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Abstract: We present a review on the natural infection by trypanosomatids of nonhuman vertebrates
in Chile, aiming to synthesize and update the knowledge on the diversity of trypanosomatids
infecting native and alien vertebrate species. To this end, we conducted a systematic review of
literature records published from 1900 to April 2020 on four databases, focusing on the 21 genera
of trypanosomatids and Chile. The methods and findings of our review have been based on the
preferred reporting items for systematic reviews and meta-analysis (prisma) checklist. We found
29,756 records but only 71 presented relevant information for this review. Overall, there are only two
reported trypanosomatid genera infecting vertebrate species in Chile, the genera Trypanosoma and
Leishmania. The former is mostly represented by Trypanosoma cruzi (90% of the total records) and to a
much lesser extent by Trypanosoma avium, Trypanosoma humboldti, Trypanosoma lewisi, and a couple
of unidentified trypanosomatids. A total of 25 mammals have been reported as being infected by
T. cruzi, including 14 native and 11 alien species from Orders Artiodactyla, Carnivora, Chiroptera,
Didelphimorphia, Lagomorpha, Perissodactyla, and Rodentia. Extensive screening studies using
new analytical tools are necessary to grasp the whole potential diversity of trypanosomatid species
infecting vertebrates in Chile.

Keywords: native mammals; exotic mammals; domestic mammals; Trypanosoma cruzi; hosts; reservoirs;
Chagas disease; Mepraia; Triatoma infestans; vector-borne parasite

1. Introduction

Trypanosomatidae corresponds to a diverse family of protozoan parasites of the class Kinetoplastea,
whose development is predominantly restricted to a single host species. However, some trypanosomatids
can use more than one host species throughout its life cycle. The Trypanosomatidae family includes
21 genera parasitizing invertebrate, vertebrate and/or plant species [1,2]. Several species of the genus
Leishmania and Trypanosoma play important roles as human pathogens, causing several infectious
diseases in which insect vectors are involved in their transmission [3]. Some of the most relevant
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vector borne infectious diseases in America are leishmaniasis (caused by several Leishmania species) and
American trypanosomiasis (or Chagas disease, caused by Trypanosoma cruzi), both considered neglected
tropical diseases mainly affecting poor people from the low-income countries of Central and South
America [3,4].

Chile is a South American country considered a biogeographic island due to the presence of
the extremely arid desert in the north, the Antarctic waters in the south, the Andes Range in the
east, and the Pacific Ocean in the west. The main biomes present in continental Chile are (i) deserts
and xeric shrublands, (ii) Mediterranean forests, woodlands and scrub, (iii) montane grasslands and
shrublands, and (iv) temperate broadleaf and mixed forests [5]. These geographic features partially
explain the low species richness and high levels of endemism found in the flora and fauna of this area [6].
Terrestrial vertebrates are not the exception, with amphibians, reptiles, and mammals exhibiting 65, 63,
and 11% of endemic species, respectively [6]. In spite of this interesting feature potentially leading
to endemic host–parasite interactions, little is known about the trypanosomatids infecting native
vertebrate species in this country. In addition, the introduction of alien animals (livestock, game, pet,
and synanthropic species) since the XVI century [7], carrying their own parasitic fauna from their
original native regions [8], makes the study of parasites even more relevant.

In Chile, the most studied trypanosomatid is Trypanosoma cruzi, transmitted by four triatomine
vector species: the mainly domiciliated species Triatoma infestans, and the three wild endemic species
Mepraia gajardoi, Mepraia parapatrica and Mepraia spinolai [9–14]. This flagellated protozoan has been
reported infecting native as well as alien mammals [14–17]. However, the published reports on T. cruzi
infection in mammals are scattered, without an exhaustive, organized and unbiased review of the
available information for this as well as for other trypanosomatids potentially present in Chile.

The aim of this review is to synthesize and update the knowledge on the diversity of trypanosomatids
infecting nonhuman vertebrates in Chile, including native and alien vertebrate host species. To this end,
we conducted a systematic review of literature records published from 1900 to April 2020, focusing on
the 21 genera of trypanosomatids described [1], based on the preferred reporting items for systematic
reviews and meta-analysis (PRISMA) checklist.

2. Results

In total, 29,756 records were obtained before the screening process. After the first screening the
literature search identified a total of 299 records: 101 by Google Scholar (1921–2020), 87 by Web of
Science (1915–2020), 57 by EMBASE (1949–2020), and 54 by PubMed (1952–2020). One-hundred and
eighty-six replicated records were removed after the second screening. A substantial number of the
articles thus obtained were subsequently removed mostly after reading the full texts (n = 41) or when
the full texts were unavailable (n = 1). A total of 71 articles was retained for this systematic literature
review and two additional records were added (Figure 1). These two were abstracts published in a
scientific journal after the closure of our search, presenting new infected vertebrate species in Chile.

We only found and maintained the records of two trypanosomatid genera: Leishmania (n = 2
records) and Trypanosoma (n = 71 records), and one undetermined trypanosomatid genus (n = 1 record).
One record reported both Leishmania and Trypanosoma. For the genus Leishmania, the presence of
Leishmania spp. was tested in the endemic Darwin’s fox Lycalopex fulvipes by means of the quantitative
polymerase chain reaction (qPCR, herafter) without positive detection [18], but a recent study using
the same technique detected Leishmania sp. in Canis lupus familiaris [19].

For the genus Trypanosoma, at least four species were recorded infecting vertebrates: T. avium,
T. cruzi, T. humboldti, and T. lewisi. In addition, one unidentified Trypanosoma sp. was detected by means
of optical microscopy in the passerine Phrygilus fruticeti [20] and one undetermined trypanosomatid
was reported in the camelid Lama guanicoe by conventional PCR (cPCR, hereafter) [21] (Table 1).
Another report searched for Trypanosoma spp. in several bird species from Northern Chile by molecular
methods without positive detection [22].
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Figure 1. PRISMA (preferred reporting items for systematic review and meta-analysis) flowchart 
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Figure 1. PRISMA (preferred reporting items for systematic review and meta-analysis) flowchart
diagram of the record selection process. Additional records included in this review are depicted in a
red box.

Within the reported Trypanosoma spp. included in our selection, T. avium has been detected
by PCR and sequencing in the passerines Anairetes fernandezianus and Turdus falcklandii from the
Robinson Crusoe island [23]; T. humboldti was detected by optical microscopy in the redspotted catshark
Schroederichthys chilensis [24–26]; T. lewisi was detected by optical microscopy in the rodents Mus musculus,
Oligoryzomys longicaudatus, and Rattus rattus [27]; T. cruzi has been tested in 41 mammal species and
recorded infecting 25 species from seven Orders, which are detailed below. See the geographic location
and the biomes where vertebrates infected by trypanosomatids were detected in Figure 2, the temporal
distribution of T. cruzi records in Figure 3, and the summaries of the native and alien mammals infected
by T. cruzi in Tables 2 and 3, respectively.
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Table 1. Summary of the trypanosomatids infecting vertebrates in Chile.

Trypanosomatid Species Host Class Species

Leishmania sp. Mammalia Canis lupus familiaris

Trypanosoma avium Aves Anairetes fernandezianus, Turdus falcklandii

Trypanosoma cruzi Mammalia

Abrocoma bennetti, Abrothrix longipilis, Abrothrix olivaceus, Bos
taurus, Canis lupus familiaris, Capra hircus, Chinchilla lanigera,
Desmodus rotundus, Equus asinus, Equus caballus, Felis catus,

Histiotus montanus, Lama glama, Lycalopes culpaeus, Lycalopex
griseus, Mus musculus, Octodon degus, Oligoryzomys

longicaudatus, Oryctolagus cuniculus, Ovis aries, Phyllotis darwini,
Rattus norvegicus, Rattus rattus, Thylamys elegans, Vicugna pacos

Trypanosoma humboldti Carcharhiniformes Schroederichthys chilensis

Trypanosoma lewisi Mammalia Mus musculus, Oligoryzomys longicaudatus, Rattus rattus

Trypanosoma sp. Aves Phrygilus fruticeti

Trypanosomatid Mammalia Lama guanicoe
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Figure 2. Map of Chile depicting the geographic location and the biomes used by triatomines and
vertebrate species infected by trypanosomatids, and a reference map showing the location of Chile in
South America. Colors in the vertebrate species indicate infection by Leishmania (green), Trypanosoma avium
(dark yellow), Trypanosoma cruzi (black), Trypanosoma humboldti (blue), Trypanosoma lewisi (red), unidentified
Trypanosoma sp. or trypanosomatid (brown). On the left, species scientific names are indicated. Native and
alien vertebrate species infected by T. cruzi are shown to the right and left of Chile, respectively, in colored
boxes representing the color of the biome where these infected vertebrates were detected. For the rest
of the trypanosomatid-infected species, the exact locations are shown. The distribution of triatomine
species includes Mepraia gajardoi, M. parapatrica, M. spinolai, and Triatoma infestans. Division lines inside the
Chilean territory represent the administrative regions from North to South: Arica y Parinacota, Tarapacá,
Antofagasta, Atacama, Coquimbo, Valparaíso, Metropolitana, O’Higgins, Maule, Biobío, Araucanía,
Los Ríos, and Los Lagos. The zoom on the Pacific Ocean corresponds to Robinson Crusoe island from the
Juan Fernández Archipelago.
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Figure 3. Number of records per decade published on Trypanosoma cruzi infection according to
diagnostic techniques on alien (A) and native (N) mammals from Chile. When a record presented two
diagnostic techniques, this record was assigned to both techniques, the same as when it presented both
native and alien species. Techniques: optical microscopy on blood; xenodiagnosis; serology including
IHA (indirect hemagglutination), IIF (indirect immunofluorescence), and ELISA (enzyme-linked
immunosorbent assay); PCR (polymerase chain reaction), including cPCR (conventional PCR), cPCR+SB
(cPCR and Southern blot), hnPCR (hemi-nested PCR), nPCR (nested PCR), real-time PCR, and qPCR
(quantitative PCR).

2.1. Native Mammal Hosts

2.1.1. Order Didelphimorphia

In Chile, two species of marsupials of the Order Didelphimorphia have been described [28].
The distribution of the endemic insectivorous species, Thylamys elegans, overlaps with the geographic
distribution of M. spinolai and T. infestans [10,12,13,28]. Studies of T. cruzi infection in T. elegans have
shown a high variability, from the complete absence of infection when assessed by optical microscopy,
serology (indirect hemagglutination; IHA, hereafter), and/or xenodiagnosis (XD, hereafter) [29,30],
to a range of 28.6–50.0% of infection by cPCR on blood [14,17,31–34]. See the detailed information in
Table 2 and Supplementary Materials. The T. cruzi discrete typing units (DTUs, hereafter) [35] reported
circulating in T. elegans are TcI, TcII, TcV, and TcVI [14,31].

Table 2. Native mammals infected by Trypanosoma cruzi in Chile.

ORDER/Species Region(s) Positive/
Total Tested (%)

Assay Type
(Sample Type) Reference

DIDELPHIMORPHIA

Elegant fat-tailed opossum AT/CO/VA/ME 0/15 OM, XD [29]

(Thylamys elegans) CO 0/4 XD, IHA [30]

CO 6/13 (46.2) cPCR+SB (blood) [17,31]

CO 8/28 (28.6) a cPCR (blood) [32]

CO 2/4 (50.0) a cPCR (blood) [33]

CO/VA/ME 6/14 (42.9) b cPCR (blood) [14,34]
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Table 2. Cont.

ORDER/Species Region(s) Positive/
Total Tested (%)

Assay Type
(Sample Type) Reference

ARTIODACTYLA

Llama AP/TA 0/182 IHA [36,49]

(Lama glama)c AN 0/37 IHA [37,39]

AP 1/136 (0.7) IHA [38]

Alpaca AP 49/439 (11.2) IHA [16]

(Vicugna pacos)c AP 29/2011 (1.4) IHA [38]

CARNIVORA

Culpeo fox AT/VA/ME 7/533 (1.3) b OM, XD [15,29,40–43]

(Lycalopex culpaeus) CO 0/1 IHA [44]

South American gray fox AP/TA/AN/AT/VA/ME/OH 3/78 (3.8) b XD [15,29,40–43]

(Lycalopex griseus) CO 0/2 IHA [44]

CHIROPTERA

Common vampire bat
(Desmodus rotundus) AT 6/17 (35.3) Real-time PCR

(tissue) [45]

Small big-eared brown bat
(Histiotus montanus) CO 4/8 (50.0) Real-time PCR

(anal swab/feces) [45]

RODENTIA

Bennett’s chinchilla-rat AT/VA/ME 0/43 OM, XD [29]

(Abrocoma bennetti) CO 4/11 (36.4) XD, IHA [30]

ME 0/2 hnPCR (blood) [48]

CO 3/7 (42.9) cPCR (blood) [51]

CO 4/12 (33.3)a cPCR (blood) [33]

CO 2/9 (22.2) cPCR (blood) [14,34]

Long-haired grass mouse NK 0/2 OM [29]

(Abrothrix longipilis) CO 0/1 XD, IHA [30]

CO 0/1 IHA [44]

CO/ME 2/21 (9.5) cPCR (blood) [14,34]

Olive grass mouse AT 0/5 OM [29]

(Abrothrix olivaceus) CO 0/4 IHA [30]

CO 31/44 (71.0) cPCR+SB (blood) [17,31]

ME 0/2 hnPCR (blood) [48]

CO 20/32 (62.5) cPCR (blood) [51]

CO 36/89 (40.5) a cPCR (blood) [33]

CO/VA/ME 16/41 (39.0) cPCR (blood) [14,34]

CO 15/45 (33.3) a cPCR (blood) [57]

Long-tailed chinchilla CO 7/35 (20.0) XD, IHA [30]

(Chinchilla lanigera) CO 8/20 (40.0) XD, IHA [44]

Degu AT/CO/ME 9/412 (2.2) b OM, XD, IHA [15,29,40–43]

(Octodon degus) CO 5/60 (8.3) XD, IHA [30]

CO 3/14 (21.4) IHA [44]

CO 28/46 (61.0) cPCR+SB (blood) [17,31]

CO 8/35 (22.9) a XD-cPCR [46,47,49]

ME 8/60 (13.3) hnPCR (blood) [48]

CO 38/96 (39.6) cPCR (blood) [32]

CO 68/140 (48.6) cPCR (blood) [50]

CO 69/98 (70.4) cPCR (blood) [51]

CO 106/262 (40.5) cPCR (blood) [53,54]

CO 170/460 (37.0) ab cPCR (blood) [33,52]

CO 40/57 (70.2) cPCR (blood) [55]

CO 2/4 (50.0) qPCR (blood) [56]

CO 107/273 (40.2) a cPCR (blood) [57]

Degu and moon-toothed degu
(O. degus and O. lunatus) CO/VA/ME 89/356 (25.0) cPCR (blood) [14,34]
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Table 2. Cont.

ORDER/Species Region(s) Positive/
Total Tested (%)

Assay Type
(Sample Type) Reference

Long-tailed rice mouse ME 0/11 OM [29]

(Oligoryzomys longicaudatus) CO 0/1 XD [30]

CO 1/2 (50) a cPCR (blood) [33]

CO/VA/ME 8/45 (17.8) cPCR (blood) [14,34]

Darwin’s leaf-eared mouse AP/CO/VA/ME 0/59 OM, XD [29]

(Phyllotis darwini) CO 1/10 (10.0) XD, IHA [30]

CO 5/62 (8.1) IHA [44]

CO 31/55 (56.0) cPCR+SB (blood) [17,31]

ME 1/4 (25.0) hnPCR (blood) [48]

CO 38/117 (32.5) cPCR (blood) [32]

CO 63/103 (61.2) cPCR (blood) [51]

CO 76/210 (36.2) cPCR (blood) [53,54]

CO 129/379 (34.0) a cPCR (blood) [33]

CO 6/6 (100) qPCR (blood) [56]

CO/VA/ME 73/187 (39.0) cPCR (blood) [14,34]

CO 81/221 (36.7) a cPCR (blood) [57]

Abbreviations: Regions AP (Arica y Parinacota), TA (Tarapacá), AN (Antofagasta), AT (Atacama), CO (Coquimbo), VA
(Valparaíso), ME (Metropolitana), OH (O’Higgins); NK (not known); OM (optical microscopy); XD (xenodiagnosis);
IHA (indirect hemagglutination); cPCR (conventional polymerase chain reaction); cPCR+SB (cPCR and Southern
blot); hnPCR (hemi-nested PCR); qPCR (quantitative PCR). a Detailed data requested to the corresponding author.
b For cumulative datasets the maximum number of the individuals tested is reported. c Domesticated mammals.
Notes: (i) When more than one diagnosis procedure was applied to the same samples, the highest frequency of
infection, or the total frequency of infection, considering all the diagnostic tests is reported; (ii) current species
names are used [1]; (iii) see the map with the location of Chilean regions in Figure 2; (iv) complete table with tested
but negative mammals in Table S1 in Supplementary Materials.

Table 3. Alien mammals infected by Trypanosoma cruzi in Chile.

ORDER/Species Region(s) Positive/
Total Tested (%)

Assay Type
(Sample Type) Reference

ARTIODACTYLA

Cattle NK 0/2 XD [42]

(Bos taurus) ME 0/2 XD [58]

CO 0/1 IHA [16,61,65]

CO 27/202 (13.4) IHA [66]

Goat AT 0/82 OM, XD [29]

(Capra hircus) AP/TA/AN/AT/CO/VA/ME/OH 1/233 (0.4) a XD [15,42,43]

CO 0/2 XD [67]

NK 0/3 XD [68]

CO 32/180 (17.8) IHA [69]

CO 25/265 (9.4) a IHA [16,59,61,65]

AP/TA 0/45a IHA [16,36,39,65]

AN 7/98 (7.1) a IHA [16,37,39,65]

AT 7/100 (7.0) a IHA [16,60,65]

VA 0/52 a IHA [16,62,65]

ME 2/11 (18.2) a IHA [16,63,65]

OH 1/26 (3.9) a IHA [16,64,65]

CO 11/316 (3.5) IHA [70]

ME 55/841 (6.5) IIF [71]

CO 21/42 (50.0) cPCR+SB (blood) [17,31]

CO 35/100 (35.0) IIF, XD-cPCR [72]

Sheep AP/TA/AN/AT/CO/VA/ME/OH 0/99 XD [42]

(Ovis aries) CO 2/42 (4.8) a IHA [16,59,61,65]
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Table 3. Cont.

ORDER/Species Region(s) Positive/
Total Tested (%)

Assay Type
(Sample Type) Reference

AP/TA 7/161 (4.4) a IHA [16,36,39,65]

AN 4/147 (2.7) a IHA [16,37,39,65]

AT 3/16 (18.8) a IHA [16,60,65]

VA 1/33 (3.0) a IHA [16,62,65]

ME 0/1 IHA [16,63,65]

OH 4/25 (16.0) a IHA [16,64,65]

CARNIVORA

Dog AT 16/46 (34.8) a OM, XD [73,74,76]

(Canis lupus familiaris) AN/AT/ME 37/184 (20.1) OM, XD [75,77]

ME 2/29 (6.9) XD [78]

AT 2/13 (15.4) XD [29]

ME 24/1026 (2.3) XD [79]

AT 23/104 (22.1) XD [80]

AP/TA/AN/AT/CO/VA/ME/OH 318/3591 (8.9) a XD [15,40–43]

CO 1/15 (6.7) XD [67]

OH 0/25 XD [81]

ME 2/98 (2.0) XD [58]

ME 8/86 (9.3) XD [82]

AN/AT/VA/ME 45/1101 (4.1) XD [68]

CO 44/304 (14.5) a IHA [16,59,61,65]

AP/TA 4/203 (2.0) a IHA [16,36,39,65]

AN 4/65 (6.2) a IHA, IIF [16,37,39,65,84]

AT 8/73 (11.0) a IHA [16,60,65,83]

VA 7/374 (1.9) a IHA [16,62,65]

ME 71/617 (11.5) a IHA [16,63,65]

OH 14/540 (2.6) a IHA [16,64,65]

CO 40/202 (19.8) IHA [66]

CO 20/288 (6.9) IHA [70]

NK 4/36 (11.1) XD [16]

TA 3/29 (10.4) ELISA [85]

VA 8/28 (28.6) cPCR [86]

TA/CO 38/108 (35.2) nPCR [87]

ME 19/111 (17.1) b Real-time PCR
(blood) [19]

Domestic cat AT 4/22 (18.2) a OM, XD [73,74,76]

(Felis catus) AN/AT/ME 6/136 (4.5) a OM, XD [75,77]

ME 1/8 (12.5) XD [78]

AT 2/8 (25.0) XD [29]

ME 8/595 (1.4) XD [79]

AT 11/47 (23.4) XD [80]

AP/TA/AN/AT/VA/ME/OH 217/1892 (11.5) a XD [15,40–43]

CO 0/9 XD [67]

OH 0/10 XD [81]

ME 0/48 XD [58]

ME 1/27 (3.3) XD [82]

AN/AT/VA/ME 11/522 (2.1) XD [68]

CO 23/214 (10.8) a IHA [16,59,61,65]

AP/TA 15/140 (10.7) a IHA [16,36,39,65]

AN 1/32 (3.1) a IHA [16,37,39,65]

AT 15/165 (9.1) a IHA [16,60,65,83]

VA 2/197 (1.0) a IHA [16,62,65]
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Table 3. Cont.

ORDER/Species Region(s) Positive/
Total Tested (%)

Assay Type
(Sample Type) Reference

ME 33/304 (10.9) a IHA [16,63,65]

OH 2/93 (2.2) a IHA [16,64,65]

NK 4/19 (21.1) XD [16]

LAGOMORPHA

Rabbit AP/AT/ME 0/27 OM, XD [29]

(Oryctolagus cuniculus)c AP/TA/AN/AT/CO/VA/ME 2/209 (1.0) a XD [15,40–43]

CO 0/2 XD [65]

CO 18/149 (12.1) a IHA [16,59,61,65]

AP/TA 1/182 (0.6) a IHA [16,36,39,65]

AN 7/145 (4.8) a IHA [16,37,39,65]

AT 0/158 a IHA [16,60,65,83]

VA 0/15 a IHA [16,62,65]

ME 3/47 (6.4) a IHA [16,63,65]

OH 0/8 IHA [16,64,65]

CO 22/58 (37.9) a cPCR, hnPCR [88]

PERISSODACTYLA

Ass AT 0/17 XD [29]

(Equus asinus) NK 0/74 XD [42]

CO 0/1 XD [67]

AT 0/21 IHA [60]

AP/TA/AN 0/12 IHA [37,39]

CO 0/2 IHA [61]

VA 0/3 IHA [62]

ME 0/1 a IHA [16,63,65]

CO 18/101 (17.8) IHA [66]

Horse NK 0/13 XD [42]

(Equus caballus) AT 0/10 a IHA [16,60,65]

CO 16/101 (15.8) IHA [66]

RODENTIA

House mouse AT/ME 0/37 OM, XD [29]

(Mus musculus) c CO 5/6 (83.3) qPCR (blood) [56]

Norway rat AT/ME 0/4 OM [29]

(Rattus norvegicus) c CO/VA/ME 5/7 (71.4) b cPCR (blood) [14,34]

Black rat AP/AT/ME 0/11 OM, XD [29]

(Rattus rattus) c ME 10/44 (22.7) hnPCR (blood) [48]

CO 46/55 (83.6) qPCR (blood) [56]

CO/VA/ME 14/30 (46.7) cPCR (blood) [14,34]

Abbreviations: Regions AP (Arica y Parinacota), TA (Tarapacá), AN (Antofagasta), AT (Atacama), CO (Coquimbo), VA
(Valparaíso), ME (Metropolitana), OH (O’Higgins); NK (not known); OM (optical microscopy); XD (xenodiagnosis);
IHA (indirect hemagglutination), IIF (indirect immunofluorescence), ELISA (enzyme-linked immunosorbent assay),
cPCR (conventional polymerase chain reaction), cPCR+SB (cPCR and Southern blot); hnPCR (hemi-nested PCR);
qPCR (quantitative PCR). a For cumulative datasets, the maximum number of individuals tested is reported. b Some
data requested to the corresponding author. c Free-ranging mammals. Notes: (i) When more than one diagnosis
procedure was applied to the same samples, the highest frequency of infection or the total frequency of infection,
considering all the diagnostic tests, is reported; (ii) current species names are used [1]; (iii) see the map with the
location of Chilean regions in Figure 2; (iv) the complete table with tested but negative mammals in Table S2 in
Supplementary Materials.

2.1.2. Order Artiodactyla

In Chile, seven species of even-toed ungulates have been described, including camelids and
deers [28]. Five of these species might overlap with the geographic distribution of the Mepraia species
and T. infestans [10,12,13,28], and two of them are domesticated camelids (Lama glama and Vicugna pacos)
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closely related to people from rural areas [28]. Serological studies of T. cruzi infection in the camelids
L. glama and V. pacos have shown evidence of infection. In the former, some studies have reported
between 0 and 0.7% of infection [36–39], while in the latter between 1.4 and 11.2% of infection have
been detected [16,38]. See the detailed information in Table 2 and Table S1 in Supplementary Materials.

2.1.3. Order Carnivora

In Chile, 25 species of carnivores have been described [28]. Several of these carnivores, including
felids (e.g., mountain lion), canids (e.g., foxes), mustelids (e.g., lesser grison, sea otter), otariids (e.g., seals),
and mephitids (e.g., skunks) overlap with the geographic distribution of the Mepraia species and
T. infestans [10,12,13,28]. Among them, only three species have been tested for T. cruzi infection: the foxes
Lycalopex culpaeus and Lycalopex griseus [15,29,40–44] and the skunk Conepatus chinga [29]. Only the foxes
have been detected infected with T. cruzi, ranging from 0 to 1.3% of infection prevalence in L. culpaeus
and 0 to 3.8% in L. griseus using optical microscopy, serology (IHA) and/or XD [15,29,40–44]. See detailed
information in Table 2 and Table S1 in Supplementary Materials.

2.1.4. Order Chiroptera

In Chile, 11 species of bats have been described [28]. Several of these insectivorous or hematophagous
species overlap with the geographic distribution of the Mepraia species and T. infestans [10,12,13,28].
Studies of T. cruzi infection in bat species are scarce. The species Histiotus macrotus, Lasiurus borealis,
Lasiurus cinereus, Myotis chiloensis and Tadarida brasiliensis were tested in the 1940s for T. cruzi infection by
optical microscopy and XD but no infection was detected [29]. However, a recent preliminary study [45],
carried out in two protected areas in the northern region of Chile, detected the presence of T. cruzi DNA
by real-time PCR. The study evaluated different types of biological samples from Desmodus rotundus,
Histiotus montanus, M. chiloensis, and Histiotus sp. and pools of feces collected in bat roosts to test
the presence of T. cruzi. Both H. montanus and D. rotundus were positive to T. cruzi DNA. However,
according to the authors, the T. cruzi transmission mechanism is still unknown (oral, congenital or
vectorial) due to the insectivorous and hematophagous feeding habits of H. montanus and D. rotundus,
respectively. See the detailed information in Table 2 and Table S1 in Supplementary Materials.

2.1.5. Order Rodentia

In Chile, 68 species of rodents have been described [28]. More than half of these species overlap with the
geographic distribution of the Mepraia species and T. infestans [10,12,13,28]. Among them, 13 species have
been tested for T. cruzi infection, including three Abrothrix species, two Octodon species, Abrocoma bennetti,
Chinchilla lanigera, Lagidium viscacia, O. longicaudatus, Phyllotis darwini, and Spalacopus cyanus, among others.
From these, seven species have been reported as being infected by T. cruzi, with a high variation in the
frequency of infection, mainly depending on the detection technique: A. bennetti (0–42.9%), Abrothrix longipilis
(0–9.5%), Abrothrix olivaceus (0–71.0%), C. lanigera (20.0–40.0%), Octodon degus (8.3–70.4%), O. longicaudatus
(0–50.0%), and P. darwini (0–100%) [14,15,17,29–34,40–44,46–57]. See the detailed information in Table 2
and Table S1 in Supplementary Materials. The T. cruzi DTUs reported as circulating in A. olivaceus, O. degus,
and P. darwini are TcI, TcII, TcV, and TcVI; in O. longicaudatus, TcI, TcV and TcVI; in A. longipilis only TcI was
reported [14,31,47–49].

2.2. Alien Mammal Hosts

2.2.1. Order Artiodactyla

Eight species of even-toed ungulates have been introduced in Chile, including four deer species,
cattle (Bos taurus), and caprine (Capra hircus), ovine (Ovis spp.) and porcine (Sus scrofa) livestock [28].
Free-ranging individuals of these species can also be found in several ecosystems of Chile [28].
Six of these species might overlap with the geographic distribution of the Mepraia species and/or
T. infestans [10,12,13,28]. Among them, four species have been tested for T. cruzi infection (B. taurus,
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C. hircus, Ovis aries, and S. scrofa), with infections reported in the first three. Only few studies have
assessed T. cruzi infection in B. taurus and O. aries, showing a high variability depending on the
diagnostic technique. Only serological studies (IHA) carried out in the 1980s reported that some
specimens of these species had been exposed to T. cruzi infection: up to 13.4 and 18.8% in B. taurus
and O. aries, respectively [16,36,37,39,42,58–66]. Studies of T. cruzi infection in C. hircus have shown
a high variability, from 0 to 35.0% when assessed by optical microscopy, serology (IHA and indirect
immunofluorescence; IIF, hereafter), and/or XD [15,16,29,36,37,39,42,43,59–65,67–71], to 31.0 and 50.0%
of infection when assessed by XD coupled with cPCR, and cPCR on blood, respectively [17,31,72].
See the detailed information in Table 3 and Table S2 in Supplementary Materials. Only one study
has reported the T. cruzi DTUs circulating in C. hircus of an endemic area, detecting TcI, TcII, TcV, and
TcVI [31].

2.2.2. Order Carnivora

Four species of carnivores have been introduced in Chile [28]. Two of these, Canis lupus familiaris
and Felis catus, were introduced in the XVI century as pets, but free-ranging specimens of both
species can be found in several ecosystems [28]. Domestic and free-ranging individuals of both
types of carnivore might overlap with the geographic distribution of the Mepraia species and/or
T. infestans [10,12,13,28]. Several studies have assessed T. cruzi infection in C. l. familiaris and F. catus,
which have shown a high variability, mainly depending on the diagnostic technique and, to a lesser
extent, on the location of the populations prospected. The infection prevalence in C. l. familiaris ranges
from 0 to 34.8% when assessed by optical microscopy, XD, and serology (IHA, IIF and enzyme-linked
immunosorbent assay; ELISA) [15,16,29,36,37,39–43,58–68,70,73–85], while few studies using cPCR,
real-time PCR and nested PCR showed infection prevalence from 17.1 to 35.2% [19,86,87]. The infection
prevalence in F. catus ranges from 0 to 23.4% when assessed by optical microscopy, XD, and serology
(IHA) [15,16,29,36,37,39–43,58–65,67,68,73–83]. See the detailed information in Table 3 and Table S2 in
Supplementary Materials. Only one study has reported the T. cruzi DTUs circulating in C. l. familiaris
of several localities from endemic areas, detecting TcI, TcII, TcIII, TcV, and TcVI [87].

2.2.3. Order Lagomorpha

Two species of lagomorphs were introduced in Chile by the end of the XIX century, the hare
Lepus europaeus and the rabbit Oryctolagus cuniculus [28]. Both free-ranging species overlap with the
geographic distribution of M. spinolai and T. infestans [10,12,13,28]. Several studies have assessed T. cruzi
infection in O. cuniculus, which have shown some variability depending on the location of the populations
prospected and the diagnostic technique used. In early studies, the infection prevalence ranged from 0
to 12.1% when studied using optical microscopy, serology, and XD [15,16,29,36,37,39–43,59–65,67,83],
while a study using cPCR and hemi-nested PCR showed an infection prevalence of 19.0% and 37.9%,
respectively [88]. Only one study carried out in the 1940s, with a very small sample size, assessed
T. cruzi infection by optical microscopy and XD in L. europaeus, and no infection was detected [29].
See the detailed information in Table 3 and Table S2 in Supplementary Materials. The T. cruzi DTUs
reported circulating in O. cuniculus are TcI, TcII, TcV, and TcVI [88].

2.2.4. Order Perissodactyla

Two species of odd-toed ungulates were introduced in Chile by the end of the XVI century or
later, the ass Equus asinus and the horse Equus caballus [28]. Both species overlap with the geographic
distribution of M. spinolai and T. infestans [10,12,13,28], and even though they are mainly domesticated
species, some free-ranging populations can be found [28]. Several studies have assessed T. cruzi
infection in both species using serology or XD. In E. asinus and E. caballus, the infection prevalence
ranges between 0 and 17.8% and 0 and 15.8%, respectively [16,29,37,39,42,60–63,65–67]. See the detailed
information in Table 3 and Table S2 in Supplementary Materials.
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2.2.5. Order Rodentia

Six species of rodents have been accidentally or intentionally introduced into Chile, including
several rat species, the common house mouse, and the beaver [28]. Three of these species (M. musculus,
Rattus norvegicus, and R. rattus) overlap with the geographic distribution of Mepraia species and
T. infestans [10,12,13,28]. Few studies have assessed T. cruzi infection in alien rodent species, which have
shown a high variability depending on the species, location of the population prospected, and the
diagnostic technique used. In the 1940s, the prevalence of T. cruzi infection in R. rattus, R. norvegicus
and M. musculus was tested by optical microscopy and/or XD but no infection was detected [29].
Recent studies, using molecular detection (cPCR, hemi-nested PCR, and/or qPCR), have reported a high
infection prevalence: R. rattus (27.7%, 83.6%), R. norvegicus (71.4%), and M. musculus (83.3%) [14,34,48,56].
See the detailed information in Table 3 and Table S2 in Supplementary Materials. Even though four
DTUs, TcI, TcII, TcV and TcVI, have been tested in R. rattus and R. norvegicus, only in the former
species were the four DTUs detected [14,48]. The domestic rodent Cavia porcellus is not included in the
count of introduced rodents; however, this species has been used as food source, and it was tested for
T. cruzi infection using XD and serology, with negative results [16,39–42,60,63,65,68]. See the detailed
information in Table S2 in Supplementary Materials.

Besides the records filtered by our systematic review, Trypanosoma equiperdum, Trypanosoma evansi,
and Trypanosoma vivax were briefly mentioned as being present in Chile [89,90], but these records did
not provide further details of the findings. On the other hand, Trypanosoma rangeli was reported once
in triatomine bugs [91]. Due to the lack of information and/or no report of infection in vertebrates,
these were not included in the selected results. The complete dataset with the information obtained
from each selected record used in this review can be found in Table S3 in Supplementary Materials.

3. Discussion

In this systematic review, we detected two genera of trypanosomatids reported in the vertebrates of
Chile: Leishmania and Trypanosoma. Species of these genera have been detected in the mainland, in one
island, and in the Pacific Ocean. Leishmania spp. has been detected only in dogs (~33◦26′ S, 70◦39′ W)
from the Mediterranean forests, woodlands and scrub biome [19]. Trypanosoma avium has only been
detected in two bird species from the Juan Fernández Archipelago (~33◦37′ S, 78◦50′ W) [23]; T. cruzi
has been found in 14 native and 11 alien mammal species from two biomes—the deserts and xeric
shrublands, and the Mediterranean forests, woodlands and scrub (~17◦30′-34◦36′ S, 68◦12′-71◦50′ W)
(see Tables 2 and 3); T. humboldti was detected in one small shark species from the Pacific Ocean
(~36◦36′ S, 72◦84′ W) [24–26]; T. lewisi was found in one native and two alien rodent species from the
temperate forest biome (~39◦50′ S, 73◦13′ W) [27]. Nonetheless, other unidentified Trypanosoma sp.
and another trypanosomatid were reported in one bird and one camelid species, respectively [20,21],
as well as T. equiperdum, T. evansi, and T. vivax, which have been briefly mentioned as present in
Chile [89,90], but without any additional information to obtain the original sources reporting these
findings. In addition, it is worth mentioning that T. rangeli was reported in triatomine bugs [91]. At this
point, we cannot discard that some of those last-mentioned Trypanosoma species had been misclassified
when identified by morphology or as a result of a cross reaction of serological techniques. In general,
describing new trypanosomatid species in Chile is difficult because only few studies search for new
parasite species, and most studies tend to add to the knowledge on already described species.

In this study, we were able to gather information on the number of vertebrate species analyzed for
trypanosomatid infection in Chile. Only 55 of the ~2000 vertebrate species described for the country have
been tested [92], and 30 of these were found infected by at least one trypanosomatid species. This reflects
the patent need to increase the number of studies on untested Chilean vertebrate taxa, by means
of analytical tools that can grasp the potential diversity of trypanosomatid species. Compared to
neighboring countries (Argentina, Bolivia, and Peru), Chile presents a lower diversity of Trypanosoma
and Leishmania species. For example, in all the neighboring countries—besides T. cruzi—there are reports
of T. evansi, and only Bolivia and Peru have records of T. vivax [93,94]. Argentina has both Trypanosoma
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minasense and Trypanosoma theileri, and T. lewisi was reported in Peru [95–97]. On the other hand,
Leishmania braziliensis is described in Peru and Bolivia, Leishmania (Viannia) sp. in Argentina, Leishmania
amazonensis and Leishmania infantum in Bolivia, and Leishmania guyanensis and Leishmania peruviana are
reported in Peru [98,99]. All of these are records of natural infection in mammals, showing that the
lack of research in other taxa is frequent in the Southern Cone of South America. These differences
with neighboring countries may be the result of scarce, potentially biased screenings, and/or a lack
of diversity in Chile. Notwithstanding, comparisons with other countries must be considered with
caution, as we did not find any comprehensive review such as the one presented here.

Future studies in Chile should also focus on other potential invertebrate vectors of trypanosomatids
such as leeches [100], ticks [101,102] (but see [103]), mites [104], flies [105,106], mosquitoes [107],
sandflies [108], and tabanids [106], which might explain the recent finding of the Leishmania donovani
complex in L. griseus from the Argentinian Patagonia without reports of sandfly vectors [109]. In fact,
there are some reports of sandflies in Northern Chile [110], so the possibility of Leishmania spp. being
introduced or even already infecting vertebrates in Chile cannot be discarded. Future research programs
should join efforts from different disciplines including entomologists, mastozoologists, herpetologists,
ornithologists, ichthyologists, parasitologists, veterinarians, epidemiologists, and molecular biologists,
among others, to increase trypanosomatid screenings of the overlooked groups of vertebrates. This would
increase our knowledge on the trypanosomatids circulating in Chile, their putative invertebrate vector
species, transmission cycles, potential risks to humans and other vertebrates, and therefore, awareness
to public health programs.

The exception to the scarcity of studies on trypanosomatids is T. cruzi, with over 90% of the
selected records. In fact, 74.6% of the total number of vertebrate species reported in the records were
tested for this parasite. Trypanosoma cruzi has been studied for almost 80 years in the vertebrates
of Chile. Most of the studies were focused on alien species until the 1980s, when native species’
studies started to increase. There seems to be a recent impressive lag of 35 years with no studies on
livestock—excluding goats—and domestic cats. Regarding the diagnostic techniques used, there was
a temporal shift, with XD and microscopy appearing more frequently in the earlier studied decades
(1940s to 1970s), changing to serology as the predominant technique in the 1980s and 1990s, and lately,
since 2000, PCR has become the preferred analytical tool. Among the multiple challenges, there is an
urgent need to update the information on the T. cruzi infection of livestock and companion animals
from rural endemic areas using molecular detection techniques, encompassing the whole area where
triatomine vectors can be found. In addition, new T. cruzi hosts could be identified by analyzing
triatomine alimentary profiles using molecular techniques [111].

In Chile, the domestic transmission cycle by the vector T. infestans was interrupted in 1999,
which means that there are no colonies established inside houses, but the intrusion of sylvatic
triatomines—of the genus Mepraia and T. infestans—is still a nuisance for people living in endemic
areas [10,112,113]. Sylvatic transmission to native and alien vertebrates occurs in wild habitats;
transhumant livestock can transport the infection to peridomestic areas [72], and synanthropic species can
also move between these environments [48,56]. Sylvatic triatomines invade dwellings, carrying T. cruzi
that can be transmitted to vertebrates, and accidentally to humans. Besides the stercorarian transmission
of this trypanosomatid, the oral route should be considered, by vector consumption and predator–prey
interactions among mammals [114]. The possibility of T. cruzi transmission by the congenital route in
the wild is a topic that has not been addressed in Chile, and it is an incipient line of research with just
one report from another South American country [115].

Trypanosomatid–vertebrate interactions occur in the context of anthropic disturbances of ecosystems
caused by land use change, desertification and the introduction of alien species, with habitat degradation,
loss and/or fragmentation, which affects native vertebrates and vectors [7,116]. Furthermore, climate change
may influence the geographic distribution range of hosts and vectors [12,13,117], which in turn could
increase parasite distribution with the potential to infect new host species and/or new populations of
already reported host species. Chile has not presented autochthonous Leishmania infection in nonhuman
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vertebrates until recently [19]. Climate change could further modify this scenario by facilitating the
establishment of permanent populations of phlebotomine vectors [110], which, combined with the
presence of a large number of free-roaming dogs [118], offers the potential of a complete cycle for this
parasite. In aquatic ecosystems, contamination could also modulate the infection by trypanosomatids in
fish [26].

Possible limitations of our study comprise the use of currently accepted trypanosomatid genera [1],
so previous nomenclature could have been overlooked in our search. Secondly, only four databases were
used to perform the systematic review; it is possible that other sources could have provided additional
relevant records. We did not include these as sources, given that our access to these types of records
would have been limited and probably biased. Regarding the abstracts published in the proceedings,
only a few actually met our requirements of including quantifiable data on trypanosomatid infection
in vertebrates, but some of the discarded records probably could have provided more information if
access to their whole presentation would have been granted by the authors upon contact.

In conclusion, only two genera of trypanosomatids have been reported in the vertebrate species
present in Chile, and most of the reports obtained in this systematic review corresponded to T. cruzi.
In the future, more trypanosomatid species in Chile could be identified and described, as well as new
vertebrate hosts, and/or new locations for these parasite species. These reports could correspond to
discoveries of well-established cycles not previously detected, or to the introduction of new parasites,
hosts or vectors. Unfortunately, advances on this matter would depend on the science budget allocated
to research focused on transdisciplinary prospective long-term screening programs, searching for
parasites with zoonotic potential, assessing infection in alien fauna with economic impacts, and testing
infection in native species to anticipate potential biodiversity losses.

4. Materials and Methods

4.1. Systematic Review Protocol, Search Strategy and Data Collection

The systematic literature review followed the standard systematic review procedures established
by the preferred reporting items for systematic reviews and meta-analyses (PRISMA). Between January
and April 2020, four scientific database search engines (EMBASE, Google Scholar, PubMed, and Web
of Science) were used to identify articles and the search terms (trypanosomatid OR Blastocrithidia
OR Blechomonas OR Herpetomonas OR Jaenimonas OR Lafontella OR Crithidia OR Endotrypanum
OR Leishmania OR Leptomonas OR Lotmania OR Wallaceina OR Zelonia OR Novymonas OR
Paratrypanosoma OR Phytomonas OR Sergeia OR Angomonas OR Kentomonas OR Strigomonas OR
Trypanosoma OR Wallacemonas) AND (Chile) were included, searching records from 1900 to 2020,
when available.

4.2. Study Selection

The records included for this literature review were retrieved through three screening phases.
The first screening phase evaluated the titles and abstracts regarding the relevance to the review.
Four exclusion criteria were applied on the first screening phase: (i) records such as theses and review
articles (retaining articles such as short communications, full papers, preprints, and abstracts published
in congress proceedings); (ii) records not available in English/Spanish/Portuguese; (iii) records not
including vertebrates; (iv) records not including natural infection. A second screening removed replicates
using citations and titles (including records with the same title in different languages), after merging
the results obtained from the different literature sources; while the third screening phase was applied
to the full texts. The main reasons for exclusion in the last screening phase was that full text was not
available, and that after reading the full text the article did not comply with reporting natural infection
by trypanosomatids in nonhuman vertebrates. The final selected articles were first categorized by
trypanosomatid genus (e.g., Trypanosoma spp., Leishmania spp.), and we extracted the vertebrate species,
the time frame of the study, the region/province/locality (if available), coordinates (if any), the diagnostic
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method, type of biological sample, number of individuals tested, number of individuals infected, and the
frequency of infection. In the absence of a detailed database in the electronic supplementary material of
recently published articles, the corresponding authors were contacted to obtain additional information.
Records from each category were organized by host class (e.g., Amphibia, Aves, Mammalia, Reptilia),
followed by the Order, host species and diagnostic methodology.

Figures were prepared using PowerPoint and Excel for Mac (version 16.35), and QGIS 3.10.1
(http://qgis.osgeo.org), with basemaps for Chile (http://labgeo.ufro.cl), South America (https://tapiquen-
sig.jimdofree.com), and biomes (https://ecoregions2017.appspot.com).

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/8/661/s1,
Table S1: Native mammals tested for Trypanosoma cruzi in Chile, Table S2: Alien mammals tested for Trypanosoma
cruzi in Chile, Table S3: Dataset of the records.

Author Contributions: Conceptualization, J.P.C., A.B. and C.B.-M.; methodology, J.P.C., A.B. and C.B.-M.;
investigation, J.P.C., A.B. and E.Y.-Q.; resources, C.B.-M., A.S. and P.E.C.; writing—original draft preparation,
C.B.-M., A.B. and J.P.C.; writing—review and editing, J.P.C., A.B., E.Y.-Q., G.R., A.S., P.E.C. and C.B.-M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Chilean National Agency for Research and Development ANID-
FONDECYT, grant numbers 1170367 (C.B.M. and J.P.C.), 11181182 (J.P.C.), 1180940 (P.E.C. and A.B.), 1190392 (A.S.),
and 3180707 (G.R.). ANID-Programa Becas-Doctorado Becas Chile 2019-72200391 supported AB. The funder had
no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments: We thank Ana M. Jansen, André L.R. Roque, and Samantha C.C. Xavier for inviting us to
contribute to this Special Issue. We specially thank all colleagues and devoted librarians who helped us to obtain
copies of articles not available online: A.M. Adriazola, R. Araya, F. Fredes, A. García, C. González, D. González-Acuña,
M. Ehrenfeld, L. Hernández, U. Kemmerling, J.C. Machuca, M. Miles, J. Morales, P. Paredes, A. Parra, J.D. Reyes, A.
Schuler, P.P. Zegers, and I. Zulantay. We also thank Daniela Estay-Olea (@ilustra.nativa at Instagram) for silhouette
drawings and Esteban San Juan for compiling the map.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. National Center for Biotechnology Information (NCBI) [Internet]. Bethesda (MD): National Library of
Medicine (US), National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.
gov/ (accessed on 20 May 2020).

2. Kaufer, A.; Ellis, J.; Stark, D.; Barratt, J. The evolution of trypanosomatid taxonomy. Parasit. Vectors 2017, 10,
287. [CrossRef] [PubMed]

3. World Health Organization. Research Priorities for Chagas Disease, Human African Trypanosomiasis and
Leishmaniasis; WHO Technical Report Series Nº 975: Geneva, Italy, 2012.

4. Roche, B.; Broutin, H.; Simard, F. Ecology and Evolution of Infectious Diseases: Pathogen Control and Public Health
Management in Low-Income Countries; Oxford University Press: Oxford, UK, 2018.

5. Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.;
Hedao, P.; Noss, R.; et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience
2017, 67, 534–545. [CrossRef] [PubMed]

6. Ministerio del Medio Ambiente (MMA). Biodiversidad de Chile; Patrimonio y Desafíos. Tercera Edición; Tomo
I, 430 pages: Santiago, Chile, 2018; Available online: https://mma.gob.cl/wp-content/uploads/2019/04/Tomo-
I-libro-Biodiversidad-Chile-MMA-web.pdf (accessed on 15 May 2020).

7. Jaksic, F.M. Vertebrate invaders and their ecological impacts in Chile. Biodivers. Conserv. 1998, 7, 1427–1445.
[CrossRef]

8. Taraschewski, H. Hosts and parasites as aliens. J. Helminthol. 2006, 80, 99–128. [CrossRef]
9. Botto-Mahan, C.; Sepúlveda, M.; Vidal, M.; Acuña-Retamar, M.; Ortiz, S.; Solari, A. Trypanosoma cruzi

infection in the wild kissing bug Mepraia gajardoi from the Chilean Southern Pacific Ocean coast. Acta Trop.
2008, 105, 166–169. [CrossRef]

10. Bacigalupo, A.; Torres-Pérez, F.; Segovia, V.; García, A.; Correa, J.P.; Moreno, L.; Arroyo, P.; Cattan, P.E.
Sylvatic foci of the Chagas disease vector Triatoma infestans in Chile: Description of a new focus and challenges
for control programs. Mem. Inst. Oswaldo Cruz 2010, 105, 633–641. [CrossRef]

http://qgis.osgeo.org
http://labgeo.ufro.cl
https://tapiquen-sig.jimdofree.com
https://tapiquen-sig.jimdofree.com
https://ecoregions2017.appspot.com
http://www.mdpi.com/2076-0817/9/8/661/s1
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://dx.doi.org/10.1186/s13071-017-2204-7
http://www.ncbi.nlm.nih.gov/pubmed/28595622
http://dx.doi.org/10.1093/biosci/bix014
http://www.ncbi.nlm.nih.gov/pubmed/28608869
https://mma.gob.cl/wp-content/uploads/2019/04/Tomo-I-libro-Biodiversidad-Chile-MMA-web.pdf
https://mma.gob.cl/wp-content/uploads/2019/04/Tomo-I-libro-Biodiversidad-Chile-MMA-web.pdf
http://dx.doi.org/10.1023/A:1008825802448
http://dx.doi.org/10.1079/JOH2006364
http://dx.doi.org/10.1016/j.actatropica.2007.11.003
http://dx.doi.org/10.1590/S0074-02762010000500006


Pathogens 2020, 9, 661 16 of 21

11. Rives-Blanchard, N.; Torres-Pérez, F.; Ortiz, S.; Solari, A.; Campos-Soto, R. Trypanosoma cruzi over the ocean:
Insular zones of Chile with presence of infected vector Mepraia species. Acta Trop. 2017, 172, 229–231. [CrossRef]

12. Tapia-Garay, V.; Figueroa, D.P.; Maldonado, A.; Frías-Laserre, D.; González, C.R.; Parra, A.; Canals, L.;
Apt, W.; Alvarado, S.; Cáceres, D.; et al. Assessing the risk zones of Chagas’ disease in Chile, in a world
marked by global climatic change. Mem. Inst. Oswaldo Cruz 2018, 113, 24–29. [CrossRef]

13. Garrido, R.; Bacigalupo, A.; Peña-Gómez, F.; Bustamante, R.O.; Cattan, P.E.; Gorla, D.; Botto-Mahan, C.
Potential impact of climate change on geographical distribution of two wild vectors of Chagas disease in
Chile: Mepraia spinolai and Mepraia gajardoi. Parasit. Vectors 2019, 12, 478. [CrossRef]

14. Ihle-Soto, C.; Costoya, E.; Correa, J.P.; Bacigalupo, A.; Cornejo-Villar, B.; Estadella, V.; Solari, A.; Ortiz, S.;
Hernández, H.J.; Botto-Mahan, C.; et al. Spatio-temporal characterization of Trypanosoma cruzi infection and
discrete typing units infecting hosts and vectors from non-domestic foci of Central Chile. PLoS Negl. Trop. Dis.
2019, 13, e7170. [CrossRef]

15. Schenone, H.; Villarroel, F.; Rojas, A.; Alfaro, E. Biological and ecological factors in the epidemiology of
Chagas’ disease in Chile. Bol. Chil. Parasitol. 1980, 35, 42–54. [PubMed]

16. Schenone, H.; Contreras, M.C.; Borgono, J.M.; Maturana, R.; Salinas, P.; Sandoval, L.; Rojas, A.; Tello, P.;
Villarroel, F. Overview of the epidemiology of Chagas’ disease in Chile. Bol. Chil. Parasitol. 1991, 46, 19–30.
[PubMed]

17. Rozas, M.; Botto-Mahan, C.; Coronado, X.; Ortiz, S.; Cattan, P.; Solari, A. Trypanosoma cruzi infection in wild
mammals from a Chagasic area of Chile. Am. J. Trop. Med. Hyg. 2005, 73, 517–519. [CrossRef] [PubMed]

18. Cabello, J.; Altet, L.; Napolitano, C.; Sastre, N.; Hidalgo, E.; Davila, J.A.; Millan, J. Survey of infectious
agents in the endangered Darwin’s fox (Lycalopex fulvipes): High prevalence and diversity of hemotrophic
mycoplasmas. Vet. Microbiol. 2013, 167, 448–454. [CrossRef]

19. Cevidanes, A.; Cataldo, S.D.; Muñoz-San Martín, C.; Hernández, C.; Latrofa, M.S.; Cattan, P.; Otranto, D.;
Millán, J. Canine vector-borne pathogens in rural dogs in Chile: Molecular survey and co-infection patterns.
Unpublished (Pre-print available). [CrossRef]

20. Forrester, D.J.; Greiner, E.C.; McFarlane, R.W. Blood parasites of some columbiform and passeriform birds
from Chile. J. Wildl. Dis. 1977, 13, 94–96. [CrossRef] [PubMed]

21. Ortiz, S.; Marín, J.C.; Correa, J.P.; Solari, A. Molecular characterization of a Trypanosomatid circulating in
guanacos (Lama guanicoe Müller 1776) from Putre and Magallanes, Chile. Parasitol. Lat. 2020, 69, 79.

22. Martinez, J.; Vasquez, R.A.; Marques, A.; Diez-Fernandez, A.; Merino, S. The prevalence and molecular
characterization of blood parasites infecting the vulnerable Tamarugo Conebill (Conirostrum tamarugense)
and other birds in the Pampa del Tamarugal, Chile. Emu-Austral Ornithol. 2016, 116, 310–314. [CrossRef]

23. Martinez, J.; Vasquez, R.A.; Venegas, C.; Merino, S. Molecular characterisation of haemoparasites in
forest birds from Robinson Crusoe Island: Is the Austral Thrush a potential threat to endemic birds?
Bird Conserv. Int. 2015, 25, 139–152. [CrossRef]

24. Morillas, J.; George-Nascimento, M.; Valeria, H.; Khan, R.A. Trypanosoma humboldti sp. from the Chilean
Catshark, Schroederichthys chilensis (Guichenot, 1848). J. Protozool. 1987, 34, 342–344. [CrossRef]

25. Valenzuela, A.; Oyarzún, C.; Silva, V. Blood cells of the Schroederichthys chilensis (Guichenot 1848):
The leukocytes (Elasmobranchii, Scyliorhinidae). Gayana 2003, 67, 130–137. [CrossRef]

26. Silva, V.; Valenzuela, A.; Ruiz, P.; Oyarzún, C. Trypanosoma humboldti in Schroederichthys chilensis (Chondrichthyes,
Elasmobranchii, Scyliorhinidae) as non destructive indicator of contamination. Gayana 2005, 69, 160–165.
[CrossRef]

27. Franjola, R.; Soto, G.; Montefusco, A. Prevalence of protozoa infections in synanthropic rodents in Valdivia
City, Chile. Bol. Chil. Parasitol. 1995, 50, 66–72. [PubMed]

28. Iriarte, A. Mamíferos de Chile; Lynx Edicions: Barcelona, Spain, 2008; p. 420.
29. Whiting, C. Contribución al estudio de las reservas de parásitos de la enfermedad de Chagas en Chile.

Primeros hallazgos en Chile de mamíferos silvestres infestados por Trypanosoma cruzi. Rev. Chil. Hig. Med. Prev.
1946, 8, 69–100.

30. Durán, J.; Videla, M.; Apt, W. Chagas disease in a community of small sympatric mammals from Las
Chinchillas National Reserve, IV Region, Chile. Parasitol. Día 1989, 13, 15–20.

31. Rozas, M.; Botto-Mahan, C.; Coronado, X.; Ortiz, S.; Cattan, P.E.; Solari, A. Co-existence of Trypanosoma cruzi
genotypes in wild and peridomestic mammals in Chile. Am. J. Trop. Med. Hyg. 2007, 77, 647–653. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.actatropica.2017.05.020
http://dx.doi.org/10.1590/0074-02760170172
http://dx.doi.org/10.1186/s13071-019-3744-9
http://dx.doi.org/10.1371/journal.pntd.0007170
http://www.ncbi.nlm.nih.gov/pubmed/6797447
http://www.ncbi.nlm.nih.gov/pubmed/1843858
http://dx.doi.org/10.4269/ajtmh.2005.73.517
http://www.ncbi.nlm.nih.gov/pubmed/16172474
http://dx.doi.org/10.1016/j.vetmic.2013.09.034
http://dx.doi.org/10.21203/rs.2.22960/v1
http://dx.doi.org/10.7589/0090-3558-13.1.94
http://www.ncbi.nlm.nih.gov/pubmed/402486
http://dx.doi.org/10.1071/MU15090
http://dx.doi.org/10.1017/S0959270914000227
http://dx.doi.org/10.1111/j.1550-7408.1987.tb03187.x
http://dx.doi.org/10.4067/S0717-65382003000100018
http://dx.doi.org/10.4067/S0717-65382005000100020
http://www.ncbi.nlm.nih.gov/pubmed/8762669
http://dx.doi.org/10.4269/ajtmh.2007.77.647
http://www.ncbi.nlm.nih.gov/pubmed/17978065


Pathogens 2020, 9, 661 17 of 21

32. Botto-Mahan, C.; Campos, R.; Acuña-Retamar, M.; Coronado, X.; Cattan, P.; Solari, A. Temporal variation of
Trypanosoma cruzi infection in native mammals in Chile. Vector-Borne Zoonot. Dis. 2010, 10, 317–319. [CrossRef]
[PubMed]

33. Correa, J.P.; Bacigalupo, A.; Fontúrbel, F.; Oda, E.; Cattan, P.E.; Solari, A.; Botto-Mahan, C. Spatial distribution
of an infectious disease in a native small mammal community. Sci. Nat. 2015, 102, 51. [CrossRef]

34. Bacigalupo, A.; Ihle-Soto, C.; Costoya, E.; Correa, J.P.; Cornejo-Villar, B.; Estadella, V.; Solari, A.; Ortiz, S.;
Botto-Mahan, C.; Cattan, P.E. Spatio-temporal distribution of Trypanosoma cruzi in foci of the North-Central
zone of Chile. Parasitol. Lat. 2018, 67, 18–19.

35. Zingales, B.; Andrade, S.G.; Briones, M.R.S.; Campbell, D.A.; Chiari, E.; Fernandes, O.; Guhl, F.; Lages-Silva, E.;
Macedo, A.M.; Machado, C.R.; et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature:
Second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz 2009, 104, 1051–1054. [CrossRef]

36. Martínez, R.; Ahumada, C.; Contreras, M.C.; Villarroel, F.; Rojas, A.; Schenone, H. Chagas’ disease in Chile.
Rural Sectors. Domiciliary triatomid infestation and Trypanosoma cruzi infection of the vector and mammals
of Region I (1982–1983). Bol. Chil. Parasitol. 1983, 38, 70–72.

37. Burchard, L.; Cornejo, J.; Cruz, L.; Contreras, M.C.; Vargas, L.; Villarroel, F.; Rojas, A.; Schenone, H.
Epidemiology of Chagas’ disease in Chile. Rural sectors. Domiciliary triatomid infestation and Trypanosoma
cruzi infection of the vector and domestic mammals of Region II (1983). Bol. Chil. Parasitol. 1984, 39, 17–19.
[PubMed]

38. Lorca, M.; Campano, S.; Meyer-Kayser, E. Trypanosoma cruzi infection in South American camelids. Parasitol.
Día 1991, 15, 52–54.

39. Villarroel, F.; Schenone, H.; Contreras, M.C.; Rojas, A.; Hernandez, E. Chagas disease in the Chilean altiplano.
Epidemiological, parasitological, and clinical aspects. Bol. Chil. Parasitol. 1991, 46, 61–69. [PubMed]

40. Neghme, A.; Román, J. Present state of Chagas’ disease surveys in Chile. Am. J. Trop. Med. Hyg. 1948,
835–839. [CrossRef] [PubMed]

41. Neghme, A.; Román, J.; Sotomayor, R. New data on Chagas’ disease in Chile. Bol. Oficina Sanit. Panam. 1949,
28, 808–817. [PubMed]

42. Neghme, A.R.; Schenone, H. Resumen de veinte años de investigación sobre la enfermedad de Chagas en
Chile. Rev. Med. Chile 1960, 88, 82–93.

43. Schenone, H. The status of epidemiological research in Chile on Chagas’s disease. Bol. Oficina Sanit. Panam.
1971, 70, 250–255.

44. Jiménez, J.; Lorca, M. American trypanosomiasis in sylvatic vertebrates and its relation to the vector
Triatoma spinolai. Arch. Med. Vet. 1990, 22, 179–183.

45. Correa, J.P.; Quiroga, N.; Campos-Soto, R.; Díaz-Campusano, G.; Yañez-Meza, A.; Allendes, J.L.; Rodríguez-San
Pedro, A.; Botto-Mahan, C. Detection of Trypanosoma cruzi DNA in bats from two protected areas of
central-northern Chile: Preliminary data. Parasitol. Lat. 2020, 69, 76.

46. Campos, R.; Botto-Mahan, C.; Ortiz, S.; Acuña, M.; Cattan, P.; Solari, A. Trypanosoma cruzi detection in blood
by xenodiagnosis and polymerase chain reaction in the wild rodent Octodon degus. Am. J. Trop. Med. Hyg.
2007, 76, 324–326. [CrossRef]

47. Campos, R.; Acuña-Retamar, M.; Botto-Mahan, C.; Ortiz, S.; Cattan, P.; Solari, A. Susceptibility of
Mepraia spinolai and Triatoma infestans to different Trypanosoma cruzi strains from naturally infected rodent
hosts. Acta Trop. 2007, 104, 25–29. [CrossRef]

48. Galuppo, S.; Bacigalupo, A.; García, A.; Ortiz, S.; Coronado, X.; Cattan, P.E.; Solari, A. Predominance of
Trypanosoma cruzi genotypes in two reservoirs infected by sylvatic Triatoma infestans of an endemic area of
Chile. Acta Trop. 2009, 111, 90–93. [CrossRef] [PubMed]

49. Campos, R.; Botto-Mahan, C.; Ortiz, S.; Coronado, X.; Solari, A. Temporal fluctuation of infection with
different Trypanosoma cruzi genotypes in the wild rodent Octodon degus. Am. J. Trop. Med. Hyg. 2010, 83,
380–381. [CrossRef] [PubMed]

50. Botto-Mahan, C.; Bacigalupo, A.; Correa, J.P.; Oda, E.; Solari, A. Field assessment of Trypanosoma cruzi infection
and host survival in the native rodent Octodon degus. Acta Trop. 2012, 122, 164–167. [CrossRef] [PubMed]

51. Oda, E.; Solari, A.; Botto-Mahan, C. Effects of mammal host diversity and density in the infection level of a
sylvatic kissing bug. Med. Vet. Entomol. 2014, 28, 384–390. [CrossRef] [PubMed]

http://dx.doi.org/10.1089/vbz.2009.0006
http://www.ncbi.nlm.nih.gov/pubmed/19505255
http://dx.doi.org/10.1007/s00114-015-1304-5
http://dx.doi.org/10.1590/S0074-02762009000700021
http://www.ncbi.nlm.nih.gov/pubmed/6441582
http://www.ncbi.nlm.nih.gov/pubmed/1844136
http://dx.doi.org/10.4269/ajtmh.1948.s1-28.835
http://www.ncbi.nlm.nih.gov/pubmed/18107290
http://www.ncbi.nlm.nih.gov/pubmed/18139023
http://dx.doi.org/10.4269/ajtmh.2007.76.324
http://dx.doi.org/10.1016/j.actatropica.2007.07.005
http://dx.doi.org/10.1016/j.actatropica.2009.02.010
http://www.ncbi.nlm.nih.gov/pubmed/19426670
http://dx.doi.org/10.4269/ajtmh.2010.09-0797
http://www.ncbi.nlm.nih.gov/pubmed/20682886
http://dx.doi.org/10.1016/j.actatropica.2011.12.003
http://www.ncbi.nlm.nih.gov/pubmed/22192594
http://dx.doi.org/10.1111/mve.12064
http://www.ncbi.nlm.nih.gov/pubmed/24844934


Pathogens 2020, 9, 661 18 of 21

52. Botto-Mahan, C.; Rojo, G.; Sandoval-Rodríguez, A.; Peña, F.; Ortiz, S.; Solari, A. Temporal variation in
Trypanosoma cruzi lineages in the native rodent Octodon degus in semiarid Chile. Acta Trop. 2015, 151, 178–181.
[CrossRef]

53. Jiménez, C.; Fontúrbel, F.; Oda, E.; Ramírez, P.; Botto-Mahan, C. Parasitic infection alters rodent movement
in a semiarid ecosystem. Mamm. Biol. 2015, 80, 255–259. [CrossRef]

54. Donoso, M.I.; Cares, R.A.; Fontúrbel, F.; Oda, E.; Ramírez, P.A.; Botto-Mahan, C. Temporal fluctuation in
shrub species preferences by two native rodents: The effect of infection status on habitat use. Austral. Ecol.
2016, 41, 512–518. [CrossRef]

55. Rojo, G.; Sandoval-Rodríguez, A.; López, A.; Ortiz, S.; Correa, J.P.; Saavedra, M.; Botto-Mahan, C.; Cattan, P.E.;
Solari, A. Within-host temporal fluctuations of Trypanosoma cruzi discrete typing units: The case of the wild
reservoir rodent Octodon degus. Parasit. Vectors 2017, 10, 380. [CrossRef]

56. Yefi-Quinteros, E.; Muñoz-San Martín, C.; Bacigalupo, A.; Correa, J.P.; Cattan, P.E. Trypanosoma cruzi load in
synanthropic rodents from rural areas in Chile. Parasit. Vectors 2018, 11, 171. [CrossRef]

57. Botto-Mahan, C.; Bacigalupo, A.; Correa, J.P.; Fontúrbel, F.E.; Cattan, P.E.; Solari, A. Prevalence, infected
density or individual probability of infection? Assessing vector infection risk in the wild transmission of
Chagas disease. Proc. R. Soc. B 2020, 287, 20193018. [CrossRef] [PubMed]

58. Pérez, C.; Stagno, S.; Welch, E.; Villarroel, F.; Rojas, A.; Schenone, H. Human and animal Chagas’ infection in
dwellings previously sprayed with insecticides. Bol. Chil. Parasitol. 1970, 25, 33–36. [PubMed]

59. Correa, V.; Briceno, J.; Zuniga, J. Trypanosoma cruzi infection in domestic animals in rural sections of the IV
Region, Chile. Bol. Chil. Parasitol. 1982, 37, 27–28. [PubMed]

60. Bertoglia, J.; Rodríguez, J.; Gordillo, N.; Mendoza, J.; Contreras, M.C.; Rojas, J.; Rojas, A.; Villarroel, F.;
Schenone, H. Epidemiology of Chagas’ disease in Chile. Rural sectors. Infection of domestic mammals by
Trypanosoma cruzi and new contributions to the knowledge of domiciliary triatomid infestation in Region III,
Chile (1982–1983). Bol. Chil. Parasitol. 1984, 39, 20–23.

61. Correa, V.; Zúñiga, J.; Briceño, J.; Contreras, M.C.; Aranda, J.C.; Valdés, J.; Rojas, A.; Villarroel, F.; Schenone, H.
Epidemiology of Chagas’ disease in Chile. Rural sections. Domiciliary infestation by Triatominae, rates of
Trypanosoma cruzi infection in these and new contributions to the knowledge of Chagas infection in domestic
mammals from Region IV (1982–1984). Bol. Chil. Parasitol. 1984, 39, 24–27.

62. Flores, B.; Hernández, G.; Lepe, A.; Contreras, M.C.; Sandoval, L.; Villarroel, F.; Rojas, A.; González, O.;
Schenone, H. Epidemiology of Chagas’ disease in Chile. Rural sectors. Domiciliary triatomid infestation and
Trypanosoma cruzi infection of the vector and domestic mammals in Region V 1983. Bol. Chil. Parasitol. 1984,
39, 62–65.

63. Villarroel, F.; Rojas, A.; Contreras, M.C.; Schenone, H. Epidemiology of Chagas’ disease in Chile. Rural
sectors. Domiciliary triatomid infestation and Trypanosoma cruzi infection of vectors and domestic mammals
of the Metropolitan Region. Bol. Chil. Parasitol. 1984, 39, 65–68.

64. Venegas, L.; Rojas, A.; Villarroel, F.; Contreras, M.C.; Sandoval, L.; Schenone, H. Epidemiology of Chagas’
disease in Chile. Rural sectors. Domiciliary triatomid infestation and Trypanosoma cruzi infection of the vector
and domestic mammals of the Bernardo O’Higgins Region VI, 1983. Bol. Chil. Parasitol. 1984, 39, 69–72.

65. Schenone, H.; Contreras, M.C.; Borgoño, J.M.; Rojas, A.; Villarroel, F.; Valdés, J. Chagas’ disease in Chile. Rural
and periurban sectors of the endemo-enzootic area. Relationship between housing conditions, domiciliary
triatomid infestation and infection by Trypanosoma cruzi of the vector, humans and domestic mammals.
1982–1985. Bol. Chil. Parasitol. 1985, 40, 58–67.

66. Ríos, A.; Alcaíno, H.; Apt, W. Chagas’s disease in synanthropic dogs, cattle and equines of the Limarí
Province, Chile. Parasitol. Día 1986, 10, 40–45.

67. Donckaster, R.; Neumann, G.; Gajardo, G.; Díaz, J. Evaluación de un programa de erradicación del triatomino
domiciliario en el Valle de Elqui. Bol. Chil. Parasitol. 1962, 17, 2–6. [PubMed]

68. Schenone, H.; Villarroel, F.; Alfaro, E. Epidemiology of Chagas disease in Chile. Housing conditions related
to the presence of Triatoma infestans and the rate of humans and animals infected by Trypanosoma cruzi.
Bol. Chil. Parasitol. 1978, 33, 2–7. [PubMed]

69. Alcaino, H.A.; Arrau, S.A.; Apt, W.; Ríos, A. Chagas’ disease in synanthropic goats of the Limari Province,
Chile. Rev. Med. Chile 1982, 110, 328–332. [PubMed]

70. Ulloa, M.; Traslaviña, M.; Alcaino, H.; Apt, W.; Sandoval, J. Enfermedad de Chagas en caninos y caprinos
sinantrópicos de la provincia del Choapa (IV Región), Chile. Parasitol. Día 1989, 13, 120–124.

http://dx.doi.org/10.1016/j.actatropica.2015.06.008
http://dx.doi.org/10.1016/j.mambio.2015.01.006
http://dx.doi.org/10.1111/aec.12338
http://dx.doi.org/10.1186/s13071-017-2314-2
http://dx.doi.org/10.1186/s13071-018-2771-2
http://dx.doi.org/10.1098/rspb.2019.3018
http://www.ncbi.nlm.nih.gov/pubmed/32156212
http://www.ncbi.nlm.nih.gov/pubmed/4098110
http://www.ncbi.nlm.nih.gov/pubmed/6820288
http://www.ncbi.nlm.nih.gov/pubmed/13887194
http://www.ncbi.nlm.nih.gov/pubmed/104721
http://www.ncbi.nlm.nih.gov/pubmed/6818653


Pathogens 2020, 9, 661 19 of 21

71. Alcaíno, T.V.; Lorca Herrera, M.; Nuñez, F.; Issotta, A.; Gorman, T. Chagas’ disease in goats from the
Metropolitan Region, Chile: Seroepidemiological survey and experimental infection. Parasitol. Día 1995, 19,
30–36.

72. Aguilera, C.; Zulantay, I.; Saavedra, M.; Apt, W.; Martinez, G.; Rodriguez, J. Economic loss by goats infected
with Trypanosoma cruzi. IV Region, Coquimbo, Chile. Parasitol. Lat. 2015, 64, 23–31.

73. Gasic, G.; Bertin, V. Animal reservoirs of the virus of American Trypanosomiasis in Chile. Rev. Chil. Hig.
Med. Prev. 1940, 2, 247–261.

74. Gasic, G.; Bertin, V. The epidemiology of Chagas’ disease in Chile. Rev. Chil. Pediatr. 1940, 11, 561–583.
75. Gasic, G.; Carvajal, V. Chagas’s disease in Chile. Symptomatology and epidemiology. Rev. Med. Chile 1941,

69, 818–833.
76. Gasic, G. Contribution to the study of Chagas’ disease in Chile. Proc. 8th Amer. Sci. Congr. 1942, 6, 239.
77. Gasic, G. Facts regarding Chagas’s disease in Chile. Bol. Oficina Sanit. Panam. 1943, 22, 327–335.
78. Badínez, O. Encuestas rurales sobre enfermedad de Chagas en la Provincia de Santiago. Rev. Hig. Med. Prev.

1943, 6, 1–9.
79. Pino, F.; Whiting, C.; Alee, K.; Román, J. Una experiencia sanitaria rural. II. Encuesta epidemiológica de

enfermedad de Chagas en el distrito sanitario experimental de Pirque (Provincia de Santiago). Rev. Chil. Hig.
Med. Prev. 1953, 15, 65–71. [PubMed]

80. Forgacs, E.; Schenone, H.; Niedmann, G. Encuesta sobre enfermedad de Chagas en el pueblo minero Inca de
Oro. Bol. Chil. Parasitol. 1957, 12, 51–52. [PubMed]

81. Schenone, H.; Ramírez, M.; Reyes, H.; Rojas, A.; Díaz, L. Contribution to the epidemiology of Chagas disease
in Chile. Epidemiological survey in Colchagua Province. Bol. Chil. Parasitol. 1966, 21, 66–69.

82. Rojas, A.; Sotelo, J.M.; Villarroel, F.; Contreras, M.C. The importance of dogs and cats in the epidemiology of
Chagas disease. Bol. Chil. Parasitol. 1973, 28, 42–43.

83. Rodríguez, J.; Bertoglia, J.; Gordillo, N.; Mendoza, J.; Rojas, J.; Contreras, M.C.; Schenone, H.; Villarroel, F.;
Rojas, A. Domiciliary Triatomidae infestation and Trypanosoma cruzi infection in Region III of Atacama, Chile.
Bol. Chil. Parasitol. 1982, 37, 29–30.

84. Burchard, L.; Cáceres, J.; Sagua, H.; Bahamonde, M.I.; Neira, I.; Araya, J.; Goycolea, M. Present status of
seroprevalence of canine and human chagasic infection in San Pedro de Atacama, II Región, Antofagasta,
Chile 1995. Bol. Chil. Parasitol. 1996, 51, 76–79.

85. González, C.R.; Reyes, C.; Canals, A.; Parra, A.; Munoz, X.; Rodriguez, K. An entomological and
seroepidemiological study of the vectorial-transmission risk of Chagas disease in the coast of northern Chile.
Med. Vet. Entomol. 2015, 29, 387–392. [CrossRef]

86. Opazo, A.; Urrutia, S.; Bacigalupo, A. Determination of Trypanosoma cruzi infection in dogs and their ticks
using polymerase chain reaction in Chile. In Proceedings of the 41st World Small Animal Veterinary
Association Congress, Cartagena, Colombia, 27–30 September 2016; p. 816.

87. Ortiz, S.; Ceballos, M.J.; González, C.R.; Reyes, C.; Gómez, V.; García, A.; Solari, A. Trypanosoma cruzi diversity
in infected dogs from areas of the north coast of Chile. Vet. Parasitol. Reg. Stud. Rep. 2016, 5, 42–47. [CrossRef]

88. Botto-Mahan, C.; Acuña-Retamar, M.; Campos, R.; Cattan, P.; Solari, A. European rabbits (Oryctolagus
cuniculus) are naturally infected with different Trypanosoma cruzi genotypes. Am. J. Trop. Med. Hyg. 2009, 80,
944–946. [CrossRef] [PubMed]

89. Clarkson, M.J. Trypanosomosis of domesticated animals of South America. Trans. Roy. Soc. Trop. Med. Hyg.
1976, 70, 125–126. [CrossRef]

90. Desquesnes, M. Livestock Trypanosomoses and Their Vectors in Latin America; CIRAD-EMVT Publication: OIE,
Paris, France, 2004; Available online: http://www.oie.int/doc/ged/D9818 (accessed on 1 March 2020).

91. Gajardo-Tobar, R.; Thiermann, E. Discovery of a new Trypanosoma in Chile. Bol. Inf. Parasit. Chil. 1950, 5,
23–25.

92. Ministerio del Medio Ambiente (MMA). Inventario Nacional de Especies de Chile. Available online:
http://especies.mma.gob.cl/CNMWeb/Web/WebCiudadana/Default.aspx (accessed on 1 March 2020).

93. Jones, T.W.; Dávila, A.M.R. Trypanosoma vivax–out of Africa. Trends Parasitol. 2001, 17, 99–101. [CrossRef]
94. Aregawi, W.G.; Agga, G.E.; Abdi, R.D.; Büscher, P. Systematic review and meta-analysis on the global distribution,

host range, and prevalence of Trypanosoma evansi. Parasit. Vectors 2019, 12, 67. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/13237563
http://www.ncbi.nlm.nih.gov/pubmed/13471683
http://dx.doi.org/10.1111/mve.12131
http://dx.doi.org/10.1016/j.vprsr.2016.09.004
http://dx.doi.org/10.4269/ajtmh.2009.80.944
http://www.ncbi.nlm.nih.gov/pubmed/19478255
http://dx.doi.org/10.1016/0035-9203(76)90171-1
http://www.oie.int/doc/ged/D9818
http://especies.mma.gob.cl/CNMWeb/Web/WebCiudadana/Default.aspx
http://dx.doi.org/10.1016/S1471-4922(00)01777-3
http://dx.doi.org/10.1186/s13071-019-3311-4
http://www.ncbi.nlm.nih.gov/pubmed/30704516


Pathogens 2020, 9, 661 20 of 21

95. Martínez, M.F.; Kowalewski, M.M.; Salomón, O.D.; Schijman, A.G. Molecular characterization of trypanosomatid
infections in wild howler monkeys (Alouatta caraya) in northeastern Argentina. Int. J. Parasitol. Parasites Wildl.
2016, 5, 198–206. [CrossRef] [PubMed]

96. Carhuallanqui, A.; Chávez, A.; Pinedo, R. Trypanosoma spp. in rats (Rattus rattus and Rattus norvegicus) from
two environments: Food markets and pig farms. Rev. Inv. Vet. Perú 2017, 28, 958–968. [CrossRef]

97. Orozco, M.M.; Argibay, H.D.; Minatel, L.; Guillemi, E.C.; Berra, Y.; Schapira, A.; Di Nucci, D.; Marcos, A.;
Lois, F.; Falzone, M.; et al. A participatory approach to marsh deer (Blastocerus dichotomus) morbidity and
mortality passive surveillance in Argentina: First results. Unpublished (pre-print available). [CrossRef]

98. Davies, C.R.; Reithinger, R.; Campbell-Lendrum, D.; Feliciangeli, D.; Borges, R.; Rodríguez, N.
The epidemiology and control of leishmaniasis in Andean countries. Cadernos de Saúde Pública 2000, 16,
925–950. [CrossRef]

99. Roque, A.L.R.; Jansen, A.M. Wild and synanthropic reservoirs of Leishmania species in the Americas. Int. J.
Parasitol. Parasites Wildl. 2014, 3, 251–262. [CrossRef]

100. Hemmingsen, W.; Jansen, P.A.; MacKenzie, K. Crabs, leeches and trypanosomes: An unholy trinity?
Mar. Pollut. Bull. 2005, 50, 336–339. [CrossRef]

101. Latif, A.A.; Bakheit, M.A.; Mohamed, A.E.; Zweygarth, E. High infection rates of the tick Hyalomma anatolicum
anatolicum with Trypanosoma theileri. Onderstepoort J. Vet. Res. 2004, 71, 251–256. [CrossRef] [PubMed]

102. Austen, J.M.; Ryan, U.M.; Friend, J.A.; Ditcham, W.G.F.; Reid, S.A. Vector of Trypanosoma copemani identified
as Ixodes sp. Parasitology 2011, 138, 866–872. [CrossRef] [PubMed]

103. Krige, A.-S.; Thompson, R.C.A.; Clode, P.L. ‘Hang on a tick’–Are ticks really the vectors for Australian
trypanosomes? Trends Parasitol. 2019, 35, 596–606. [CrossRef] [PubMed]

104. Mohamed, H.D.; Molyneux, D.H.; Wallbanks, K.R. On Trypanosoma (Megatrypanum) talpe from Talpa europaea:
Method of division and evidence of Haemogamasinae as vectors. J. Parasitol. 1987, 73, 1050–1052. [CrossRef]
[PubMed]

105. Bastin, P. The trypanosome journey in the tsetse fly. C. R. Biol. 2019, 342, 273–275. [CrossRef]
106. Mulandane, F.C.; Snyman, L.P.; Brito, D.R.A.; Bouyer, J.; Fafetine, J.; Van Den Abbeele, J.; Oosthuizen, M.;

Delespaux, V.; Neves, L. Evaluation of the relative roles of the Tabanidae and Glossinidae in the transmission
of trypanosomosis in drug resistance hotspots in Mozambique. Parasit. Vectors 2020, 13, 219. [CrossRef]

107. Votýpka, J.; Szabová, J.; Rádrová, J.; Zídková, L.; Svobodová, M. Trypanosoma culicavium sp. nov., an avian
trypanosome transmitted by Culex mosquitoes. Int. J. Syst. Evol. Microbiol. 2012, 62, 745–754. [CrossRef]

108. Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A Historical overview of
the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 2016,
10, e0004349. [CrossRef]

109. Millán, J.; Travaini, A.; Zanet, S.; López-Bao, J.V.; Trisciuoglio, A.; Ferroglio, E.; Rodríguez, A. Detection of
Leishmania DNA in wild foxes and associated ticks in Patagonia, Argentina, 2000 km south of its known
distribution area. Parasit. Vectors 2016, 9, 241. [CrossRef]

110. González, C.R. Reporte de Lutzomyia (Diptera: Psychodidae) en Chile. Parasitol. Día 2013, 4, 3.
111. Georgieva, A.Y.; Gordon, E.R.L.; Weirauch, C. Sylvatic host associations of Triatominae and implications for

Chagas disease reservoirs: A review and new host records based on archival specimens. PeerJ 2017, 5, e3826.
[CrossRef] [PubMed]

112. Canals, M.; González, C.; Canals, L.; Canals, A.; Cáceres, D.; Alvarado, S.; Cattan, P.; Saavedra, M.; Zulantay, I.;
Apt, W. What do the numbers tell us about the temporal evolution of Chagas’ disease? Rev. Chile. Infectol.
2017, 34, 120–127. [CrossRef] [PubMed]

113. Frías-Lasserre, D.; González, C.R.; Reyes, C.; Blanco de Carvalho, D.; Oliveira, J.; Canals, M.; da Rosa, J.A.
Wing polymorphism and Trypanosoma cruzi infection in wild, peridomestic and domestic collections of
Mepraia spinolai (Hemiptera: Reduviidae) from Chile. J. Med. Entomol. 2017, 54, 1061–1066. [CrossRef] [PubMed]

114. Jansen, A.M.; Roque, A.L.R. Domestic and wild mammalian reservoir. In American Trypanosomiasis Chagas
Disease—100 Years of Research; Telleria, J., Tibayrenc, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2010.

115. Añez, N.; Crisantea, G.; Soriano, P.J. Trypanosoma cruzi congenital transmission in wild bats. Acta Trop. 2009,
109, 78–80. [CrossRef]

116. Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Anthropogenic environmental change and the emergence of
infectious diseases in wildlife. Acta Trop. 2001, 78, 103–116. [CrossRef]

http://dx.doi.org/10.1016/j.ijppaw.2016.05.001
http://www.ncbi.nlm.nih.gov/pubmed/27617205
http://dx.doi.org/10.15381/rivep.v28i4.13880
http://dx.doi.org/10.21203/rs.2.21453/v2
http://dx.doi.org/10.1590/S0102-311X2000000400013
http://dx.doi.org/10.1016/j.ijppaw.2014.08.004
http://dx.doi.org/10.1016/j.marpolbul.2004.11.005
http://dx.doi.org/10.4102/ojvr.v71i4.228
http://www.ncbi.nlm.nih.gov/pubmed/15732451
http://dx.doi.org/10.1017/S0031182011000497
http://www.ncbi.nlm.nih.gov/pubmed/21518469
http://dx.doi.org/10.1016/j.pt.2019.05.008
http://www.ncbi.nlm.nih.gov/pubmed/31229455
http://dx.doi.org/10.2307/3282534
http://www.ncbi.nlm.nih.gov/pubmed/3309238
http://dx.doi.org/10.1016/j.crvi.2019.09.026
http://dx.doi.org/10.1186/s13071-020-04087-1
http://dx.doi.org/10.1099/ijs.0.032110-0
http://dx.doi.org/10.1371/journal.pntd.0004349
http://dx.doi.org/10.1186/s13071-016-1515-4
http://dx.doi.org/10.7717/peerj.3826
http://www.ncbi.nlm.nih.gov/pubmed/28948106
http://dx.doi.org/10.4067/S0716-10182017000200004
http://www.ncbi.nlm.nih.gov/pubmed/28632825
http://dx.doi.org/10.1093/jme/tjx061
http://www.ncbi.nlm.nih.gov/pubmed/28399301
http://dx.doi.org/10.1016/j.actatropica.2008.08.009
http://dx.doi.org/10.1016/S0001-706X(00)00179-0


Pathogens 2020, 9, 661 21 of 21

117. Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity
under different scenarios. Proc. R. Soc. B 2018, 285, 20180792. [CrossRef]

118. Acosta-Jamett, G.; Cleaveland, S.; Cunningham, A.A.; Bronsvoort, B.M.D. Demography of domestic dogs
in rural and urban areas of the Coquimbo region of Chile and implications for disease transmission.
Prev. Vet. Med. 2010, 94, 272–281. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1098/rspb.2018.0792
http://dx.doi.org/10.1016/j.prevetmed.2010.01.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Native Mammal Hosts 
	Order Didelphimorphia 
	Order Artiodactyla 
	Order Carnivora 
	Order Chiroptera 
	Order Rodentia 

	Alien Mammal Hosts 
	Order Artiodactyla 
	Order Carnivora 
	Order Lagomorpha 
	Order Perissodactyla 
	Order Rodentia 


	Discussion 
	Materials and Methods 
	Systematic Review Protocol, Search Strategy and Data Collection 
	Study Selection 

	References

