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Abstract—Antenna design optimization continues to attract a
lot of interest. This is mainly because traditional antenna design
methodologies are exhaustive and have no guarantee of yielding
successful outcomes due to the complexity of contemporary
antennas in terms of topology and performance requirements.
Though design automation via optimization complements conven-
tional antenna design approaches, antenna design optimization
still presents a number of challenges. The major challenges in
antenna design optimization include the efficiency and optimiza-
tion capability of available methods to address a broad scope
of antenna design problems considering the growing stringent
specifications of modern antennas. This paper presents a review
of the most recent progress in antenna design optimization with
a focus on methods which address the challenges of efficiency
and optimization capability via machine learning techniques. The
methods highlighted in this paper will likely have an impact
on the future development of antennas for a multiplicity of
applications.

Index Terms—antenna optimization, machine learning, surro-
gate model-based optimization.

I. INTRODUCTION

Over the last few decades, antennas and their associated

systems have evolved rapidly due to unprecedented changes

in their geometric and material profiles to meet modern appli-

cations such as body-centric communications [1] and multi-

band operations for 2G/3G/4G/5G [2]. Generally, antennas

can be designed by following rules of thumb which often

premise on design experience [3]. Due to increasingly stringent

specifications and the realization of additional performance

requirements, present-day antenna structures are usually topo-

logically and electromagnetically complex with a large number

of sensitive design parameters [2]. Even though experience-

based rules of thumb can provide a practical guide to an-

tenna designers, they are mostly suitable for simple antenna

structures and applying them correctly often yield sub-optimal

designs (even for simple antenna structures [4]). Consequently,

finding the best designs, which fulfil the desired performance

for contemporary antennas, could be very challenging.

To address the above bottleneck, it is a common practice to

fine-tune the geometric and/or material parameters of antenna

structures for performance improvement. The most popular

approaches still revolve around experience-based parameter

sweeping of a few parameters at a time [1]. For modern

antennas with many sensitive parameters, this process could

be time-consuming without any guarantee of successful out-

comes - it is often a process of trial and error. Thus, the

need for design automation via optimization. To improve

the performance of antennas via optimization, local and/or

global numerical optimization methods are chiefly employed

[4]. Even though numerical optimization is evidently more

superior than experience-driven parameter sweeping, there are

still some challenges.

Local optimization methods often require a good initial

design or starting point (which is typically not available in

practice for modern antenna structures) to obtain good results

[4]. Global optimization methods on the other hand are more

attractive because of their robustness and non-requirement of

an initial design, but they often require a very large (sometimes

unaffordable) number of electromagnetic (EM) simulations

to obtain near-optimum designs [4]. For a thorough charac-

terization of antennas, numerical technique-based full-wave

EM simulations are inevitable. Full-wave EM simulations

are inherently computationally expensive. A one-time design

characterization via an EM simulation does not constitute a

problem, but the massive amounts of such EM simulations

required by global optimization methods constitutes an unaf-

fordable computational overhead.

To lower the computational overhead of antenna synthesis,

machine learning methods are often used to aid numerical

optimization methods by integrating them in the optimization

kernel a priori and/or a posteriori [5], [6]. Surrogate modelling

tends to be the most popular machine learning method used

to aid numerical optimization methods for antenna synthesis

[6]. In the optimization process, surrogate modelling mainly

works by replacing computationally exact function evalua-

tions (i.e., computationally expensive EM simulations) with

computationally cheap approximation models. These approx-

imation models are called surrogate models and they are

usually constructed using statistical learning techniques [7].

Though a number of surrogate modelling techniques have

been shown to be very successful for the machine learning-

assisted optimization of EM designs [8], Gaussian process

(GP) or kriging [9] tends to be popular in the antenna

design domain [10]–[12]. The conjunctive use of surrogate

modelling techniques and numerical optimization methods in

a single optimization framework is referred to as surrogate-

based optimization (SBO) [5], [6].



Several SBO methods employing local optimization meth-

ods and/or global optimization methods as their search en-

gines have been proposed for the single-objective, multi-

fidelity, multi-objective and process variation-aware or yield

optimization of antennas [11], [13]–[16]. As a result, there is

a variety of SBO paradigms for the machine learning-assisted

optimization of antennas. In this review, state-of-the-art SBO

methods for the machine learning-assisted optimization of

antennas are discussed in an attempt to establish their use

cases. Particularly, these methods are evaluated in terms of

generality, efficiency, optimization capability and ease-of-use

according to existing literature.

II. OPTIMIZATION OF ANTENNAS

A. Single-objective optimization

Very often antenna optimization problems are modeled as

single-objective optimization problems. A typical example is

the maximization of the isotropic gain [4]. Typically, a single-

objective optimization can be mathematically described as

shown in (1)

minimize f(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . , k.

x ∈ [a, b]d.
(1)

where x the decision variable (typically, a set of parametric

values which describe an antenna design), d is the dimension

of x and [a, b]d are the search ranges of the decision variable,

f(x) is the objective function such as the in-band maximum

reflection coefficient to be minimized, gi(x) are the constraints

such as the specifications on the gain, and k is the number of

constraints. Considering a minimization problem, the optimal

solution for (1) will be the value of the value of xo ∈ [a, b]d

where there is no other point xi ∈ [a, b]d with f(xi) < f(xo).
Typically, antenna optimization problems are constrained

optimization problems. This is because antennas specifications

are often two or more as described mathematically in (1). For

most constrained optimization problems, a weighted sum of

the constraints and the objective is used to derive a penalty

function which then becomes the single objective function

value for the optimization. This approach is called the penalty

method [17] and it is the method mostly employed for the

aggregation of the multiple requirements of antenna problems.

In recent times, several SBO methods have been proposed

for the single-objective and/or constrained optimization of an-

tennas [15], [18], [19]. In general, a critical trade-off between

the surrogate model quality and the efficiency (premised on

the essential number of EM simulations) exists in these SBO

methods. This stems from the requirement of more training

data points (which can only be obtained by expensive EM

simulations) for the construction of high quality surrogate

models. As a result, many SBO methods focus on efficiency

improvement and the method to find an appropriate trade-off

(i.e., a good balance between the quality of the surrogate

modelling and the efficiency of the optimization) is called

surrogate model management. Some of the recent approaches

proposed to address this challenge amongst others in SBO

methods are discussed as follows.

To address the well-known wrong convergence issue in

standard space-mapping optimization of antennas [20], a local

search mechanism (the trust region (TR) approach) where a

surrogate model is optimized in a restricted neighbourhood

(i.e., a local region) is employed in [21]. For most practical

cases, the Jacobian matrix which characterizes the linear

model of the TR gradient search is evaluated through finite

differentiation at the cost of additional EM simulations per

algorithmic iteration [22]. The number of the additional EM

simulations corresponds to the dimensionality of the design

space; consequently, the Jacobian updates primarily decide the

computational overhead of the optimization process. To reduce

the computational cost of the TR gradient search in [21], a

method which uses an adaptive scheme for sparse Jacobian

updates is proposed in [15]. In [15], the Jacobian matrix is

only updated in part by considering the relationship between

the subsequent design vectors and TR region size.

To enhance the convergence speed, reduce the dimension-

ality of the search space and improve the starting point of

the local search mechanism (TR gradient search in [21]), a

multi-stage optimization method using large scale sensitivity

analysis and local optimization routines is proposed in [19].

The method in [19] iteratively locates a feasible region in

the antenna’s multi-dimensional parameter space through a

sequence of constrained optimization runs (considering a goal

at a time). The optimization procedure is then initialized by

focusing on the subspace of the most influential parameters

(selected via a large scale sensitivity analysis) first to improve

the starting point of the TR gradient search.

To circumvent the requirement of a starting point or an

initial design, while ensuring high efficiency and good con-

vergence speed, a class of SBO methods which offer a good

balance between the quality of the surrogate modelling and

the efficiency of the optimization have been proposed in [11],

[12], [23]. This class of SBO methods employing global search

and online surrogate models (i.e., surrogate models which are

updated continuously throughout the optimization process) is

called the surrogate model-assisted differential evolution for

antenna optimization (SADEA) family of algorithms. SADEA

family of algorithms use the state-of-the-art surrogate model-

aware evolutionary search framework [24] for their surrogate

model management and they offer three to 20 times speed im-

provement compared to standard global optimization methods

[4]. They are robust and very generic because they have no

limitations on the dimension space and no ad-hoc processes

are required in their modus operandi.

B. Multi-fidelity optimization

Multi-fidelity optimization of antennas can easily be cate-

gorized as a class of antenna optimization efficiency improve-

ment method on its own. Basically, the general idea of multi-

fidelity optimization of antennas is to use cheaper and less

accurate low-fidelity models to filter out non-promising solu-

tions, and to use expensive but accurate high-fidelity models to



perform a search around "promising" solutions obtained by the

low-fidelity model. Depending on the optimization framework,

these models could be surrogate and/or EM models [25], [26].

To achieve this co-working, very often data-driven surrogate

models and EM (i.e., antenna) models of varying accuracies or

fidelities are integrated into a single optimization framework

to lower the overall computational cost of optimization [27].

The primary challenge with machine learning-assisted

multi-fidelity antenna optimization methods has always been

how to efficiently ensure the uniqueness of the parameter

extraction from the low-fidelity design space to the high-

fidelity design space [26]–[28]. In recent times, a number

of methods have been proposed to adequately overcome this

bottleneck for various use cases [26], [27], [29]. Some of

the latest methods are discussed as follows based on their

innovations.

To lower the computational overhead of the multi-fidelity

optimization of antennas, a conjunctive use of varying-fidelity

antenna models with data-driven surrogate models is proposed

in [29]. In [29], a surrogate model realized in a constrained

domain through a space reduction technique is used. The

space reduction technique works by employing the simplex

formed by designs from the low-fidelity EM model design

space to determine (by way of estimation) the lateral spread

of the solution domain. The designs obtained from the low-

fidelity design space are then verified/validated using a few

high-fidelity EM simulations. Typically, only one of the final

designs is required and used.

To improve the convergence speed of the multi-fidelity

optimization of antennas, the method proposed in [26] exploits

a number of multi-fidelity coarse models with increasing

discretization levels (with the discretization level of the last

one closest to the fine model) for the iterative construction

of a series of local surrogate models by means of polynomial

interpolation. In [26], a judgement factor based on the overall

degree of similarity between the current surrogate model and

the corresponding model is used to provide information for

the update of the local region size. The optimized design

of the final local surrogate model is assumed to be a good

estimation of the optimal design of the high-fidelity model

and its accuracy is improved by means of input space mapping

performed in its local region.

To reliably handle model discrepancies in the multi-fidelity

optimization of antennas, while ensuring high efficiency and

good convergence speed, a multi-stage SBO method which

features data mining and a local search mechanism is proposed

in [27] stemming from the algorithmic framework in [30]. In

[27], a one-off coarse model is used to carry out an SADEA-

based optimization to generate a pool of data designs at the

first stage. The pool of data designs from the first stage are

then clustered using an iterative clustering algorithm to form

an initial database for the final stage. At the final stage, a

one-off fine model is used to carry out an SADEA-based

optimization aided by a surrogate-model-assisted local search

starting from the initial database from the previous stage. The

method proposed in [27] is very generic because there are no

limitations on the dimension space and no ad-hoc processes are

required for the update of the coarse and/or fine EM models

(both are one-off in the entire optimization process).

C. Multi-objective optimization

Mathematically, a typical multi-objective optimization prob-

lem can be described according to (2). A typical case of an

antenna design problem handled as a multi-objective optimiza-

tion problem is the minimization of the reflection coefficient

values within multiple bands and the minimization of the

antenna structure for a planar antenna [31].

minimize {f1(x), f2(x), . . . , fm(x)}
x ∈ [a, b]d.

(2)

where {f1(x), f2(x), . . . , fm(x)} are the optimization objec-

tives and m is the total number of objectives.

Multi-objective optimization techniques can be broadly clas-

sified into a priori and a posteriori methods according to

the decision-making processes [32]. In contrast to a priori

methods, a posteriori methods do not require prior prefer-

ence information from the decision maker [32]. Instead, they

produce a number of well representative optimal trade-off

candidate solutions for a decision maker to check on a Pareto

front (PF) - an image of Pareto optimal solutions (called

the Pareto set) in the objective space [32]. A Pareto optimal

solution is a candidate solution that obtains the best trade-off.

The primary challenge associated with the design and

optimization of antennas using conventional multi-objective

optimization methods is the overly large (often impractical)

amount of expensive EM simulations required for the com-

pletion of the optimization process [33]. Additionally, after a

successful run, the set of alternative design solutions generated

by the Pareto front is often redundant when the designer

preferences are vivid and only one final design solution is

selected and used [34]. To overcome this challenge, several

machine learning-assisted multi-objective optimization meth-

ods have been proposed in recent times for the synthesis of

antennas [31], [34]–[36]. Some of these methods are discussed

as follows based on their innovations.

To lower the computational overhead of the multi-objective

optimization of antennas via off-line surrogate modelling (i.e.,

a one-off surrogate model construction in the optimization

process), a sparsely connected backward propagation neural

network is employed in [31]. The surrogate model in [31] is

constructed only after the network parameters are adaptively

tuned using hybrid real-binary particle swarm optimization

algorithm [37] to promote global optimization capability, and

a time-varying transfer function is set to lower the tendency

of easily getting trapped into a local optimum and to improve

convergence speed. It is then used to replace computationally

expensive full-wave EM simulations in a standard multi-

objective optimization framework using multi-objective evo-

lutionary algorithms (MOEAs) to generate the PF.

To improve the convergence speed and to promote a better

spread of design solutions for the multi-objective optimization

of antennas via local search mechanisms, a non-dominated



and local search-assisted multi-objective optimization method

is proposed in [35]. The method in [35] differs from the

conventional multi-objective optimization methods via the

adoption of a local search method to generate an improved

population in the optimization process. To obtain the popula-

tion for consecutive iterations, the traditional non-dominated

sorting method [38] and the farthest-candidate method [38]

are used. The population is updated by the local search for

improved convergence speed by replacing current solutions

with neighbouring solutions using the replacement strategy

in [38]. As a result, boundary solutions (i.e., solutions with

minimum and maximum fitness values) are prioritized for

selection to ensure an even distribution of the Pareto-optimal

solutions on the PF.

To lower the computational overhead and improve the con-

vergence speed of the multi-objective optimization of antennas

via surrogate modelling and variable-fidelity EM models, a

robust methodology is presented in [34], [36]. The essential

component of this method is the sequential domain patching of

the design space. This is carried out by firstly generating ex-

treme Pareto-optimal designs (two designs) realized by using

an auxiliary low-fidelity model of the antenna conjunctively

with a GP interpolation model in a standard multi-objective

optimization framework using MOEA [39]. The patching pro-

cess is then implemented as a stencil-based search targeted at

linking the extreme Pareto-optimal designs through an iterative

generation of subregions within the design space to have an

initial approximation of the Pareto set. Since the initial pareto

set is realized at the level of a low-fidelity model, the final

Pareto set is generated by refining the selected coarse designs

using the output space mapping (OSM) procedure [40]. The

OSM correction mainly ensures that at the beginning of each

iteration the fitness of the refined models correspond to the

fitness of the second-order polynomial approximation of the

low-fidelity models [41].

D. Process variation-aware or yield-driven optimization

A majority of optimization-driven antenna design methods

do not account for the likely discrepancies that may exist

between the nominal antenna structure (often the optimal

design obtained after optimization) and the actual (fabricated)

antenna structure. For a robust design of antennas and to

ensure a full design closure, statistical analysis is required

for the quantification of the fabricated antenna deviations

from its nominal design values. This procedure is referred

to as process variation-aware or yield-driven design and it is

aimed at maximizing the probability that a fabricated prototype

will meet the performance specifications within the range of

assumed statistical deviations from its nominal design [16],

[42].

To carry out statistical modelling for yield evaluation, the

traditional Monte Carlo (MC) method is the most common

and generic method [42]. However, the number of trials

required to have an accurate MC yield estimate is often

large [42] leading to a slow convergence speed. Due to the

slow convergence speed of MC and the dimensionality of

contemporary antennas, a very large number of samples (i.e.,

many hundreds to thousands of computationally expensive

full-wave EM simulations and their responses) will be required

for the yield analysis of antenna design problems [16]. This

is computationally prohibitive; consequently, conventional sta-

tistical methods such as MC are not very popular for antenna

design.

Though a number of techniques have been proposed for the

expedited statistical analysis of EM models and microwave

structures, these techniques have mostly been applied to the

design of integrated circuits, multiconductors, microstrip and

filters [43], [44]. With a focus on yield-driven design of

antennas, a low-cost statistical analysis and yield optimization

of antennas using auxiliary response surface approximation

is proposed in [16]. In [16], a fast GP surrogate model is

constructed within the vicinity of the nominal design (i.e., the

optimal design obtained after an optimization run) and a low-

cost MC analysis is carried out using the fast surrogate model.

The yield estimate (i.e., the likelihood that the performance

specifications stipulated for the antenna are satisfied within

the range of assumed statistical deviations with respect to the

fabrication and/or material tolerances) is then maximized using

sequential approximate optimization by employing the local

interpolation surrogate (statistically optimized) and rebuilt in

a new domain.

As a way of lowering the computational overhead of yield-

driven design of antennas, a performance-based nested surro-

gate modelling method using a two-level kriging is proposed

in [45]. In [45], two varying surrogate models are considered

- a first-level surrogate model which is used to identify the

"promising region" of the parameter space by mapping the

objective space into the geometry parameter space of the

antenna to have the surrogate domain and the final (second

level) surrogate model is built over the domain to connote the

antenna responses. Since the dimension of design space is not

very high, the mapping or surjective transformation adopted

for parameter extraction makes the allocation of uniform

training data points very straightforward in [45]. The same

mapping subsequently allows for a suitable optimization of

the surrogate which can then be directly used in a yield-driven

optimization framework.

III. CONCLUSION

In this paper, present-day machine learning-assisted antenna

optimization methods are reviewed. These methods have been

discussed under the general forms or approaches to antenna

optimization. Methods which are suitable for high-dimensional

parameter spaces and multiple specifications without the re-

quirement of initial designs and/or ad-hoc processes are rec-

ommended for use due to their generality, robustness and

optimization capability to handle a variety of modern antenna

design problem cases.
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