupled through a joint, as it is

shown in Fig. 2c. Being τ the torque caused by the concentrated load P at the tip and

θ the bending angle of the second rigid segment with respect to its equilibrium position,180

the torsional spring coefficient of the hinge kf is then given by:

kf =
τ

θ
(4)
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with

τ =
1

2
PL (5)

and, with the reasonable assumption of small angle bending,

θ ≈ sin θ =
δ

L/2
(6)

the torsional spring coefficient is obtained:

kf =
3EI

4L
(7)

This coefficient replaces the internal flexibility of the beam with a single fictitious185

hinge, allowing to treat the structure as two joint rigid segments. Unfortunately, no ana-

lytic expression was found to determine the damping coefficient cf of the fictitious hinge,

thus its value must be found empirically through on-ground testing or other references,

for example similar structures or more accurate structural analyses such as the finite

element method.190

2.2. 1-D dynamics of the structure

The dynamic behavior of the flexible system is studied exploiting Lagrangian mechan-

ics. An array of N beams is now considered, which are discretized into lumped elements

according to the method presented in the previous section. As each beam is discretized

into two elements, a total of 2N lumped elements will be present, each one composed by195

a hinge (real or fictitious), a rigid beam segment and a point mass.

First, three functions are computed:

T =

2N∑
i=1

1

2
Ii

(
θ̇i + θ̇B

)2
kinetic energy (8)

V =

2N∑
i=1

1

2
ki (θi − θi−1)

2
potential energy (9)

D =

2N∑
i=1

1

2
ci

(
θ̇i − θ̇i−1

)2
dissipation function (10)

where, referring to Fig. 3,
9



• Ii = mir
2
i is the moment of inertia of the i-th lumped mass mi, located at a distance

ri from the rotation axis;200

• ki and ci are the spring coefficient and the damping coefficient of the i-th hinge

respectively;

• θi and θ̇i are the i-th angular displacement and angular speed respectively with

respect to the equilibrium position;

• θ̇B is the angular speed of the body reference frame (BRF) with respect to the205

inertial reference frame (IRF), i.e. the angular speed of the spacecraft rigid body;

• θ0 and θ̇0 are the angular position and speed of the equilibrium position with respect

to BRF, which are assumed to be zero (i.e. the equilibrium position is aligned with

x̂B).

1st beam

2nd beam

Figure 3: Example of a lumped-parameter model of an array of two beams undergoing a rotational

motion.

Now it is possible to compute the Lagrangian equations for the lumped elements, as210

in Ref. [6, p. 35]:

d

dt

∂T

∂θ̇i
− ∂T

∂θi
+
∂V

∂θi
+
∂D

∂θ̇i
= 0 i = 1, . . . , 2N (11)

Another Lagrangian equation must be added in order to take into account the external

contributions to the motion of the flexible structure:

d

dt

∂T

∂θ̇B
− ∂T

∂θB
+
∂V

∂θB
+
∂D

∂θ̇B
= f (12)
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where f is the flexibility torque: a boundary reaction torque which is produced by the

motion of the flexible structure on the spacecraft main body.215

By solving Eq. (12), it is possible to find the contribution of the flexibility to the total

torque applied on the spacecraft:

f =

N∑
i=1

mir
2
i

(
θ̈i + θ̈B

)
(13)

Assembling all the Lagrangian equations allows to write the equations of motion of

the system in a matrix form:

Iθ̈ +Kθ +Cθ̇ = τ (14)

with220

I =



∑2N
i=1mir

2
i m1r

2
1 m2r

2
2 m3r

2
3 . . . m2Nr

2
2N

m1r
2
1 m1r

2
1 0 0 . . . 0

m2r
2
2 0 m2r

2
2 0 . . . 0

m3r
2
3 0 0 m3r

2
3 . . . 0

...
...

...
...

. . .
...

m2Nr
2
2N 0 0 0 . . . m2Nr

2
2N


(15)

K =



0 0 0 0 . . . 0

0 k1 + k2 −k2 0 . . . 0

0 −k2 k2 + k3 −k3 . . . 0

0 0 −k3 k3 + k4 . . . 0
...

...
...

...
. . . −k2N

0 0 0 0 −kN k2N


(16)

C =



0 0 0 0 . . . 0

0 c1 + c2 −c2 0 . . . 0

0 −c2 c2 + c3 −c3 . . . 0

0 0 −c3 c3 + c4 . . . 0
...

...
...

...
. . . −c2N

0 0 0 0 −cN c2N


(17)
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being I the inertia matrix, θ̈ =
[
θ̈B θ̈1 θ̈2 . . . θ̈2N

]T
a vector collecting the angular

accelerations of the main body and the lumped elements, K the stiffness matrix, C the

damping matrix and τ =
[
f 0 0 . . .

]T
the vector of external loads.225

Eq. (14) represents thus a two-way coupling between the motion of the rigid body

of the spacecraft (represented by the term θ̈B) and the motion of the flexible structure,

whose effect on the main body is represented by f .

2.3. 3-D dynamics of the structure

In order to extend this approach to the 3-D case, it is first necessary to define a new230

reference frame which is more suitable for describing the behavior of the flexible part.

This new reference frame is called appendage reference frame (ARF) and is defined such

that x̂A is aligned with the main axis of the appendage when it is in equilibrium, while

ŷA and ẑA are left to the free choice of the designers, provided that they follow the

convention of the right hand rule. It is also required that the origin of the ARF frame235

coincides with the center of mass of the spacecraft, which means that the principal axis of

the flexible structure must be aligned with the center of mass of the spacecraft. A rotation

matrix is given to convert this reference frame to BRF and vice-versa: RB←A = RT
A←B .

In order to manage a 3-D deformation of the flexible appendage, its dynamic behavior

is decomposed into two bending deformations, each one along the ŷA and ẑA axes of ARF,240

and a torsional contribution about x̂A due to the torsional inertia of the appendage. This

approach offers a good solution because of the slimness of the beam, since gyroscopic

effects do not significantly affect slim beams.

First, the same discretization process seen in Sec. 2.1 is applied about each axis ŷA

and ẑA separately so as to obtain the same series of masses and hinges on the beam. The245

i-th hinge along ŷA and the one along ẑA lie to the same position along the appendage,

but they may have different mechanical properties if the structure is anisotropic.

The position ri of each lumped mass mi in the BRF is given by:

ri = RB←Ari

[
1 0 0

]T
(18)

If the alignment of the rotation axis ω̂ with respect to the body frame is known

(rate-integrating gyros can provide this piece of information), it is possible to determine250
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the distance of the i-th mass from that axis so as to compute its moment of inertia. As

shown in Fig. 4, that distance is

di = ri sinα (19)

being α the angle between the main axis of the appendage and the axis of rotation:

α = arccos

(
ω · ri
ωri

)
= arccos

(
ω̂ ·RB←A

[
1 0 0

]T)
(20)

Figure 4: Appendage with three-dimensional rotation.

In order to extend Eq. (13) to the 3-D case, the angular accelerations of the lumped

masses about ŷA and ẑA and the angular acceleration of the spacecraft are used. There-255

fore, instead of the planar angular accelerations, now the 3-D accelerations of the lumped

masses and the spacecraft are used:

(
θ̈i + θ̈B

)
1-D → 3-D−−−−−−−−→

(
RB←A

[
0 θ̈y i θ̈z i

]T
+ ω̇

)
(21)

Moreover, a contribution due to the torsional inertia is added. Once the spacecraft

angular acceleration ω̇ is converted into ARF, it can be recovered by multiplying the

polar mass moment of inertia Ip i by the component of acceleration that is aligned with260

x̂A, i.e. the first element of the vector; the result is then reconverted into BRF. The

13



following equation is thus obtained:

f =

N∑
i=1

mid
2
i

RB←A


0

θ̈y i

θ̈z i

+


ω̇x

ω̇y

ω̇z


+RB←AIp i


1 0 0

0 0 0

0 0 0

RA←B


ω̇x

ω̇y

ω̇z



(22)

Note that while the torsional inertia is kept into account, the torsional deformation of

the structure is not.

3. Low-jerk attitude guidance and control265

In this section, a controlled rest-to-rest maneuver is considered, which is given in

terms of desired displacement (angular distance between the desired position and the

current one) and required time for the maneuver. In order to perform such maneuver, it

is necessary to design a suitable trajectory which satisfies the requirements while being

constrained by the physical properties of the spacecraft and by keeping the excitation of270

the flexible structures to a minimum. Such trajectory will be expressed as an acceleration

profile that shall be used to feed a suitable control.

3.1. 1-D maneuvers

The versine control profile is a simple smooth approximation of the bang-off-bang

control profile (Fig. 5) with a finite jerk value by means of the versine trigonometric275

function. The versine is defined as the difference between 1 and the cosine of a given

angle:

versin(θ) := 1− cos(θ) (23)

This function is used to smoothen each step of the bang-bang control. As its derivative

is zero at the origin, it is well suitable to have smooth start and smooth end.

Once the quick changes of acceleration of the bang-off-bang profile are substituted280

by versine-shaped curves, as it is possible to see in Fig. 6, it is necessary to define some

quantities:
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Figure 5: Profile of the bang-off-bang maneuver.

• tv is the time of each application of the versine function;

• tm is the time of constant acceleration between the increasing and the decreasing

parts of the versine function;285

• tna is the time of constant velocity between the positive and negative acceleration

phases;

• tf = 4tv + 2tm + tna is the total time of the acceleration profile, which is less than

or equal to the duration of the maneuver.

It is clear that, in order to increase the smoothness of the maneuver, it is necessary290

to increase tv. The best way to achieve this goal without increasing the total time of

flight is to reduce tna to zero so that the end of the positive acceleration phase coincides

to the start of the negative one, as it is possible to see in Fig. 7. Then the total time of

the acceleration profile becomes:

tf = 4tv + 2tm (24)

At this point, it is possible to see that a stationary point is present where the acceler-295

ation switches sign. Such ripple is a consequence of two consecutive and opposite versine

curves and has no usefulness, therefore it may be better to replace the part of the curve

15



Figure 6: Profile of the versine-smoothed maneuver.

Figure 7: Profile of the versine-smoothed maneuver without constant-velocity part.

between the highest and the lowest peaks of acceleration with a cosine, which does not

present any distortion near zero. The final profile is shown in Fig. 8.

Given a maximum available acceleration θ̈max, the actual control acceleration is there-300

fore given by
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Figure 8: Profile of the versine/cosine-smoothed maneuver.

θ̈(t) =
1

2
θ̈max versin

(
π
t

tv

)
0 ≤ t < tv

θ̈(t) = θ̈max tv ≤ t < tm + tv

θ̈(t) = θ̈max cos

(
π

2

t− tm − tv
tv

)
tm + tv ≤ t < tm + 3tv (25)

θ̈(t) = −θ̈max tm + 3tv ≤ t < 2tm + 3tv

θ̈(t) = −1

2
θ̈max versin

(
π
t− 2tm − 4tv

tv

)
2tm + 3tv ≤ t < tf

It is now necessary to correlate the parameters of the maneuver shaping, tv and tm,

to the constraints of the maneuver and the spacecraft: the final time tf , the desired

displacement θd, the maximum available control torque umax and the inertia I. Under

the assumption of zero initial position, θ(0) = 0, the displacement can be obtained from305

the double integration of the acceleration profile:

θ = 2θ̈max

[∫∫ tv

0

1

2
versin

(
π
t

tv

)
dt dt+

∫∫ tm+tv

tv

dt dt+

+

∫∫ tm+2tv

tm+tv

cos

(
−π t− tm − tv

2tv

)
dt dt

]
(26)
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Defining

κ :=
θd

θ̈max
=

θdI

umax
(27)

as a proxy for the fixed parameters and substituting tm = 1
2 tf − 2tv, the following

equation is obtained:

(
6

π2
− 1

2

)
t2v −

1

2
tf tv +

1

4
t2f = κ (28)

which must be solved with the constraints of tf , κ > 0 and 0 ≤ tv ≤ 1
4 tf .310

For given values of κ and tf , that equation is satisfied when:

tv =
π
√

(3π2 − 24)t2f + (96− 8π2)κ− π2tf

2(π2 − 12)
(29)

It is worth to note that for a given value of κ the total time tf is constrained by a

lower and an upper bound. The lower bound is given by

tf min = 2
√
κ (30)

which corresponds to a bang-bang maneuver, where tv = 0 and tm = 1
2 tf . The bang-bang

profile is the time-optimal maneuver, so no maneuver is possible with a lower duration.315

The upper bound is given by

tf max =
4π
√

2√
3π2 + 12

√
κ (31)

which coincides with tv = 1
4 tf and tm = 0. A larger value of tf requires to reduce the

maximum acceleration to perform the maneuver correctly: if tf exceeds such limit, a new

value for the maximum acceleration must be set as

θ̈maxnew =
32π2θd

t2f (3π2 + 12)
(32)

with κ varying accordingly.320

This set of equations allows to create a suitable low-jerk acceleration profile for a

specific maneuver, providing the desired displacement θd, in the total time tf and within

the maximum acceleration θ̈max = umax/I. First tf must be compared with the bounds
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provided by Eq. (30) and (31); if it is too small, the maneuver is physically infeasible for

the spacecraft and it is necessary to increase the time of flight or the maximum available325

torque; if on the contrary tf is too large, the maximum acceleration θ̈max shall be reduced

to a new value given by Eq. (32). After that, the times of the different phases of the

maneuver, tv and tm, can be found through Eq. (29) and (24) respectively, which in the

end allow to design the acceleration profile according to Eq. (25).

It is worth noting that the maximum angular velocity of the smooth motion increases330

with respect to a bang-off-bang maneuver. This is because The ”off” part in the profile is

produced not only by the constraint on maximum acceleration, but also by the constraint

on maximum angular velocity that the spacecraft can withstand. For this reason, it may

be necessary to increase the total time in order to decrease the maximum angular velocity.

As it is shown in Ref. [25], this can be done by rescaling the time as t = ατ , where τ is335

the new total time and α is a rescaling factor; so if the planned maneuver exceeds the

maximum angular velocity, it is possible to rescale the total time so that it respects such

constraint.

By integrating Eq. (25) twice it is possible to get analytically the velocity and position
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at each time instant t of the rotation. They are given by the following set of equations:340

Phase 1: positive versine-shaped acceleration (0 ≤ t < tv)

θ̇(t) = θ̈max

[
t

2
− tv

2π
sin

(
π
t

tv

)]
θ(t) = θ̈max

{
t2

4
− t2v

2π2

[
cos

(
π
t

tv

)
− 1

]}
Phase 2: positive constant acceleration (tv ≤ t < tm + tv)

θ̇(t) = θ̈max

(
t− 1

2
tv

)
θ(t) = θ̈max

[
1

2
t2 − 1

2
tvt−

(
1

π2
− 1

4

)
t2v

]
Phase 3: cosine-shaped acceleration (tm + tv ≤ t < tm + 3tv)

θ̇(t) = θ̈max

{[
− 2

π
cos

(
π

2

t− tm
tv

)
+

1

2

]
tv + tm

}
θ(t) = θ̈max

{[
− 4

π2
sin

(
π

2

t− tm
tv

)
+

3

π2
− 1

4

]
t2v + tmt+

1

2
tvt−

1

2
t2m−

−tmtv}

Phase 4: negative constant acceleration (tm + 3tv ≤ t < 2tm + 3tv)

θ̇(t) = θ̈max

(
−t+ 2tm +

7

2
tv

)
θ(t) = θ̈max

[
−1

2
t2 + 2tmt+

7

2
tvt+

(
7

π2
− 19

4

)
t2v − t2m − 4tmtv

]
Phase 5: negative versine-shaped acceleration (2tm + 3tv ≤ t < tf )

θ̇(t) = θ̈max

{
−1

2
t+

[
1

2π
sin

(
π
t− 2tm − 4tv

tv

)
+ 2

]
tv + tm

}
θ(t) = θ̈max

{
−1

4
t2 + tmt+ 2tvt−

[
1

2π2
cos

(
π
t− 2tm − 4tv

tv

)
− 13

2π2
+

+
5

2

]
t2v − tmtv

}

(33)

3.2. 3-D maneuvers

In order to work on the 3-D case, it is necessary to use a 3-D representation of the

maneuver. Quaternions are well suitable to represent 3-D attitude and spatial rotations,

so a quaternion representation is adopted. A generic quaternion q is composed by an
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imaginary or vector part q and a real or scalar part q4 as follows:345

q =

q
q4

 , q =


q1

q2

q3

 (34)

The quaternion error of the overall maneuver can be found as

qe = q−1d ⊗ q0 (35)

where qd is the desired final quaternion, q0 is the quaternion representing the initial

position, ⊗ represents the quaternion product, and the inverse of a quaternion is obtained

as

q−1 =
1

‖q‖2

−q
q4

 (36)

being ‖q‖ =
√
q21 + q22 + q23 + q24 the norm of the quaternion.350

It is worth to note that it is always possible to change the reference frame of the

maneuver such that in the new frame the initial angular position is zero.

3.2.1. Smoothing of the eigenaxis rotation

Euler’s rotation theorem states that any 3-D rotation of a rigid body about a fixed

point from any initial orientation to any final orientation is equivalent to a single rotation355

about an axis that runs through the fixed point (Ref. [26, p. 329]). Such axis is stationary

in an inertial reference frame and is called Euler axis or eigenaxis.

The eigenaxis rotation, being about an inertial fixed axis, can be considered a 1-D

rotation in a reference frame which has the Euler axis as one of its main axes. Owing

to this, the 1-D smoothing technique developed in the previous section can be applied360

directly.

It is worth to note, however, that as the Euler axis is not a principal axis of inertia,

a torque about this axis does not only result in an acceleration about the same, and

therefore additional control torques around the other axes are needed.
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Quaternions represent a mathematical method to encode the Euler axis-angle rep-365

resentation in four numbers, where the vector part represents the eigenaxis ê and the

scalar part the angle θ:

q =

sin θ
2 ê

cos θ2

 (37)

In other words, quaternions define the rigid-body attitude as an Euler-axis rotation. This

means that the vector of the imaginary part is aligned with the Euler axis while the real

part is associated to the Euler angle, so it is possible to compute the Euler axis ê and370

the desired angle θd of a given maneuver from the quaternion error as follows:

ê = csc
θd
2
qe =

qe
‖qe‖

θd = 2 arccos qe4

(38)

Once the angular displacement θd is obtained, it can be smoothed by using the set

of Eq. (33): by computing the analytical angular displacement path θ(t) from t = 0

to t = tf , a 1-D reference displacement θref (t) is obtained which the spacecraft must

follow in order to perform the smooth maneuver. Such 1-D profile of displacement is375

then converted into a quaternion qref (t) which represents a 3-D reference maneuver, as

follows:

qref (t) = sin
θref (t)

2
ê

qref 4(t) = cos
θref (t)

2

(39)

A reference speed θ̇ref (t) about the Euler axis can also be obtained by computing the

angular speed θ̇(t) through Eq. (33). It is then converted into a 3-D profile of velocity as

ωref (t) = θ̇ref (t)ê (40)

The 3-D profiles of position qref (t) and velocity ωref (t) can then be exploited for the380

smooth maneuver.

22



3.2.2. Smoothing of a generic 3-D maneuver

Even if the eigenaxis rotation can be used to perform maneuvers in the 3-D rotation

group, it may be useful to find a way to smooth generic 3-D maneuvers without relying

on the specific rotation about the Euler axis.385

An approach to create 3-D maneuvers starting from a 1-D smoothing technique is

proposed by Ref. [12]. Such method is adopted here to design a fully-3-D maneuver

profile that takes into account the nonlinear terms of Euler equations starting from the

1-D analytical smoothing technique developed in the previous section.

First, a smooth profile maneuver is developed for each axis separately, starting from390

the desired displacement θd about each axis and the same total maneuver time tf and

using Eq. (33). Three profiles of position are then obtained:

θref (t) =
[
θref x(t) θref y(t) θref z(t)

]T
(41)

which can be converted into a quaternion representation in order to obtain the profile of

position in terms of quaternions, qref (t).

Since it is not possible to integrate directly the Euler angles to get the profiles of395

angular velocities, the kinematic equations of Euler angles are used to find the angular

velocity vector ωref (t) starting from the kinematic equations for the set of Euler angles

3-2-1:

θ̇ =
1

cos θy


0 sin θz cos θz

0 cos θy cos θz − cos θy sin θz

cos θy sin θy sin θz sin θy cos θz

ω (42)

Such equations are inverted to find the reference angular velocity from the derivatives of

the reference Euler angles:400

ωref (t) =


− sin

(
θref y(t)

)
0 1

cos
(
θref y(t)

)
sin
(
θref z(t)

)
cos
(
θref z(t)

)
0

cos
(
θref y(t)

)
cos
(
θref z(t)

)
− sin

(
θref z(t)

)
0

 θ̇ref (t) (43)

So it is possible to determine the reference angular velocity ωref (t) by means of the

reference displacement θref (t) and its derivative θ̇ref (t), both available analytically from

Eq. (33) as the displacement and speed paths θ(t) and θ̇(t) about each axis.
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It is worth noting that the intrinsic singularities of the kinematics written through

Euler angles vanished thanks to the inversion of the equations.405

3.3. Reference tracking

Once 3-D profiles of position (qref ) and velocity (ωref ) are obtained either by means

of the smoothing of an eigenaxis rotation, Eq. (39) and (40), or through the smoothing

of three superimposed 1-D maneuvers, Eq. (41) and (43), it is necessary to develop a

control law able to make the spacecraft perform the desired maneuver.410

The control law is a quaternion-based control whose task is to minimize the errors

between the planned position and planned angular velocity and the current actual ones:

u = I (−k1qe − k2ωe) (44)

where qe is the imaginary part of the quaternion error qe, which expresses the error

between the desired reference position at each time instant and the actual one:

qe(t) = q−1ref (t)⊗ q(t) (45)

and ωe is the error between the reference velocity at each time instant and the actual415

one:

ωe(t) = ω(t)− ωref (t) (46)

Therefore the control law is designed to make the spacecraft follow the prescribed

angular rate and velocity during the maneuver.

It is worth to note that the final control input u may be larger than the maximum

torque used to compute the maneuver profiles because of the presence of the disturbing420

flexibility torque f . Therefore, it is necessary to consider a margin between the maximum

reference control torque and the actual maximum torque available from actuators.

The process to obtain the control law to perform the smooth maneuver can therefore

be summarized as follows:

1. the angular displacement path θ(t) and angular speed path θ̇(t) about the Euler axis425

are computed analytically from Eq. (33) according to the maneuver and spacecraft
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constraints for all the different time phases of the maneuver; they form a reference

displacement θref (t) and a reference speed θ̇ref (t) about the eigenaxis, which are

converted into a 3-D reference position qref (t) and a 3-D reference velocity ωref (t)

through Eq. (39) and (40);430

2. alternatively, the angular displacement path and angular speed path can be com-

puted separately about each principal axis and composed into two vectors: θref (t)

and θ̇ref (t); the former is then converted into quaternion form qref (t) through

Eq. (39) again, while the latter is converted into a 3-D reference velocity by means

of Eq. (43);435

3. the control law is expected to make the spacecraft follow the prescribed position

and velocity paths during the maneuver, qref (t) and ωref (t), so the control law

of Eq. (44) is adopted, where the errors are computed with respect to the actual

position and velocity at each time instant during the maneuver.

4. Simulations results440

4.1. 1-D simulation

A first simulation has been carried out in a 1-D setting in order to show how the

trigonometric smoothing technique reduces the excitation of a flexible structure while

performing a planar rotation.

The flexible structure is composed by two beams joint together with a hinge, equal445

to that of Fig. 3, whose mechanical properties are shown in table 1.

Table 1: Mechanical properties of the 1-D structure.

Beams Real hinges

Parameter Beam 1 Beam 2 Parameter Hinge 1 Hinge 3

L [m] 1 1 k [N m−1] 1200 1300

M [kg] 10 9 c [N s m−1] 5 5

EI [N m2] 1840 1850 r0 [m] 1

c [N s m−1] 5 5

In this simulation, no disturbance torque affects the motion. The rotation is per-

formed by following both the bang-off-bang acceleration profile and an equivalent profile
25



obtained by applying the versine/cosine smoothing technique presented in Sec. 3.1 in

order to show how the flexible appendage behaves in the two cases. The the torque pro-450

duced by the oscillation of the flexible structure, f , is chosen as a metrics to represent

how the different profiles of acceleration trigger the appendage. The fixed parameters of

the rotation are displayed in Table 2.

Table 2: Parameters of the 1-D simulation.

Parameter Symbol Value

Desired position [°] θd 180

Maximum acceleration [rad s−1] θ̈max 0.01

Minimum allowed duration of the rotation [s] tf min 35.5

Available time for the rotation [s] tf 40

Fig. 9 shows how the original bang-off-bang acceleration profile is converted into an

equivalent smoother profile by applying the discussed smoothing process. It can be seen455

that the main constraints (duration and maximum acceleration) remain unchanged.

Figure 9: Acceleration profiles of the bang-off-bang and the smoothed rotation.

Fig. 10 shows the flexibility torque due to the oscillation of the structure. It can

be seen that the smoothed rotation triggers such oscillation considerably less than the

original bang-off-bang rotation.

This simulation shows how a bang-off-bang acceleration profile can be smoothed with-460

out changing its constraints. Moreover, it also shows that the application of the smooth-

26



Figure 10: Flexibility torques of the bang-off-bang and the smoothed rotation.

ing technique in planar rotations is capable of reducing the oscillation of the flexible

structure.

4.2. 3-D simulations

Another simulation has been carried out of a generic medium-size satellite performing465

smoothed 3-D rest-to-rest slew maneuvers. The spacecraft is equipped with a generic

flexible slim appendage which is not aligned with any of the main axes of inertia of

the vehicle. Both the eigenaxis rotation and the 3-D smoothed maneuver have been

simulated in order to analyze the effectiveness of the two techniques. Two test cases

have been analyzed: they differ each other in the parameters of the maneuver and the470

properties of the spacecraft, while the structural properties of the appendage remain

unchanged.

The model of the appendage is equal to that of the previous simulation, but now it

is able to move in a 3-D frame. Defining axis ŷA and ẑA as perpendicular to the beams’

main axis, such structure has the mechanical properties displayed in Table 3.475

The position of the flexible structure with respect to the spacecraft main body is

given by matrix RB←A, the following values of the Euler angles being used for the first

test case:
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Table 3: Mechanical properties of the 3-D structure.

Beams Real hinges

Parameter Beam 1 Beam 2 Parameter Hinge 1 Hinge 3

L [m] 1 1 kyA [N m−1] 1200 1300

M [kg] 10 9 kzA [N m−1] 1200 1300

EIyA [N m2] 1840 1850 cyA, czA [N s m−1] 5 5

EIzA [N m2] 1920 1900 r0 [m] 1

cyA, czA [N s m−1] 5 5

Ip [kg m2] 0.1 0.1

α = 12°

β = 5° (47)

γ = 35°

The controller is designed according to Eq. (44) where the gains have been set as

k1 = 1 s−2 and k2 = 2 s−1, which were found through a trial-and-error iterative process480

and showed to be effective for controlling this system.

The fixed parameters of the maneuver and the spacecraft for the first test case are

shown in Table 4.

Table 4: Parameters of the 3-D simulation (test case 1).

Parameter Symbol Value

Desired position [°] θd

[
135 180 −144

]
Maximum control torque [N m] umax

[
1.95 1.55 1.75

]
Moment of inertia of the main body [kg m2] I

[
90 85 100

]
Minimum allowed duration about each axis [s] tf min

[
24.1 30.2 27.7

]
Available time for the maneuver [s] tf 45

The actual maximum torque used for computing the acceleration profiles has been set

as 75 % of the nominal one, in order to grant a margin for compensating the disturbing485
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flexibility torque f .

In Fig. 11 the attitude error of the overall maneuver, i.e. the quaternion error referred

to the desired final position, is visible. The two smoothing techniques are applied and in

both cases the spacecraft is able to reach the desired position with accuracy.
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(a) Eigenaxis rotation.
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(b) 3-D smoothed maneuver.

Figure 11: Attitude errors (test case 1).

Fig. 12 displays the angular velocities during the eigenaxis rotation and the 3-D490

smoothed maneuver compared with the planned expected angular velocity. It can be

seen that the maximum value in the 3-D smoothed maneuver is larger than expected

about the ŷ and ẑ axes because of the influence of the disturbing torque due to the

oscillation of the flexible appendage. On the other hand, the angular velocity during the

eigenaxis rotation is smaller, thus reducing the centrifugal forces acting on the structure495

during the maneuver.

Fig. 13 shows the accelerations for the eigenaxis rotation and the 3-D smoothed

maneuver (planned and actual). The first is far lower than the latter on each axis;

moreover it is also smoother, so a lower excitation of the flexible structure may be

expected. Concerning the 3-D smoothed maneuver, it is possible to see some notable500

divergences between the planned acceleration and the real one, especially in the dynamics

about the ŷ axis, because of the oscillation of the flexible appendage.

Fig. 14 shows the control torques needed to perform both the eigenaxis rotation and

the 3-D smoothed maneuver and their saturation limits. It is possible to see that while

the control torques u in the eigenaxis rotation are always far from the limits, those of505
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Figure 12: Angular velocities (test case 1).

the 3-D smoothed maneuver sometimes reach the upper and lower bounds, especially the

one about ẑ. This happens in spite of the reduction of the maximum torque available for
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(a) About x̂.

(b) About ŷ.

(c) About ẑ.

Figure 13: Angular accelerations (test case 1).

maneuver planning to 75 % of the nominal maximum one that can be provided by the

actuators. However, as it can be seen in the other plots, this does not affect significantly

the capability of the spacecraft to perform correctly the maneuver.510
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(a) About x̂.

(b) About ŷ.

(c) About ẑ.

Figure 14: Control torques (test case 1).

The following two plots show the outcomes of a comparison between the smoothed

maneuvers and a classical proportional-derivative control, in order to investigate how
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the smoothing process improves the performance of the maneuver. Such classical control

law is formulated as u = I (−k1qe − k2ω), which differs from Eq. (44) as the quaternion

error is defined with respect to the final desired position of the maneuver and the velocity515

error is replaced by the velocity itself. The gains remain unchanged.

Fig. 15 shows the magnitude of the flexibility torque in the three cases and allows

to see that both the smooth maneuvers produce a generally lower excitation of the

appendage; in particular, the eigenaxis rotation triggers a lighter excitation than the 3-D

smoothed maneuver. Moreover, both smooth motions are able to dampen the oscillation520

to zero in less time.

Figure 15: Magnitude of the flexibility torques (test case 1).

In Fig. 16 the overall cost of the different maneuvers are compared. The plot shows

the total angular impulse, which is defined as

Λ =

∫ tf

0

‖u‖ dt (48)

and provides a good measurement of the total cost of the maneuver. It can be seen that

the cost of the eigenaxis rotation in terms of total angular impulse is remarkably smaller525

than that of the 3-D smoothed maneuver, which in turn is sensibly lower than that of

the classical control.

From the plots it is possible to note that in general the dynamics about the ẑ axis in

the 3-D smoothed maneuver presents more sharpness than the two others. In particular,

it can be seen in Fig. 14c that the torque which is needed to properly perform the530

maneuver and compensate the disturbance would exceed the maximum available torque
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Figure 16: Total angular impulses (test case 1).

for large parts of the maneuver and is therefore limited to umax. By comparing that plot

with that of Fig. 13c, it is possible to see that a sudden variation of the control torque

and of the acceleration happens after the end of the saturation of the control torque. This

allows to hypothesize that the motion could be made smoother by increasing the torque535

margin which is used to compensate the disturbance torque, which is now at 25 % of the

nominal maximum torque. However, it must also be taken into account that a reduction

of the maximum reference control torque in the maneuver planning would reduce the

possible maneuvers that can be performed through the smoothing process.

The second 3-D test case uses the same appendage whose mechanical properties are540

displayed in Table 3, but now it is located on a different position in BRF:

α = 140°

β = 75° (49)

γ = 350°

while the fixed parameters of the maneuver and the spacecraft are now those shown in

Table 5. In this test case, the maximum control torque has been increased in order to get

a faster rotation and see how the controller is able to cope with increased oscillations.

Again, the actual maximum torque used for computing the acceleration profiles is 75 %545

of the nominal one.

Fig. 17 shows the attitude error of the overall maneuver for the two smoothing tech-
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Table 5: Parameters of the 3-D simulation (test case 2).

Parameter Symbol Value

Desired position [°] θd

[
−153 162 108

]
Maximum control torque [N m] umax

[
5 5.5 4.5

]
Moment of inertia of the main body [kg m2] I

[
180 200 205

]
Minimum allowed duration about each axis [s] tf min

[
19.7 20.8 18.6

]
Available time for the maneuver [s] tf 40

niques. Again, the spacecraft reaches the desired attitude correctly.
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(a) Eigenaxis rotation.
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(b) 3-D smoothed maneuver.

Figure 17: Attitude errors of the smoothed maneuvers (test case 2).

In Fig. 18 the accelerations about each axis are compared once more. As in the

previous test case, the accelerations in the eigenaxis rotation are lower than those of the550

3-D smoothed maneuver (both the expected and the actual ones).

Figs. 19 and 20 show that the smoothed maneuvers are better than a classical control

in reducing the excitation of the flexible appendage and the total cost of the maneuver.

In particular, it can be seen that the increase of the velocity of the maneuver leads to a

strong oscillation when the classical control is applied, while the smoothing techniques555

are able to mitigate it.

The test case shows that the smoothed techniques are preferable to the classical

control also in the case of fast maneuvers. Indeed, even if the classical control is able
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(a) About x̂.

(b) About ŷ.

(c) About ẑ.

Figure 18: Angular accelerations (test case 2).

to complete the rotation in a smaller amount of time, its larger velocity produces a

stronger residual oscillation of the flexible appendage, which lasts far beyond the end of560
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Figure 19: Magnitude of the flexibility torques (test case 2).

Figure 20: Total angular impulses (test case 2).

the smoothed maneuvers.

5. Conclusion

An approach to design analytically-defined rest-to-rest reorientation maneuvers with

low jerk was developed. It was tested in simulation with a multi-body structural model

based on the lumped-parameter method. Such an approach allows the control engineer565

to prescribe some parameters of the maneuver (desired position, maximum duration) and

the spacecraft (moments of inertia, maximum control torques) and design a 1-D low-jerk

rotation under the imposed constraints.

Two methods to extend this technique to 3-D maneuvers were presented. The first

is based on the smoothing of a 1-D rotation about the Euler axis, so as to obtain a570
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global 3-D maneuver that can use the 1-D smoothing procedure on the eigenangle. The

second method is more general: the 1-D analytical approach was applied to each rotation

axis separately, obtaining three profiles of angular position that are used to find the

corresponding profiles of velocity by means of inverse kinematics.

Both presented smoothing techniques are very efficient from a computational point575

of view: they make use of algebraic computations only and no calculus is required.

The computation of the angular velocity is not computationally expensive either, as

the profiles are computed by means of closed-form analytical equations and then simply

converted into a 3-D motion.

The two methods were simulated and both of them shown to be effective. The rotation580

about the Euler axis is in general better than the generic 3-D smoothed maneuver in

reducing the excitation of the flexible structure and the total cost of the maneuver.

Since it is also simpler to implement, the smoothing of a bang-bang Euler axis rotation

provides a useful trajectory for 3-axis rotations of spacecraft with multi-body or flexible

appendages.585
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