Impact of industrial production system parameters on chicken microbiomes: mechanisms to improve performance and reduce Campylobacter

McKenna, A. et al. (2020) Impact of industrial production system parameters on chicken microbiomes: mechanisms to improve performance and reduce Campylobacter. Microbiome, 8, 128. (doi: 10.1186/s40168-020-00908-8) (PMID:32907634) (PMCID:PMC7488076)

[img] Text
222308.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

3MB

Abstract

BACKGROUND:The factors affecting host-pathogen ecology in terms of the microbiome remain poorly studied. Chickens are a key source of protein with gut health heavily dependent on the complex microbiome which has key roles in nutrient assimilation and vitamin and amino acid biosynthesis. The chicken gut microbiome may be influenced by extrinsic production system parameters such as Placement Birds/m2 (stocking density), feed type and additives. Such parameters, in addition to on-farm biosecurity may influence performance and also pathogenic bacterial numbers such as Campylobacter. In this study, three different production systems 'Normal' (N), 'Higher Welfare' (HW) and 'Omega-3 Higher Welfare' (O) were investigated in an industrial farm environment at day 7 and day 30 with a range of extrinsic parameters correlating performance with microbial dynamics and Campylobacter presence. RESULTS:Our data identified production system N as significantly dissimilar from production systems HW and O when comparing the prevalence of genera. An increase in Placement Birds/m2 density led to a decrease in environmental pressure influencing the microbial community structure. Prevalence of genera, such as Eisenbergiella within HW and O, and likewise Alistipes within N were representative. These genera have roles directly relating to energy metabolism, amino acid, nucleotide and short chain fatty acid (SCFA) utilisation. Thus, an association exists between consistent and differentiating parameters of the production systems that affect feed utilisation, leading to competitive exclusion of genera based on competition for nutrients and other factors. Campylobacter was identified within specific production system and presence was linked with the increased diversity and increased environmental pressure on microbial community structure. Addition of Omega-3 though did alter prevalence of specific genera, in our analysis did not differentiate itself from HW production system. However, Omega-3 was linked with a positive impact on weight gain. CONCLUSIONS:Overall, our results show that microbial communities in different industrial production systems are deterministic in elucidating the underlying biological confounders, and these recommendations are transferable to farm practices and diet manipulation leading to improved performance and better intervention strategies against Campylobacter within the food chain.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Sloan, Professor William and Ijaz, Dr Umer
Authors: McKenna, A., Ijaz, U. Z., Kelly, C., Linton, M., Sloan, W. T., Green, B. D., Lavery, U., Dorrell, N., Wren, B. W., Richmond, A., Corcionivoschi, N., and Gundoglu, O.
College/School:College of Science and Engineering > School of Engineering > Infrastructure and Environment
Journal Name:Microbiome
Publisher:BioMed Central
ISSN:2049-2618
ISSN (Online):2049-2618
First Published:First published in Microbiome 8:128
Publisher Policy:Reproduced under a Creative Commons licence

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
170256Understanding microbial community through in situ environmental 'omic data synthesisUmer Zeeshan IjazNatural Environment Research Council (NERC)NE/L011956/1ENG - Infrastructure & Environment