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Abstract

In recent years, in many application fields, extracting information from data in

the form of functions is of most interest rather than investigating traditional

multivariate vectors. Often these functions have complex spatial dependences

that need to be accountied for using appropriate statistical analysis. Spatial

Functional Statistics presents a fruitful analytics framework for this analysis.

The definition of a distance measure between spatially dependent functional

data is critical for many functional data analysis tasks such as clustering and

classification. For this reason, and based on the specific characteristics of func-

tional data, several distance measures have been proposed in the last few years.

In this work we develop a weighted L2 distance for spatially dependent func-

tional data, with an optimized weight function. Assuming a penalized basis

representation for the functional data, we consider weight functions depending

also on the spatial location in two different situations: a classical georeferenced

spatial structure and a connected network one. The performance of the pro-

posed distances are compared using standard metrics applied to both real and

simulated data analysis.

Keywords: spatially dependent functional data, distance, clustering, spatial

dependence
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1. Introduction

Frequently in many applied contexts, data are curves available at points in

space, and in those cases a challenge is to develop useful multivariate approaches

that allow us to pool together information from curves at all locations. Let’s

think, for example, to the problem of monitoring similarities in temporal pat-5

terns of water quality parameters by considering the spatial correlation across

networks, this can provide information to feed into future monitoring strategies

[9] or to the case in which the aim is to investigate similarities in water profiles

like salinity by considering the spatial component [24]. The notion of proximity

is one of the most important definitions to provide in such a context. How-10

ever, in an infinite dimensional space, where the equivalence between the norms

fails, it is too restrictive to consider the natural measure of distance induced by

the Hilbert space. Thus it becomes crucial to define an appropriate metric for

distance.

Developing such a metric is non-trivial because functional data can manifest15

itself in a variety of ways, with the data subject to a large degree of variability

due to the nature of the spatial component. The emerging characteristics for re-

cently developed methods are mainly related to modelling correlated functional

data using spatial structures (geostatistical data, point patterns and areal data)

that can be combined with functional data [17]. For this reason, and based on20

the specific characteristics of the spatial component related to the functional

data, the scientific community has focused on developing methods based on

suitable measures of distance, or similarity, related to clustering ([7],[8],[9],[24],

[28]), to the definition of depth [1] and to kriging prediction problems [2].

In this work, we introduce an optimally weighted distance for spatially de-25

pendent functional data. Spatially dependent functional data come in many

forms. Rougly speaking, such curves, spatially located, refer either to curves

observed on points, lines or areal spatial units. The definition of the covariance

structure among the functions depends on the spatial structure we observe. For

instance, the tracevariogram function [8] enables estimation of the interactions30
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among functions observed on a regular grid in terms of variability; whereas

the spatial covariance of Haggarty et al. [9] quantifies the interactions between

functions on a connected network. The distance we introduce is a generaliza-

tion of the distance proposed by [4] for spatially dependent functional data, by

considering a regular grid and a connected network.35

To illustrate when it is appropriate for each covariance measure to be used

we compare our proposed distance measure with differnt metrics proposed in the

literature from a practical and theoretical point of view. In particular we will

focus on distances measuring explicitly differences in terms of spatial dependence

such as the distances proposed by [1], [8], [9].40

We will do so in steps, first introducing the nature of functional data of

interest here, geostatistical functional data and spatial variability measures in

general in section 2, then describing a variety of distances and their applications

in section 3. We introduce our proposed metric in section 4 and show the main

results by an extensive simulation study in section 5 and applied to two different45

real data monitoring the approximate weekday volume of passengers between

each pair of stations on the London network subway and evapotranspiration

problem in the italian pensinsula in section 6.

2. Geostatistical functional data and spatial variability measures

Let (χs1(t), . . . , χsi(t), . . . , χsn(t)) be a set n of geostatistical functional data.50

The n points (s1, . . . , si, . . . , sn) in D ⊆ Rd identify the n locations where the

random functions χs (t) are located.

Each function is defined on T = [a, b] ⊆ R and is assumed to belong to a

Hilbert space

L2(T ) = {χsi : T → R, such that

∫
T

χ2
si(t)dt <∞},

with the inner product 〈χsi , χsj 〉 =
∫
T
χsi(t)χsj (t)dt.

For a fixed site si, it is assumed that the observed functions can be expressed

according to the following model:

χsi(t) = µsi(t) + εsi(t), i = 1, . . . , n (1)
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where εsi(t) are zero-mean residuals and µsi (t) is the mean function.

For each t, t ∈ T , the random process is assumed to be second order station-55

ary and isotropic: that is, the mean and variance functions are constant and

the covariance depends only on the distance between sampling sites.

Formally we have:

E(χs(t)) = m(t) ∀ t ∈ T, s ∈ D,

V(χs(t)) = σ2(t), ∀ t ∈ T, s ∈ D, and60

Cov(χsi(t), χsj (t)) = C(h, t), where h = ‖si − sj‖ ∀ si, sj ∈ D.

2.1. Trace-variogram and Spatial dispersion function for functional data

It is assumed that the mean function is constant over D and that the semi-

variogram function γ(h, t) = γsisj (t) = 1
2V(χsi(t) − χsj (t)), according to [2],65

can be expressed by:

γ(h, t) = γsisj (t) =
1

2
V(χsi(t) − χsj (t)) =

1

2
E
[
χsi(t)− χsj (t)

]2
. (2)

By considering the integral on T of this expression, using Fubini’s theorem

and following [5], a measure of spatial variability can be considered as:

γ(h) =
1

2
E
[∫

T

(χsi(t)− χsj (t))2dt
]
, for si, sj ∈ D.

It corresponds to the trace-variogram, estimated as:

γ̂(h) =
1

2|N(h)|
∑

i,j∈N(h)

∫
T

(χsi(t)− χsj (t))2dt, (3)

where: N(h) = {(si, sj) : ‖si − sj‖ = h}, and |N(h)| is the number of distinct

elements in N(h).

For irregularly spaced data there are generally not enough, indeed obser-

vations exactly separated by h so, N(h) is modified to {(si, sj) : ‖si − sj‖ ∈70

(h− ε, h+ ε)}, with ε > 0.
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Consistently with [5], the estimation of the trace-variogram using (3) involves

the computation of integrals that can be simplified by considering that the

functions are expanded in terms of basis functions.

It is the continuous version of the variogram for spatio-temporal data, which75

provides a helpful framework to do spatial prediction and, with particular rele-

vance for this paper, to provide a mechanism to incorporate spatial weights in

the computation of distance metrics for spatially dependent curves. The trace-

variogram, as the classical variogram for purely spatial data, is used to describe

the spatial variability among functional data which is distributed across an en-80

tire spatial domain and not related to a specific location of the space. However

in many application areas, it can be useful to know how the data recorded at

each site contribute to the definition of the spatial variability of the geographic

area. To reach this aim, a spatial dispersion function has been defined on a

specific location of the space [26].85

Formally, given a curve χsi(t), at a pivot spatial location si, the spatial

dispersion function around si can be defined as:

δsi(h) =
∑

si,sj∈Nsi (h)

[∫
T

(χsi(t)− χsj (t))2dt
]

(4)

for each sj 6= si ∈ D.

Let F be the set of the spatial dispersion functions δsi(h). Thus, the mean

of the spatial dispersion functions, at the lag h, is defined by the following

function:

δ̄si(h) =
1

|Nsi(h)|
∑

si∈Nsi (h)

δsi(h). (5)

That is:

δ̄si(h) =
1

|Nsi(h)|
∑

si,sj∈Nsi (h)

∫
T

(
χsi(t)− χsj (t)

)2
dt (6)

where Nsi(h) = {(si, sj) :‖si − sj‖ = h} ⊂ N(h),

and it is such that N(h) = ∪Nsi(h) and |N(h)| =
∑
i |Nsi(h)|.90
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Through straightforward algebraic operations, it can be shown that the av-

erage of the dispersion functions is a variogram function, expressed by:

γ(h) =
1

2 |N(h)|

n∑
i=1

δ̄si(h)2 |Nsi(h)| . (7)

2.2. Correlation based distance for spatially dependent functional data

The trace-variogram and the spatial dispersion function (eqs. 3 and 4) do

not provide a measure of the covariance between functions . The latter is given95

by the spatial covariance function defined by [9], which provides a measure to

describe the relative variability between functions.

If the set (χs1(t), . . . , χsi(t), . . . , χsn(t)) of curves are estimated by using

basis functions, then each estimated curve χ̂i(t) can be expressed as the product

of a row vector of length p of coefficients cTi and column vector of length p of

basis functions φ(t) as follows:

χ̂i(t) = cTi φ(t)

Consequently the functional mean of the n curves is defined by the mean of

the basis coefficients representing the set of n curves at space point t as follows:

χi(t) =
1

n

n∑
i=1

cTi φ(t)

that is

χi(t) = cTφ(t)

The functional covariance is mainly the product of the difference of two areas

computed in relation to a reference curve. An area A below the mean curve and

an area Ai below a generic estimated curve χi with respect to a reference curve

χl. Given a curve of reference χl corresponding to the horizontal line which is

below the minimum value of the set of the curves, this can be expressed as set

of coefficients cl. The area between the reference line and the mean curve is

defined as:

Area(χi(r), χl) =

∫
{χi(r)− χl}

2
dr = (c− cl)

T
W (c− cl) = A.
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In the same way, the area between curve χ̂i(r) and reference line χl is

Area(χ̂i(r), χl) =

∫
{χ̂i(r)− χl}2 dr = (c− cl)

T
W (c− cl) = Ai.

Thus a quantification of the difference between a generic function χ̂i(r) and a

median curve can be expressed by the difference in terms of magnitude between

χ̂i(r) and the mean curve χi(r), which is the difference of their area as Ai −A.100

As stayed in [9], the area between the mean curve and a reference line can be

used both to reflect the direction of the difference between a given location and

the overall mean. In addition it can be used to standardize the areas so that

the measures of covariance are on a most suitable scale. We have considered

all issues mentioned in the reviewers’ comments carefully, now the paper is The105

estimated functional covariance between the two estimated functions can thus

be defined as:

Ĉov (χ̂i(r), χ̂j(r)) :=
(Ai −A)(Aj −A)

A
2 . (8)

It is a single covariance value between two functions over a space of interest

that can then be used to create an adjusted covariogram cloud.

3. Distances110

The most simple distance used between two spatially dependent functional

data objects has been proposed in the pioneering work [2]. It is a weighted

dissimilarity metric among the geo-referenced curves expressed by

dg(χsi(t), χsj (t)) = d(χsi(t), χsj (t))γsisj (h) (9)

where d
(
χsi(t), χsj (t)

)
=
√∫

T
(χsi(t)− χsj (t))2dt is the distance between the

curves without considering the spatial component, and γsisj (h) corresponds

to the trace-variogram function calculated for the distance between sites si

and sj . Once the trace-variogram has been estimated, a parametric model is

fitted following classical geostatistical estimation procedures [8]. The distance115
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between two curves χ̂i(t),χ̂j(t) can be calculated from the distance between the

coefficients of the basis functions ci, cj [8] by:

dij = (ci − cj)
TW (ci − cj)

where W =
∫
φ(r)φ(r)T is a p× p square matrix, p representing the number of

basis functions.

This distance does not consider the spatial covariance among the functional

data, whereas the proposal of [9] is a correlation based distance which groups

functions together regardless of the amplitude of their functional variation. It

is defined as:

dcij = di,jCov(χsi(t), χsj (t)). (10)

where the covariance function is defined as in Eq.(8). It provides differences in120

terms of relative magnitude, and summarizes in a single value the correlation

between two functions over the spatial domain of interest.

A distance among spatially dependent functional data has been defined as

d2i,j =
∑
h∈H

(δsi(h)− δ̄k(h))2, (11)

that is the Euclidean distance among two spatial dispersion functions in a site.

4. Optimally weighted distances for spatially dependent functional

data125

As we have shown, measures of distance between spatially dependent func-

tional data can be distinguished according to the nature of space on which

these are defined. Georeferenced functional data, also known as geostatisti-

cal functional data, are the basic pieces of information needed to identify the

geographic location of phenomena across the space. In general, georeferenced130

functional data consist of curves taken at specific locations (points referenced

by latitude and longitude).
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One can distinguish between simple and complex spatially dependent func-

tional data types , depending on the spatial complexity. Simple spatially depen-

dent functional data types provide functions observed on simple object struc-135

tures like single points, observed on a regular grid. From a formal perspective,

they do not cover all the variety and complexity of geographic reality. Com-

plex spatially dependent functional data types like functional data observed on

a network enable us to provide a fuller treatment of geographical complexity.

The spatial domain is thus a spatial network. It can be viewed as a spatially140

embedded graph which consists of a set of point objects representing its nodes

and a set of line objects describing the geometry of its edges.

Spatial applicative domains are highways, rivers, public transport systems,

power lines, and phone lines on which it is possible to register variables vary-

ing on the continuum. Our main aim is to introduce a distance for spatially145

dependent functional data considering (i) the simple (georeferenced) and then

(ii) the more complex spatial domains (e.g. a connected directed network), as

described above.

Using the idea of [4], we define an optimally weighted distance for functional

data spatially dependent.150

Assuming a basis function representation for functional data we propose to

consider weight functions including both the spatial and functional component.

It is a generalization of [4] to the spatial functional framework for two different

spatial domains: the georeferenced and the directed network. As in [4] we define

a weighted L2 distance as follows:155

dωs
(
χsi(t), χsj (t)

)
=

√∫
T

ωs(t)(χsi(t)− χsj (t))2dt (12)

where the weight ωs satisfies ωs ≥ 0 and
∫
ωsdt = 1.

The problem is choosing a weight function ωs(t), such that the seminorm

is defined by || (·) ||ωs =
√∫

ωsθ(t)2dt. We define a spatio-functional smooth

function ωs(t) =
[
bTωs(t)q

]2
where bωs(t) is a vector of associated basis func-

tions and q is the vector of coefficients. Conventionally, these spatio-functional160
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smooth function are expressed in the same basic functions as the observed one,

however different basis functions could be chosen.

The spatio-functional smooth function is obtained by the following mini-

mization problem:

ωs(t) = argmin||ωs||=1

∑
1≤i<j≤n V(||θi,j)||2ωs)∑

1≤i<j≤n[E(||θi,j)||2ωs)]2
; (13)

with θi,j(t) = ai,jxi(t) − aj,ixj(t), where ai,j and aj,i are obtained starting165

from the structure of the spatial domain of interest.

The coefficient aj,i is the element reflecting the spatial dependence among

functional data and changes according to the spatial grid on which the functional

data are observed. When ai,j = aj,i = 1, we have a weighted distance dω defined

by [4] for functional data without spatial dependence.170

In the case of spatially dependent functional data observed on a regular grid,

we introduce a weight function depending on the spatial variability expressed

by a trace-variogram function. Formally we define:

ai,j = aj,i = γ̂(hi,j) (14)

where γ̂(h) is the estimated by (Eq.3)

The introduced distance could be viewed in broad terms as a generalization

of the dissimilarity measure defined in (9) with the advantage that the distance

is optimally calibrated from the functional and spatial point of view.

In the case of spatially dependent functional data observed on a directed

network we introduce a weight as a covariance function depending on a struc-

tured oriented graph. In particular denote by Ĉov the matrix of estimated

spatial covariance between the knots of a net (as in Eq.8), Γ = diag(Ĉovj)

the diagonal covariance matrix and D the matrix of the L2 functional distance

d
(
χsi(t), χsj (t)

)
=
√∫

T
(χsi(t)− χsj (t))2dt, we define:

ai,j = Li · Γ ·DT
j ;

where Li is a row vector of matrix of contiguity L (identifying the presence and
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direction of edges) defined as follows:

li,j =


1 if ∃ edge from sj to si or i = j

0 otherwise

(15)

and Dj is the j-th row vector of matrix D.175

The above measure can be seen as a generalization of the distance introduced

by [9] to a directed network by considering the complex spatial interrelationship

between curves.

According to this distinction we can rewrite our distance (Eq. 12) as180

dωs
(
χsi(t), χsj (t)

)
=

{
dωγ

(
χsi(t), χsj (t)

)
s = γ

dωC
(
χsi(t), χsj (t)

)
s = C

(16)

Where s = γ and s = C correspond to weight functions for spatially depen-

dent functional data observed respectively on a regular spatial grid and on a

directed network.

In both of the cases above the defined function satisfies all the properties to

ensure it is still a distance (as shown in the supplementary material).185

5. Simulation study

To analyse and compare the performances of the proposed distances, a sim-

ulation study has been performed. Our main aim is to evaluate distances, as

defined above, in terms of their ability to enable identification of proposed clus-

tering structure while taking into account the spatial relationship. Inspired by

the simulation scheme proposed in [4], we simulate data from four groups of

functions by considering two spatial domains: a regular grid and a network one.

We thus have two different scenarios depending on the spatial structure we con-

sider, respectively a regular and a network grid. For each scenario, 4 groups of
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Figure 1: Simulated data on regular grid (a), network grid (b). Four groups of simulated

curves (c).

functions were simulated using the same mean functions of [13] as follows:

µ1(t) = −2sin(t− 1) log

(
t+

1

2

)
, (17)

µ2(t) = 2 cos(t) log

(
t+

1

2

)
, (18)

µ3(t) =
1

2
− 1

5
cos

(
1

2
(t− 1)

)
t
3
2

√
5t

1
2 +

1

2
, (19)

µ4(t) =
6

5
cos(t) log

(
t+

1

2

)√
t+

1

2
. (20)

Where we set:

• nk = 50 curves for mean function µk for k = 1, . . . , 4, so we have 200

curves;

• each curve is defined for all t ∈ [0, 5];190
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The simulations were built following the procedure used in [4]. As error term

we have used function of spatial covariance function introduced in [24]. The

data were generated as following:

χi(t) = µk(t) + νi(t) + εi(h), k ∈ {1, 2, 3, 4}, i = 1, . . . , n,

where νi(t) is a subject-specific random process and εi(h) is a measurement error

process. The subject-specific νi(t), is generated from a Gaussian process with

mean 0 and covariance σ2
ν(t) = 2e

−(t−2.5)2

4 . The measurement errors, εi(h), is

related to the spatial correlation and is generated from CovS(h) = (1−α)e−c|h|+

αδh=0 (introduced in [24]), where c > 0 controls the spatial correlation intensity,195

and α ∈ (0, 1] is the nugget effect, we fixed α = 0.04, c = 0.01. In the case of

regular grid εi(h) =
∑
sj

(1−α)e−c||si−sj ||+αδ||si−sj ||=0. In the case of network

εi(h) =
∑
sj

(
(1− α)e−c||si−sj || + αδ||si−sj ||=0

)
δli,j=1, where li,j was definited

in equation 15.

The graf structure of the network was built considering a non-regular spatial200

grid, G. On G, the links were created using the following function: there is a

link between sites si(xi, yi) and sj(xj , yj) of cluster k if and only if (xi + yi +

xj + yj) ≡a b, based on the choice of parameters a and b, denser networks can

be constructed. We fixed a = 20 and b = 5

Figure 1 shows curves in the two different scenarios, regular and network grid.205

In the first scenario, the 4 groups of curves observed on a grid of 100 equally

spaced time points on a regular spatial grid [0, 10] × [0, 20] were considered.

Figure 1 shows a representation of the set of 200 locations, 50 for each of the

four considered clusters ( identified with color blue, green, red and violet). In

the second scenario, the same groups of curves located on a directed network of210

50 equal vertices, with random link, were simulated. Given the generated data,

a hierarchical clustering method was evaluated on the two defined scenarios.

In order to investigate the effect of the introduction of the spatial weight, for

the first scenario we compared the distance dωγ of (16) with the original dω

proposed by [4]. Distances (16) are then compared with the previous defined215

distances (9) and (10 ) for the first and second scenario.
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Figure 2: (a) Box plot of one Rand index for 100 simulations for distances dω ,dωγ and dg . (b)

Box plot of MC% (miss-classification %) values of 100 simulation for distances dω , dωγ and

dg

Figure 2 compares clustering performances with distances dω, dωγ and dg

on the first scenario. Results coming from the classifications procedure was

compared by the Rand index ([21]), and the number of incorrectly classified

points, which we refer to as MC%, are displayed in each figure (Fig.2a and 2b).220

High values of the Rand index imply more accurate classification results. In

each figure, boxplots of the Rand Index and the percent of miss-classified curves,

between the three hierarchical procedures, for 100 replicates are presented. From

this, it becomes clear that the combination between the spatial aspect and the

functional optimization enables an improvement in the classification results and225

better performance is achieved by using the optimized defined distance.

Distance dωC was compared with the distance dC for the second scenario.

In this case results illustrate that a network which only considers the correla-

tion between two sites is not enough, incorporating connectivity and direction

enables superior results. In Figure 3 we show the boxplot of the Rand index230

and the MC % values, respectively, for the classification of the curves with the

distances dωC and dC on a network structure. It is easy to observe that:

- the distance dC has the highest MC% values and the lowest Rand index

values of the two network structures;

- dωC has the highest Rand index values and the lowest MC% values of the235

two network structures;

A highly evident difference between the results of the two procedures is derived
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Figure 3: (a) Box plot of Rand index for 100 simulations for distances dωC and dC . (b) Box

plot of MC% (miss-classification %) values for 100 simulations for distances dωC and dC .

by the assumption in the simulation scheme, where the spatial locations are

connected through linkage to more than a couple of sites.

6. Real data Analysis240

In this section we introduce two different applications on real data with the

aim to illustrate performances of the proposed distances.

6.1. A Meterological study on evapotranspiration in Italy

In this section we show an application of the distance introduced in section

4 to a non-regular grid. We focus on a hierarchical classification of the meteoro-245

logical time series of evapotranspiration for 12 months, from December 2016 to

November 2017, in 103 provinces of Italy. One aim of our analysis was to obtain

groups of stations which are similar in terms of evapotranspiration of the de-

terminand of interest. The analyzed meteorological-climatic data are estimated

with the data of the daily meteorological historical series of the stations of the250

Rete Agrometeorologica Nazionale of the Meteorological Service (RAN) of the

Air Force and of the Italian regional services. The estimation of the weather-

climatic data of the areas (or geographic domains of interest) is performed with

a non-stationary geostatistical model that takes into account the location of the

stations, the trend and geographical correlation of the meteorological quantities.255

The RAN, developed in 1990, is a precious tool for detecting agro-meteorological

quantities. The latter are used for the reconstruction of meteorological events
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Figure 4: (a) The 103 provinces of Italy. (b) The meteorological time series of evapotranspi-

ration from December 2016 to November 2017.(c) Classification of evapotranspiration curves

using the dωγ . The curves of cluster 1 are in red and the curves of cluster 2 are in blue. (d)

Classification of the 103 provinces of Italy.
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Figure 5: (a) Average silhouette width. (b) Calinski and Harabasz index. (c) Dunn2 index.

(d) Dendogram obtained with distance dωγ .

(temperature, precipitation, relative humidity, etc.) and for monitoring the

agricultural season. The collected data are acquired on an hourly basis and

subjected to systematic checks of correctness and physical and meteorologi-260

cal consistency before being stored in the SIAN National Agrometeorological

Database and used for agro-meteorological monitoring.

In Figure 4 it is possible to observe the evapotranspiration curves for 103

Italian provinces and the results of a hierachical classification using the distance

dωγ .265

We identify the number of clusters by considering three indices among many

proposed in the literature, that is the Average silhouette width [19], Calinski

and Harabasz index [3] and Dunn2 index [10]. As can be seen from Figure 5,

these indices led to 2 being chosen as the optimal number of clusters. The con-

figuration af the clusters was confirmed by observing the dendogram in Figure270

5 (d).

The two groups of curves respectively represented in red and blue reflect the

geographic conformation of the provinces (Figures 4(c), 4(d)); the blue curves

are associated with the northern Italian provinces while the red curves are as-
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Figure 6: The network configuration.

sociated with the Southen ones. Looking at the two families, we can say that275

the first cluster, from a functional point of view, is characterized by high values

of water evapotranspiration and, from a geographical point of view, covers all

the provinces of central-southern Italy; the second cluster, from the functional

point of view, is characterized by lower values of water evapotranspiration and,

geographically, covers all the provinces of central-northern Italy. It could be280

expected that the clusters have this configuration, and are coherent by consid-

ering the spatial correlation. The reasons for which this could be expected is

that locations that are close to the north are more similar in term of tempera-

ture.

6.2. Clustering of passenger flows in London’s underground railways285

A hierarchical clustering of the approximate weekday volume of passengers

entering the stations of the network of the London underground railway is pro-

posed. In addition, in order to show how the distance dωC introduced here

is able to discriminate the clustering structure in the data, by means of spa-

tial component, we compared the obtained results with hierarchical clustering290

based on the distance of [4]. The data are available from the NUMBAT dataset

(http://crowding.data.tfl.gov.uk) which represents the travel demand on a typ-

ical autumn weekday, Saturday and Sunday at all stations and lines of the

London Underground, London Overground, Docklands Light Railway, TfL Rail

/ Elizabeth Line and London Trams.295
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Figure 7: a) Passenger flows in London’s underground. (b) Station distribution on the map.

The data that are used in this work are, in fifteen-minute intervals through-

out a weekday, the volume of tube passengers entering the stations of the entire

413 London tube stations. Figure 6 shows the Tube map (also called the London

Underground Map or the TfL Services Map). It is a schematic transport map

of the lines, stations and services of the London Underground, known colloqui-300

ally as the Tube, hence the map’s name. The individual passenger movements

within a subway network include the passengers flowing along links and passen-

gers entering stations, which involve passenger flows through a network. These

individual passenger movements within a subway system can be represented by

a georeferenced process, where passengers enter/leave their origin/destination305

stations or nodes, and the resulting flows along links are based on train services.

The aim of the analysis was to obtain groups of stations which are similar in

terms of flow patterns, while taking into account the spatial links and directions.

Figure 7 shows the analyzed data: (a) the curves of passenger flows in London’s

underground and (b) the spatial distribution of stations.310

Hierarchical clustering results with the distance dωC in Figure 8 shows clearly

the presence of three clusters. As in the previuos application we observe three

different indices for selecting the number of clusters: Average silhouette with,

Calinski and Harabasz index, and Dunn index, we thus choose 3 clusters. The

dendogram in Figure 8 (a) shows a big cluster and two little structures corre-315

sponding respectively to the centre of the city where a large and more similar

flow of people every day spend their time mainly to go to work and the neigh-

boring areas outside the centre where the London Underground terminates. The
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Figure 8: (a) Dendogram by the distance dωC . (b) Dendogram by the original Chen distance

without the spatial component, (c) Passenger flows clusters in London’s underground. (d)

Clustering configuration on the map by the distance dωC .
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clustering structure is clearly shown with the spatial location in Figure 8 (d) and

the corresponding clusters of flows in Figure 8 (c). Clusters red and green are320

the ones detecting the centre of the city while the blue cluster contains the prin-

cipal stations of the city like, King’s Cross-St. Pancras, Liverpool Street LU,

London Bridge LU, Stratford, Victoria LU, Waterloo LU. This structure is more

confused by observing results obtained by a hierarchical clustering method with

the adaptive distance of [4] in Figure 8 (b), where one cluster is masked. Our325

newly proposed distance measure reveals hidden structure which is masked by

standard metrics such as [4] as illustrated by 8. This dendogram only suggests

2 clusters with one informative clusters masked.

7. Discussion

We have introduced a weighted L2 distance for spatially dependent func-330

tional data, with an optimized weight function. Assuming a penalized basis

representation for the functional data, a weight function depending also on the

spatial location in two different cases a classic georeferenced spatial structure

and a connected directed network based one has been proposed. The perfor-

mance of the proposed distances shows promising results on simulated and real335

data analysis. We compared them by means of a hierarchical clustering method

in two different scenarios covering an exstensive simulation plan, by showing

how the inclusion of spatial information in the adaptive distance is informative.

The results from the applications of our distances to real data highlighted the

effect of including the spatial covariation in the network. This suggests that340

methods based on a adaptive spatially weighted distances perform better and

reveal hidden structure. We have provided two illustrative examples. However,

our proposed distance metrics are general and widely applicable for incorpora-

tion in different methods and application domains.

The proposed distances in this paper are defined for functional data without345

reference to a possible stochastic process in the time domain, while the space is

treated as a bidimensional argument of a stochastic stationary process with a
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covariance function defined among functions. A direction for the future research

will consist in extending the defined wighted function for functional data with

reference to a temporal covariance structure.350

Kriging methods and other geostatistical procedure will be object of further

analysis by using our proposed distances.
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