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Abstract—Inflammation of the gastrointestinal (GI) tract 
accompanies several diseases, including Crohn’s disease. 
Currently, video capsule endoscopy and deep bowel 
enteroscopy are the main means for direct visualisation of 
the bowel surface. However, the use of optical imaging 
limits visualisation to the luminal surface only, which 
makes early-stage diagnosis difficult. In this study, we 
propose a learning enabled microultrasound (µUS) system 
that aims to classify inflamed and non-inflamed bowel 
tissues. µUS images of the caecum, small bowel and colon 
were obtained from mice treated with agents to induce 
inflammation. Those images were then used to train three 
deep learning networks and to provide a ground truth of 
inflammation status. The classification accuracy was 
evaluated using 10-fold evaluation and additional B-scan 
images. Our deep learning approach allowed robust 
differentiation between healthy tissue and tissue with early 
signs of inflammation that is not detectable by current 
endoscopic methods or by human inspection of the µUS 
images. The methods may be a foundation for future early 
GI disease diagnosis and enhanced management with 
computer-aided imaging.  

 
Index Terms— Ultrasound, Gastrointestinal tract, Neural 

Network, Computer-aided detection and diagnosis 
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I. INTRODUCTION 

ROHN’S disease (CD) is a form of the Inflammatory 

Bowel Disease (IBD) group which includes ulcerative 

colitis (UC). The disease may affect any part of the 

gastrointestinal (GI) tract from mouth to anus, but most 

commonly manifests in the terminal ileum of the small bowel 

[1]. Disease pathogenesis is incompletely understood but is 

considered to be multifactorial and involve environment (e.g. 

diet and lifestyle), resident bowel microbes and genetics [2]. It 

is a chronic and progressive incurable disease marked by 

intermittent periods of quiescence (i.e. remission) and relapse 

(i.e. flare). During periods of relapse, an acute inflammatory 

response is superimposed upon a chronic inflammatory state. 

The acute inflammatory process is characterised by a rapid 

accumulation of immune cells, including neutrophils and 

monocytes, in the subsurface effector sites such as the mucosa 

of the bowel wall (Fig. 1).  

Clinicians apply several methods to image the bowel wall to 

aid disease management.  These include external methods such 

as MRI, CT, ultrasound (US) and internal endoscopic methods 

to assess disease activity and treatment response. Pill-sized 

ingestible capsule endoscopes (CE) can transit the entire GI 

tract and directly visualise the luminal surface. However, 

capsule endoscopy cameras are limited to imaging the luminal 

surface and US endoscopy is limited in its reach to the upper GI 

tract. Although an operator can obtain tissue samples (i.e. 

biopsy), the reach of even a standard endoscope is limited by 

insertion tube length [3]. This means remote areas are 

accessible only with deep bowel enteroscopy, providing only 

visual information, and cannot be assessed routinely.  

 
Fig.1.  Histological organisation of the bowel wall. Principal layers 
(i.e. superficial Mucosa, Submucosa, Muscularis Propria, deep 
Serosa) are indicated in bold. The lamina propria (*), a sublayer of 
the mucosa, is the site of immune cell activity during inflammation. 

 

 

 

 

A Learning Based Microultrasound System for the Detection of 
Inflammation of the Gastrointestinal Tract  

Shufan Yang, Christina Lemke, Benjamin F. Cox, Ian P. Newton, Inke Näthke and Sandy 
Cochran  

C 

mailto:christina.lemke@glasgow.ac.uk
mailto:i.z.newton@dundee.ac.uk


S.Yang et. al: A Learning Based Microultrasound System for the Detection of Inflammation of the Gastrointestinal Tract                                                                        2 

 

US images are generated by US reflecting (i.e. echoing) from 

structures within the tissue. Echogenic sources include the 

interfaces between tissue subtypes and internal layer 

compositions comprising cells and structural proteins [4]. The 

standard clinical frequency range is approximately 4 - 12 MHz, 

providing axial resolution in the range up to 195 µm in tissue. 

Hence, standard US can detect and display the four principal 

layers of tissue in the gut: superficial mucosa, submucosa, 

muscularis propria, deep serosa.  

Microultrasound (US) is a term applied to ultrasound at 

frequencies above 30 MHz: the shorter pulse length leads to 

improved axial resolution, improving from 195 µm to 75 µm, 

which can be more sensitive to changes in spatial distribution 

of cells in a given specimen. Further information can be 

gathered with µUS implementing a higher range of frequencies, 

to detect additional ultrasonic layers [5]. Two independent 

groups have suggested that µUS has the potential to detect 

pathological changes in the bowel wall [6][7].  

The inflammatory process, including the accumulation of 

immune cells, disrupts the normal architecture and composition 

of the bowel wall and, in turn, may be expected to alter the 

ultrasonic properties and imaging of the tissue. However, this 

approach will generate large volumes of data that will require 

review and interpretation. To help reduce the review time, a 

means of computer-aided diagnosis (CADx) will be necessary. 

In this work, we propose a learning-enabled computer-aided 

system to classify inflammation of the murine GI tract using 

µUS imaging methods. 

Several attempts to use machine learning and deep learning 

for US-based disease diagnosis and characterisation have been 

reported [8]. For instance, super-resolution in US localisation 

microscopy and beamforming uses deep learning techniques for 

the removal of artefacts in element-wise  complex in-phase and 

quadrature data [9]. Computer-aided US diagnosis methods for 

breast cancer imaging have been researched, incorporating 

features relating to shape, margin, orientation, echo patterns and 

acoustic shadowing [10]. A more recent development has been 

reported to use deep learning techniques for extracting 

nonlinear features from US images at   frame-level and video-

level using convex and linear probes with central frequency 

below 5 MHz [11]. Although this study demonstrated the 

feasibility of using deep learning to enable the characterisation 

of the state of high permeability and advanced disease, the 

issues of how to incorporate deep learning techniques into the 

US imaging chain from data acquisition to post image 

processing was ignored. Furthermore, the use of deep learning 

methods to find unique US features has not been fully explored 

in detail. 

Taking advantage of recent developments in deep learning, 

we developed a learning-based system for US scans to 

distinguish inflamed and non-inflamed tissues in the murine GI 

tract, as a model for human disease. The potential for faster 

diagnoses at an earlier stage of disease and the classification of 

IBD in the GI tract is illustrated in this paper.  

(1) We created a workflow to generate training and 

evaluation datasets from a limited number of µUS images.  

(2) We introduced a simple and efficient approach of training 

with colored US images instead of traditional grey-scale images.  

(3) We addressed the importance of using factorised 

inception blocks  for µUS scans [12].  

(4) Convolutional neural networks (CNNs) tend to overfit; in 

another words, those networks rarely generalise well from 

training data to unseen data [13]. We developed training 

strategies to demonstrate successful transfer learning for US 

scans in ex vivo tissues. 

(5) We showed that the features learned by the deep learning 

network perform well to identify the discriminative image 

regions used for US image categorisation.   

(6) Finally, we evaluated three deep learning networks for 

studying GI IBD and identified the most suitable deep learning 

architectures and dataset characteristics for improved 

diagnostic accuracy in the classification of US images.   

II. METHOD 

A. Inflammation Study Data 

A mouse model of bowel inflammation was used to study the 

feasibility of machine learning in conjunction with µUS. Bowel 

inflammation was induced in mice using dextran sodium 

sulphate (DSS) [19]. Following inflammation, bowel tissue was 

scanned ex vivo. Ground truths, such as confirmation of 

inflammation and severity grading, were established with 

histology. Wild-type C57BL/6 mice were used for all stages of 

acute inflammation except for Stage 2B, although for Stage 2B 

(see below), two female mice heterozygous for mutation in the 

adenomatous polyposis coli gene (ApcMin/+) were included.  

The ages of the mice were in the range 67 - 88 days with a 

median age of 74.3 days, and animals were grouped by sex in 

each experimental stage (Table I).  

The mice were housed in the University of Dundee 

Wellcome Building Resource Unit (WBRU) and maintained in 

accordance with Home Office (UK) guidelines for the care and 

use of laboratory animals. This study was conducted under a 

Home Office (UK) Procedure Project Licence: P3800598E, in 

accordance with the Animal (Scientific Procedures) Act 1986. 

Humane endpoints were predefined in cooperation with the 

Named Veterinary Surgeon (NVS), along with means to assess 

status.  All mice underwent daily observations which included 

health assessment, weigh-in and faecal examination 

The experimental endpoint was to determine if µUS could 

detect visually obvious inflammation. The study was divided 

into three stages based on primary endpoints. Stages included 

1A/B, 2/B and 3. Stages 1A and 1B were pilot studies designed 

to induce overt signs and symptoms of GI inflammation. Stages 

2 and 2B were designed to deduce the lowest grade of 

inflammation detectable by µUS. Stage 3, a blinded randomised 

control trial (RCT), was also designed to deduce the lowest 

grade of inflammation detectable by µUS. By conducting the 

experiment as a blinded RCT, potential sources of bias when 

interpreting the results were controlled for. 

Stage 1A (N = 4) was an all-male group and stage 1B (N = 4) 

was an all-female group. It was necessary to conduct two 

experiments to control for different responses by sex [15]. Each 

stage began on Day 0 with introduction of DSS. Mice were 

either dosed for 7 days (Day 6) or culled when a humane 

endpoint had been reached. Stages 2 (N = 12) and 2B (N = 7) 

were evenly divided between sexes. As the aim of Stage 2 was 

to determine the lowest grade of inflammation detectable by 

µUS, one mouse of each sex was culled daily. Stage 3 (N = 16) 

mice were randomly assigned to either a control or treatment 
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group. The treatment group was further assigned to length of 

treatment randomly. This was done by the lab’s Scientific 

Officer using a list randomiser [16]. 

Animals were culled by cervical dislocation and 

confirmation of death was by exsanguination by femoral 

incision. Post-mortem dissection of the distal small bowel, 

caecum and colon was performed after confirmation of death. 

This was followed by preparation of each anatomical section 

for scanning by cleaning and transecting along the long axis of 

the bowel to allow exposure of the mucosa to the µUS probe. 

Tissue was cleaned and mounted for scanning (See Section 2B). 

 

After scanning, the tissue was fixed in 4% Paraformaldehyde 

(PFA) then stained with Haematoxylin and Eosin (H&E) and 

slide mounted. Stage 3 tissue slides were randomised and coded 

by the lab’s scientific officer [17]. Slides were then batch 

scanned and digitised by the Tayside Tissue Bank (Dundee, UK) 

on  a digital pathology slide scanner (Aperio Scanscope XT, 

Leica, Germany) at 40x or by the TMA (tissue microarray) and 

Image Analysis Unit at the University of Glasgow (Glasgow, 

UK) on a NanoZoomer NDP (Hamamatsu, Japan) at 40x. 

Tissue was assessed and  graded for severity of changes in 

morphology, and presence of inflammatory cells using QPath 

[18].  

An ordinal grading scheme was used to assess bowel 

inflammation. H&E stained tissue was assessed for 

histomorphologic alterations, which included white blood cell 

infiltration and mucosal alterations. This experiment focused on 

acute inflammation, where white blood cells are predominately 

neutrophils and monocytes. The table in the top part of Fig. 2 

summarises the inflammatory grading scheme based on the 

aforementioned criteria, adapted from Elsheikh et al. and Erben 

et al. [19][20], respectively. 

 As shown in Fig. 2, Grade 0 corresponded to lack of signs 

of inflammatory cell infiltration and the presence of a 

continuous, intact epithelium. Grade 1 corresponded to cases 

with signs of mucosal inflammatory cell infiltration (red arrows) 

but no mucosal disruption. Grade 2 corresponded to cases with 

infiltration at the mucosa and submucosa (green arrows) and 

focal epithelial disruption (blue arrow). Grade 3 corresponded 

to cases such as the one shown, with transmural inflammation 

and infiltration at all histologic levels and confluent disruption 

of the epithelium.  

B. Microultrasound Scanning System Setup 

Microultrasound scanning was performed with focused, 

single-element, high frequency transducers using a bespoke 

mechanical scanning system (Fig. 3a) [21]. Scanning was 

controlled via a graphical user interface (GUI) based on a 

LabVIEW program (National Instruments, Austin, TX, USA). 

US was generated and echoes were received by a remote pulser-

receiver unit (DPR500, JSR Ultrasonics, NY, USA), buffered, 

AC/DC-converted and sampled with a NI PCI-e Express Card 

in a PXIe-1071 chassis (National Instruments, Austin, Texas, 

USA).  

Ex-vivo tissue was mounted and secured using a bespoke 

Lego clamp (Fig. 3b). The clamp rested on an acoustic absorber 

(Aptflex F28, Precision Acoustics, UK) which mitigated stray 

echoes and acted as a pinning board. The scaffold and absorber 

were placed in a plastic container that was either back-filled 

with 1% (w/v) agar to the top level of the struts (Stages 1A, 1B 

2) or omitted (Stages 2B and 3). For Stage 2, a 3 mm space 

between the tissue and agar was maintained with acoustic gel to 

prevent the tissue from contacting the agar and giving a separate 

acoustic signal from each of them. Tissue was arranged with the 

mucosa from the small bowel (SB), Caecum (Cae) and Colon 

(Co) positioned towards the transducer. In addition to anchoring 

the tissue, the clamps also reduced excessive post-mortem 

tissue curling. To ensure consistent and identifiable tissue 

orientation during optical imaging and µUS scanning, visual 

markers were used to indicate the correct surface and proximal 

tissue portion. The scanning tray was placed in a second, 

slightly larger container and filled with Krebs Henseleit 

solution titrated to pH 7.4. The solution acted as nutrient fluid 

to maintain tissue viability and coupling fluid for the µUS. 

Two focused single element μUS transducers were used: a 

37.5 MHz transducer made with a composite comprising lead 

zirconate titanate (PZT) and polymer and a 62 MHz lithium 

niobate (LNO) transducer. The amplitude scan (A-scan) data 

measured at each point were averaged 32 times per scan point. 

The scan parameters were: travel distance in x-direction (X 

mm); travel speed in x-direction (X mm/s); travel distance in y-

direction (Y mm); travel step size in y-direction (Y mm/step); 

sampling frequency (800 MHz);  and number of samples per A-

scan (8000). 

Stages 1A and 1B had visible haemorrhagic lesions. Stages 

2B and 3 lacked visual clues as inflammation was visually 

occult and prevented targeted scanning.  This necessitated a 

comprehensive scan of all tissue contained in the Lego clamp.   

Scan parameters were set to 32 mm x 18 mm, X and Y 

directions, respectively.   This overlapped the 30 mm x 15 mm 

window between struts to include a Lego signal on all 4 sides. 

This was done to include reflections from the Lego as fiducial 

markers, ensure full tissue coverage, and reduce errors due to 

imprecise scanner motor movements. The X direction speed 

was set to 0.2 mm/s and the Y direction step size was set to 0.2 

Fig. 2.  Inflammation severity using histology information. The top 
table shows mouse demographics for acute inflammation studies 
of immune cell activity during inflammation. Key: WBC-White 
blood cells. 
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mm/step. These parameters ensured complete tissue coverage 

in a reasonable overall time of ≈ 4 hours for each scan. 

 

C. B-Scan Generation  

More than one tissue sample was present in most scans in the 

experimental US data measurement platform we used (Fig. 3(a)) 

to collect US data, corresponding to the example with three 

tissue samples shown in Fig. 3(b). In this study, we developed 

a workflow (Fig. 4) to generate B-scan images from the raw 

ultrasound data captured by the µUS scanning system. Thus, 

some of the original raw data per tissue sample were extracted, 

with boundaries defined after visually inspecting each original 

scan, in order to create B-scan images containing data from only 

one single tissue sample. Subsequently, bandpass filtering and 

image segmentation were applied and each image was log-

compressed and normalized. Bandpass filtering was achieved 

through a combination of low-pass and high-pass Butterworth 

filters defined by the parameters shown in Table II. 

 

Segmentation allowed separation of the tissue echoes from 

other image content such as bubbles and the agar layer [21]. We 

created log-compressed, normalized B-scan images with a 

dynamic range of 40 dB first and applied an adaptive threshold 

approach. Then a binary image was constructed from the 

filtered B-scan, where pixel values were set to either 1 or 0, 

depending on whether their logarithmic intensity level were 

above or below a set threshold respectively. The threshold was 

adaptively determined for each B-scan by modelling the 

histogram of the intensity levels as a combination of two 

Gaussian distributions: 

 

                                                                                                     (1) 

 
where a1, a2 are the amplitudes, μ1, μ2 are the means, and σ1, σ2 

are the scaling parameters. The threshold τ was calculated from 

the b and σ values of the distribution with the highest amplitude, 

which represents the noise floor values of the B-scan: 

  𝜏 = 𝜇𝑛 + 2 ∙ 𝜎𝑛 , 𝑛 = {
1, 𝑎1 > 𝑎2

2, 𝑎1 ≤ 𝑎2
 (2) 

Through a combination of closing and filling operations, the 

binary image was cleaned and unconnected pixels were 

eliminated. The largest continuous cohort of pixels was selected 

and applied to the filtered B-scan data as a binary mask to 

separate tissue values from background and the noise floor. 

Finally, each image was log-compressed and normalized. 

Export of the processed images to 300 dpi tif-files was achieved 

using the “export_fig” function package [22] in MATLAB (The 

TABLE I 
MOUSE DEMOGRAPHICS FOR ACUTE INFLAMMATION STUDIES 

Stage 
Treatment 

Regimen 
Number Sex Genotype 

Weight Day 

0 

Transducer 
Centre 

Frequency 

No. of Images 
Deep 

Learning  

1A 5% DSS 

max. 7 days 

 4 Treated 

 1 Control 

5 Male 

 

WT C57BL/6 24.2-25.2g 37.5 MHz 470 Training 

1B 5% DSS 

max. 7 days 

 4 Treated 

 3 Control 

7 Female WT C57BL/6 19.6-21.6g 37.5 MHz 614 Training 

2 5% DSS 
max. 5 days 

 10 Treated 
 2 Control 

6 Female 
6 Male 

WT C57BL/6 
 

18.4-24.3g 37.5 MHz 2087 Training 

2B 5% DSS 

max. 5 days 

 6 Treated 

 1 Control 

3 Female 

4 Male 

5x WT C57BL/6 

2x ApcMin/+  

18.4-26.3g 62 MHz 699 Unseen 

Testset 

3 5% DSS 

max. 5 days 

 11 Treated 

 5 Control 

11 Female 

5 Male 

WT C57BL/6 

 

18.1-24.8g 37.5 MHz 1092 Unseen 

Testset 

 
Key: DSS - Dextran Sodium Sulphate, WT - Wild Type, ApcMin/+ - adenomatous polyposis coli (heterozygous) 

 

(a) 
 

 
(b) 

 
Fig. 3.  Scanning Setup: (a). Schematic overview of the mechanical 
scanning system used to capture micro-ultrasound data. (b) Example 
of a tissue sample scanning tray embedded in agar with sample of 
small bowel (SB), Caecum (Cae) and Colon (Co) of a single mouse. 

TABLE II 
LOW-PASS AND HIGH-PASS FILTER COMBINATION PARAMETERS 

Parameter Low-pass Filter High-Pass Filter 

Passband frequency 55 MHz 15 MHz 
Stopband frequency 105 MHz 1 MHz 

Attenuation 60 dB 60 dB 
Ripple 3 dB 3 dB 

𝑔(𝑥) = 𝑎1𝑒
−(

𝑥−𝜇1
𝜎1

)
2

+ 𝑎2𝑒
−(

𝑥−𝜇2
𝜎2

)
2
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Mathworks, Cambridge, UK). 

  

 
(a) 

 
(b) 

Fig. 5.  Normalized B-scan images showing a caecum tissue 
sample from a female mouse, 69 days old, weight 19.8 g: a) 
original data after ROI selection: depth 2 mm to 8 mm, x-axis: 9 
mm to 23 mm; b) post-processing scans after adaptive filter the  in 
RGB format with signal strength. Red represents maximum signal 
intensity, normalized to 0 dB. In b), the dark blue colour in the 
background no longer contains any ultrasonic data. 

D. Pre-processing B-Scan Images for Deep Learning 
Networks 

Following the methods outlined above, the original B-scan 

was processed to remove noise and present clear echoes from 

the tissue (Fig. 5(b)). In order to increase the number of training 

samples, adaptive filtering was applied to divide the B-scan into 

four patches. However, the B-scan cannot simply be cut into 

small patches, as edge information used to detect the thickness 

of the tissue would be lost. Instead, the following method was 

applied to generate patches so that they provided maximal echo 

information and minimal background information. A linear 

shift-invariant filter was also used to achieve corresponding 

noise resistance with 2nd order of statistics of all the B-scan 

images [23]. The observed tissue echo signal, ß, was modelled 

at position i, j, z in a block of dimensions X * Y * Z by the sum 

of the ideal echo signals, γ, and a noise term, æ: 

 

  ß (i, j, z) =  γ(i, j, z) +  æ (i, j, z) (3) 

where the ß, γ, æ are vectors.  
 
The vector pixel set ß can be written as a scalar product using 

a filter coefficient vector η [25]. Eq. (4) provides the actual filter 

output, η̂. 

 
  η̂=xT ß  (4) 

where x is the filter coefficient vector. Finally, 

 

  ß̂= xT γ+ xT æ  (5) 

Eq. 5 shows the shift-invariant system to produce output ß̂, 

which has the desired minimum background information. 

Finally the output scan ß̂ divided into four patches (with size of 

48 × 48 pixels for each patch).  

E. Deep Learning Networks 

In this study our learning-based system is constructed as a 

combination of computational modules from deep learning 

networks. This type of network has stacked modules, such as a 

convolutional layer, pooling layer, and a fully connected layer, 

one on top of the other. Fig. 6(a) shows the basic architecture 

of three different deep learning networks, including 

convolution, pooling and fully connected layers, which are all 

followed by the softmax layer for classification. Those stacked 

layers perform abstraction on representations of training data, 

in which higher level abstract features are defined by combining 

them with lower level features. 

In this work, InceptionV3[28], InceptionResnetV2 [32][28] 

and NASnet(mobile) [30] were modified to evaluate their 

applicability to the inflammation study. A simplified 

illustration of the architectures is shown in Fig. 6(a). All three 

networks share the same feedforward convolution layout, 

except that the InceptionResnetV2 framework uses residual 

mapping and the Inception blocks are used in both InceptionV3 

and InceptionResnetV2 networks (Fig. 6(b) - (c)). NASnet 

(mobile) network uses its own architectural building blocks 

(Fig. 6(d)). InceptionResnetV2 uses slightly different blocks 

and includes a feedback channel; NASnet(mobile) and 

InceptionV3 do not have this type of internal feedback channel 

in their networks. The parameters of the trained InceptionV3, 

InceptionResnetV2 and NASnet(mobile) models are 21M, 54M 

and 4M, respectively. The large size of the networks will create 

problems of implementation into a portable platform. It is 

therefore interesting to investigate which size of network can 

provide optimal performance whilst remaining relatively small.  

III. RESULTS 

A. Evaluations on Training set 

At the neural network training stage, we used two types of 

Fig. 4.  Flow diagram of B-scan image reconstruction, including bandpass filtering (by a combination of low- and high pass filters) , 
segmentation and log compression for display purposes. Not shown: exporting images with a resolution of 300 dpi for further processing. 
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labelled B-scans: non-inflamed and inflamed. Fig. 7 (a) - (b) 

shows one B-scan each, collected using our US system with 

the ground-truth label based on histological examination. A 

series of scans (Fig. 7 (d)) were grouped into mini-batch size of 

32 for training. 

 We split our dataset into training and test sets from the five 

experimental stages (Table I). In total 3,171 scans from Stage 

1A, 1B and 2 form the training set, including 1,270 scans 

without inflammation and 1,901 scans with inflammation.  

 
Fig. 7. (a) Input image training samples for non-inflamed class and(b) 
inflamed class. (c)The step size of grid. (d) the training batch (for 
demonstration purpose). 

 

A further 1,791 scans (699 from Stage 2B and 1,092 from 

Stage 3) were used as an ‘unseen’ test set (categorised based on 

histological observations) to evaluate our models. A plot 

showing the distribution of the scores of inflammation grade for 

each experimental stage is given in Fig. 8. The inflammation 

severity is labelled using a histology grading method (Table in 

Fig. 2).  In practice, Grade 1 inflammation was difficult to 

distinguish from healthy tissue since only white blood cell  

infiltration appears in the mucosa; therefore, for our study, 

Grades 0 and 1 of inflammation were classified as non-inflamed, 

whereas Grade 2 and Grade 3 were classified as inflamed. By 

mixing scans in each experimental stage, we formed a relatively 

balanced dataset. 

Data augmentation [30] was introduced to facilitate training 

of the neural network. We used random image shifts vertically 

and random channel shifts as our data augmentation methods. 

Other data augmentations including rotation, horizontally shift 

and flip were not applied, because these can potentially change 

the pattern of power intensity from received echoes in the 

images.  

 

  
Fig. 8.  Distribution of post-processed B-scans with inflammation 
severity for each experimental stage  

Although transfer learning has been used since 2015, the 

main difference between this study and others [31] is that we 

used more aggressive extraction of various filter sizes. At the 

training stage, the stochastic gradient descent optimizer was 

employed to train the network on one Nvidia GTX1080 card. 

The learning rates were set at 0.1, 0.01,0.001 and 0.00005 at 

epochs 80, 120, 160 and 180. The categorical cross-entropy was 

used in the training. The code was developed using Keras 

application interface with TensorFlow as backend. (source code 

can be accessed from the link: 

https://github.com/WOLVS/Ultrasound_Inflammation_IEE

E_TME).  

We conducted two experiments to evaluate the classification 

performance of the networks. In the first experiment, we used 

patches that were generated using the pre-processing method 

(see details in Section II). In the second experiment, we used 

the same patches with subtracted dark blue backgrounds as 

those backgrounds do not contain any echo information. 

Training curves from the first experiment for 200 epochs and 

400 epochs are shown in Figs. 9 - 11. In those figures, the blue 

lines indicate the training results and the orange lines indicate 

validation results. The average training accuracies of 

InceptionV3, InceptionResnetV2 and NASnet(mobile) were 

78%, 79% and 76%, respectively. For 400 epochs of training, 

the training losses in all three networks decreased to values near 

the evaluation losses, which means that all networks finally 

converged (Figs. 9 – 11). The training loss significantly 

decreased as the number of training epochs increased, while the 

validation loss notably decreased. The validation accuracy 

reached a plateau rapidly, with the exception of the 

NASnet(mobile) network where the training loss significantly 

decreased but reached another peak, then settled into a plateau 

in the epoch range 350 - 400 (Fig. 11(b)). The training stage 

Fig. 6.  Architecture of a deep learning framework (a) general architecture of a deep learning network, (b) a basic block used in InceptionV3 
[27], (c) a basic block used in InceptionResnetV2 [28] , (d) a basic block used in NASnet(mobile) network [29]. 
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around epochs 25, 50 and 75 show repetitive behaviour since 

the input training data have a high degree of similarity.   The 

motor moves at 0.2 mm/step in the y direction. With such small 

steps, the similarity of those multiple scans was high due to  tiny 

hypoechoic targets changing in tissue samples.   
In the first experiment, the training images included blue 

background information (Fig. 7). It is highly likely that neural 

networks used background information as a part of image 

features during the neural network learning processes. To make 

sure the network “learned” information solely from echoes 

from tissue, the second experiment of training was conducted 

using B-scan images without the blue background. In this way, 

each B-scan represents only the tissue itself. After retraining the 

networks using this type of image, the training loss significantly 

decreased as the number of training epochs increased, while the 

validation loss notably increased, and the validation accuracy 

did not improve much (Figs. 12 - 14), which allowed the 

network to reach the convergence stage at around 100 epochs.  

Importantly, InceptionV3 and InceptionResnetV2 showed 

better and more consistent performance in terms of training loss, 

validation loss and validation accuracy than NASnet(mobile). 

The average classification accuracies for InceptionV3, 

InceptionResnetV2 and NASnet(mobile) were 85%, 83% and 

76% respectively. With careful selection of less similar images 

or “rigorous reshuffling” it may be possible to remove those 

fluctuations in the training curves. However, to keep the 

original experimental results, we chose to use those figures to 

present the real data features. 

 

     
Fig. 9.  Training result of InceptionV3 network using input images with background information. The blue line is for training set and the orange line 
is the validation set.  (a) shows the results in the range of 200 epochs. (b) shows the results in the range of 400 epochs. 

 

     
Fig. 10.  Training result of InceptionResnetV2 network using input images with background information. The blue line is for training set and the 
orange line is the validation set. (a) shows the results in the range of 200 epochs. (b) shows the results in the range of 400 epochs. 

 

     
Fig. 11.  Training result of NASnet(mobile) network using input images with background information. The blue line is for training set and the orange 
line is the validation set. a) shows the results in the range of 200 epochs. (b) shows the results in the range of 400 epochs. 
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 Fig. 15 shows average confusion matrices in a 10-fold cross 

validation using the weights trained from the second 

experiments. All the experiments were trained using the same 

hyper-parameters and implementation. Results from 

InceptionV3 show that the aggregation was more balanced than 

for the other two networks.  The average accuracy of Inception 

V3 was 90%. The average accuracies of InceptionResNetV2 

and NASnet(mobile) were 88% and 81% respectively. The 

higher average accuracy than training accuracy is attribute to 

the 10 fold calculation. 

We suspect that the InceptionV3 and InceptionResNetV2 

networks responded well to the white blood cell infiltration, a 

typical histomorphological feature of inflammation. Thanks to 

the inclusion of inception blocks in both networks, the network 

weights can be reformulated to learn the desired unknown 

mapping between inputs and ground-truth. 

 

 

B. Evaluation on Test set 

After the neural networks were trained using the training set 

from the second experiment, we used 1,791 unseen scans for 

evaluation, including Stage 2B and Stage 3 scans. Notably, the 

699 scans from Stage 2B were collected with the higher 

frequency transducer than the training data (62 MHz versus 

37.5 MHz) producing higher axial resolution. All Stage 2B 

samples were predicted correctly as the inflamed class.  Stage 3 

scans (Table I) were produced with a transducer of centre 

frequency 37.5 MHz and the evaluation results are reported in 

Fig. 16. 

The area-under-the-ROC-curve (AUC) and true positive rate 

(TPR, recall or sensitivity) and false negative rates (FN) are 

traditionally used as performance metrics. The traditional ROC 

(Receiver Operating Characteristic) curve provides a single 

quantitative index of network prediction accuracy with the 

assumption that the underlying distributions for normal and 

inflamed groups are Gaussian distributed. In real -life data this 

 
Fig. 12.  InceptionV3 network training without blue background 
information 

 

 
Fig. 13.  InceptionResnetV2 neural network training without blue 
background information  

 

 
Fig. 14.  NASnet(mobile) network training without blue background 
information 

Fig. 15.  Normalised Confusion matrices   

Fig. 16.  ROC curves averaged for inflammation using deep learning networks. (a) ROC results from prediction generated from 
InceptionV3.(b) ROC results from predictions generated from InceptionResnetV2. (c) ROC results from prediction generated from NASnet 
(mobile). 
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assumption is not always true. In this study we used a 

permutation test (10,000 permutations) with a 95% confidence 

interval and P-value to access statistical significance, by 

randomly reallocating all of the scans into two groups and re-

computing the AUC and coefficient of determination. The 95th 

percentile points of the empirical distributions were used as 

critical values to estimate P values (0.05) [33] [34].  

Fig. 16 shows that the ROC results are strongly significant 

for InceptionV3 and InceptionResnetV2, appearing to 

corroborate the findings of the validation processes with ROC-

AUC 0.8831 and 0.8631.  The red line is the ROC curve that 

was calculated using iterative numerical methods from the 

determination coefficient derived from the logistic regression 

analysis.  The ROC analysis did not yield a significant result for 

the NASnet(mobile) method due to bigger P values (3.24).  
All our deep learning models achieved notably good ROC-

AUC results. InceptionV3 consistently outperformed 

InceptionResnetV2, though by small margins (0.02). 

NASnet(mobile) performed poorly and was susceptible to over-

fitting; we did not have enough data to train this network due to 

its high complexity and 771-layer depth. Encouragingly, the 

Inception blocks deployed in both the InceptionV3 and 

InceptionResnetV2 network demonstrated their suitability for 

classification when trained on thousands of medical images.  

C. Discriminative Features for Inflamed Tissues 

Although deep learning models are far from being able to 

reproduce the full chain of reasoning required for medical 

interpretation, deep learning networks can learn from higher, 

middle to lower level abstract features from inputs, providing a 

means to differentiate many more features in images. 

 
Fig. 17.  Visualisation of learned weight of neural networks for 
inferencing on B-scan images for inflamed tissue. (a) visualisation of 
first layer convolution filters of NASnet(mobile) network. (b) middle 
activation layer of NASnet(mobile); (c) lower middle activation layer 
NASnet(mobile); (d) final layer of InceptionV3. (e) visualisation of first 
layer convolution filters of InceptionV3 network; (f) middle activation 
layer of InceptionV3; (g) lower middle activation layer of InceptionV3; 
(h)the last activation layer before average pooling layer of 
InceptionV3. 
 

 

 To understand how a deep learning network can improve the 

classification of bowl tissue scans, the first layer convolution 

filters from two deep learning networks are visualized in Fig. 17. 

Due to the memory limitations of our computer, we only used 

InceptionV3 and NASnet(mobile) to demonstrate the 

visualisation of neural network weights. We expect 

InceptionResnetV2 will show very similar results to those from 

InceptionV3 since they both share very similar architectural 

structures. We noticed that the visualisation of weights from 

InceptionV3 (Fig. 17(e) – (h)) showed a clearer pattern of 

recognition than NASnet(mobile) (Fig. 17(a)- (b)). Many 

higher orders of contrast were evident that the learning in the 

neural networks gradually processed into two classes. We 

believe the greater layer depth that provided the pattern 

significantly to activate a certain feature may respond to higher 

excitation of strong echo intensity in the inflamed tissues. 

According to [35], by modifying the global average pooling 

layer with class activation mapping, we believe the 

visualisation of activation could potentially present white blood 

cells infiltration in US scans, although this needs further 

experiments to confirm.  

IV. DISCUSSION & CONCLUSION 

 

The main goal of this work was to investigate the effects of 

two factors, CNN architectures and dataset characteristics, on 

performance in a domain-specific medical image analysis 

problem. The proposed deep learning training method was 

effective and efficient for the automatic classification of US 

B-scans with inflamed and non-inflamed tissue. The 

investigated networks (InceptionV3, InceptionResnetV2 and 

NASnet(mobile)) demonstrated applicability and a powerful 

classification capacity. Removal of the blue background 

information, representing anechogenic regions, led to faster 

convergence.   

A. Training on US Images of ex vivo Tissues 

We believe that the difference in the US signals produced by 

inflamed and non-inflamed tissue was caused by the immune 

response and corresponding influx of white blood cells, but 

further work is required to confirm this.  

Deep learning networks, especially those including inception 

blocks, are suitable for the classification of inflamed tissue with 

a minimum 85% training accuracy and 83% evaluation accuracy. 

Findings based on these measurements could ultimately lead to 

the integration of deep learning in US CADx. To advance our 

understanding of how networks complete feature abstraction, 

future investigations will be required using tissue exhibiting more 

subtly different grades of inflammation, confirmed by 

histological data. 

B.  Limitation of Dataset 

In this work, data collection processes were extended 

because of the use of single element transducers. The variety of 

inflammation severity in the test dataset was limited. The test 

dataset (Stages 2B and 3) has a high percentage of inflamed 

tissue scans which makes it susceptible to bias. Also, the 

similarity of scans results in fluctuation, even with the shuffling 

of the validation dataset.   

C. Possible Applications 

High resolution µUS imaging has the potential to substitute the 

need for physical biopsy and with virtual biopsy, providing 

highly detailed subsurface information along the entire length of 

the bowel, including anatomically remote regions of the small 

bowel [36].  However, realizing this goal would result in 
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enormous numbers of data requiring physician review. Our 

ultimate objective is thus to deliver clinically relevant tools 

using deep learning methods. Those tools may then be used 

effectively to monitor treatment response, reducing workload and 

importantly, identifying pathologies that would otherwise be 

missed during the processes of diagnosis and management of GI 

tract disorders[37][38].  
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