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We have performed the first nf ¼ 2þ 1þ 1 lattice QCD computations of the properties (masses and
decay constants) of ground-state charmonium mesons. Our calculation uses the Highly Improved
Staggered Quark (HISQ) action to generate quark-line connected two-point correlation functions on
MILC gluon field configurations that include u=d quark masses going down to the physical point, tuning
the c-quark mass from MJ=ψ and including the effect of the c quark’s electric charge through quenched
QED. We obtainMJ=ψ −Mηc ðconnectedÞ ¼ 120.3ð1.1Þ MeV and interpret the difference with experiment
as the impact on Mηc of the ηc decay to gluons, missing from the lattice calculation. This allows us to

determine ΔMannihiln
ηc ¼ þ7.3ð1.2Þ MeV, giving its value for the first time. Our result of fJ=ψ ¼

0.4104ð17Þ GeV gives ΓðJ=ψ → eþe−Þ ¼ 5.637ð49Þ keV, in agreement with, but now more accurate
than, experiment. At the same time we have improved the determination of the c-quark mass, including the
impact of quenched QED to give m̄cð3 GeVÞ ¼ 0.9841ð51Þ GeV. We have also used the time moments of
the vector charmonium current-current correlators to improve the lattice QCD result for the c quark
hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon. We
obtain acμ ¼ 14.638ð47Þ × 10−10, which is 2.5σ higher than the value derived using moments extracted
from some sets of experimental data on Rðeþe− → hadronsÞ. This value for acμ includes our determination

of the effect of QED on this quantity, δacμ ¼ 0.0313ð28Þ × 10−10.

DOI: 10.1103/PhysRevD.102.054511

I. INTRODUCTION

The precision of lattice QCD calculations has been
steadily improving for some time and is now approaching,
or has surpassed, the 1% level for multiple quantities. Good
examples are the masses and decay constants of ground-
state pseudoscalar mesons [1]. The meson masses can be
used to tune, and therefore determine, quark masses. The
decay constants can be combined with experimental
annihilation rates to leptons to determine elements of the
Cabibbo-Kobayashi-Maskawa matrix. The accuracy of

modern lattice QCD results means that sources of small
systematic uncertainty that could appear at the percent level
need to be understood. At this level QED effects, i.e., the
fact that quarks carry electric as well as color charge, come
into play. A naive argument that such effects could be
OðαQEDÞ would imply a possible 1% contribution. One key
driver for the lattice QCD effort to include QED effects has
been that of calculations of the HVP contribution to the
anomalous magnetic moment of the muon, aμ. New results
are expected soon from the Muon g − 2 experiment at
Fermilab [2] which aims to clarify the observed tension
between experiment and Standard Model theory seen by
the Brookhaven E821 experiment [3]. Current lattice QCD
calculations have reached the precision of a few percent for
aμ and the systematic uncertainties, for example from
neglecting QED effects, have become a major focus of
attention (see, for example, [4–6]).
QED effects can have large finite-volume corrections

within a lattice QCD calculation because the Coulomb
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interaction is long range. For electrically neutral correlation
functions, such as the ones needed for a calculation of the
HVP, and that we study here, this is much less of an issue
(and we demonstrate this). Since αnsαQED is not very
different in size from αQED at hadronic scales, calculations
must be fully nonperturbative in QCD. A consistent
calculation must also allow for the retuning of quark
masses needed when QED effects are included.
Here we examine the properties of ground-state char-

monium mesons more accurately than has been possible in
previous lattice QCD calculations.1 Since it is possible to
obtain statistically very precise results for the charmonium
system it is a good place to study small systematic effects
from QED and other sources. We are able to see such
effects in our results and quantify them. We include u, d, s
and c quarks in the sea for the first time and have results on
gluon field configurations with physical u=d sea quarks.
We also analyze the impact of including an electric charge
on the valence c quarks (only). This approximation, known
as “quenched QED,” should capture the largest QED effects
and enable us to see how much of a difference QED makes.
For the vector (J=ψ) meson properties we improve on
earlier results by using an exact method to renormalize the
lattice vector current (both in QCD and QCDþ QED). To
tune the c-quark mass we use the J=ψ meson mass, taking
into account the retuning that is required when QED is
switched on. We find the impact of this to be of similar size
to the more direct QED effects.
The quantities that we focus on here are the masses and

decay constants of the ground-state ηc and J=ψ mesons, the
c-quark mass and the contribution of the c vacuum
polarization to aμ.
The correlation functions that we calculate in our lattice

QCD and QCDþ QED calculations are “connected” cor-
relation functions i.e., they are constructed from combining
charm quark propagators from the source to the sink. We do
not include diagrams in which the c and c̄ quarks annihilate
to multiple gluons and hence hadrons. We can gain some
insight into the effect this annihilation channel has on the
meson masses by looking at the meson widths, which are
twice the imaginary part of the mass and are dominated by
hadronic channels. The J=ψ has a tiny width of 93 keV [1]
but the pseudoscalar ηc can annihilate to two gluons,
allowing it to mix with other flavor-singlet pseudoscalars,
and it has a width of 32 MeV [1]. The annihilation channel
might then be expected to have a larger impact on the ηc
mass and lead lattice QCD calculations of the mass from
connected correlators to disagree with experiment. The
only way to achieve the Oð1 MeVÞ accuracy required to
see this is to determine the mass difference between the
J=ψ and ηc (the hyperfine splitting). Any shift in the ηc

mass will have a much larger (by a factor of 30) relative
effect in this splitting. Previous lattice QCD calculations of
the hyperfine splitting from connected correlation functions
have not been accurate enough to see a significant differ-
ence with experiment. Here, for the first time, we can see
such a difference because we have very good control both
of discretization effects and sea-quark mass effects and can
also determine the impact of QED on this quantity.
A further place in which QED effects need to be

quantified, given our accuracy, is that of the determination
of the c-quark mass. We do this by tuning our results to the
experimental J=ψ meson mass with and without electric
charge on the valence c quarks and also determine the small
change in the mass renormalization factor, Zm, needed to
convert to the standard MS mass.
Our analysis of the vector charmonium correlation func-

tions with a completely nonperturbative renormalization of
the vector current allows much improved accuracy in the
determination of the leptonic decay width of the J=ψ . Using
the same correlators, we determine the charm quark portion
of the hadronic vacuum polarization contribution to the
anomalous magnetic of the muon, aHVP;cμ , along with the
impact of quenched QED on this quantity. We can compare
this to phenomenological results from Rðeþe− → hadronsÞ.
The paper is laid out as follows:
(i) Section II describes the lattice QCD calculation and

the inclusion of quenched QED;
(ii) Section III describes our determination of the hyper-

fine splitting;
(iii) Section IV, the c-quark mass;
(iv) Section V, the J=ψ and ηc decay constants;
(v) Section VI the time moments of c vector-vector

correlators and the c-quark hadronic vacuum polari-
zation contribution to aμ;

(vi) Section VII gives our conclusions.
Each section of results includes a description of the pure
QCD calculation followed by a determination of the impact
of quenched QED on the result and then a discussion
subsection including comparison to both experiment and
previous lattice QCD calculations, where applicable.
Finally Sec. VII collects up all of our results and summa-
rizes our conclusions.

II. LATTICE SETUP

We perform calculations on a total of 17 gluon field
ensembles, concentrating our analysis on 15 of these.
Sixteen sets include the effects of light, strange and charm
quarks in the sea with up and down quarks having the same
mass (nf ¼ 2þ 1þ 1), one set has up and down quarks set
separately to their physical values (nf ¼ 1þ 1þ 1þ 1).
All gluon field ensembles include sea quarks using the
HISQ action [8] and were generated by the MILC
Collaboration [9,10]. Parameters for the ensembles are
given in Table I. Our sets include lattices at 6 different β

1For a different kind of lattice QCD calculation that maps out
the spectrum more completely, but pays less attention to ground
states, see [7].
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(the bare QCD coupling) values corresponding to 6 differ-
ent sets of lattice spacing values with the finest lattice
reaching a spacing of ∼0.03 fm. Although “topology
freezing” has been seen on the very finest lattices used
here, we do not expect this to have significant impact on the
charmonium quantities we study here because no valence
light quarks are involved in the calculations [11]. We use
ensembles with sea u=d ¼ lmasses at the physical point on
all but the finest two lattice spacings. We also employ three
ensembles (sets 5, 6 and 7) with shared parameters except
for their spatial extent in units of the lattice spacing Ls.
These ensembles allow us to investigate finite-volume
effects in our QED analysis. We test the impact of
strong-isospin breaking effects in the sea by using two
ensembles (sets 3A and 3B) with all parameters the same
except that one ensemble has mu ¼ md ¼ ml and one has
ðmu þmdÞ=2 ¼ ml and md=mu ¼ 2.18. The gluon action
on these ensembles is improved so that discretization errors
through Oðαsa2Þ are removed [12].
On these gluon field configurations we calculate propa-

gators for valence c quarks by solving the Dirac equation
for a source consisting of a set of Gaussian random
numbers across a time slice (a random wall source). We

use multiple time sources per configuration to improve
statistical accuracy. The number of configurations used and
the number of time sources is given in Table I. The table
also gives the valence c-quark masses in lattice units, which
may differ from those in the sea because they are tuned
more accurately. This will be discussed further below. The
HISQ action [8] includes an improved discretization of the
covariant derivative in the Dirac equation. This removes
tree-level a2 discretization errors by the addition of a 3-link
“Naik” term to the symmetric 1-link difference. For heavy
quarks the coefficient of the Naik term is adjusted from 1 to
1þ ϵNaik to remove ðamÞ4 errors at tree level [8]. A closed-
form expression for ϵ in terms of the tree-level quark pole
mass is given in [15] along with the formula for the tree-
level quark pole mass in terms of the bare mass. Table I
gives the values of ϵ that we use.
We combine charm quark and antiquark propagators to

calculate two types of quark-line connected two-point
correlation functions: pseudoscalar and vector. The ground
state of the pseudoscalar correlation function corresponds
to the ηc meson and the vector correlation function, to the
J=ψ . When using staggered quarks, as here, the different
spin structures are implemented using position dependent

TABLE I. Details of the lattice gluon field ensembles and calculation parameters used. The lattice spacing is determined from the
Wilson flow parameter, w0 [13], with w0=a values given in column 2. The lattice spacing can be determined in fm by using w0 ¼
0.1715ð9Þ fm [14] (fixed from fπ). Ls and Lt are the lattice spatial and temporal extents in lattice units. Columns 6, 7 and 8 give the sea
quark masses in lattice units. Note that all of the configuration sets are nf ¼ 2þ 1þ 1, i.e., with equal mass u and d quarks (denoted l)
except for set 3B which is nf ¼ 1þ 1þ 1þ 1. For set 3B amsea

u and msea
d are listed separately with amsea

u on top. amval
c is the valence

c-quark mass with ϵNaik the corresponding Naik parameter (see text). The column headed Ncfg × Nt shows both the number of
configurations used in the pure QCD calculation and the number of time sources for propagators per configurations. Ncfg;QED refers to
the number of configurations (and time sources) used in QCDþ QED calculations. Sets 1–3 will be referred to as very coarse
(a ≈ 0.15 fm), sets 4–8 as coarse (a ≈ 0.12 fm), sets 9–11 as fine (a ≈ 0.09 fm), 12 and 13 as superfine (a ≈ 0.06 fm), 14 as ultrafine
(a ≈ 0.045 fm) and 15 as exafine (a ≈ 0.03 fm).

Set β w0=a Ls Lt amsea
l amsea

s amsea
c amval

c ϵNaik Ncfg × Nt Ncfg;QED × Nt

1 5.80 1.1119(10) 16 48 0.013 0.065 0.838 0.888 −0.3820 1020 × 8 � � �
2 5.80 1.1272(7) 24 48 0.0064 0.064 0.828 0.873 −0.3730 1000 × 8 340 × 16
3 5.80 1.1367(5) 32 48 0.00235 0.0647 0.831 0.863 −0.3670 1000 × 8 � � �
3A 5.80 1.13215(35) 32 48 0.002426 0.0673 0.8447 0.863 −0.3670 1762 × 16 � � �
3B 5.80 1.13259(38) 32 48 0.001524 0.0673 0.8447 0.863 −0.3670 1035 × 16 � � �

0.003328 � � �
4 6.00 1.3826(11) 24 64 0.0102 0.0509 0.635 0.664 −0.2460 1053 × 8 � � �
5 6.00 1.4029(9) 24 64 0.00507 0.0507 0.628 0.650 −0.2378 � � � 340 × 16
6 6.00 1.4029(9) 32 64 0.00507 0.0507 0.628 0.650 −0.2378 1000 × 8 220 × 16
7 6.00 1.4029(9) 40 64 0.00507 0.0507 0.628 0.650 −0.2378 � � � 220 × 16
8 6.00 1.4149(6) 48 64 0.00184 0.0507 0.628 0.643 −0.2336 1000 × 8 � � �
9 6.30 1.9006(20) 32 96 0.0074 0.037 0.440 0.450 −0.1250 300 × 8 � � �
10 6.30 1.9330(20) 48 96 0.00363 0.0363 0.430 0.439 −0.1197 300 × 8 371 × 16
11 6.30 1.9518(7) 64 96 0.00120 0.0363 0.432 0.433 −0.1167 565 × 8 � � �
12 6.72 2.8941(48) 48 144 0.00480 0.0240 0.286 0.274 −0.0491 1019 × 8 265 × 16
13 6.72 3.0170(23) 96 192 0.0008 0.022 0.260 0.260 −0.0443 100 × 8 � � �
14 7.00 3.892(12) 64 192 0.00316 0.0158 0.188 0.194 −0.0250 200 × 8 � � �
15 7.28 5.243(16) 96 288 0.00223 0.01115 0.1316 0.138 −0.0127 100 × 4 � � �
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phases in the operators at source and sink. The two-point
“Goldstone” pseudoscalar (γ5 ⊗ γ5 in spin-taste notation)
correlation functions are simply constructed from quark
propagators Sðx; 0Þ from the origin to x as

CðtÞ ¼ 1

4

X
x

hTrðSðx; 0ÞS†ðx; 0ÞÞi; ð1Þ

where the factor of 4 accounts for the taste multiplicity with
staggered quarks. For the vector correlation functions we
use a local vector operator (spin-taste γi ⊗ γi). The
correlation functions then combine Sðx; 0Þ with a propa-
gator made from patterning the source with a phase ð−1Þxi
and inserting ð−1Þxi at the sink time slice as we tie the
propagators together and sum over spatial sites. Our vector
correlation functions average over all spatial polarizations,
i, for improved statistical precision. Note that we do not
calculate any quark-line disconnected correlation functions.
The HISQ local vector current is not conserved and

requires renormalization. For this purpose we use the RI-
SMOM momentum subtraction scheme implemented on
the lattice as discussed in [16]. In [16] it was shown that,
because of the Ward-Takahashi identity, these renormali-
zation factors do not suffer any contamination by non-
perturbative artifacts (condensates) and can therefore be
safely used in calculations such as those presented here.
The quenched QED correction to the RI-SMOM vector
current renormalization was also given in [16] and shown to
be tiny (∼0.01%) for the HISQ action (as expected since the
pure QCD ZV values only differ from 1 at the 1% level and
quenched QED provides a small correction to this differ-
ence from 1). Here we use the ZV values from [16] at a scale
μ of 2 GeV. We will also demonstrate (see Sec. V) that
using μ ¼ 3 GeV gives the same result as it must for a ZV
that correctly matches the lattice to continuum physics.
Since we make use of an ensemble (set 14) with a finer

lattice spacing than those studied in [16] we have directly
calculated the value of ZV on set 14 at μ ¼ 2 GeV in
addition. We have, however, only used a small number of
configurations (6) in that calculation due to the computa-
tional limitation of the stringent Landau gauge fixing
required. We therefore double the statistical uncertainty
for ZV on that ensemble. This has very little impact on our
final results as the ZV uncertainty is small. See the
Appendix for a discussion of our ZV values, where we
also derive a ZV value for set 15.
In order to tune the mass of the valence charm quark we

use bare charm mass values on each lattice that produce a
J=ψ mass equal to the experimental value (both in pure
QCD and in QCDþ QED). We choose the J=ψ here rather
than the ηc because the relatively large width of the ηc
means that annihilation effects that we are not including
could lead to small (order 0.1%) uncertainties in the mass.
This is mentioned in Sec. I and will be discussed further in
Sec. III. We measure our valence c mass mistunings as the

difference between our lattice J=ψ mass and the exper-
imental average value of 3.0969 GeV (with negligible
uncertainty) [1]. The two panels of Fig. 2, where the
horizontal line is the experimental value, show that our
mistunings are well below 0.5%. These mistunings are
allowed for in our final fits.

A. Two-point correlator fits

We fit the two-point correlation functions described
above as a function of the time separation, t, between
source and sink. The aim is to extract the energies (masses)
and amplitudes (giving decay constants) of the ground-state
mesons in each channel. However it is important to allow
for the systematic effect of excited states that are present in
the correlation functions and can affect the ground-state
values if they are not taken into account. We do this by
fitting the correlators to sums of exponentials associated
with each energy eigenvalue and using Bayesian priors to
constrain the (ordered) excited states in the standard way
[17]. The pseudoscalar correlators are fit to

CPðtÞ ¼
X
i

AP
i fðEP

i ; tÞ;

fðE; tÞ ¼ e−Et þ e−EðLt−tÞ: ð2Þ

The vector correlators require a more complicated form
because of the presence of opposite parity states as a result
of the use of staggered quarks:

CVðtÞ ¼
X
i

ðAV
i fðEV

i ; tÞ − ð−1ÞtAV;o
i fðEV;o

i ; tÞÞ: ð3Þ

We cut out the correlator values at low values of t, below
some value tmin (5–10) where excited state contamination is
most pronounced. We also use a standard procedure (see
Appendix D of [18]) to avoid underestimating the low eigen-
values of the correlation matrix and hence the uncertainty.
The fit parameters that we need from Eqs. (2) and (3) are

the mass of the ground state (EP
0 and EV

0 ) and the amplitude
(AP

0 and AV
0 ). From the amplitude we determine the decay

constant, see Sec. V.

B. QED formalism

We perform calculations in both lattice QCD and in lattice
QCD with quenched QED. By quenched QEDwe mean that
we include effects from the valence quarks having electric
charge but we neglect effects from the electric charge of the
sea quarks. We will first describe how we include QED and
then discuss the expected impact on our results of not
including the QED effects from the sea quarks.
To include quenched QED effects we generate a random

momentum space photon field AμðkÞ in Feynman gauge for
each QCD gluon field configuration. This choice of gauge
simplifies the generation of the photon field as the QED
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path integral weight takes the form of a Gaussian with
variance 1=k̂2 where k̂ ¼ 2 sinðkμ=2Þ. The results presented
here do not depend on this gauge choice. Once the
momentum space field is generated zero modes are set to
zero using the QEDL formulation [19]. Aμ is then Fourier
transformed into position space. We have checked that these
Feynman gauge Aμ fields produce the plaquette and average
link expected from OðαQEDÞ perturbation theory (readily
obtained from OðαsÞ calculations in lattice QCD with
Wilson glue [20,21]). These gauge fields are exponentiated
as expðieQAμÞ to give a U(1) field which is then multiplied
into the QCD gauge links before HISQ smearing. Q is the
quark electric charge in units of the proton charge e.
This approach is known as the stochastic approach to

quenched QED [22], in contrast to the perturbative
approach of [23]. Since OðαQEDÞ is already a very small
effect, we are seeking here only to pin down the linear term
in αQED, fully nonperturbatively in αs. The two approaches
should then give the same result to our level of accuracy;
we use the stochastic approach because it is more straight-
forward (in the quenched case) and gives very precise
results for the c quarks we are interested in here.

C. Impact of quenching QED

Quenched QED affects only the valence quarks; the sea
quarks remain uncharged. We expect the valence quark
contribution to be by far the largest QED effect (although
already very small as we will see) and discuss here the small
systematic error that remains from ignoring sea-quark QED
effects. The impact of havingmu ¼ md in the sea for most of
our results is at the same level and we also discuss that.
We first discuss the determination of the lattice spacing

in QCD with quenched QED. In such a calculation there is
no coupling of QED effects to purely gluonic quantities.
This means that the Wilson flow parameter w0=a, measured
on each ensemble, is unchanged from pure QCD. The
physical value of w0 that is used to determine the lattice
spacing on each ensemble was determined in [14] by
matching the decay constant of the π meson, fπ , in lattice
QCD to that obtained from experiment. The experimental
value of fπ is obtained from measurement of the rate for
π → lν½γ� decay where [γ] indicates that the rate is fully
inclusive of additional photons. The rate obtained is then
adjusted to remove electromagnetic and electroweak cor-
rections and to give a “purely leptonic rate” corresponding
to weak annihilation at lowest order in the absence of QED
[1]. Combining this with a determination of jVudj from
nuclear β decay [1] gives an experimental value of fπ ≡
fexptπ which is a “pure QCD” value, albeit that for a physical
πþ meson. The dominant uncertainty in fexptπ is that from
the remaining uncertainty in the electromagnetic correc-
tions to the experimental rate, mainly from the hadronic-
structure dependent contributions to the emission of
additional photons. This is set at 0.1% in [1].

Because fexptπ is a pure QCD quantity it can be used to set
the lattice spacing in lattice QCD in a way that should be
minimally different for lattice QCDþ QED.2 Small
differences might still be expected between the lattice
QCD fπ and the experimental value from the way that
the quark masses are tuned in a pure QCD scenario. The
lattice QCD calculation in [14] used mu ¼ md and tuned
the average mass, ml, to the experimental mass of the π0,
which is the mass that both neutral and charged π mesons
have in the absence of QED, up to quadratic corrections in
the u − d mass difference. An uncertainty was included in
the π0 mass to allow for these corrections, taking an
estimate from chiral perturbation theory [25]. We expect
the impact of such effects to be tiny, well below 0.1%. They
are at the same level as potential effects from QED in the
sea and would therefore be only possible to pin down with a
calculation that included the impact of having electrically
charged quarks in the sea.
These expectations are backed up by recent lattice

QCDþ QED results [6] that used the Ω baryon mass to
determine w0. The impact of QED for the sea quarks was
included to first order in αQED. No effects linear inmu −md

are expected in MΩ because, like fπ and Mπ above, it is
symmetric under u ↔ d interchange. Strong-isospin break-
ing effects were therefore ignored. The impact of QED in
the sea on w0MΩ was found to be Oð0.01%Þ, whereas the
effect of QED for the valence quarks (already allowed for in
the fπ analysis) wasOð0.05%Þ. The final value of w0 using
MΩ from [6] agrees well with the result using fπ from [14],
although the uncertainties in both cases are completely
dominated by those from the pure QCD, isospin-symmetric
part of the calculation.
From this we conclude that, at the sub-0.1% level, we

can compare lattice QCD plus quenched QED with pure
lattice QCD using the same value of the lattice spacing,
determined from fπ, in both calculations.
The impact of quenching QED on charmonium quan-

tities follows a similar discussion to that for the lattice
spacing because interaction with the electric charge of the
sea quarks is suppressed by sea quark mass effects and by
powers of αs. Since the sum of electric charges of u, d and s
sea quarks is zero, QED interaction between valence c
quarks and light sea quarks will be suppressed by sea-quark
mass differences. The impact of c quarks in the sea is
already small and so we can safely neglect the even smaller
QED effects from valence/sea c quark interactions. The
leading sea-quark QED effect will then come from photon
exchange across a sea-quark bubble at Oðα2sαQEDÞ [16] in
perturbative language. The expected size is then 10% of
that of the QED effects from valence c quark interactions,

2Indeed, fπ cannot readily be calculated in lattice QCDþ
QED because of infrared QED effects from an electrically
charged πþ. Calculations have been done that confirm the size
of radiative corrections to fπ , however [24].
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which we will see are themselves typically a small fraction
of 1%.

D. Impact of having mu =md in the sea

As discussed above, we expect the effects of havingmu ¼
md in the sea, i.e., not including strong-isospin breaking
effects, to be negligible. For both the scale-setting determi-
nation and for the charmonium quantities themselves,
pure strong-isospin breaking effects are quadratic in
ðmu −mdÞ=Λ. Effects linear in the sea-quark masses are
already small, for example anOð5 MeVÞ shift in the average
u=d quark mass produces a 1% effect on w0=a [26]. We
might then expect quadratic effects to be Oð0.01%Þ.
We can provide a test of these expectations from results

on gluon ensemble sets 3A and 3B that differ only in the
values ofmu and md in the sea for the same average (which
has its physical value). Set 3B has md=mu set to the
expected ratio [27]. We see from Table I that the determi-
nations of w0=a agree at the level of their 0.03% uncer-
tainties. In contrast, the w0=a value on set 3A differs by a
clearly visible 0.40(5)% from that on set 3, which has sea-
quark masses that are slightly mistuned from the physical
point by an amount (summing over u, d and s) equal to 5%
[26] of ms.
Table II compares values for the J=ψ and ηc masses in

lattice units on these two ensembles for the same amval
c and

the ratio of the two results is plotted in Fig. 1. The meson
masses in lattice units agree on the two ensembles to within
their statistical errors which are at the level of 0.001%. We
also tabulate results for the decay constants and plot the
ratio of these values. Again agreement is seen between
results on set 3A and set 3B. They provide a weaker
constraint because of much larger statistical errors, but
nevertheless they agree within 0.05%. Notice that this
comparison does not allow for possible changes in w0=a in
the two cases. As discussed above, this could be at the
0.01% level. Again we can contrast the agreement between
sets 3A and 3B with the results on set 3 where, for the same
amval

c , the ηc mass differs by 0.02%.

We conclude that we can safely neglect strong-isospin
breaking in the sea and proceed with calculations on gluon
field ensembles with msea

u ¼ msea
d .

E. A first look at quenched QED effects

An estimate of the size of corrections from quenched
QED (often simply referred to as QED in what follows) in
charmonium systems can be obtained by studying the effect
on the J=ψ mass. The bottom panel of Fig. 2 shows the J=ψ
mass for the same valence cmass for bothQCDþ QED and
pure QCD calculations on sets 2, 6, 10 and 12. The QCDþ
QED and QCD results at the same lattice spacing are
separated on the x axis for clarity. All points share a
correlated uncertainty (the outer error bar) from w0 and
this dominates the uncertainty. The uncorrelated error is
shown by the smaller inner error bar. Note that the points at
the same lattice spacing are also correlated through their
w0=avalue. The shift of themass inQCDþ QEDcompared
to pure QCD is very small, at the level of 0.1%, and is
upwards.
When discussing QCDþ QED and pure QCD calcu-

lations of some quantity X we will use the notations
X½QCDþ QED� and X½QCD� respectively. We will often
consider the ratio of the two for which we will use the

shortened notation Rð0Þ
QED½X�. R0

QED will refer to the “bare”
ratio defined using the same bare quark mass amc in both
QCDþ QED and pure QCD calculations. RQED will refer
to the final QED-renormalized ratio which includes the
impact of retuning the c-quark mass to give the exper-
imental J=ψ mass in both the QCDþ QED and pure QCD
cases. So

FIG. 1. A test of the impact of strong-isospin breaking in the sea
through a comparison of results for the charmonium quantities
given in Table II for sets 3A and 3B (Table I). These sets differ
only in the u=d quark masses in the sea. Set 3A hasmu ¼ md and
set 3B has md=mu ¼ 2.18 with the same average value. The plot
above gives the ratio of results in lattice units, for the same amval

c ,
for the J=ψ and ηc masses and decay constants. The masses agree
to within their 0.001% statistical errors and the decay constants
agree to within their statistical errors (0.05% for the J=ψ ).

TABLE II. Results for the ηc and J=ψ masses and decay
constants (see Sec. V for how these are calculated) in lattice units
on gluon field ensembles sets 3A and 3B (Table I). Both sets have
the average u=d quark mass in the sea set to its physical value but
set 3B has md=mu also set to the expected ratio. The valence
c-quark mass was set to 0.863 in lattice units.

3A (nf ¼ 2þ 1þ 1) 3B (nf ¼ 1þ 1þ 1þ 1)

aMηc 2.288139(19) 2.288131(25)
aMJ=ψ 2.375618(44) 2.375585(60)
afηc 0.366596(38) 0.366588(41)
afJ=ψ=ZV 0.41799(16) 0.41790(24)
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R0
QED½X�≡ X½QCDþ QED�

X½QCD�
����
fixed amc

RQED½X�≡ X½QCDþ QED�
X½QCD�

����
fixedMJ=ψ

: ð4Þ

As shown in Fig. 2 the bare c-quark mass has to be
readjusted downwards for QCDþ QED relative to
pure QCD.

F. Fitting strategy

We have results in pure QCD for all of the sets in Table I
and QCDþ QED results on a subset of ensembles. To be
able to simultaneously account both for the “direct” effects
of QED and for the effects of valence c mass mistuning,

which may be similarly sized, we choose to fit all of this
data in a single fit for each quantity we consider. The
generic form of the fit we use for a quantity X is

Xða2; QÞ

¼ x

�
1þ

X5
i¼1

cðiÞa ðamcÞ2i

þ cm;seaδ
sea;uds
m f1þ ca2;seaðΛaÞ2 þ ca4;seaðΛaÞ4g

þ cc;seaδ
sea;c
m þ cc;valδ

val;c
m

þ αQEDQ2

�
cQED þ

X3
p¼1

cðpÞaQðamcÞ2p þ cval;Qδ
val;c
m

��
:

ð5Þ

HereQ is the valence quark electric charge (in units of e)
used in the calculation and is therefore 0 in pure QCD. The
pure QCD value of this fit at the physical point (the
continuum limit with quark masses set to their physical
values) is x. The value including quenched QED correc-
tions is x½1þ αQEDQ2cQED�. Note that the factor of αQED
multiplying the QED part of the fit function is there so that
the fit parameters are order 1. The stochastic method that
we use includes in principle all orders of αQED but we
expect to see only linear terms, including αQEDα

n
s pieces.

Our fits are typically to 15 pure QCD data points and 4
QCDþ QED points. The pure QCD points do not include
those on sets 6 and 7 which are used to test finite-volume
effects or on sets 3A and 3B that are used to test strong-
isospin breaking effects, but they do include additional
results at mistuned c-quark masses to test mistuning effects.
We now describe each of the terms in Eq. (5) in turn. The

ðamcÞi terms on the first line account for discretization
effects. Because we are dealing with heavy quarks here, the
scale of discretization effects can be set by mc and will
typically be larger than those for light-quark quantities.
Since mc > ΛQCD any discretization effects set by scale
ΛQCD will simply appear as mc-scale discretization effects
with a small coefficient.
The terms on the second line allow for mistuning of the

sea u=d and s masses and discretization effects in that
mistuning (we shall see that those are important for the
hyperfine splitting). The total of the mistuning of the sea
masses is defined as in [26]:

δsea;udsm ¼ 2msea
l þmsea

s − 2mphys
l −mphys

s

10mphys
s

: ð6Þ

mphys
s is taken from [26] or, where not available on the finest

lattices, calculated from the tuned c-quark mass and the
mc=ms ratio given in [26]. The value of Λ in the
discretization effects multiplying the sea-quark mistuning
is taken as 1 GeV (∼mc).

FIG. 2. Top panel: Pure QCD J=ψ masses on all 15 sets from
Table I using the valence masses in that table. Two error bars are
shown. The error can be broken into parts that are uncorrelated
between different sets and the contribution from fixing the lattice
spacing from the physical value of w0 which is correlated. The
outer error bar shows the full uncertainty and the inner bar the
uncertainty without the contribution from w0. Bottom panel: The
J=ψ masses on sets 2, 6, 10 and 12 with and without the inclusion
of quenched QED. On each set the same valence mass (and lattice
spacing) was used for both pure QCD and QCDþ QED but the
points have been separated on the x axis for clarity. The error bars
are the same as for the top panel, but note that here there is a
correlation of the uncertainty from w0=a for the QCD and
QCDþ QED results on each set. The QCDþ QED results are
above the pure QCD results in every case.
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The effect of mistuning the charm mass in the sea is
included in the third line of Eq. (5) using

δsea;cm ¼ msea
c −mphys

c

mphys
c

: ð7Þ

The values ofmphys
c are taken from [26]. Although this used

a slightly different tuning method the differences are
negligible for this purpose. We have tested that including
discretization effects for this term has no effect on the fit.
Mistuning in the valence mass is accounted for through

δval;cm on the third and fourth lines of Eq. (5). We define
this as

δval;cm ¼ MJ=ψ −Mexpt
J=ψ

Mexpt
J=ψ

; ð8Þ

where MJ=ψ is our lattice result for that ensemble in either

the QCD or the QCDþ QED case. Thus δval;cm is zero (the
valence c-quark mass is tuned) when the J=ψ mass takes its
experimental value on each ensemble (and with or without
QED). The fit parameters cc;val and cval;Q then determine
the dependence on the valence c mass of the quantity being
fit, and the QED corrections to that dependence, respec-
tively. The experimental value of the J=ψ mass is
3.0969 GeV [1] with negligible uncertainty.
In order to make use of the correlations between our

QCDþ QED and pure QCD results on the same gluon field
configurations we perform simultaneous fits to the corre-
lators in each case. The fits then capture the correlations
and we can propagate them to the fit of Eq. (5). At the same
time it allows us to determine the ratio of QCDþ QED to
pure QCD for the quantities that we will study. We will give
results for these ratios in the sections that follow.
The fit form of Eq. (5) has been constructed such that the

coefficients (apart from x) are expected to be of order 1. We
therefore use priors of 0� 1 for all fit parameters except x
for which we take a prior width on its expected value of 20%
(the prior mean for x depends on the quantity being fitted).

III. HYPERFINE SPLITTING

A. Pure QCD

The hyperfine splitting, ΔMhyp, is calculated on each
ensemble as the difference of the vector and pseudoscalar
ground-state masses, in lattice units, divided by the lattice
spacing. The results for aMηc and aMJ=ψ and their differ-
ence are given in Table III for the pure QCD case. Although
the pseudoscalar and vector correlators on each configu-
ration are correlated the fit outputs for the vector correlator
dominate the uncertainties and so the correlations have very
little effect as a result.
The pure QCD results are plotted in Fig. 3 along with the

fit form of Eq. (5) for the pure QCD case (i.e.,Q ¼ 0). Note

the small range of the y axis—this is possible for our results
because we have a highly improved quark action with small
discretization errors. Since all tree-level a2 errors have been
removed, the shape of the curve reflects the fact that higher-
order a4 and a6 errors are visible; discretization errors of
this kind are present in all formalisms of course, but often
they are hidden below much larger a2 effects and con-
sequently overlooked. Note also the clear dependence on
the light sea-quark mass seen on the finest lattices. To pin
down the value of the valence mass mistuning parameter,
cval, we include results at deliberately mistuned c-quark
masses (see Table III). These are not shown in the figure but
are included in the fit. The result for the hyperfine splitting
in the pure QCD case in the continuum limit and for
physical quark masses is 118.6(1.1) MeV, which is higher
than the experimental average value, as is clear in Fig. 3. In
order to understand what this means, we need to quantify
all possible sources of small systematic effects in our
calculation, including those from QED.

B. Impact of quenched QED

The fractional direct effect of quenched QED on the ηc
and J=ψ masses and the hyperfine splitting are given in
Table IV. The correlation between the QCDþ QED and the
pure QCD results enables very high statistical accuracy to
be obtained in the ratio. The inclusion of quenched QED
shifts both the ηc and J=ψ masses up by Oð0.1%Þ,

TABLE III. The ηc and J=ψ masses and their difference
(aΔMhyp) in pure QCD on each set in lattice units. The values
of amval

c are those given in Table I except for two cases with a
deliberately mistuned c-quark mass: set 6 denoted by a � where
amc ¼ 0.643 and set 14 denoted by a † where amc ¼ 0.188. The
pseudoscalar and vector correlator fits have been performed
separately and the correlations between aMηc and aMJ=ψ have
therefore been ignored because they have little impact.

Set aMηc aMJ=ψ aΔMhyp

1 2.331899(72) 2.42072(19) 0.08883(20)
2 2.305364(39) 2.39308(14) 0.08772(14)
3 2.287707(26) 2.37476(21) 0.08705(21)

4 1.876536(48) 1.94364(10) 0.06710(11)
6 1.848041(35) 1.914749(67) 0.066708(76)
6� 1.834454(34) 1.901479(66) 0.067025(74)
8 1.833950(18) 1.900441(39) 0.066491(43)

9 1.366839(72) 1.41568(16) 0.04884(17)
10 1.342455(21) 1.391390(43) 0.048935(48)
11 1.329313(18) 1.378237(51) 0.048924(54)

12 0.896675(24) 0.929860(54) 0.033185(59)
13 0.862689(22) 0.895650(37) 0.032961(43)

14 0.666818(39) 0.691981(54) 0.025163(67)
14† 0.652439(56) 0.67798(14) 0.02554(15)

15 0.496991(47) 0.516126(68) 0.019135(82)
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depending on lattice spacing, at a given amc value. Although
these mass shifts are small, there is a difference between the
shift for the J=ψ and that for ηc and so the inclusion of
quenched QED also changes the hyperfine splitting. The
impact here is more substantial, 0.7%, because the hyperfine
splitting is so much smaller. The size of the direct QED effect
on the hyperfine splitting can be simply estimated by
replacing CFαs by Q2αQED in a potential model estimate
of the splitting. This gives a fractional effect of αQED=ð3αsÞ,
consistent with what we find.

The values of R0
QED½ΔMhyp� are plotted against ðamcÞ2 in

Fig. 4. This shows that the results are consistent across all
lattice spacings and thus discretization effects in this ratio
are smaller than for the masses themselves.
Finite-volume effects are an issue in general for QED

corrections to meson masses but we expect them to be small
for the electrically neutral and spatially small charmonium
mesons that we study here. In [28] it is shown that the
finite-volume expansion for electrically neutral mesons
starts at Oð1=L4

sÞ. In Fig. 5 we compare results for the
fractional effect of QED on the J=ψ and ηc as a function of
1=Ls. This calculation is done on sets 5, 6 and 7 (see
Table I) which differ only in their spatial extent. We see no
finite-volume effects to well within 0.01%, and we there-
fore ignore such effects.
Our results including both pure QCD and QCDþ QED

are shown in Fig. 6, plotted against ðamcÞ2. The fit curve

FIG. 3. The charmonium hyperfine splitting as a function of
lattice spacing on pure QCD ensembles. Our results are from
ensembles including u, d, s and c quarks in the sea with varying
u=d average quark mass. The raw lattice results, for well-tuned
c-quark masses, are given by symbols with error bars. The error
bars include both statistical uncertainties and those from deter-
mining the lattice spacing from w0, which are correlated between
values. The results on each group of ensembles with approx-
imately the same lattice spacing are given the same symbol.
Within these groups, the results go from right to left as the u=d
quark mass changes from ms=5 to the physical value. Notice the
small range on the y axis; this is the result of discretization effects
being so small for the HISQ action. Results at mistuned c masses
are not plotted but are included in the fit. The fit line is the output
of the fit from Eq. (5) at physical quark masses and with Q ¼ 0.
The orange cross gives our result in the continuum limit for
physical quark masses. The black cross gives the experimental
average result [1].

TABLE IV. QCD þ QED ηc and J=ψ masses and hyperfine
splitting presented as the ratio of the QCDþ QED result to the
pure QCD one on that set. Correlations between the calculations
in the QCD þ QED and pure QCD cases are used in the
determination of the ratio and result in the very high statistical
accuracy obtained. Note that the ratio is calculated for the same
amc value in the two cases i.e., the ratio given here does not
include the impact of retuning the c-quark mass.

Set R0
QED½Mηc � R0

QED½MJ=ψ � R0
QED½ΔMhyp�

2 1.000450(26) 1.000750(27) 1.0086(10)
6 1.0008335(59) 1.0010742(81) 1.00774(28)
10 1.0011861(54) 1.0014044(76) 1.00739(26)
12 1.0015755(48) 1.001787(11) 1.00750(33)

FIG. 4. The fractional effect of quenched QED on the char-
monium hyperfine splitting plotted against ðamcÞ2. The fractional
effect is determined at the same amc value, i.e., it does not include
c-quark mass retuning effects. The dashed line is horizontal and
shows the weighted average value. The results show the precision
that can be obtained by capitalizing on the correlations between
QCDþ QED and QCD. This enables a clear demonstration that
the impact of quenched QED here is not dependent on the lattice
spacing.

FIG. 5. The fractional shift in the J=ψ and ηc masses from the
inclusion of quenched QED plotted as a function of 1=Ls on sets
5, 6 and 7. The dashed lines are horizontal lines at the weighted
average values.
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from Eq. (5) at physical quark masses is also shown. The fit
has a χ2=d:o:f: of 0.59 and gives a hyperfine splitting in the
continuum limit at physical quark masses of 119.6
(1.1) MeV. In Fig. 7 we show the results of a stability
analysis for this fit. The figure shows that the fit is very
robust.
Taking the (correlated) ratio between the physical value

of the full QCDþ QED fit and the physical value from the
fit at Q ¼ 0 (i.e., the pure QCD result) we obtain
RQED½ΔMhyp� ¼ 1.00804ð43Þ. This ratio now does include
the effect of retuning the c-quark mass to obtain the
experimental J=ψ mass when quenched QED is included.
This retuning requires a reduction of the bare c quark mass
by Oð0.1%Þ (see Table IV) and this further increases the

hyperfine splitting, but only by Oð0.1%Þ. The impact of
QED here is therefore dominated by the direct quenched
QED effect.
There is an additional pure QED contribution to the J=ψ

mass that has not been included yet since it is quark-line
disconnected. This comes from a diagram in which the cc̄
annihilate into a photon which converts back into cc̄. The
contribution of this diagram is

8παQEDQ2

M2
J=ψ

jψð0Þj2; ð9Þ

where ψð0Þ is the nonrelativistic J=ψ wave function equal
(in the normalization being used here) to fJ=ψ

ffiffiffiffiffiffiffiffiffiffiffi
MJ=ψ

p
=

ffiffiffi
6

p
[29]. The contribution evaluates to þ0.7 MeV, which is a
tiny, and completely negligible, effect for the J=ψ meson
mass (0.03%). It has some impact on the hyperfine splitting
because that is 30 times smaller and so we include it here.
We add this contribution to our hyperfine splitting result
with a 30% uncertainty from possible QCD corrections to
give a final result of

MJ=ψ −MηcðconnectedÞ ¼ 120.3ð1.1Þ MeV: ð10Þ

The error budget for our hyperfine splitting result is
given in Table V. We follow Appendix A of [30] for the
meaning of the uncertainties contributing to the error
budget. The majority of the uncertainty is associated with
the lattice spacing determination, either from the correlated
w0 uncertainty or the individual w0=a uncertainties. This is
not surprising because the hyperfine splitting is sensitive to
uncertainties in the determination of the lattice spacing for
the reasons discussed in [31]. We have separated out the
uncertainty arising from the pure QCD data and the
R0
QED½ΔMhyp� values from Table IV which we label

“Pure QCD Statistics” and “QCDþ QED Statistics” in
Table V. The sea mistuning uncertainty comes from the cm
coefficients in Eq. (5) and the valence mistuning

FIG. 6. The charmonium hyperfine splitting as a function of
lattice spacing, including both QCDþ QED and pure QCD
points. The red open triangles are the same lattice results as in
Fig. 3. The additional QCDþ QED points are given as blue open
hexagons. The green fit band is the output of the fit from Eq. (5),
but now with the c quark electric charge, Q ¼ 2=3. The orange
cross and orange band gives our result in the continuum limit for
physical quark masses. The black cross and black band gives the
experimental average result [1].

FIG. 7. A stability analysis for our fit (see text) to the
charmonium hyperfine splitting. Our full fit result is shown at
the top. The lines with error bars below this show the result for
different modifications of this fit. From the top, these include
missing out results on particular sets of configurations, then
missing out the results using mistuned c-quark masses and then
changing the priors by a factor of 10 on different sets of
parameters in the fit.

TABLE V. Error budget for our final result for the charmonium
hyperfine splitting including quenched QED corrections. The
uncertainties shown are given as a percentage of the final result.
The largest uncertainties are clearly from the determination of the
lattice spacing.

ΔMhyp

a2 → 0 0.13
Pure QCD statistics 0.24
QCDþ QED statistics 0.08
w0=a 0.24
w0 0.87
Valence mistuning 0.02
Sea mistuning 0.06

Total 0.96
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uncertainty from the cval and cval;Q coefficients. The a2 → 0

uncertainty is from the ca and caQ coefficients.
Our final result is for the charmonium hyperfine splitting

determined from quark-line connected correlation func-
tions in QCD and including the impact of QED effects,
through explicit calculation in quenched QED. We expect
the effect of further QED effects in the sea to be negligible
compared to our 1% uncertainty. The only significant
Standard Model effect then missing is that of quark-line
disconnected diagrams in which the cc̄ annihilate to gluons.
We expect this effect to be much larger for the ηc than for
the J=ψ so a comparison of our result for the hyperfine
splitting to experiment can yield information on the size
and sign of the annihilation contribution to the ηc mass.
This is discussed in the next subsection.

C. Discussion: Hyperfine splitting

The experimental average value of the hyperfine splitting
[113.0(5) MeV] from the Particle Data Group (PDG) [1] is
calculated as the difference of the separate averages for the
J=ψ and ηc masses. The different experimental results
contributing to the PDG average of the two masses are
shown in Fig. 8. For the J=ψ mass the average is dominated

by the most recent result from KEDR [32]. There are only
three experimental results used in these analyses that can
independently produce values for the hyperfine splitting.
These are the KEDR experiment [32,33] and two LHCb
analyses in different channels [34,35]. The LHCb result in
[35] used the ηcð2SÞ → pp̄ decay while the analysis of [34]
used ηcð1SÞ → pp̄. In the comparison plot of Fig. 9 [34] is
referred to as LHCb15 and [35] as LHCb17.
Figure 9 shows a comparison of lattice QCD results for

the charmonium hyperfine splitting along with the PDG
average value and separate experimental values that mea-
sured this splitting. Previous calculations on gluon field
configurations that included nf ¼ 2þ 1 flavors of sea
quarks by HPQCD [31] and by Fermilab/MILC [41] both
obtained values above the experimental average, although
only by just over one standard deviation.
The result we present here is substantially more precise

than these earlier studies and for the first time displays a
significant, 6σ, difference from the experimental average,
clearly showing that the lattice result lies above the
experimental one. We interpret this as the effect of ignoring
annihilation to gluons in the calculation of the ηc mass.

FIG. 8. Comparison of different experimental results for the
J=ψ and ηc masses along with the PDG average values. The ηc
results represent a recent subset of those used in the PDG average.
The most recent result is from BELLE (denoted BELL18) [36].
There are three different determinations from LHCb [34,35,37],
two of which also measured the hyperfine splitting. We include a
KEDR measurement [33], two from different BABAR analyses
[38] and two from BESIII [39,40].

FIG. 9. Comparison of different lattice results for the charmo-
nium hyperfine splitting and separate experimental results that
measure this difference, as well as the PDG average (pink band).
The PDG average is obtained from taking the differences of the
PDG J=ψ and ηc masses (see Fig. 8) rather than only from
experiments that directly measure the splitting. The squares give
lattice QCD results from calculations that include nf ¼ 2þ 1

flavors of quarks in the sea. The hexagons give results that
include nf ¼ 2þ 1þ 1 flavors of sea quarks, including the
results we present here at the top of the plot. All lattice QCD
results have had uncertainties from neglecting ηc annihilation
removed so that we might expect some difference between them
and experiment (see text), but previous lattice QCD results have
not been accurate enough to see this. The Fermilab/MILC result
used Fermilab c quarks on gluon field configurations with asqtad-
sea quarks [41] and the previous HPQCD result [31] used HISQ
quarks on the same asqtad-sea ensembles. Briceño et al. [42] used
a modification of the Fermilab approach known as relativistic
heavy quarks on the nf ¼ 2þ 1þ 1 HISQ sea-quark ensembles
that we use here. The χQCD result [43] used overlap quarks on
gluon field configurations including nf ¼ 2þ 1 domain-wall sea
quarks.
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From the comparison of our results to experiment we
conclude that these annihilation effects increase the ηc mass
by 7.3(1.2) MeV, where the uncertainty is dominated by
that from the lattice calculation.
Previous analyses of this issue have given mixed results.

In NRQCD perturbation theory [8] we can relate the shift in
the ηc mass to its total (hadronic) width through the
perturbative amplitude for cc̄ → gg → cc̄ at threshold
[44]. Then

ΔMηc ¼
Γηc

2

�
2ðln 2 − 1Þ

π
þOðαs; v2=c2Þ

	

¼ 31.9ð7Þ
2

MeV × ð−0.195þOðαs; v2=c2ÞÞ: ð11Þ

The leading term here gives −3.1 MeV, but subleading
corrections could easily change the sign. An alternative
way to think about the effect is nonperturbatively and then
the gluon annihilation allows mixing between the ηc and
other flavor-singlet pseudoscalar mesons. Since these are
lighter than the ηc this mixing could give a positive
correction to the ηc mass. Direct lattice QCD determination
of the effect, by calculating the appropriate quark-line
disconnected correlation functions, has so far not proved
possible. This is because the lighter states that are intro-
duced by the mixing make it very hard to pin down a small
effect on the mass of a particle, the ηc, which is so much
further up the spectrum in this channel. An estimate of the
mass shift of þ1–4 MeV was obtained in the quenched
approximation in which this mixing is not possible but
where mixing with glueballs could happen instead [45].
Our result for the hyperfine splitting, by its accuracy,

provides for the first time a clear indication of the size of the
impact of the ηc annihilation to gluons on its mass:

ΔMannihln
ηc ¼ þ7.3ð1.2Þ MeV: ð12Þ

IV. DETERMINATION OF mc

A. Pure QCD

In [46] we showed that it is possible to determine the
strange and charm quark masses accurately in lattice QCD
using an intermediate momentum-subtraction scheme. By
intermediate we mean that the mass renormalization factor to
convert the tuned bare lattice quark mass to the momentum-
subtraction scheme is calculated on the lattice. The con-
version from the momentum subtraction to the final pre-
ferred MS scheme is carried out using QCD perturbation
theory in the continuum. To do this accurately it is important
to use a momentum-subtraction scheme that has only one
momentum scale, μ. This means that the squared 4-momen-
tum on each leg of the vertex diagram, from which the mass
renormalization factor is calculated, is μ2. The RI-SMOM
scheme [47] used in [46] is such a scheme. A further

important point is that the mass renormalization factor will
be contaminated by nonperturbative (condensate) artifacts
through its nonperturbative calculation on the lattice. To
identify and remove these artifacts (that appear as inverse
powers of μ) requires calculations at multiple values of μ and
a fit to the results, as discussed in [46].
Below we briefly summarize the procedure followed

in [46]:
(1) Determine the tuned bare quark mass and lattice

spacing at physical sea-quark masses for each set of
gluon field configurations at a fixed β value. We do
this following Appendix A of [26].

(2) Calculate the mass renormalization factor, ZSMOM
m ,

that converts the lattice quark masses to the RI-
SMOM scheme for each β value at multiple values
of μ. We thereby obtain the quark mass in the RI-
SMOM scheme at scale μ.

(3) Convert the mass to the MS scheme at scale μ using
a perturbative continuum matching calculation. We

denote this conversion factor by ZMS=SMOM
m ðμÞ.

(4) Run all the MS quark masses at a range of scales μ to
a reference scale of 3 GeV using the four loop QCD
MS β function. We denote these running fac-
tors rð3 GeV; μÞ.

(5) Fit all of the results for the MS mass at 3 GeV to a
function that allows for discretization effects and
condensate contamination, which begins at 1=μ2

with the non-gauge-invariant hA2i condensate.
(6) Obtain from the fit the physical value for the quark

mass in the MS scheme at 3 GeV with condensate
contamination removed.

Here we provide three small updates to [46]. We first list
them and then discuss them in more detail below. The three
updates are
(1) we improve the uncertainty in the tuning of the bare

lattice c-quark mass by using the J=ψ mass rather
than the ηc;

(2) we include results from a finer ensemble of lattices
(set 14) to provide even better control of the
continuum limit;

(3) we use the new 3-loop-accurate SMOM to MS

matching factors, ZMS=SMOM
m , calculated in [48,49]

to reduce the perturbative matching uncertainty.
The first update is to change how the tuning of the bare

charm quark mass is done. In [46] bare charm masses were
used that had been tuned to the experimental ηc mass,
adjusted to allow for estimates of missing QED (from a
Coulomb potential) and gluon annihilation effects (from
perturbation theory). A 100% uncertainty was included on
the adjustment [26]. Now that we are explicitly including
quenched QED it makes more sense to have a tuning
process that uses an experimental meson mass with no
adjustments. We also want to use the same tuning process
for both the pure QCD case and the QCDþ QED case to
allow for a clear comparison and one that reflects the
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procedures that would be followed in a complete QCDþ
QED calculation. This means that we should use the J=ψ
meson mass, as we have done in Sec. III. The J=ψ mass is
more accurate experimentally than that of the ηc and the
J=ψ has a much smaller width, implying little effect on the
mass from its 3-gluon annihilation mode. The impact of
J=ψ annihilation to a single photon is a sub-1 MeV shift to
the mass which is a 0.02% effect, so negligible.
Using our J=ψ meson masses and following the pro-

cedure of [26] we obtain tuned bare c masses for each β
value. These are given in Table VI along with the w0=a
values corresponding to physical sea-quark masses at that β
value, which are also updated slightly from [46]. These
slight changes in w0=a lead to small adjustments in the μ
values relative to those given in Table IV of [46]. This is
accounted for when we run the Zm to the correct reference
scale in MS.
The second update is to include results from the ultrafine

β ¼ 7.0 ensemble (set 14). The appropriate tuned mass and
w0=a value for physical sea-quark masses is given in
Table VI. We have also calculated new ZSMOM

m ðμÞ values
on set 14. These are given in the Appendix.
The third update is to add the α3s correction to the SMOM

to MS conversion factor, ZMS=SMOM
m , for the mass renorm-

alization. This correction was recently calculated in con-
tinuum perturbative QCD [48,49]. For nf ¼ 4, as here, the
α3s correction is a small effect (0.2%), continuing the picture
seen at OðαsÞ and Oðα2sÞ and consistent with the uncer-
tainty taken from missing it in [46].
Once we have determined results for m̄cð3 GeVÞ at a

variety of lattice spacing values using the SMOM inter-
mediate scheme at a variety of μ values, we need to fit the
results to determine m̄cð3 GeVÞ in the continuum limit. We
do this following our previous calculation [46], where the
fit function is given in Eq. (26). The fit includes discre-
tization effects and condensate artifacts in the lattice
calculation of ZSMOM

m . In [46] we included a term in the
fit, cαα3sðμÞ (with αs in the MS scheme) to allow for the
then-missing α3s term in the SMOM toMS conversion. Here
we replace that term with cαα4sðμÞ since the conversion is
now calculated through α3s and included in our results. We

take a prior value on cα of 0.0� 0.5. This allows for the
coefficient of the α4s-term in the conversion factor to be 4
times as large as the α3s coefficient.
The updated fit to our results for m̄c in the MS scheme at

3 GeV is shown in Fig. 10. The fit has a χ2=d:o:f. of 0.71.
The error budget for this calculation is shown in Table VII.
Most of the entries are very similar to those in [46]. The
contribution due to the continuum extrapolation has,
unsurprisingly, dropped a little, as has the uncertainty from
the missing higher-order terms (here α4s) in the SMOM to
MS conversion. The correlated tuning uncertainty comes
largely from the uncertainty in the physical value of w0

used to fix the lattice spacing. We will be able to reduce that
uncertainty in the future by improving the determination of
the value of w0.
Our updated pure QCD result is

m̄cð3 GeVÞQCD ¼ 0.9858ð51Þ GeV: ð13Þ

Running this down to a scale equal to the mass gives

m̄cðm̄cÞQCD ¼ 1.2723ð78Þ GeV: ð14Þ

These results improve on and supersede the value in [46].

B. Impact of quenched QED

To include quenched QED effects in the determination of
the c-quark mass we must determine both the bare quark
mass and the mass renormalization factor with quenched
QED switched on.
We include quenched QED effects for Zm in the RI-

SMOM scheme in the same way as that described for the
vector current renormalization in [16]. This involves the

TABLE VI. Lattice spacing values and tuned c-quark masses at
physical sea-quark masses for each group of ensembles at a fixed
β value, denoted by their name in column 1 (see Table I). The
lattice spacing value is given in units of w0 in column 2 and the c
quark mass, fixed from the J=ψ meson mass, is given in GeV
units in column 3. The first uncertainty on the mass is uncorre-
lated between lattice spacing values, and the second is correlated.

w0=a mtuned
c [GeV]

Coarse 1.4055(33) 1.0524(10)(30)
Fine 1.9484(33) 0.9736(10)(30)
Superfine 3.0130(56) 0.8973(10)(30)
Ultrafine 3.972(19) 0.8592(20)(30)

FIG. 10. m̄cð3 GeVÞ extrapolated to the continuum with a fit
form that allows for condensate terms that behave like inverse
powers of the renormalization scale μ. This plot is an updated
version of the upper section of Fig. 10 in [46], with added data
points on ultrafine lattices (set 14) and a retuned bare c-quark
mass fixed from the J=ψ , rather than ηc, meson. The ultrafine
points have slightly mistuned μ values compared to the corre-
sponding lines (see text).
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generation of U(1) fields in Landau gauge to remain
consistent with the Landau gauge QCD configurations
used in the pure QCD calculation. When converting from
the RI-SMOM scheme for Zm to the MS scheme it is also
necessary to include QED effects in the perturbative
matching factor. We can evaluate the QED contribution

to ZMS=SMOM
m at order αQED by multiplying the known

coefficient of αs [47] by (3=4)Q2 to give the coefficient of
αQED. The impact is very small (<0.1%) and we therefore
safely neglect higher order terms. The numerical values of
the OðαQEDÞ-term we do include for the RI-SMOM to MS
matching are given in Table VIII.
To assess the QED impact on the tuned bare c mass we

use the QCDþ QED J=ψ masses given in Table IV and
shown in Fig. 2. As we have corrected the pure QCD
determination of mc to be tuned to the experimental J=ψ
mass, this is the tuning we will use for the QCDþ QED
case as well. The fractional shift in amc required to obtain
the correct J=ψ mass after QED has been included (which
we denote RQED½amc�) can be evaluated from the fractional
change in the J=ψ mass. RQED½amc� is the fractional change
in amc required to return the J=ψ mass to the value it had in
pure QCD (i.e., the experimental value) once QED is
switched on. Thus the increase in J=ψ mass seen with QED
must be compensated by a corresponding reduction in amc.
From the deliberately mistuned amc values in Table III we
see that the fractional change in the c mass is 1.5 times
larger than the change seen in the meson mass. We can use
this factor, along with R0

QED½MJ=ψ � values from Table IV
and the required change of sign in the shift, to determine the
retuning of the quark masses in QCDþ QED. We therefore
take RQED½amc� on coarse, fine and superfine lattices (sets

6, 10 and 12) to be 0.99840(8), 0.99790(4) and 0.99734(9)
respectively. We increase the uncertainty on RQED½amc�
compared to that for R0

QED½MJ=ψ � by a factor of 5 to allow
for the uncertainty in our conversion factor of 1.5 above.
We calculate the ratio of Zm in the SMOM scheme in

QCDþ QED to pure QCD (RQED½ZSMOM
m �) following the

methods of [46]. The calculations are carried out at multiple
values of the renormalization scale μ and extrapolated to
zero valence quark mass. Results are given in Table VIII.
Notice that these values are larger than 1 and so compensate
to a large extent for the changes in the tuning of the bare
lattice amc induced by QED. This reflects the fact that most
of the shift is an unphysical ultraviolet self-energy effect.
We then convert from the SMOM scheme to MS by making
use of the ratio of the perturbative conversion factor for
QCDþ QED to pure QCD, i.e., the OðαQEDÞ piece of

ZMS=SMOM
m also given in Table VIII. This is less than 1 but

only by a very small amount.
Multiplying these two factors together gives the ratio of

the lattice to MS mass renormalization factors for QCDþ
QED to that for pure QCD, i.e., RQED½ZMS

m �. From
Table VIII, multiplying columns 3 and 4, we can see that

RQED½ZMS
m � varies with μ and with lattice spacing over a

range of about 0.001. In perturbation theory we expect

RQED½ZMS
m � to consist of a power series in αQED and αs

multiplied by constants and powers of logarithms of aμ. The
leading logarithm at each order can be derived from the
anomalous dimensions of the mass, allowing us towrite [50]

RQED½ZMS
m � ¼ 1þ Cm −

3αQEDQ2

4π
logðμ2a2Þ: ð15Þ

TABLE VII. Error budget (in %) for the calculation of the
charm quark mass in the MS scheme at a scale of 3 GeVusing RI-
SMOM as an intermediate scheme. The listed contributions have
the same meaning as those in [46] except that we use r here for
the running factor rather than R and we have an additional one
labeled “QED effects” which comes from the continuum extrapo-
lation shown in Fig. 12.

m̄cð3 GeVÞ
a2 → 0 0.23
Missing α4s term 0.10
Condensate 0.21
msea effects 0.00

ZMS=SMOM
m and r 0.07

ZSMOM
m 0.12

Uncorrelated mtuned 0.15
Correlated mtuned 0.30
Gauge fixing 0.09
μ error from w0 0.12
QED effects 0.02

Total 0.52

TABLE VIII. Table giving factors needed for the determination
of the quark mass in a calculation including quenched QED for
different μ values and lattice spacings (denoted by set numbers).
The fractional QED correction to ZSMOM

m is given in the third
column, the QED component of the RI-SMOM to MS matching
for each μ in the fourth column and the factor giving the QED
mass running from μ to a reference scale of 3 GeV in the fifth
column.

Set μ [GeV] RQED½ZSMOM
m � ZMS=SMOM

m;QED rQEDð3 GeV; μÞ
5 2 1.001200(83) 0.999872 0.999372
10 2 1.001516(35) 0.999872 0.999372
12 2 1.001853(83) 0.999872 0.999372

5 2.5 1.000827(31) 0.999873 0.999718

5 3 1.000540(15) 0.999873 � � �
10 3 1.000851(11) 0.999873 � � �
12 3 1.001308(18) 0.999873 � � �
10 4 1.0005001(21) 0.999873 1.000446
12 4 1.0009331(34) 0.999873 1.000446
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HereCm is a constant, up to discretization effects and higher-
order terms multiplying powers of logðaμÞ. Figure 11 plots
our results forCm. These show very little variationwith a and

μ, confirming that the dependence ona andμ ofRQED½ZMS
m � is

almost entirely captured by Eq. (15).
Once the impact of QED on the cmass in the MS scheme

at scale μ is obtained, as above, we then need to allow for
QED effects in the running of the masses from μ to the
reference scale of 3 GeV. This is done by multiplication by
a factor rQED calculated in OðαQEDÞ perturbation theory
and given in Table VIII. These numbers are also very close
to 1. The αsαQED term could in principle have some impact
here but it is very small and we neglect it [50].
MultiplyingRQED½amc� andRQED½ZMS

m � together allows us
to determine the ratio of the c-quark mass in the MS scheme
at 3 GeV from QCDþ QED to that in pure QCD, i.e.,
RQED½m̄cð3 GeVÞ�. The values that we have for this ratio
come from results at multiple values of μ andmultiple values
of the lattice spacing. To determine the physical ratio in the
continuum limit with condensate contamination removed (in
this case QED corrections to QCD condensates) we need to
fit the results to a similar form to that used in [46]. We use

RQED½m̄cð3 GeV; μ; aÞ�
¼ RQED½m̄cð3 GeVÞ�

×

�
1þ αQEDQ2

X
i¼1

cðiÞ
a2
ðað1 GeVÞÞ2i

�

×

�
1þ αQEDQ2

�X
j¼1

cðjÞ
μ2a2

ðaμÞ2j

þ
X
n¼1

αsðμÞcðnÞcond
ð1 GeVÞ2n

μ2n

	�
: ð16Þ

The first term on the second line of Eq. (16) accounts for
discretization effects in RQED½amc�; a scale of 1 GeV is
chosen in these effects as this is close to the c-quark mass.
The term multiplying this (on the bottom two lines) models
the a and μ dependence of the QED correction to Zm. This
includes discretization effects of the form ðaμÞ2i and terms
to model condensate contributions, starting at 1=μ2. The
priors on all coefficients are taken as 0.0� 1.0, except for
the physical result, RQED½m̄cð3 GeVÞ�, for which we take
prior 1.00(1).
The lattice QCD results for RQED½m̄cð3 GeVÞ� and the fit

output are shown in Fig. 12. The fit has a χ2=d:o:f. of 0.87
and returns a physical value of RQED½m̄cð3 GeVÞ� of
0.99823(17). We conclude that the impact of quenched
QED is to lower the c-quark mass, m̄cð3 GeVÞ by a tiny
amount: 0.18(2)%.
We obtain our final answer for the c quark mass in

QCDþ QED by multiplying RQED½m̄cð3 GeVÞ� by our
pure QCD result for m̄cð3 GeVÞ. This gives the QCDþ
QED result of

m̄cð3 GeVÞQCDþQED ¼ 0.9841ð51Þ GeV: ð17Þ

Running down to the scale of the mass with QCDþ QED
gives

m̄cðm̄cÞQCDþQED ¼ 1.2719ð78Þ GeV; ð18Þ

very close to the pure QCD value at this scale. This is the
first determination of the c-quark mass to include QED
effects explicitly, rather than estimate them phenomeno-
logically as has been done in the past. The uncertainty
achieved here of 0.5% is smaller than the 0.6% from [46]
because we have reduced several sources of uncertainty,
mainly those from the extrapolation to the continuum limit

FIG. 12. QED correction to the charm quark mass in the MS
scheme at a scale of 3 GeV. The different μ values, shown as
different colors and shapes, have all been run to 3 GeV and only
differ by discretization and condensate effects. The red point on
the left is the result for RQED½m̄cð3 GeVÞ� returned by the fit
of Eq. (16).

FIG. 11. The factor Cm that forms part of the QED effect in the
lattice to MS mass renormalization, as defined in Eq. (15), plotted
against the square of the lattice spacing. The fact that Cm, as
shown here, has almost no μ or a dependence demonstrates that

the μa dependence seen in RQED½ZMS
m � from columns 3 and 4 of

Table VIII is simply that expected from perturbation theory.
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and from missing higher-order terms in the SMOM to MS
matching.

C. Discussion: mc

Figure 13 gives a comparison of lattice QCD results for
m̄c. We plot the masses at the scale of the mass, as is
conventional even though this is a rather low scale. We
restrict the comparison to results that were obtained on
gluon field configurations including u, d, s and c quarks in
the sea. The top result is our value from Eq. (17) that
explicitly includes a calculation of the impact of quenched
QED on the determination of the quark mass.
The top three results in the pure QCD section of the

figure all include an estimate of, and correction for, QED
effects. These corrections are made, however, by allowing
for “physical” QED effects such as those arising from the
Coulomb interaction between quark and antiquark in a
meson. They do not allow for the QED self-energy
contribution which is substantial. Although a large part
of this is canceled by the impact of QED on the mass
renormalization, a consistent calculation has to include
both effects, as we have done here.
An important point about Fig. 13 is that the top three

pure QCD results all have uncertainties of less than 1% and
agree to better than 1%, using completely different meth-
ods. This implies a smaller uncertainty on m̄c than the 1.5%
allowed for by the Particle Data Group [1]. This impressive

agreement is not changed by our new result including
quenched QED because, as we have shown, the impact of
this is at the 0.2% level.

V. J=ψ AND ηc DECAY CONSTANTS

The decay constant of the J=ψ , fJ=ψ , is defined from the
matrix element between the vacuum and a J=ψ meson at
rest by

h0jψ̄γμψ jJ=ψi ¼ fJ=ψMJ=ψϵμ; ð19Þ
where ϵμ is the component of the polarization of the J=ψ in
the direction of the vector current. In terms of the ground-
state amplitude, AV

0 , and mass, MV
0 (≡EV

0 ), obtained from
the fit of Eq. (3) to the charmonium vector correlator it is (in
lattice units)

fJ=ψ ¼ ZV

ffiffiffiffiffiffiffiffiffi
2AV

0

MV
0

s
: ð20Þ

ZV is the renormalization factor required to match the
lattice vector current to that in continuum QCD if a
nonconserved lattice vector current is used (as here). We
discuss the renormalization of vector currents using inter-
mediate momentum-subtraction schemes in [16] and we
will make use of the results based on the RI-SMOM
scheme here (see Sec. II). Note that there is no additional
renormalization required to get from the RI-SMOM scheme
to MS because the RI-SMOM scheme satisfies the Ward-
Takahashi identity [16].
The partial decay width of the J=ψ to an lþl− pair

(l ¼ e, μ) is directly related to the decay constant. At
leading order in αQED and ignoring ðml=MJ=ψ Þ4 correction
terms, the relation is

ΓðJ=ψ → lþl−Þ ¼ 4π

3
α2QED;effðM2

J=ψÞQ2
c

f2J=ψ
MJ=ψ

; ð21Þ

where Qc is the electric charge of the charm quark in units
of the charge of the proton. Note that the formula contains
the effective coupling, αQED;eff evaluated at the scale of
MJ=ψ but without including the effect of the J=ψ resonance
in the running of αQED to avoid double counting [53].
Experimental values of ΓðJ=ψ → eþe−Þ are obtained by

mapping out the cross section for eþe− → eþe− and
eþe− → hadrons through the resonance region [54] or
by using initial-state radiation to map out this region via
eþe− → μþμ−γ [55]. In either case initial-state radiation
and nonresonant background must be taken care of [56,57].
A cross section fully inclusive of final-state radiation is
obtained; interference between initial- and final-state radi-
ation is heavily suppressed [58]. The resonance parameter
determined by the experiment is then the “full” partial
width [57,59],

FIG. 13. Comparison of lattice QCD results for mc that include
u, d, s and c quarks in the sea. The top two results are the ones
from this paper. Our QCD þ quenched QED result is given in
Eq. (17). Our pure QCD result, Eq. (13), supersedes our earlier
result in [46]. The Fermilab/MILC/TUM result is from [51] and
uses a method based on charm-light meson masses. The
“HPQCD HISQ JJc” result is from [26] and uses current-current
correlator techniques. These three results agree to better than 1%.
The ETMC result is from [52] and uses the RI-MOM inter-
mediate scheme. The grey band gives the �1σ uncertainty band
from the Particle Data Group [1].
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Γll ¼ Γð0Þ
ll

j1 − Π0j2
ð22Þ

where Γð0Þ is the partial width to lowest order in QED
and Π0 is the photon vacuum polarization. The effect
of the vacuum polarization is simply to replace αQED in the
lowest-order QED formula for the width with αQED;effðM2Þ,
as we have done in Eq. (21).
The experimental determination of Γll is accurate to 2%

for the J=ψ [1]. This allows us to infer a decay constant
value from experiment, accurate to 1%, using Eq. (21).

fexptJ=ψ ¼
�
3MJ=ψ

4πQ2
c

	
1=2 Γ1=2

eþe−

αQED;eff

¼ 40.786ðMeVÞ1=2 Γ1=2
eþe−

αQED;eff
: ð23Þ

Using the experimental average of Γeþe− ¼ 5.53ð10Þ keV
[1] and αQED;effðM2

J=ψÞ ¼ 1=134.02ð3Þ [60] gives

fexptJ=ψ ¼ 406.5ð3.7Þð0.5Þ MeV: ð24Þ

The first uncertainty comes from the experimental uncer-
tainty in Γ and the second is an OðαQED=πÞ uncertainty for
higher order in QED terms, for example from final-state
radiation, in the connection between Γ and f in Eq. (21).
Note that using αQED of 1=137 would increase this number
by 2.3% (9 MeV).

This experimental value can then be compared to our
lattice QCD results for a precision test of QCD. Here we
improve on HPQCD’s earlier calculation [31] by working
on gluon field configurations that cover a wider range of
lattice spacing values and with sea u=d quark masses now
down to their physical values. In addition we now include c
quarks in the sea and have a more accurate determination of
the vector renormalization factor ZV [16]. We will also test
the impact on fJ=ψ of the c quark’s electric charge.
The decay constant of the pseudoscalar ηc meson is

determined from our pseudoscalar correlators (of spin-taste
γ5 ⊗ γ5) using the ground-state mass and amplitude
parameters from the correlator fit, Eq. (2):

fηc ¼ 2mc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2AP

0

ðMP
0 Þ3

s
: ð25Þ

Note that this is absolutely normalized and no Z factor is
required. Because the ηc does not annihilate to a single
particle there is no experimental process from which we can
directly determine fηc . Nevertheless it is a useful quantity to
calculate for comparison to fJ=ψ and to fill out the picture
of these hadronic parameters from lattice QCD [61]. Again
we will improve on HPQCD’s earlier calculation [62] as
discussed above for the J=ψ .

A. Pure QCD

The second column of Table IX gives our results for the
(un-normalized) values of afJ=ψ in pure QCD on 12 of the

TABLE IX. Columns 2 and 3 give the results in lattice units for the J=ψ and ηc decay constants respectively in
pure QCD on the ensembles listed in Table I. The values of amval

c are those given in Table I except for two cases with
a deliberately mistuned c-quark mass: set 6 denoted by a � where amc ¼ 0.643 and set 14 denoted by a † where
amc ¼ 0.188. The results for fJ=ψ do not include the multiplication by ZV needed to normalize them [Eq. (20)].
Columns 4 and 5 give the electromagnetic corrections for the J=ψ and ηc decay constants, as the ratio of the
QCD þ QED result to that in pure QCD. Again, the electromagnetic corrections for fJ=ψ do not include the
corrections to ZV . ZV values are given in Table X.

Set afJ=ψ=ZV afηc R0
QED½fJ=ψ=ZV � R0

QED½fηc �
1 0.43370(55) 0.37659(18) � � � � � �
2 0.42346(48) 0.370332(91) 1.00410(64) 1.00294(50)
3 0.4163(11) 0.366127(57) � � � � � �
4 0.29411(21) 0.268331(61) � � � � � �
6 0.28835(15) 0.263727(60) 1.00341(37) 1.00326(13)
6� 0.28671(15) 0.262077(48) � � � � � �
8 0.285592(88) 0.261676(26) � � � � � �
9 0.19406(30) 0.18191(12) � � � � � �
10 0.191341(79) 0.179362(26) 1.00295(12) 1.002951(54)
11 0.18961(15) 0.178039(24) � � � � � �
12 0.12334(10) 0.117535(28) 1.00283(33) 1.00311(47)
13 0.119606(63) 0.114151(26) � � � � � �
14 0.091380(85) 0.087772(39) � � � � � �
14† 0.09069(29) 0.086774(59) � � � � � �
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sets from Table I. We multiply afJ=ψ=ZV by the value of ZV

and convert to physical units using the inverse lattice
spacing. ZV values are taken from [16] except for a new
value calculated here for β ¼ 7.0 (ultrafine) set 14. We
collect these values in Table X. See the Appendix for a
discussion of the ZV results. The ZV values are very precise
and so have little impact on the uncertainty in fJ=ψ .
Our results for fJ=ψ for the pure QCD case are shown in

Fig. 14 plotted against the square of the lattice spacing (in
units of the bare c-quark mass). Clear dependence on the
lattice spacing is seen. This dependence comes from the
amplitudes of the two-point correlators; the lattice spacing
dependence of ZV contributes very little to it. We also plot in
Fig. 14 the results of the fit using Eq. (5). The priors for the
fit are as given in Sec. II F with the prior on the physical
value of fJ=ψ [i.e., x in Eq. (5)] of 0.4(1). The χ2=d:o:f: of
the fit is 0.43. The agreement with the result derived from

experiment can clearly be seen. We obtain an fJ=ψ value in
pure QCD of

fJ=ψ ;QCD ¼ 409.6ð1.6Þ MeV: ð26Þ

We will discuss this result further in Sec. V C.
We have used vector current renormalization factors, ZV ,

in the RI-SMOM scheme at a scale of 2 GeV. The μ
dependence of ZV should just be the result of discretization
effects and results for the physical quantity, fJ=ψ , using
different renormalization scales μ should agree in the
continuum limit. Here we verify that this is the case using
ZVð2 GeVÞ and ZVð3 GeVÞ results from Table X [16].
There is no 3 GeV result on the very coarse lattices since μa
would be too large. The comparison for fJ=ψ using μ ¼ 2

and 3 GeV is shown in Fig. 15 for the pure QCD case. The
difference between the two values of μ is barely visible. The
values at μ ¼ 3 GeV give a continuum limit result of
fJ=ψ ¼ 408.7ð1.8Þ MeV, in good agreement with that at
μ ¼ 2 GeV in Eq. (26) but slightly less accurate. The
χ2=d:o:f: of the fit was 0.45.
Our results for afηc, the ηc decay constant in lattice units,

are given in the third column of Table IX for the pure QCD
case. After conversion to physical units, they are plotted in
Fig. 16. The curve is similar to that for fJ=ψ but with
somewhat smaller discretization effects. We also plot the
results of performing the same fit as for fJ=ψ using Eq. (5).
The χ2=d:o:f. of the fit is 0.88 giving a result for the decay
constant in pure QCD of

fηc;QCD ¼ 397.5ð1.0Þ MeV: ð27Þ

This agrees well with the earlier HPQCD value on nf ¼
2þ 1 gluon field configurations [62] of 0.3947(24) GeV
but has half the uncertainty. In [62] the effects from
neglecting the charm quark in the sea are estimated to

TABLE X. Vector current renormalization constants, ZVðμÞ,
using the RI-SMOM scheme at μ ¼ 2 GeV (column 2) and μ ¼
3 GeV (column 3) in pure QCD for each β value corresponding to
a group of ensembles in Table I. Column 4 gives the QED
correction to ZV at 2 GeV in the form of the ratio of the QCDþ
QED value to that of pure QCD. Most of these values are taken
from [16] although the ZV value at β ¼ 7 and the QED correction
at β ¼ 5.8 are new here.

β ZVð2 GeVÞ ZVð3 GeVÞ RQED½ZVð2 GeVÞ�
5.80 0.95932(18) � � � 0.999544(14)
6.00 0.97255(22) 0.964328(75) 0.999631(24)
6.30 0.98445(11) 0.977214(35) 0.999756(32)
6.72 0.99090(36) 0.98702(11) 0.999831(43)
7.00 0.99203(108) 0.99023(56) � � �

FIG. 14. The J=ψ decay constant calculated on the ensembles
of Table I in pure QCD and plotted against the square of the bare
c-quark mass in lattice units. The different red shapes correspond
to different groups of ensembles with similar lattice spacing and
the error bars shown include the full uncertainty on the points.
Points at mistuned mc are not plotted but are included in the fit.
The green curve marks our extrapolation to the physical point,
where the black cross shows the result determined from the
experimental average for Γeþe− from Eq. (24).

FIG. 15. The continuum extrapolation of fJ=ψ usingZVð2 GeVÞ
(results and fit curve in red, same values as in Fig. 14) and
ZVð3 GeVÞ (results and fit curve in blue). The continuum extra-
polated results agree in the two cases as they should. A black cross
shows the experimental average result from Eq. (24).
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be Oð0.01%Þ which is negligible and means that the two
calculations should give the same result.
Figure 17 shows our results for the ratio of fJ=ψ to fηc in

pure QCD. A lot of the discretization effects cancel in the
ratio, as is evident in comparing this figure to Figs. 14 and
16. Systematic uncertainties, for example from the deter-
mination of the lattice spacing, are also reduced. The shape
of the curve again, as in the hyperfine splitting case, reflects
the fact that we have successfully reduced sources of a2

error to the point where a4 and a6 are visible.
We fit the ratio to the same fit as before [Eq. (5)] with a

prior on the physical value of 1.0(1). The fit has a χ2=d:o:f:

of 0.62 and returns a physical value for the decay constant
ratio in pure QCD of

fJ=ψ ;QCD
fηc;QCD

¼ 1.0285ð18Þ: ð28Þ

Thus we see that the J=ψ decay constant is nearly 3% larger
than that of the ηc with an uncertainty of 0.2%.
Table XI gives the error budget for our final values of

fJ=ψ and fηc , both for the pure QCD case and the QCDþ
QED case to be discussed in Sec. V B. The contributions
from different sources are very similar between the two
decay constants. It is clear from this that the dominant
sources of error are related to the determination of the
lattice spacing, as for the hyperfine splitting.
The error budget presented here for the J=ψ decay

constant is markedly different from that of [31]. There the
dominant contribution to the error was from the vector
renormalization constant, ZV , obtained using a matching
between lattice time moments and high order perturbative
QCD [63]. Here that error is substantially reduced by using
the ZV values obtained in lattice QCD fully nonperturba-
tively in the RI-SMOM scheme [16]. Note that the
uncertainty from scale setting in the decay constant is
much smaller than that for the hyperfine splitting (Table V).
This is because the decay constant has opposite behavior as
a function of quark mass, increasing as the quark mass
increases rather than decreasing. This then offsets, rather
than augments (as in the hyperfine splitting case), its
sensitivity to changes in the scale-setting parameter, w0.

B. Impact of quenched QED

Including quenched QED effects into our calculations
allows us to determine the effect on the J=ψ and ηc decay
constants of the electric charge of the valence c quarks.
Because the J=ψ and ηc are electrically neutral particles,
there is no long-distance infrared component to cause
problems (as there is for fπþ) and we can simply proceed
to determine the decay constants after the addition of the
QED field as we did in the pure QCD case.

FIG. 17. The ratio of J=ψ to ηc decay constant determined in
pure QCD, plotted against the square of the bare c-quark mass in
lattice units. The different red shapes correspond to different
groups of gluon field ensembles with similar lattice spacing. The
error bars on each point are the full uncertainty, including
correlated uncertainties from, for example, the determination
of the lattice spacing. The green curve shows our fit and
extrapolation to the physical point.

TABLE XI. Error budget for the J=ψ and ηc decay constants as
a percentage of the final answer.

fJ=ψ fηc

a2 → 0 0.09 0.03
ZV 0.05 � � �
Pure QCD statistics 0.12 0.05
QCDþ QED statistics 0.05 0.02
w0=a 0.11 0.08
w0 0.34 0.24
Valence mistuning 0.05 0.01
Sea mistuning 0.01 0.00

Total 0.40% 0.26%FIG. 16. The ηc decay constant calculated on the ensembles of
Table I in pure QCD and plotted against the square of the bare
c-quark mass in lattice units. The different red shapes correspond
to different groups of gluon field ensembles with similar lattice
spacing. The error bars on each point are the full uncertainty,
including correlated uncertainties from, for example, the deter-
mination of the lattice spacing. The green curve shows our fit and
extrapolation to the physical point. The black cross gives the
earlier HPQCD result on nf ¼ 2þ 1 gluon field configurations
from [62].
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The fractional QED effect on the J=ψ and ηc decay
constants at fixed bare c-quark mass in lattice units is given
in Table IX. We see a 0.3% increase, offset slightly by the
change in ZV in the J=ψ case. The fractional QED effect on
ZV is given in Table X. The fractional QED effect at fixed
bare mass is plotted in Fig. 18. We see that the effect is
similar for the J=ψ and ηc in the continuum limit and shows
very little dependence on the lattice spacing.
The volume dependence of the fractional QED effect is

shown in Fig. 19 on sets 5–7. We find that the effect is
negligible well below the 0.1% level.
We now combine our QCDþ QED results with our pure

QCD results and the full fit of Eq. (5), which takes into
account the retuning of the quark mass needed when
quenched QED is included. Figure 20 shows our pure
QCD results, QCDþ QED results and fit curve for the J=ψ
decay constant. We obtain

fJ=ψ ;QCDþQED ¼ 410.4ð1.7Þ MeV: ð29Þ

This is a 0.2% increase over the value in pure QCD
[Eq. (26)] because retuning reduces the quark mass and
offsets some of the impact of quenched QED seen in

Table IX. A more accurate statement is that the final
fractional effect from quenched QED is RQED½fJ=ψ � ¼
1.00188ð36Þ.
A very similar picture is seen for fηc in Fig. 21. We

obtain

fηc;QCDþQED ¼ 398.1ð1.0Þ MeV: ð30Þ

The final fractional effect from quenched QED is
then RQED½fηc � ¼ 1.00166ð25Þ.
Finally, in Fig. 22 we plot results for the ratio of J=ψ to

ηc decay constants and show the fit curve extrapolated to
the continuum limit. This gives

fJ=ψ ;QCDþQED

fηc;QCDþQED
¼ 1.0284ð19Þ: ð31Þ

This is almost the same as the pure QCD result.

FIG. 18. The fractional QED correction to the J=ψ and ηc decay
constants as a function of lattice spacing. The horizontal dashed
lines mark the weighted average of the points.

FIG. 19. The volume dependence of the fractional QED effect
on the J=ψ and ηc decay constants measured on sets 5–7. The
dashed lines are horizontal and indicate the weighted average of
the points. There is no observable finite-volume effect at the level
of our statistical uncertainties.

FIG. 20. The J=ψ decay constant calculated on the ensembles
of Table I in pure QCD (red points) and including also quenched
QED (blue points) plotted against the square of the bare c-quark
mass in lattice units. The green curve marks our extrapolation to
the physical point, where the black cross shows the experimental
average result from Eq. (24).

FIG. 21. The ηc decay constant calculated on the ensembles of
Table I in pure QCD (red points) and including also quenched
QED (blue points) plotted against the square of the bare c-quark
mass in lattice units. The green curve marks our extrapolation to
the physical point. The black cross gives the earlier HPQCD
result on nf ¼ 2þ 1 gluon field configurations from [62].
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C. Discussion: f J=ψ and f ηc
Figure 23 compares our new pure QCD and QCDþ

QED results to previous results including nf ¼ 2þ 1

flavors of sea quarks for fηc [62] and fJ=ψ [31]. There
is good agreement. These earlier calculations also used
HISQ quarks but our new results are more accurate,
particularly for fJ=ψ because of the use of more accurate
values of ZV [16].
There have also been calculations that use nf ¼ 2 flavors

of sea quarks. It is harder to make a comparison to these
results because it is not clearwhat the systematic error is from
not including at least the s quarks in the sea, and no
uncertainty is included for this. The calculation of [64] uses
twisted-mass quarks on nf ¼ 2 gluon field configurations
and obtainsfηc¼387ð7Þð2ÞMeVandfJ=ψ¼418ð8Þð5ÞMeV.
The calculation of [65] uses clover quarks on nf ¼ 2 CLS
gluon-field configurations to give fηc ¼ 387ð3Þð3Þ MeV
and fJ=ψ ¼ 399ð4Þð2Þ MeV. The nf ¼ 2 results for fηc
agreewith each other andhave a central value about2σ below
ours. The σ here is that from the nf ¼ 2 results since our
uncertainty is much smaller. The nf ¼ 2 results for fJ=ψ are
compatible with each other and with our result, again at 2σ.
As discussed in Sec. V, the J=ψ decay constant is the

hadronic quantity that is needed to determine the rate of
J=ψ annihilation to leptons via Eq. (21). Our result for Γ
using Eq. (21) with fJ=ψ from Eq. (29) is

ΓðJ=ψ → eþe−Þ ¼ 5.637ð47Þð13Þ keV: ð32Þ

The first uncertainty is from our lattice QCDþ QED result
for fJ=ψ and the second uncertainty allows for a relative
OðαQED=πÞ correction to Eq. (21) from higher-order
effects.
Figure 24 compares this width ΓðJ=ψ → eþe−Þ to

results from experiment. Recent experimental results from
KEDR [54] and BES III [55] are shown along with the

Particle Data Group average [1] (as a grey band). Figure 24
shows good agreement between our result and the exper-
imental values shown, as well as the experimental average.

FIG. 22. The ratio of J=ψ to ηc decay constants calculated on
the ensembles of Table I in pure QCD (red points) and including
also quenched QED (blue points) plotted against the square of the
bare c-quark mass in lattice units. The green curve marks our
extrapolation to the physical point.

FIG. 23. A comparison of our new results for fηc and fJ=ψ with
earlier lattice QCD results, also by HPQCD, on gluon field
configurations that include nf ¼ 2þ 1 flavors of quarks in the
sea. The results labeled “HPQCD HISQ” are from this paper and
the results labeled “HPQCD HISQ 2010=12” are from [31,62].
The grey bands are the �1σ bands from our new QCDþ QED
results.

FIG. 24. A comparison of the width for J=ψ decay to eþe−
implied by our new results for fJ=ψ to that obtained from two
recent experiments. The point labeled “KEDR 18” is from [54]
and the point labeled “BES III 16” is from [55]. The grey bands
are the �1σ bands from the Particle Data Group average [1].
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The lattice QCD result is now more accurate than the
experimental values.

VI. VECTOR CORRELATOR MOMENTS AND acμ

With new results expected from the Fermilab g − 2
experiment soon there has been a concerted effort by the
lattice community to understand and control systematic
effects in the lattice QCD calculation of the HVP con-
tribution to the anomalous magnetic moment of the muon.
Since the most accurate values for the HVP currently come
from experimental results on Rðeþe− → hadronsÞ, it is also
important to compare lattice QCD results to these, dis-
aggregated by flavor where possible.
The first calculation of the quark-line connected c-quark

contribution to the HVP, acμ, was given in [66] using results
for the time moments of vector charmonium current-current
correlators calculated in [31]. The time moments are
defined by

Gn ¼ Z2
V

X
t

tnCVðtÞ; ð33Þ

where CVðtÞ is the vector current-current correlator and ZV
is the vector current renormalization factor, discussed in
Sec. V. Note that t ∈ f−L=2þ 1;−L=2þ 2;…; L=2g.
The even-in-n time moments for n ≥ 4 can be related to

the derivatives at q2 ¼ 0 of the renormalized vacuum
polarization function [67], Π̂ðq2Þ≡ Πðq2Þ − Πð0Þ, by

Gn ¼ ð−1Þn=2 ∂n

∂qn q
2Π̂ðq2Þ

����
q2¼0

: ð34Þ

This means that Π̂ðq2Þ can be reconstructed, using Padé
approximants, from the Gn [66] and fed into the integral
over q2 that yields the quark-line connected HVP contri-
bution to aμ [68]. Only time moments of low moment
number are needed to give an accurate result for acμ because
the integrand is dominated by small q2. We will give results
for the four lowest moments, n ¼ 4; 6; 8; 10, improving on
the values given in [31]. The improvement comes mainly
through the use of a more accurate vector current renorm-
alization as well as an improved method for reducing lattice
spacing uncertainties but we also use second-generation
gluon field configurations that include c quarks in the sea
and calculate, rather than estimate, the impact of the leading
QED effects.
Π̂ðq2Þ and hence acμ can also be determined from

experimental results for Rc ≡ Rðeþe− → cc̄ → hadronsÞ
as a function of squared center-of-mass energy, s. This can
be done using inverse-s moments

Mk ≡
Z

ds
skþ1

RcðsÞ: ð35Þ

Rc is obtained from the full eþe− rate from just below the c
threshold upwards by subtracting the background contri-
bution from u, d, and s quarks perturbatively, see e.g., [63].
The relationship between G2kþ2 and Mk is then

G2kþ2 ¼
ð2kþ 2Þ!Mk

12π2Q2
: ð36Þ

A comparison of our correlator time moments calculated on
the lattice and extrapolated to the continuum limit to the
inverse-s moments determined from experiment is equiv-
alent to a test of the agreement of the results for acμ in the
two cases.

A. Vector correlator moments: Pure QCD and
QCD+QED results

Table XII gives our raw results for the time moments of
the same vector current-current correlators from which we
have determined the mass and decay constant of the J=ψ
meson in Secs. III and V. Notice that the statistical
uncertainties are tiny. The correlators make use of a local
vector current that must be renormalized as discussed in
Sec. V. The results in Table XII are calculated before
renormalization and are given in lattice units. The quantity
that is tabulated is �

Gn

Z2
V

	
1=ðn−2Þ

: ð37Þ

We take the (n − 2)th root to reduce all results to the same
dimensions [31]. To normalize the time moments we use
the ZV values at μ ¼ 2 GeV given in Table X that were
used for fJ=ψ in Sec. V.
Table XII also gives the result of including quenched

QED as the ratios R0
QED for each rooted moment (at fixed

amc). These values are all very slightly less than 1, by up to
0.1% for n ¼ 4, and 0.2% for n ¼ 10. We can also test the
finite-volume dependence of the quenched QED effect
using sets 5, 7 and 8 and the results are shown in Fig. 25.
There is no visible volume dependence in the QED effect
on time moments at the level of our statistical uncertainties.
This is to be expected, as seen for the J=ψ mass and decay
constant in Secs. III and V, since the vector current being
used here is electrically neutral.
To fit the results as a function of lattice spacing it is

convenient to work with the dimensionless combination:

MJ=ψðGnÞ1=ðn−2Þ; ð38Þ

using our MJ=ψ masses from Table III. The removal of
dimensions reduces the uncertainty coming from the value
of the lattice spacing. At the same time this quantity also
has reduced sensitivity to mistuning of the valence c-quark
mass because the mc dependence is largely canceled by
MJ=ψ . We fit the quantity defined in Eq. (38) as a function
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of lattice spacing, allowing for quark-mass mistuning
effects of both valence and sea quarks to derive results
in the physical continuum limit. We do this as before using
the fit function given in Eq. (5). Values in the physical
continuum limit are then divided byMJ=ψ from experiment

to obtain our final results for G1=ðn−2Þ
n in GeV−1. In doing

this we allow an uncertainty of 0.7 MeV in MJ=ψ from

annihilation to a photon (see Sec. III) since this effect is not
included in our results.
Figure 26 plots the results for the rooted moments

multiplied by MJ=ψ as a function of ðamcÞ2. Also shown
is the fit result from Eq. (5). Only the pure QCD lattice
results are shown for clarity; those including the effect of
quenched QED are very close to them. The fit result plotted
is that for the QCDþ QED case.
Table XIII gives our QCDþ QED results for the 4th,

6th, 8th and 10th rooted moments in the physical con-
tinuum limit. These are obtained from a simultaneous fit to
all of the moments, including the correlations between
them (since they are derived from the same correlators).
The fit has a χ2=d:o:f: of 0.62 for an singular value
decomposition (svd) cut of 1 × 10−3.
Column 3 of Table XIII gives the results derived from

experimental data for Rðeþe− → hadronsÞ and Γll and
mass for the J=ψ and ψ 0 by [69] for comparison (see
Sec. VI). We have converted these results into the quantity
that we calculate according to Eq. (36). We see agreement
within 2σ for n ≥ 6 with the values derived from experi-
ment, but a 2.4σ tension at n ¼ 4. The results given from
[69] correspond to their standard selection of experimental
datasets. Results shift by�1σ for other selections. Note that
the lattice QCD results are now much more precise than
those determined from experiment. The comparison
between lattice QCD and experiment will be discussed
further in Sec. VI B.
Column 4 of Table XIII gives the final impact of

quenched QED, including the quark mass retuning, on

TABLE XII. Time moments of charmonium vector current-current correlators calculated on the ensembles in Table I. The results
tabulated are values of ðGn=Z2

VÞ1=ðn−2Þ in lattice units along with their statistical uncertainties, given for n ¼ 4, 6, 8 and 10 in columns 2,
3, 4 and 5. Uncertainties are statistical only. Note that the results for different moments are correlated because they are determined from
the same correlation functions. The results marked with a � and † are for deliberately mistuned amc values as detailed in the caption to
Table III. Also included are the ratios at fixed amc, denoted R0

QED, of QCDþ QED to QCD results for each rooted moment on a subset
of ensembles.

Set n ¼ 4 n ¼ 6 n ¼ 8 n ¼ 10 R0
QED½n ¼ 4� R0

QED½n ¼ 6� R0
QED½n ¼ 8� R0

QED½n ¼ 10�
1 0.389670(40) 0.949791(62) 1.410524(75) 1.815497(88) � � � � � � � � � � � �
2 0.396283(22) 0.961260(35) 1.425498(42) 1.833868(49) 0.999954(26) 0.999910(17) 0.999858(15) 0.999810(15)
3 0.400779(15) 0.969045(24) 1.435671(28) 1.846369(33) � � � � � � � � � � � �
4 0.511194(12) 1.164351(19) 1.701040(26) 2.184698(34) � � � � � � � � � � � �
6 0.5206344(85) 1.181180(14) 1.724311(19) 2.214708(24) 0.9998455(15) 0.9997169(11) 0.9995987(10) 0.9994908(11)
6� 0.5254224(87) 1.189687(14) 1.736041(19) 2.229780(25) � � � � � � � � � � � �
8 0.5254560(47) 1.1897785(76) 1.736217(10) 2.230069(13) � � � � � � � � � � � �
9 0.70981(13) 1.53941(21) 2.24688(27) 2.90799(32) � � � � � � � � � � � �
10 0.723760(11) 1.566115(20) 2.285959(27) 2.959283(36) 0.999554(24) 0.999312(20) 0.999124(20) 0.998995(22)
11 0.731489(11) 1.580936(18) 2.307649(25) 2.987715(32) � � � � � � � � � � � �
12 1.070736(33) 2.276543(58) 3.355470(80) 4.37418(10) 0.999096(59) 0.998767(49) 0.998584(48) 0.998489(48)
13 1.114660(44) 2.366266(78) 3.48827(11) 4.54699(14) � � � � � � � � � � � �
14 1.431378(91) 3.03675(16) 4.49434(22) 5.86769(29) � � � � � � � � � � � �
14† 1.46556(17) 3.10710(31) 4.59734(43) 6.00058(56) � � � � � � � � � � � �
15 1.91475(23) 4.06357(42) 6.02429(55) 7.86806(66) � � � � � � � � � � � �

FIG. 25. A study of the volume dependence of the electro-
magnetic correction to the first four time moments of the vector
current-current correlator and to acμ on sets 5–7. There is no
observable dependence on the lattice spatial extent, Ls, as can be
judged by comparison to the dashed horizontal lines at the
weighted averages of the points.
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the moments. We see that the ratios, RQED½G1=ðn−2Þ
n �, are

greater than 1, in contrast to the R0
QED of Table XII that are

less than 1. As discussed in Sec. II B, the inclusion of QED
means that the c-quark mass must be retuned downwards.
The rooted time moments are approximately inversely
proportional to the quark mass and so they increase under
this retuning, more than offsetting the direct effect of QED
seen in R0

QED.
Table XIV gives the error budget for the Gn. The total

uncertainty in all cases is below 0.2%.

B. Discussion: Vector correlator moments

Our new results for the time moments of vector current-
current correlators improve significantly on earlier lattice

QCD calculations and are now more accurate than results
derived from experiment.
Figure 27 compares our new results for the 4th and 6th

moments to earlier lattice QCD results. Comparison for the
8th and 10th moments gives a very similar picture and so is
not shown. The first lattice QCD calculation of the time
moments of vector charmonium current-current correlators
was given by HPQCD in [31] using HISQ valence quarks
on nf ¼ 2þ 1 asqtad gluon field configurations. Our new
results have an uncertainty almost ten times smaller than
these. The error budget in the earlier results was dominated
by the uncertainty in ZV from the use of continuum
perturbation theory in the matching factors and there
was also a sizeable uncertainty from the lattice spacing.
These uncertainties have been enormously reduced here
and in addition we no longer need an uncertainty from
missing QED effects. We also show a comparison with the
subsequent results from the JLQCD Collaboration [70]
using domain-wall quarks on nf ¼ 2þ 1 gluon field
configurations. JLQCD does not give a value for the 4th
moment because of discretization effects in their formalism
[tree level Oða2Þ]. The dominant uncertainties in their
results are from statistics and from the value of t1=20 used to
fix the lattice spacing, on which they have a 2% uncertainty.
Good agreement is seen for all of the lattice QCD results.
Two of the most recent results from phenomenological

determinations of the moments [63,69] are also compared
in Fig. 27. The results from [69] include experimental
datasets for the inclusive cross section that are both older
and newer than those used in [63]. Results from [69]’s
“standard” selection of datasets were given in Table XIII
and are shown in Fig. 27 in red. We also show, in orange,
the results from the maximal set (all experimental infor-
mation available at that point) and the minimal set (datasets
that are needed to cover the full

ffiffiffi
s

p
range from 2 GeV to

10.5 GeV without gaps, keeping the most accurate results).
Note that the resonance parameters are the same for all
selections. We see that the variation with dataset selection
covers almost 1σ for the 4th moment, but much less for the

FIG. 26. The four lowest time moments and their extrapolation
to a ¼ 0. The symbols give results for the rooted moment
multiplied by MJ=ψ with different symbols denoting different
groups of ensembles with similar lattice spacing. The different
colors pick out the different moments, from n ¼ 4 at the bottom
to n ¼ 10 at the top of the plot. Only the results from the pure
QCD calculation at well-tuned c-quark masses are shown for
clarity. Uncertainties are too small to be visible. The extrapolation
for all the moments are performed simultaneously including
correlations between moments determined from the same current-
current correlators. The dashed lines give the QCDþ QED fit
curve using Eq. (5) and the colored crosses mark the result in the
continuum limit at physical quark masses.

TABLE XIII. QCDþ QED results in the physical continuum
limit for the first four time moments (column 2) compared with
the results extracted from experiment in column 3 [69]. Agree-
ment within 2σ is seen for all except the 4th moment, but the
lattice QCD results are much more accurate. Column 4 gives the
effect of quenched QED as a ratio of the physical results in
QCDþ QED to those in pure QCD.

n G1=ðn−2Þ
n GeV−1 ðGexp

n Þ1=ðn−2Þ GeV−1 RQED½G1=ðn−2Þ
n � � � �

4 0.31715(49) 0.3110(26) 1.00106(13)
6 0.67547(84) 0.6705(31) 1.00069(11)
8 1.0041(11) 0.9996(36) 1.00047(10)
10 1.3117(13) 1.3080(37) 1.00037(10)

TABLE XIV. Error budget for G1=ðn−2Þ
n as a percentage of the

final answer.

G1=2
4 G1=4

6 G1=6
8 G1=8

10

a2 → 0 0.06 0.05 0.04 0.03
ZV 0.04 0.02 0.02 0.02
Pure QCD Statistics 0.03 0.02 0.02 0.02
QCD+QED Statistics 0.01 0.01 0.01 0.01
Sea mistunings 0.06 0.03 0.03 0.03
Valence mistunings 0.01 0.00 0.00 0.00
MJ=ψ 0.02 0.02 0.02 0.02
w0 0.10 0.08 0.06 0.05
w0=a 0.06 0.05 0.05 0.04

Total 0.15 0.12 0.11 0.10
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6th moment. This is also reflected in the differences
between [63,69].
These phenomenological analyses must subtract the

“noncharm” background from experimental results for
Rðeþe− → hadronsÞ to leave Rc for Eq. (35). Rc is defined
to be the result from diagrams with a charm quark loop
connected to a photon at both ends [63] i.e., the quark-line
connected vector current-current correlator that we study
on the lattice. The subtracted background includes QED
effects for the noncharm and singlet (quark-line discon-
nected) contributions. The remainder Rc then includes the

QED effects associated with the cc̄ loop. The dominant
source of uncertainty in Rc comes from the charmonium
resonance (J=ψ and ψ 0) region and is set by the uncertainty
in Γee for these states. The fractional uncertainty is
approximately the same for all moments [63,69]. When
the (n − 2)th root is taken the fractional uncertainty then
falls with increasing n.
Good agreement is seen between the phenomenological

results and our new lattice results for n ¼ 6, 8 and 10,
although the lattice results are systematically at the upper end
of the phenomenological range. The largest discrepancy is a
2.8σ tension for the 4th moment between us and the results
of [69] for their minimal selection of datasets. The tension is
2.4σ for the standard selection, and below 2σ for the
maximal selection and for the results of [63]. The σ here
is that for the phenomenological results since the lattice
uncertainty is much smaller. Because the 4th moment
dominates the determination of acμ, this tension between
lattice QCDþ QED and some of the phenomenological
results carries over to acμ, to be discussed in the next section.
The time moments can also be used to determine a value

for m̄c by comparing to Oðα3sÞ continuum QCD perturba-
tion theory and this was the focus of [63,69]. We do not do
this here because the scale of αs is rather low in these
determinations meaning that uncertainties from missing
higher-order corrections can be substantial. We prefer
instead the method of [26], which enables a higher scale
to be used in the perturbation theory. We have checked,
however that the mc value that would be obtained from the
time moments is consistent with both [26] and the value
given in Sec. IV.

C. acμ: Pure QCD and QCD+QED results

To calculate the quark-line connected HVP contribution
to aμ from c quarks, acμ, we can either use the physical
results for the vector current-current correlator time
moments discussed in the previous subsection or we can
calculate acμ on each lattice ensemble and perform a fit as a
function of lattice spacing to extrapolate directly to the
continuum limit. We will do the latter here.
The values of acμ on each lattice are given in Table XV.

These are determined from the time moments rescaled by
the J=ψ mass on each lattice:

MJ=ψG
1=ðn−2Þ
n

Mexpt
J=ψ

: ð39Þ

As discussed in Sec. VI A rescaling by MJ=ψ reduces the
lattice spacing uncertainty and the impact of mistuning the
c-quark mass. This was used for lighter quark masses in
[71] (see also [72]). The reduced effect of mistuning is clear
from comparing the mistuned results in Table XV to those
in Table XII.
Table XValso includes results on the two ensembles, sets

3A and 3B, that allow direct comparison of the effects of

FIG. 27. Comparison of our new result to those of previous
lattice QCD calculations for the 4th and 6th time moments
(appropriately rooted) of the charmonium vector current-current
correlator. Our new result obtained here on nf ¼ 2þ 1þ 1 gluon
field configurations and including the effect of quenched QED is
given at the top (blue cross). HPQCD’s 2012 result on nf ¼ 2þ 1

gluon field configurations with HISQ valence c quarks is marked
“HPQCD HISQ 2012” [31]. JLQCD’s 2016 result using nf ¼
2þ 1 domain-wall quarks is marked “JLQCD DW 2016” for the
6th moment only. We also compare to results (open red squares)
denoted “pheno.” that are derived from experimental data for the
cross section for eþe− to hadrons as a function of center-of-mass
energy, by determining the cc̄ component. The points plotted
come from [63,69]. Open orange circles show alternative selec-
tions of datasets from [69]; the upper value is for the “maximal”
set and the lower value for the “minimal” set.
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strong-isospin breaking the sea. The ratio of the two results
is 0.99974(14), so the results agree to within 0.03% (and
2σ), consistent with these effects being negligible here (see
Sec. II D).
Table XV also gives the direct effect of quenched QED

through the ratio R0
QED½acμ�. Because the rescaled moments

have less sensitivity to the c-quark mass these numbers are
larger than 1 (unlike the results in Table XII) and reflect
more closely the final impact of QED on acμ. We observe no
finite-volume dependence for the quenched QED correc-
tions to acμ, as for the correlator time moments. This is
shown in Fig. 25.
The results from Table XV are shown in Fig. 28 along

with our standard fit of the form given in Eq. (5). The fit has
a χ2=d:o:f: of 0.44. This fit obtains the physical values

acμ ¼ 14.606ð47Þ × 10−10; QCD

acμ ¼ 14.638ð47Þ × 10−10; QCDþ QED ð40Þ

along with RQED½acμ� ¼ 1.00214ð19Þ. These results agree
well (within 1σ) with those obtained using the extrapolated
values for the moments from Table XIII and calculating acμ
in the continuum, as is seen in Fig. 28.
The error budget for our final value of acμ is given in

Table XVI. The largest uncertainties come from the
determination of the lattice spacing, although this uncer-
tainty is much reduced by our rescaling with MJ=ψ .

D. Discussion: acμ
Our new result for the pure QCD case [Eq. (40)] is

compared to earlier lattice QCD results with realistic sea
quark content in Fig. 29. Our new result (the top point on
the plot) is much more accurate than the earlier results.
With respect to the first calculation of acμ that also used
HISQ quarks [26] we have greatly reduced the previous
dominant sources of uncertainty from ZV and the deter-
mination of the lattice spacing.
With respect to results using other formalisms, we give

one figure to demonstrate the control of discretization
effects that is possible with the HISQ formalism. Figure 30
compares the approach to the continuum limit of our results
(from Table XV) with results from BMWc [74], for which
the continuum extrapolated result is shown in Fig. 29. The
points plotted from [74] are estimates of the positions read
from Fig. S4 of that reference, and do not include any

TABLE XV. Values of acμ on the ensembles of Table I and the
direct quenched QED correction on a subset of those ensembles.
Those marked with a � and † are at deliberately mistuned c
masses (see caption to Table III). The uncertainties quoted are
correlated through the value of MJ=ψ (for all ensembles, see text)
and ZV (for ensembles at a given β).

Set acμ × 109 R0
QED½acμ�

1 1.23183(78) � � �
2 1.24522(75) 1.000478(80)
3 1.25431(77) � � �
3A 1.25518(49) � � �
3B 1.25485(48) � � �
4 1.40782(91) � � �
6 1.41738(91) 1.001080(89)
6� 1.42370(91) � � �
8 1.42234(91) � � �
9 1.47866(97) � � �
10 1.48514(75) 1.001416(83)
11 1.48853(75) � � �
12 1.4725(13) 1.00141(15)
13 1.4805(13) � � �
14 1.4610(33) � � �
14† 1.4702(33) � � �
15 1.4572(10) � � �

FIG. 28. Extrapolation to the continuum physical point of the
connected charm HVP contribution to the anomalous magnetic
moment of the muon. Different symbols denote results on groups
of ensembles with similar lattice spacing. Results at deliberately
mistuned c-quark masses are not plotted but are included in the
fit. The red points correspond to pure QCD, the light blue points
to QCDþ QED and the dashed green fit curve plotted is that for
QCDþ QED. The continuum result (red cross) is compared to
the result (open black square) obtained by calculating acμ from the
individually extrapolated time moments in Sec. VI A.

TABLE XVI. Error budget for acμ from our fit to acμ values on
each ensemble.

acμ

a2 → 0 0.15
ZV 0.07
Pure QCD Statistics 0.08
QCDþ QED Statistics 0.01
w0=a 0.16
w0 0.18
Sea mistunings 0.09
Valence mistunings 0.03
Mexp

J=ψ 0.05

Total 0.32
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indication of statistical uncertainties. The BMWc stout
staggered quark action has Oða2Þ discretization errors at
tree level since it uses an unimproved derivative in its
version of the Dirac equation. Figure 30 shows that the
price to be paid for not improving the discretization is a
very large discretization effect. This is particularly evident
when working with heavier quarks such as charm, since it
means that the dominant ðΛaÞ2 effects have Λ ≈ 1 GeV, as
here. This means, for example, that the BMWc points at
finest lattice spacing (∼0.06 fm) are about as far (20%
away) from the continuum limit as our points at our
coarsest lattice spacing (∼0.15 fm). Our results at a ∼
0.06 fm are within 1% of the continuum limit, allowing us
to achieve a sub-1% uncertainty in the final value.
We find that the impact of quenched QED on the result

for acμ isþ0.214ð19Þ% [Eq. (40)]. This is a shift in acμ in the
presence of the dominant QED effect of

δacμ ¼ þ0.0313ð28Þ × 10−10: ð41Þ

We can compare this to the result obtained by ETMC in [5]
following work on the QED effect on the renormalization
of quark bilinears in [24]. The ETMC value is
þ0.0182ð36Þ × 10−10, 2.8σ smaller than ours.
The two calculations of the quenched QED effect are

different. Ours is a direct calculation of the quenched QED
effect, retuning the valence quark mass through determi-
nation of a meson mass in the usual way. The ETMC

calculation is perturbative in quenched QED and fixes the
valence quark masses so that they agree in the MS scheme
at 2 GeV in QCDþ QED and pure QCD. It is likely that it
is this difference in scheme for defining how QCD and
QCDþ QED are compared that is responsible for the
tension between the two values. Our results in Sec. IV
show that the quark mass in the MS scheme is lower in
QCDþ QED than in QCD (at scales above m̄c) when the
quark mass is tuned so thatMJ=ψ agrees with experiment in
the two cases. This leads us to expect a larger result for the
impact of quenched QED on acμ with our tuning. Once full
lattice QCDþ QED calculations are underway tuning of
the quark masses will be done through matching of meson
masses to experiment.
Figure 31 includes a comparison of our result for acμ, now

in QCDþ QED, with values obtained using the moments
determined from J=ψ and ψ 0 properties and the inclusive
cross section for eþe− → hadrons, removing contributions
from quarks other than c. The results for these moments
from [63,69] were discussed and compared to our results in
Sec. VI B. In Fig. 31 we have converted the moments into a
result for acμ for comparison. As with the moments, we see a
2.5σ tension with the [69] result using the standard
selection of datasets [acμ ¼ 14.03ð24Þ × 10−10], and a larger
tension with the minimal selection of datasets. There is
agreement within 2σ for the maximal selection of datasets
from [69] and with [63]. Our result may then provide a
pointer to the selection of Reþe− datasets for the phenom-
enological determination and/or indicate an issue with the
perturbation theory used to subtract the u=d=s contribution
to obtain RcðsÞ.
More recent determinations of the complete HVP con-

tribution to aμ using results from Reþe− are given in [53,75].
Although the c component is not separated out, the
contribution from the J=ψ resonance is given as 6.26ð19Þ ×
10−10 by [53] and 6.20ð11Þ × 10−10 by [75]. We can also

FIG. 29. Comparison of lattice QCD results (not including
QED) for the connected c quark HVP contribution to aμ, acμ.
Results are divided according to the number of sea quark flavors
included in the gluon field configurations on which the calcu-
lation was done. The first result, labeled “HPQCD HISQ 2014” is
from [26] using values of time moments determined in [31] using
HISQ valence quarks on gluon field configurations including
nf ¼ 2þ 1 flavors of asqtad sea quarks. The other results all
include nf ¼ 2þ 1þ 1 flavors of sea quarks. The result labeled
“ETMC twisted mass 2017” uses the twisted mass formalism [73]
and that labeled “BMW stout stagg. 2017” a smeared staggered
quark action [74]. Our new result [from Eq. (40)] labeled
“HPQCD HISQ” agrees with, but is much more accurate than,
these earlier results.

FIG. 30. Comparison of the discretization effects in acμ in our
results from Table XV (red open symbols) and those from the
BMW Collaboration in [74] (filled blue circles) that use a less
highly improved staggered quark action. The filled blue circles
only give estimates of the position of the BMW data points and
do not indicate the statistical uncertainties which are much
smaller than the size of the points.
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readily determine the contribution to acμ from the J=ψ
resonance alone since in that case [76]

Gn ¼ n!
f2J=ψ
Mn

J=ψ

: ð42Þ

Using our value for fJ=ψ from Eq. (29) and the exper-
imental value for MJ=ψ [1] gives

acμðJ=ψÞ ¼ 6.345ð53Þ × 10−10: ð43Þ

This is in good agreement with the results determined
above from the experimental J=ψ parameters, but more
accurate, reflecting the fact that our result for Γeþe− in
Fig. 24 agrees with experiment but has smaller uncertainty.
The J=ψ contribution provides almost half of acμ—we

conclude that it is the rest of the contribution, from the
inclusive cross section above the resonance region, that
causes the tension between our results for acμ and that from
Reþe− for some selections of experimental datasets. The
tension then amounts to 7(3)% of this nonresonant cross
section.

VII. CONCLUSIONS

We have performed the first nf ¼ 2þ 1þ 1 lattice QCD
computations of the properties of ground-state charmonium
mesons. These have been done using the HISQ action to
calculate quark-line connected two-point correlation func-
tions on gluon field configurations that include u=d quark
masses going down to the physical point. The small
discretization effects in the HISQ action and high statistics
achievable have given us good control over both the

continuum and chiral extrapolations and have enabled us
to obtain smaller uncertainties than previous lattice QCD
computations of these properties (including previous cal-
culations by HPQCD). At the same time we have improved
the tuning of the bare c-quark mass to update the value of
m̄c. From the same correlators that we use for the masses
and decay constants we have also derived an improved
result for the c quark HVP contribution to the anomalous
magnetic moment of the muon.
The precision possible for c quark correlators with the

HISQ action makes it possible to determine the impact of
the c quark’s electric charge. We do this directly and
nonperturbatively in quenched QED by multiplying an
appropriate U(1) field into our gluon field configurations.
We tune the bare c-quark mass so that the J=ψ mass agrees
with experiment in both QCDþ QED and QCD and we
calculate mass and vector renormalization constants in the
RI-SMOM scheme in both cases, performing a full analysis
as a function of μ to determine the c-quark mass in the MS
scheme.
Here we collect our final QCDþ QED results [from

Eqs. (10), (17), (29), (30), (40)] before discussing each in
turn:

MJ=ψ −Mηc ¼ 0.1203ð11Þ GeV
m̄cð3 GeVÞ ¼ 0.9841ð51Þ GeV

fJ=ψ ¼ 0.4104ð17Þ GeV
fηc ¼ 0.3981ð10Þ GeV
acμ ¼ 14.638ð47Þ × 10−10: ð44Þ

Error budgets are given in Tables V, VII, XI and XVI
respectively. Our error budgets do not include an error
for missing QED effects for sea quarks or from having
mu ¼ md in the sea. We expect the former to dominate (see
Sections II C and II D) and estimate this at 10% of the size
of the valence quark QED effects. This is then a negligible
error in every case.
The precision of our result for the charmonium hyperfine

splitting allows us to resolve, for the first time, the sign and
magnitude of the anticipated difference between the lattice
and experimental results arising from the fact that we do not
include quark-line disconnected correlation functions. We
take this difference to be the effect of the ηc decay to two
gluons which is prohibited in the lattice calculation, and
conclude that ΔMannihln

ηc ¼ þ7.3ð1.2Þ MeV.
The effect of QED on the hyperfine splitting is fairly

substantial (1.4%) and the largest effect that we observe
here. This has 3 components that all act in the same
direction: a direct effect of 0.7%, 0.1% from retuning the c-
quark mass and 0.6% from J=ψ annihilation to a photon
that we add by hand.
Our updated value of the charm quark mass (in the MS

scheme at a scale of 3 GeV) includes the effect of QED on

FIG. 31. Comparison of our lattice QCDþ QED result (blue
cross) for the connected c quark HVP contribution to aμ, acμ, with
results determined from experimental information. The red open
squares, denoted “pheno.,” use the charmonium moments from
Reþe− given in [63,69] to determine acμ. The orange open circles
give the alternative maximal (upper) and minimal (lower)
inclusive cross-section datasets from [69].
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the bare c quark mass, tuned so that MJ=ψ matches
experiment, and on the mass renormalization constant
Zm determined on the lattice using the intermediate RI-
SMOM scheme. The addition of results at a finer lattice
spacing has improved the uncertainty slightly over
HPQCD’s earlier result [46].
The impact of QED on m̄c is small since QED effects

tend to cancel between the retuning needed and changes in
Zm. At a scale of 3 GeV we see a −0.18ð2Þ% effect, falling
towards zero at a scale of m̄c.
Our result for the J=ψ decay constant is the most precise

to date and acts as a subpercent test of QCD. The gain in
precision from the 2012 HPQCD calculation of [31] is a
result of the use of a more accurate renormalization of the
vector current [16] as well as gluon field configurations
with a wider range of sea u=d quark masses and lattice
spacing values. We can use our result for fJ=ψ to determine
a value for the width for J=ψ decay to a lepton-antilepton
pair [repeating Eq. (32)]:

ΓðJ=ψ → eþe−Þ ¼ 5.637ð47Þð13Þ keV: ð45Þ

This is more accurate than the current average of exper-
imental results [1].
The impact of quenched QED on fJ=ψ is þ0.2%, since

the retuning of the c-quark mass offsets some of the direct
effect. The effect on fηc is almost the same so that the ratio
of fJ=ψ to fηc remains the same. This ratio is determined
here to be 1.0289(19), so that it is definitely greater than 1;
this was not completely clear from earlier calculations.
Our results for the time moments of the charmonium

vector current-current correlators also provide a new level
of accuracy for these quantities, improving by a factor of 10
over the first such calculations in [31]. Our results are given
in Table XIII. We see some tension for the lowest (4th)
moment with phenomenological results derived from
Rðeþe− → hadronsÞ in [69] when particular selections of
experimental datasets are made.
We use the time moments to derive the connected c

quark HVP contribution to the anomalous magnetic
moment of the muon, acμ. Although this is not a large part
of the total HVP contribution and so improving its
uncertainty has little impact on the full HVP contribution,
nevertheless it is a piece that can be calculated very
accurately in lattice QCD and provides a test case for
comparison of lattice calculations and a comparison with
phenomenology.
Our result for acμ improves the accuracy by a factor of 3

over earlier lattice QCD values [26,73,74]. Comparison of
our result for acμ to that determined from phenomenology
can be divided into contributions from narrow resonances
and from the continuum eþe− → cc̄. The contribution from
the J=ψ agrees well between our result and phenomenol-
ogy, with our result being more accurate (see Sec. VI D).
This reflects the situation described above for fJ=ψ and Γll.

The total acμ derived from the time moments determined
from experimental data on Rðeþe− → hadronsÞ when the
component from a cc̄ loop is separated out shows some
tension with our results, depending on which experimental
datasets are used above the resonance region. Our central
value is higher, tending to reduce by a small amount the
discrepancy in aμ between existing experiment and the
Standard Model. We should stress, however, that more
complete determinations of aμ, for example in [53,75], do
not separate out acμ and so we cannot make a direct
comparison to them.
We also determine the impact of quenched QED on acμ in

a scheme in which the c-quark mass is tuned from MJ=ψ in
both QCDþ QED and pure QCD. We find [repeating
Eq. (41)]

δacμ ¼ þ0.0313ð28Þ × 10−10: ð46Þ

This is a 0.2% effect and dominated by the impact of
retuning the c-quark mass.
Our result for acμ has an accuracy of 0.3%. Sub-0.5%

uncertainty is the aim for lattice QCD calculations of the
full HVP contribution to aμ. We have shown that this is
possible, for a small piece of the HVP, at least.
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APPENDIX: ZV AND Zm DETERMINATION ON
THE FINEST LATTICES

We can use the results of [16] to check the consistency of
the ZV value on set 14 that we present here and to obtain a
value on set 15. We do this by fitting the RI-SMOM results
for the local vector current in Table III of [16] to the
expected functional form. This form is based on a power
series in αs evaluated in the MS scheme at a scale of 1=a,
which is the perturbative lattice-to-MS renormalization
factor, remembering that the SMOM toMS renormalization
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factor is exactly 1 in this case. In addition we must allow for
possible discretization effects that depend on aμ. The form
we use is

Zloc
V ðSMOMÞða;μÞ¼1þ

Xi¼4;j¼3

i;j¼1

�
ciþdij

�
aμ
π

	
2j
�
αis: ðA1Þ

This is very similar to the approach adopted in Appendix B
of [77] using results for ZV from the determination of form
factors between two identical mesons at rest. As there, we
fix the αs coefficient to its known perturbative value
of −0.1164ð3Þ.
Figure 32 shows the ZV data from [16] as hexagons,

colored according to their μ value. The fit lines for 2 and
3 GeV are also shown. The fit has a χ2=d:o:f. of 0.93. We
note that the results from set 14 are included in this fit. The
results from set 14, however, also agree with the fit result

when they are not included in the fit. As discussed in
Sec. IV μ was slightly mistuned on set 14; the true values
are 2.04 and 2.98 GeV rather than 2 and 3 GeV. At this
small lattice spacing the variation in ZV with μ (which is a
discretization effect) is small enough that this small mis-
tuning can be neglected.
Note that the underlying perturbation theory of Eq. (A1)

should agree with that obtained from the fit in [77] and it
does. The discretization effects are different in the two
cases, of course. For RI-SMOM there is a momentum scale
μ which we take as 2 GeV (although it can be taken as
much smaller for ZV [16]) and this sets the size of
discretization effects as is clear from Fig. 32.
Using the fit of Eq. (A1) we may also extract ZV values

at finer lattice spacings where it may not be practical for us
to perform direct calculations due to the computational cost
of Landau gauge fixing. This includes the exafine lattices of
set 15 in Table I with a lattice spacing adjusted for sea-mass
mistuning of 0.032 fm. The value of ZV from the fit for
these lattices is 0.99296(21) at μ ¼ 2 GeV and 0.99186(18)
at 3 GeV.
Results for the mass renormalization factor from the

lattice to the RI-SMOM scheme, ZSMOM
m ðμÞ, determined on

ultrafine set 14 are given in Table XVII at μ ¼ 2 and 3 GeV.
These are calculated in the same way as that discussed
in [46].
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