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LOW-THRUST MULTIPLE ASTEROID MISSIONS WITH RETURN
TO EARTH USING MACHINE LEARNING

Giulia Viavattene∗, Matteo Ceriotti†

Sample-return missions to near-Earth asteroids (NEAs) are invaluable for the sci-
entific community to learn more about the initial stages of the solar system forma-
tion and life evolution. Thanks to its high specific impulse, a low-thrust propulsion
technology is capable of performing multiple asteroid rendezvouses (to collect
samples) and eventually returning to Earth. To identify the best asteroid sequences
with return to Earth, this work proposes to employ machine learning techniques
and, specifically, artificial neural networks (ANNs), to quickly estimate the cost of
each transfer between asteroids. The ANN is integrated within a sequence search
algorithm based on a tree search, which identifies the asteroid sequences and se-
lects the best ones in terms of propellant mass required and interest value. This
algorithm can design the sequences so that specific asteroids of interest, for which
a sample return would be more valuable, can be targeted. A pseudospectral opti-
mal control solver is then used to find the optimal trajectory and control history.
The performance of the proposed methodology is assessed by analyzing three dis-
tinctive NEA sequences ending with return to Earth and rendezvous. A near-term
low-thrust propulsion enables to rendezvous five asteroids, and ideally return sam-
ples to Earth in about ten years from launch. It is demonstrated that visiting more
interesting asteroids from the scientific point of view increases the appeal of the
sequence at the cost of a greater propellant mass required.

INTRODUCTION

The first sample return missions, which have been completed, are the Apollo Moon mission and
Russian Luna 16, 20 and 24 missions launched between 1968 and 1976, which returned success-
fully samples of the lunar surface to the Earth. This contributed greatly to understand Moon’s
geological history and composition.1 Similarly, the scientific community is interested in collecting
samples from the surface of asteroids. Because of the lack of ground observations or quality data
the asteroids’ composition is largely unknown and, as it is anticipated to vary considerably from
asteroid to asteroid, collecting samples from multiple asteroids is valuable. It is expected that this
will allow to learn more about the initial stages of the solar system formation and how life began.2, 3

Additional motivations that drive scientists to further study asteroids and, in particular, near-Earth
asteroids (NEAs) are planetary defense,4 scientific demonstration5, 6 and future exploitation of their
resources.7

To date, the JAXA Hayabusa probe rendezvoused with an S-type asteroid 25143 Itokawa and, in
November 2010, it returned an asteroid sample to Earth.8 In 2014 JAXA launched the improved
Hayabusa 2 probe to visit a near-Earth C-type asteroid 162173 Ryugu. It took samples of the
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asteroid surface and it is expected to return to Earth in late 2020.9 The OSIRIS-REx mission was
launched by NASA in 2016 to return samples from the near-Earth asteroid 101955 Bennu.2

Return missions of planetary and small-body samples represent one of the biggest challenges for
the space engineering. The ∆V required to complete this kind of missions can greatly outrun the
one necessary to fly one-way missions and, according to the rocket equation, with increasing ∆V
the propellant mass to complete the mission increases exponentially. Also, a high ∆V requires
the payload mass fraction to be inevitably small so that more propellant can be carried on board,
which consequently limits the dry mass and the maximum mass of samples which can be returned
to Earth.10

Rendezvousing multiple NEAs with sample return to Earth can increase the scientific return of
those missions.11, 12 Multiple-NEA missions give the possibility of visiting a larger number of
asteroids, from which samples can be extracted and returned to Earth for further studies. This kind
of missions can thus reduce the cost with respect to performing multiple space flights to a single
asteroid and relative sample return.

Multiple-target rendezvous missions are highly demanding in terms of energy, and they are even
more so when followed by a sample return to Earth. For this reason, an efficient propulsion system
is required to significantly keep the propellant mass ratio low. Low-thrust technologies, such as
solar electric propulsion (SEP), are a good candidate because of its high specific impulse.13, 14

To design multiple NEA rendezvous missions, a complex global optimization problem needs to
be solved. This is constituted by two coupled sub-problems.15 The first is a large combinatorial
sub-problem, which encodes the selection of the sequences of asteroids.16 To this end, trillions of
permutations should be analyzed, since more than 22,000 asteroids are known to date, according to
NASA’s database∗. The second sub-problem is continuous, and consists in finding the solution to an
optimal control problem (OCP) to obtain the optimal flight trajectory to visit the selected asteroids
with minimum propellant expenditure and/or time of flight (TOF). It should be stressed that the
two problems cannot be solved independently from each other, as the combinatorial part requires
inputs, such as duration and cost of each transfer, which are obtained by solving the continuous sub-
problem, and viceversa. This study proposes to use machine learning to solve the combinatorial
problem and, at the same time, the continuous problem through estimates.

The design of multiple asteroid missions has interested the space community in the past decades.
Asteroid-related problems were proposed in six out of the eight Global Trajectory Optimization
Competitions (GTOC)†. The majority of the proposed solutions suggests to use a simplified trajec-
tory model to obtain the asteroid sequence and, more accurate and complex methods to convert the
obtained sequence into a feasible low-thrust trajectory. For instance, in Peloni et al. (2016),17 low-
thrust trajectories are approximated using a shape-based method and a search-and-prune algorithm
is used to find the sequence. Differently, a homotopic approach is used in Tang et al. (2015),18

to quickly approximate the low-thrust transfers. Di Carlo et al. (2017)19 proposes to traverse the
asteroid belt with a high elliptical orbit and visit as many asteroids as possible that are encountered
along that orbit.

In the past, machine learning was applied successfully to solve complex problems in aerospace

∗Data available through the link https://cneos.jpl.nasa.gov/orbits/elements.html (accessed on
2020/01/10)
†Data available through the link https://sophia.estec.esa.int/gtoc_portal/ (accessed on

2020/01/10)
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Figure 1: Illustration of an ANN with L layers.

sciences. Dachwald (2004)20 used artificial neural networks and evolutionary algorithms to compute
the solar-sail trajectories to a NEA, showing that this method can explore the trajectory space search
more exhaustively than traditional optimal control methods. Similarly, Hennes et al. (2016)21

used machine learning to compute low-thrust transfers with minimum fuel mass between main-belt
asteroids. Mereta et al. (2017)22 employed machine learning techniques to estimate the final mass
of a spacecraft flying a low-thrust trajectory between two NEAs, instead of solving the full OCP.
Other applications include the increase of accuracy of pinpoint landing23 and orbit prediction,24 and
the design of multiple NEA missions using solar sailing25 or solar electric propulsion.26

The purpose of this work is to use an Artificial Neural Network (ANN) to identify the most
effective sequences of asteroids to visit and then return to Earth. It will be shown that a trained
ANN can quickly estimate, in a fraction of the time needed by optimal control solvers, the cost and
TOF of transfers using a near-term low-thrust propulsion system, vastly reducing the computational
time compared to traditional optimization techniques.26 The ANN is integrated within a sequence
search algorithm which allows the spacecraft to return to Earth within the maximum duration of the
mission.

MACHINE LEARNING FOR LOW-THRUST TRANSFERS

Inspired by the biological cognitive systems of the animal brain, an ANN is a complex computing
system that can model complex non-linear relationship to any degree of accuracy.27 For function
approximation, feedforward networks are preferred.28 A neural network is organized in layers and
information moves from the input layer to the output layer through a number of hidden layers. Each
layer presents a defined amount of neurons and each neuron is connected directly to the neurons of
the successive layer,29 as shown in Fig. 1.

The network is trained so that the mean-squared error between the network outputs y and targets
yt is minimized:

EMSE =
1

N

N∑
i=1

|yi − yt,i|2 (1)
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with N being the number of outputs. Also, to ensure that the outputs fit well the targets, the corre-
lation between the network outputs and targets is maximized, i.e., as close as possible to unity.

Designing a neural network for a particular application presents different challenges. Firstly, the
identification of a method to generate the training database. Secondly, since the topology and hyper-
parameters of the network influence the network accuracy, the values for each of these parameters,
which offer the best network performance, need to be identified. These points are addressed in the
next two sections.

Training Database Generation

The training database contains the input vector and the target output vector. The input vector
includes the orbital parametrization of the departure and arrival asteroids and the position along
their orbits at a reference time. The target output vector includes the cost ∆V and TOF of the low-
thrust, rendezvous transfers between the departure and arrival asteroids. It follows that the input
vector x and output vector y can be defined as:

x = [p0, f0, g0, h0, k0, L0, pf , ff , gf , hf , kf , Lf ] (2)

y = [∆V, t0,f ] (3)

where p0, f0, g0, h0, k0, L0 and pf , ff , gf , hf , kf , Lf are the modified equinoctial elements (MEE)30

describing, respectively, the orbits of the departure and arrival NEAs, ∆V indicates the velocity in-
crement and t0,f the time of flight.

For the generation of the database, NEAs which are of particular scientific interest, composition
and/or orbit are included, such as Potentially Hazardous Asteroids (PHA) and Near-Earth Object
Human Space Flight Accessible Targets Study (NHATS). Figure 2 shows the 6,286 NEAs, which
are used for the simulation, at their position (blue dots) with respect to the Earth’s orbit (in red) on 27
April 2019. The orbital elements of these NEAs (input) are obtained from the NASA’s Near-Earth
Object Program.∗

∗Data available through the link https://cneos.jpl.nasa.gov/orbits/elements.html (accessed on
2019/06/17)
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Figure 3: Effect of varying the network parameters on the correlation coefficient R, validation-set
MSE and training time.

To compute the ∆V and TOF of low-thrust transfers (output) between the couples of asteroids,
an OCP needs to be solved. Considering that a sufficient number of samples is needed to accu-
rately train the network, direct or indirect methods are excluded as they require a long computation
time. Analytical methods can, instead, provide a quick and reliable, but approximated, trajectory
description. For this work, the shape-based method31 is chosen to approximate the shape of low-
thrust transfers, for the given launch dates and propulsion system, and to estimate the related ∆V
and TOF. A genetic algorithm is used to compute the shaping parameters to obtain the rendezvous
transfers with minimum cost. From the obtained acceleration profile, the control history can be
retrieved.

The training database is build by permuting a subset of 100 NEAs and using the shape-based
method to compute the cost and duration of the transfers for each couple of asteroids. All the
departures dates are included in a launch window from January 2020 and December 2030. The
training database comprises a total of 10,100 low-thrust transfers. The number of NEAs and the
launch window are bounded for the generation of the training database. This is done to verify the
generalization property of the neural network, for which a successfully trained ANN can generalize
and estimate transfer costs between NEAs that are not included in the database and with different
launch dates.

To verify the generalization property of the network, the database is divided into training set,
validation set and test set. The training set is used for the training, while the validation and test sets
contain new samples that are not included in the training. The validation set is used to verify that
the overfitting does not occur during the training and the test set is used to test the performance of
the network, after the training, with totally new cases. To this end, the validation-set MSE is often
taken into consideration when studying the network performance.

Network Architecture Design

The architecture of the network is defined by the number of hidden layers and the number of
neurons. Other hyper-parameters of the network are the learning algorithm, activation function
for each hidden layer, learning rate or gradient constant and its increase or decrease factor. Also,
different orbit parametrizations can be used as inputs to the network, showing that the choice of the
right type of inputs can influence the performance of the network.
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Table 1: Network architecture and hyper-parameters for the highest network performance.

ANN Parameter Best value

Number of hidden layers 4
Number of neurons of each hidden layers 80
Learning algorithm Levemberg-Marquardt
Activation function of each hidden layers sigmoid
Gradient Constant µ 0.001
Decrease Factor µdec 01
Database division rates (training:validation:test) 70:15:15
Orbit parametrization for the network inputs MEE

The effect of varying the hyper-parameters and the input of the network on its performance is
studied with the purpose of identifying the combinations of parameter values that offer the highest
network performance. Figure 3 shows the response of the network to varying the number of layers
and neurons on the correlation coefficient R, MSE of the validation set and training time Ttrain.
While the training time increases significantly as the number of layers and/or neurons increases, the
performance of the network reaches a peak for a specific number of hidden layers and neurons.

A similar analysis is performed for each of the other network hyper-parameters and different orbit
parametrizations used as the network input. The interested reader can find the detailed description
of these analyses in the other paper from the authors.26 Table 1 presents the parameters of the
network which led to the highest performance for the cost estimation of low-thrust transfers, with
final correlation coefficient of 0.9732 and validation-set MSE of 0.1211.

SEQUENCE SEARCH ALGORITHM

The following sequence search algorithm is implemented to identify the most promising se-
quences of asteroids to visit with the final return to Earth. The logic of the algorithm is based
on a tree-search method and it is schematized in Figure 4. The search starts from Earth as the
departure body at a fixed launch date. The NEA database is loaded and their ephemerides are up-
dated at the departure date t0,i, where i indicates the i-th leg. The ANN is embedded within this
algorithm to compute the cost and duration of low-thrust, rendezvous transfers from Earth to all
the NEAs in the database. The NS = 200 trajectories with the least propellant mass required are
stored and a stay time tstay = 100 days is added at each object to ensure enough time for close-up
observation and/or sample collection. At this point, the arrival body becomes the departure body
of the following leg and the same procedure is iterated. If the total mission duration is longer than
six years, a pruning of the asteroids to be considered in the search is performed to guarantee that
the spacecraft can successfully return to Earth on its last leg. To this end, the algorithm is designed
to select the next body among those NEAs whose semimajor axis, eccentricity and inclination are
included between the last NEA visited in the sequence and the Earth, i.e.:

an ≤ a ≤ aE (4)

en ≤ e ≤ eE (5)

in ≤ i ≤ iE (6)
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Figure 4: Sequence search algorithm with return to Earth.

where n indicates the n-th asteroid visited and E the Earth. In essence, this induces the search
to target asteroids that are incrementally more similar to Earth in terms of orbital elements. The
expressions are defined for the case with aE ≥ an, eE ≥ en, and iE ≥ in, but they are inverted
when the opposite case is verified.

When the mission duration exceeds 8.5 years, it is expected that the spacecraft will orbit close
enough to Earth that the final return leg can be performed. The ANN is also used in this case to
estimate the trajectory cost. Finally, the best solutions in terms of propellant mass expenditure are
stored and considered as complete sequences.

Figure 5 shows the sequences with five asteroids visited and return to Earth which were calculated
by the sequence search algorithm for the departure date 24 August 2035. Since the number of
asteroids to visit grows rapidly as we proceed through the legs, only the first three legs are plotted
in full and, for illustration, one complete sequence is fully shown.
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Figure 5: Tree graph of first three legs of the sequences visiting five asteroids and returning to Earth,
which were found for launch date 24 August 2035.

Asteroid Targeting

As mentioned in the introduction, the previous missions, which performed to date a success-
ful sample return to Earth, were designed to target one asteroid which is reachable with the given
propulsion system and particularly interesting from the scientific point view. For instance, 25143
Itokawa and 162173 Ryugu were selected as the target asteroids for the missions Hayabusa and
Hayabusa 2, respectively, because they are suitable target in terms of asteroid size and are reachable
using an ion engine with a realistic ∆V .8, 9 Similarly, NASA selected the asteroid 101955 Bennu
for the mission OSIRIS-REx as it is rich in pristine carbonaceous material, which is a key element
in organic molecules necessary for life.2 In all the three missions, the asteroids were chosen pri-
marily because the sample collections and analyses are expected to improve the knowledge on the
formation and evolution of the planets and, in particular, of Earth, as well as the origin of water and
organic matter.

The sequence search algorithm can be adjusted to target a specific asteroid that is particularly
interesting for the scientific community and for which a sample return would be more valuable.
Figure 6 schematizes the sequence search algorithm which is implemented to target one asteroid
within the sequence and finally return to Earth. Compared to the previous algorithm with no NEA
targeting, this algorithm works so that the first half of the sequence is focused on targeting the
chosen asteroid of interest, while the second half is focused on targeting the Earth for a safe reentry.

The purpose is to ensure that the spacecraft can reach the target asteroid and, simultaneously,
visit as many asteroids as possible for observations and/or sample collections, while the spacecraft
flies from Earth to the target body and back to Earth. To this end, a pruning of the asteroids that are
visited between the departure from Earth and the arrival at the target body is also performed. Only
the NEAs with semimajor axis, eccentricity and inclination included between those of Earth and the
target asteroid are considered, i.e.:
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Figure 6: Sequence search algorithm to target one NEA of interest and return to Earth.

an ≤ a ≤ aT (7)

en ≤ e ≤ eT (8)

in ≤ i ≤ iT (9)

where n indicates the n-th asteroid visited (or Earth for the first leg) and T the targeted asteroid.
After two legs have been performed, it is assumed that the spacecraft has reached an orbit from
which it is possible to conveniently, in terms of cost and duration of the transfer, reach the target
body. Thus, the arrival body of the third leg is the target asteroid.

Once the target body is visited and the sample is collected, a second pruning of the asteroids,
which are visited between the departure from the target body and the return to Earth, is performed.
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Figure 7: Tree graph of the sequences targeting 162173 Ryugu in the third leg and visiting five
asteroids before returning to Earth. These sequences are obtained for the launch date 24 August
2035.

This is done, similarly to the previous algorithm represented in Figure 4, to guarantee that the
spacecraft can successfully return to Earth and visit as many asteroids as possible in its way back to
Earth.

For this work, the asteroid 162173 Ryugu is targeted, which is a PHA and NHATS of the Apollo
group with approximately 1 km in diameter. This asteroid was previously chosen by JAXA as it has
an unaltered or barely altered composition (C-type) and it is easily accessible from Earth.32 Figure
7 shows the tree graph of the sequences of five asteroids, which target 162173 Ryugu in the third
leg and, finally, return to Earth. These sequences are calculated by the sequence search algorithm
for the departure date 24 August 2035.

Interest Value of NEA Sequences

As many asteroids remain unclassified due to the lack of quality data or limited opportunities for
ground observation,33 it is chosen to consider more valuable to observe, collect and return samples
of NEAs, which are bigger in size, so that they can be classified. Larger asteroids are generally rarer
and more suitable for landing and for the sample collection.

Apart from the asteroids which have been visited by a spacecraft in the past, the size and shape of
most asteroids is yet unknown. Although most asteroids have irregular shape and only few of them
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are close to being spherical, the size of an asteroid can be estimated from its absolute magnitude,H ,
and assumed geometric albedo, a, as the diameter of an equivalent sphere with a uniform surface.
The diameter (in km) of an asteroid can be estimated as follows:34

d = 10(3.1236−0.5 log10(a)−0.2H) [km] (10)

where the albedo, a, is generally assumed based on the spectral class corresponding to the assumed
composition of the asteroid and an average value is typically used.35 Due to the conceivable un-
certainty in both H and a, Eq. (10) provides an approximate estimation of the size of an asteroid.
For example, for the same absolute magnitude H , a deviation in albedo of 0.1 leads to an error in
diameter by a factor of two.∗ However, considering that in Eq.(10) H has a larger impact than a in
determining the asteroid’s size, we will assume in the following that an asteroid with a smaller H is
characterized by a larger size and, in principle, represents a more interesting candidate to visit in a
sequence.

To classify the obtained sequences on the basis of their scientific interest, the interest value, IV , of
each sequence is used and defined as the negative sum of the absolute magnitudes of all the visited
asteroids, i.e.:

IV = −
NA∑
i=1

Hi (11)

where Hi is the absolute magnitude of the i-th asteroid visited and i ∈ [1, NA], with NA being the
number of asteroids visited during the relative sequence. The greater the interest value, the larger
the asteroids visited and the more interesting is considered the sequence.

To take into account the interest value for the selection, during the sequence search, of the most
convenient sequences to fly, an appealing factor A is associated to each sequence as the weighted
sum of its total ∆V and total IV , which can be expressed as follows:

A = α∆Vn,tot − (1− α)IVn,tot (12)

where α is a weight coefficient, which can vary from 0 to 1 depending on the importance given to
the ∆V and IV when selecting the sequences. Note that ∆Vn,tot and IVn,tot refer to the normalized
values of the total ∆V and IV of the sequence. In this case, the sequence search algorithms are
changed so that, at each leg, the NS = 200 trajectories with the lowest A are selected, which means
minimum ∆V and maximum interest value.

Varying the value of the weight α and/or targeting one asteroid of interest within a sequence have
an impact on the final mass expenditure and interest value of the sequence. Figures 8(a) and 8(b)
show the distribution of the ∆V for all the transfers and ∆Vtot for all the sequences. Similarly,
Figures 8(c) and 8(d) describe the distribution of the absolute magnitude, H , for all encountered
NEAs and interest value, IV , for all the sequences. These distributions are obtained when the
sequence search algorithm is run for the following cases:

∗Data available through the NASA JPL Asteroid Size Estimator https://cneos.jpl.nasa.gov/tools/
ast_size_est.html (accessed on 2020/07/14)
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Figure 8: Distribution of the ∆V (a), ∆Vtot (b), absolute magnitude H (c) and interest value IV (d)
of the obtained sequences and NEAs visited.

1. no target asteroid and α = 1

2. 162173 Ryugu as the target asteroid and α = 1

3. no target asteroids and α = 0.5

4. 162173 Ryugu as the target asteroid and α = 0.5

The figures indicate that when α is lower than one, i.e., the selection of the sequences is also
made on the basis of their IV , the selected sequences are characterized by a greater IV and generally
higher ∆V with respect to the case when only the ∆V is considered (i.e., α = 1). In the latter case
of α = 1, it is possible to achieve a larger number of sequences with greater IV when an interesting
asteroid is targeted within the sequences. However, it should be noted that, when α < 1, the pruning
of the asteroids, which is performed to ensure that the target asteroid can be conveniently reached,
appears to reduce the likelihood to encounter asteroids with a larger size, compared to the case when
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Table 2: Orbital characteristics of the NEAs visited in Sequence A.

Sequence A 2008 EA9 2010 AN61 2018 CQ3 2004 FM32 2015 VO142

a, AU 1.05 1.16 1.17 1.10 1.08
e, - 0.07 0.13 0.15 0.16 0.13
i, deg 0.44 3.61 4.00 3.76 0.28
H, - 27.7 27.0 25.2 27.1 28.9
Estimated size, m 8-19 11-24 27-60 11-24 4-10
PHA No No No No No
NHATS Yes Yes Yes Yes Yes
Orbit Class Apollo Apollo Apollo Apollo Apollo

no objects are targeted. In summary, more interesting objects can be favored during the sequence
selection process, increasing the overall appeal of the sequences generated by the search algorithm
at the cost of a larger ∆V .

MULTIPLE NEA SAMPLE RETURN MISSIONS

To verify the outcome of the sequence search algorithm, three sequences are selected and fully
optimized for a solar electric propulsion system with maximum thrust Tmax = 0.3 N, specific
impulse Isp = 3000 s, and initial mass m0 = 1500 kg. The sequences are selected from the
following simulations:

1. Sequence A, chosen as the sequence with lowest ∆V obtained from the sequence search with
no target asteroid and α = 1

2. Sequence B, chosen as the sequence with lowest ∆V obtained from the sequence search with
162173 Ryugu as the target asteroid and α = 1

3. Sequence C, chosen as the sequence with greater IV obtained from the sequence search with
no the target asteroid and α = 0.5

The orbital characteristics of the asteroids visited during the Sequences A, B and C are detailed
in Tables 2, 3 and 4, respectively. The sequences visit five asteroids, of which some are PHA and
all are NHATS except for 2000 LY27, which is a PHA and presents the lowest absolute magnitude
H . An estimated size of the asteroids is provided and calculated using the conversion formula from
the absolute magnitude to the diameter expressed in Eq. (10), taking into account an albedo in the
range 0.05–0.25.

The low-thrust OCP is solved to find the high-fidelity trajectories. The dynamics is described by
the following set of ordinary differential equations:

ẋ(t) = A(x)a + b(x) (13)

where x is the state vector of the system, expressed in modified equinoctial elements and adjoined
by the spacecraft mass, A(x) and b(x) are, respectively, the matrix and the vector of the dynamics,
as defined in Ref. 36. The acceleration generated by the SEP system a can be described as follows:

13



Table 3: Orbital characteristics of the NEAs visited in Sequence B.

Sequence B 2016 TB18 1998 KG3 162173 Ryugu 2014 UY 2008 EA9

a, AU 1.08 1.16 1.19 1.17 1.05
e, - 0.08 0.12 0.19 0.17 0.07
i, deg 1.53 5.51 5.88 3.56 0.44
H, - 24.8 22.1 19.3 25.4 27.7
Estimated size, m 27-60 110-240 870-1000 21-48 8-19
PHA No No Yes No No
NHATS Yes Yes Yes Yes Yes
Orbit Class Apollo Amor Apollo Apollo Apollo

Table 4: Orbital characteristics of the NEAs visited in Sequence C.

Sequence C 1998 KG3 162173 Ryugu 2017 UY4 2000 LY27 2001 QC34

a, AU 1.16 1.19 1.19 1.31 1.13
e, - 0.12 0.19 0.16 0.21 0.19
i, deg 5.51 5.88 3.78 9.02 6.24
H, - 22.1 19.3 25.2 17.0 20.1
Estimated size, m 110-240 870-1000 27-60 1100-2400 270-600
PHA No Yes No Yes Yes
NHATS Yes Yes Yes No Yes
Orbit Class Amor Apollo Apollo Amor Apollo

Table 5: Mission parameters of the optimized NEA Sequence A. Comparison of optimal results
with ANN estimations (in brackets).

Leg Departure Arrival TOF, days ∆V , km/s Stay Time, days

Earth - 2008 EA9 2035/08/24 2037/04/20 605 (545) 5.96 (5.48) 83

2008 EA9 - 2010 AN61 2037/07/12 2038/11/29 505 (560) 4.80 (4.61) 20

2010 AN61 - 2018 CQ3 2038/12/19 2040/08/19 609 (550) 4.47 (4.43) 20

2018 CQ3 - 2004 FM32 2040/09/08 2042/06/08 638 (558) 4.75 (4.63) 100

2004 FM32 - 2015 VO142 2042/09/16 2043/10/05 384 (368) 3.10 (3.61) 54

2015 VO142 - Earth 2043/11/28 2045/03/31 489 (489) 4.01 (4.34) –

a =
Tmax

m
N (14)

where Tmax is the maximum thrust that can be generated and N is the acceleration direction. As
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Figure 9: Sequence A with no asteroid targeting and α = 1: heliocentric ecliptic-plane view.

Table 6: Mission parameters of the optimized NEA Sequence B. Comparison of optimal results
with ANN estimations (in brackets).

Leg Departure Arrival TOF, days ∆V , km/s Stay Time, days

Earth - 2016 TB18 2035/09/13 2036/11/07 421 (444) 2.51 (2.97) 47

2016 TB18 - 1998 KG3 2036/12/24 2038/04/24 486 (456) 9.89 (5.57) 43

1998 KG3 - 162173 Ryugu 2038/06/06 2039/05/27 355 (355) 4.30 (3.97) 65

162173 Ryugu - 2014 UY 2039/07/31 2040/03/23 236 (302) 2.49 (2.70) 28

2014 UY - 2008 EA9 2040/04/20 2041/09/14 512 (532) 4.94 (4.59) 117

2008 EA9 - Earth 2042/01/09 2043/01/26 382 (362) 2.61 (2.73) –

the propellant mass is used to thrust the spacecraft, its mass m changes with time as described by
the following mass differential equation:

ṁ = −Tmax|N|
Ispg0

(15)

where Isp is the specific impulse of the SEP system.

The OCP is solved by using GPOPS, which uses a discrete non-linear programming (NLP) to-
gether with a variable-order adaptive Radau collocation method37 and the NLP solver IPOPT.38

The objective of the optimization algorithm is to find the optimal control vector that minimizes the
total mass expenditure while fulfilling the dynamics constraints of Eq.(14) at any time. The opti-
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Figure 10: Sequence B with target 162173 Ryugu and α = 1: heliocentric ecliptic-plane view.

Table 7: Mission parameters of the optimized NEA Sequence C. Comparison of optimal results
with ANN estimations (in brackets).

Leg Departure Arrival TOF, days ∆V , km/s Stay Time, days

Earth - 1998 KG3 2035/09/11 2037/06/09 637 (655) 6.51 (6.81) 86

1998 KG3 - 162173 Ryugu 2037/09/03 2039/01/01 485 (405) 5.31 (4.94) 47

162173 Ryugu - 2017 UY4 2039/02/17 2040/07/24 523 (543) 5.79 (5.90) 98

2017 UY4 - 2000 LY27 2040/10/30 2042/07/23 631 (651) 5.68 (5.17) 120

2000 LY27 - 2001 QC34 2042/11/20 2044/09/12 662 (582) 7.29 (6.49) 109

2001 QC34 - Earth 2044/12/30 2046/01/20 386 (386) 5.87 (5.53) –

mization is performed on the trajectory leg by leg sequentially, starting from an initial guess which
is generated by solving a Lambert problem39 and using the TOF estimated by the ANN. To allow
enough time for close-up observations and/or sample collection a minimum stay time of 20 days is
enforced.

Tables 5, 6 and 7 describe the optimized mission characteristics of Sequence A, B and C, respec-
tively. The departure and arrival dates, the TOF, the ∆V and stay time are specified for each transfer.
To compare the optimized values with those estimated by the ANN, the latter are expressed within
brackets. The optimization procedure was able to find a solution for each of the transfers involved,
showing that the trajectories are feasible and the spacecraft is able to return to Earth after visiting
five asteroids within ten years from departure. The heliocentric ecliptic-plane view of the optimized
trajectories for Sequence A, B and C are shown in Fig. 9, 10 and 11.
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Figure 11: Sequence C with no asteroid targeting and α = 0.5: heliocentric ecliptic-plane view.

The sequence search algorithm generates NS = 200 asteroid sequences in about 7.6 hours and
3.3 hours for the cases when, respectively, no asteroid or an asteroid is targeted during the search.
The simulations have been performed on a machine with a Core i7 processor at 3.4 GHz. In previous
works of the authors,26 the required computational time when an ANN is used in the sequence search
has been compared with the time required for other previously used methodologies, which typically
required tens of days for a similar simulation to fully compute the multiple NEA sequences. When
ANN is used, the algorithm results to be two orders of magnitude faster.

To evaluate how well the network performs with respect to the optimization procedure, the de-
viations of the TOF and ∆V between the values estimated by the ANN and the optimal ones are
calculated as the average percentage errors, i.e.:

ETOF =
1

N

N∑
i=1

(
|TOFi,opt − TOFi,ANN |

TOFi,opt

)
(16)

E∆V =
1

N

N∑
i=1

(
|∆Vi,opt −∆Vi,ANN |

∆Vi,opt

)
(17)

with N being the number of legs in the trajectory.

Table 8 presents the percentage errors of three sequences, together with a summary of the total
∆V and IV for each of them. It can be noted again that, to fly NEA rendezvous missions with
greater IV , thus visiting asteroids of larger sizes, a larger ∆V is generally required which is however
still achievable with the chosen propulsion system. The mean error of the Sequences A, B and C is
7.46% for the TOF estimation and 7.27% for the ∆V estimation. It can be concluded that the trained
network is able to estimate with a reasonably accuracy the cost and duration of transfers from the
Earth, between NEAs and back to the Earth, while reducing greatly the computational time.
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Table 8: Total ∆V and IV of the selected sequences with the average percentage error between
ANN and optimized results.

Sequence ∆Vtot IV ETOF E∆V

A (Table 5) 28.11 -135.9 7.87% 6.69%

B (Table 6) 27.35 -119.3 8.12% 8.59%

C (Table 7) 35.75 -103.7 6.40% 6.54%

Mean Error – – 7.46% 7.27%

CONCLUSIONS

An artificial neural network is designed and used to quickly estimate the cost and duration of
low-thrust, rendezvous transfers between near-Earth asteroids. The network, whose architecture is
optimized for this application, is integrated with the sequence search algorithm, which based on a
tree-search method, can identify the most convenient sequences from the point of view of the mass
expenditure and/or the interest value of the asteroids visited. In this work, an asteroid is considered
more interesting if it is characterized by a larger size, i.e., lower absolute magnitude and greater
interest value, IV .

The sequence search algorithm is designed so that, while visiting a defined number of asteroids
in a set amount of time, it directs the spacecraft towards asteroids that are closer (in the orbital
parameter space) to a target asteroid or, if in the final leg, to Earth and eventually transfer to Earth
itself. At each leg, the search retains the best 200 sequences in terms of the appealing factor, which
derives from the weighted sum of the interest value and ∆V . Changing the weight value affects the
importance given to IV and ∆V in the sequence selection process.

The analysis of the distribution of the total ∆V and IV of the obtained sequences reveals that,
when the selection of the sequences during the search is made on the basis of both the IV and ∆V ,
more interesting objects can be visited, increasing the overall appeal of the sequences at the cost
of a larger ∆V . Three sequences were analyzed and fully optimized, to obtain the flight trajectory
and control history. It is shown that employing machine learning techniques within the sequence
search algorithm greatly reduces the computational time, while still ensuring a high accuracy with
an average percentage error of about 7% with respect to the optimal values.
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